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Abstract: An automated process is proposed for horizon detection and tracking using machine
vision cameras and in polar, sea-ice conditions. These conditions present unique challenges for
machine vision applications, such as a large amount of clutter (e.g. icebergs) and secondary
edge lines from broken ice pieces. The process is divided in two parts: a more computationally
expensive, yet robust detection algorithm in the first stage, based on Convolutional Neural
Networks, and used to detect the horizon line in an arbitrary sea-ice image; followed by a
tracking algorithm, responsible of efficiently detecting the horizon line in the subsequent images
of a sequence. We propose two tracking algorithms, one based on the traditional Canny and
Hough line detection methods; and a second novel approach using entropy as a measure of
randomness, to segment between sea-ice and sky. Our automated process was compared to
manually obtained ground-truth data and the results indicate good agreement, especially for
the texture-based tracking algorithm.
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1. INTRODUCTION

In recent years, marine operations have experienced a
boost (see e.g. Nations (2019)), and since the climate
change has affected the severity of the ice conditions (e.g.
concentration, thickness), new routes and operation areas
in polar regions are being explored (Bekkers et al. (2018)).
However, the navigation or operation in ice-infested wa-
ters requires a high degree of experience and expertise,
and reinforced platforms and instrumentation, which are
nevertheless susceptible to failure. From the perspective of
a ship navigating in icy waters, any additional information
that may increase or maintain its situational awareness
is highly valuable, even more so when such data can be
obtained and processed locally onboard, without the need
of an expensive, and often unavailable network connection.
One such addition, not limited to vessels only, can be a
machine vision camera oriented such that, among other
salient features, it captures the horizon line.

In maritime context, the horizon is generally regarded as
the line (at infinity) separating the sky and the body of
water underneath, commonly a sea or ocean. The estima-
tion of the horizon line within an image can provide highly
valuable information, that can be used for example in im-
age stabilization for data captured on dynamic platforms
(e.g. vessels, buoys) (Schwendeman and Thomson (2015),
Morris et al. (2007), Fefilatyev et al. (2012)), camera
auto-calibration (Zhang and Naik (2012)), camera (and
platform) attitude estimation for roll and pitch (Cornall
et al. (2006), Grelsson et al. (2016)), camera to Inertial
Measurement Unit (IMU) extrinsics calibration (Bovcon
et al. (2018)), or even the detection of dangerous or ab-
normal situations (e.g. extreme roll and pitch angles for a

vessel or buoy). It is worth noting that images collected
from maritime applications and in icy waters present a
non-uniformity and arbitrariness in their content, which
hinders the task of extracting useful information (e.g. hori-
zon detection). For instance, a pack-ice field can present
a large amount of straight edges around the ice floes.
Another challenge comes from large icebergs overlapping
the horizon and creating a sharp, straight line above it.
Another important topic is the consideration of real-time
processing. Given the usually slow dynamics involved in
marine applications, real-time constraints can be more
relaxed than, for example, automotive applications. Nev-
ertheless, this needs to be taken into account and a strive
towards efficiently meeting such real-time requirements
should be the objective.

In the current literature, there has been multiple attempts
at estimating the horizon line given an arbitrary image
(see Zardoua et al. (2021)), yet only one that we are
aware of studies the particular case of horizon tracking
(Schwendeman and Thomson (2015)). In our work, at
first we study the applicability of a simple Convolutional
Neural Network (CNN) to detect the horizon line from
images captured in remote polar waters, and then we
propose two methods, one of which completely novel, for
tracking a previously detected horizon line in icy waters.
To the best of our knowledge, this type of scenarios
have not been studied before in horizon detection and
tracking, and they present a particular set of challenges.
For instance, the broken ice field creates a large number of
secondary lines, especially close to the horizon and which
can easily confuse an algorithm. These floating ice pieces
(i.e. ice floes or simply floes) can at times present sharp
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concentration, thickness), new routes and operation areas
in polar regions are being explored (Bekkers et al. (2018)).
However, the navigation or operation in ice-infested wa-
ters requires a high degree of experience and expertise,
and reinforced platforms and instrumentation, which are
nevertheless susceptible to failure. From the perspective of
a ship navigating in icy waters, any additional information
that may increase or maintain its situational awareness
is highly valuable, even more so when such data can be
obtained and processed locally onboard, without the need
of an expensive, and often unavailable network connection.
One such addition, not limited to vessels only, can be a
machine vision camera oriented such that, among other
salient features, it captures the horizon line.

In maritime context, the horizon is generally regarded as
the line (at infinity) separating the sky and the body of
water underneath, commonly a sea or ocean. The estima-
tion of the horizon line within an image can provide highly
valuable information, that can be used for example in im-
age stabilization for data captured on dynamic platforms
(e.g. vessels, buoys) (Schwendeman and Thomson (2015),
Morris et al. (2007), Fefilatyev et al. (2012)), camera
auto-calibration (Zhang and Naik (2012)), camera (and
platform) attitude estimation for roll and pitch (Cornall
et al. (2006), Grelsson et al. (2016)), camera to Inertial
Measurement Unit (IMU) extrinsics calibration (Bovcon
et al. (2018)), or even the detection of dangerous or ab-
normal situations (e.g. extreme roll and pitch angles for a

vessel or buoy). It is worth noting that images collected
from maritime applications and in icy waters present a
non-uniformity and arbitrariness in their content, which
hinders the task of extracting useful information (e.g. hori-
zon detection). For instance, a pack-ice field can present
a large amount of straight edges around the ice floes.
Another challenge comes from large icebergs overlapping
the horizon and creating a sharp, straight line above it.
Another important topic is the consideration of real-time
processing. Given the usually slow dynamics involved in
marine applications, real-time constraints can be more
relaxed than, for example, automotive applications. Nev-
ertheless, this needs to be taken into account and a strive
towards efficiently meeting such real-time requirements
should be the objective.

In the current literature, there has been multiple attempts
at estimating the horizon line given an arbitrary image
(see Zardoua et al. (2021)), yet only one that we are
aware of studies the particular case of horizon tracking
(Schwendeman and Thomson (2015)). In our work, at
first we study the applicability of a simple Convolutional
Neural Network (CNN) to detect the horizon line from
images captured in remote polar waters, and then we
propose two methods, one of which completely novel, for
tracking a previously detected horizon line in icy waters.
To the best of our knowledge, this type of scenarios
have not been studied before in horizon detection and
tracking, and they present a particular set of challenges.
For instance, the broken ice field creates a large number of
secondary lines, especially close to the horizon and which
can easily confuse an algorithm. These floating ice pieces
(i.e. ice floes or simply floes) can at times present sharp
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marine applications, real-time constraints can be more
relaxed than, for example, automotive applications. Nev-
ertheless, this needs to be taken into account and a strive
towards efficiently meeting such real-time requirements
should be the objective.

In the current literature, there has been multiple attempts
at estimating the horizon line given an arbitrary image
(see Zardoua et al. (2021)), yet only one that we are
aware of studies the particular case of horizon tracking
(Schwendeman and Thomson (2015)). In our work, at
first we study the applicability of a simple Convolutional
Neural Network (CNN) to detect the horizon line from
images captured in remote polar waters, and then we
propose two methods, one of which completely novel, for
tracking a previously detected horizon line in icy waters.
To the best of our knowledge, this type of scenarios
have not been studied before in horizon detection and
tracking, and they present a particular set of challenges.
For instance, the broken ice field creates a large number of
secondary lines, especially close to the horizon and which
can easily confuse an algorithm. These floating ice pieces
(i.e. ice floes or simply floes) can at times present sharp

and completely straight edges bound to confuse an edge
detecting algorithm. Another challenge may come from the
presence of large icebergs with a flat top surface, creating
a perfectly straight division line with the sky.

In their work, Jeong et al. (2019) propose the use and prove
the effectiveness of a CNN-based approach for horizon
detection. Continuing on the same topic, we propose to use
a different CNN architecture, much simpler and which is
run on the whole image using a GPU, rather than only on
the detected edges. This would increase the detection rate
of the horizon, given sufficient examples, in such situations
where the horizon line appears diffuse. Additionally, we
propose to use as a line fitting algorithm the robust
estimator described in Torr and Zisserman (2000) and
termed MLESAC. Then, we continue with two methods to
efficiently track the horizon line given an initial estimate.
Similar to Schwendeman and Thomson (2015), the first
method for horizon tracking is an edge-based approach
using Canny (Canny (1986)) and the Hough transform
(Duda and Hart (1972)); where we introduce the novelty of
a two-stage Region Of Interest (ROI) approach, that both
increases the computational efficiency and decreases the
estimation error. Then, in the second method we introduce
a texture based approach for horizon tracking that has not
been used before and presents promising results.

The present work is structured as follows. In the subse-
quent Section 2, we describe the methodology required to
analyse the imagery data coming from a machine vision
camera, and obtain the results presented in Section 3.
Later, those results are discussed in Section 4, followed
by a conclusion in Section 5.

2. METHODS

The main principle of the proposed process for performing
horizon detection and tracking is to use a computationally
expensive, yet robust algorithm to initially estimate the
horizon location; then, using a computationally efficient
algorithm, the horizon line is tracked in subsequent images.
Occasionally, the more expensive method can be run in
parallel, to check the accuracy of the tracked horizon line
and re-initialize the tracking algorithm when necessary.
In the following subsections, each part of the process and
their related methods are described. For all the methods
described below, the horizon line is characterized following
the Standard Hough Transform (SHT) representation of a
line:

ρ = x · cos(θ) + y · sin(θ) (1)

where ρ is the perpendicular distance (in pixels) between
the line and the origin (located at the upper-left corner
of the image), and θ is the angle (in radians) between the
aforementioned ρ line and the x-axis (which is parallel to
the top, horizontal line of the image).

2.1 Image pre-processing

Images collected using machine vision cameras typically
present a series of artifacts and distortions, which are (usu-
ally) not present in consumer cameras. Such distortions
include, among others, a vignetting effect (pixels in an

image tend to appear darker the further they are from
an image’s optical centre), and lens imperfections which
geometrically distort the image. Before proceeding with
the analysis to extract the horizon line, images collected
with a machine vision camera need to undergo a series of
operations, in which image artifacts are removed and then
are geometrically rectified, such that straight lines (e.g.
the horizon) appear straight. To remove the vignetting
effect, the captured image is divided by a mask that models
the camera’s vignetting effect, followed by a normalization
operation. Lens distortions are inherent to each individual
camera setup, and affect the way a camera maps the 3D
world into a 2D image. The model used for such mapping
can be estimated and compensated for errors up to a
degree. This estimation is referred to as camera calibration
and which, among other parameters such as radial and tan-
gential distortions, provides the camera’s intrinsic matrix
K, as defined by Corke (2011). Aforementioned estimation
was done by means of the Matlab® Calibrator App as
described in Matlab (2022b).

2.2 Horizon detection

This section describes two methods, one manual and one
automatic, to detect and describe the horizon line in an
image which also contains icy waters.

Manual horizon identification. The ground truth data,
both for horizon tracking initialization and results valida-
tion, is obtained manually by selecting two points belong-
ing to the horizon line, and which are as far apart as possi-
ble to minimize location error. Then, through equations in
(2 - 4) a program computes the horizon line parameters in
terms of the Hough line representation described earlier.
First, using the pixel coordinates of the two selected points
p1 = (x1, y1) and p2 = (x2, y2), the slope of the line m is
calculated in (2), which is then used in (3) to calculate θ
and in (4) to calculate ρ.

m =
y2 − y1
x2 − x1

(2)

θ =
π

2
+ atan(m) (3)

ρ =
|y1 −m · x1|√

m2 + 1
(4)

Automatic horizon detection using CNN. By using a
Convolutional Neural Network (CNN), it is possible to
segment all the pixels in an image as either part of the
horizon or not. This straightforward approach would infer
an approximate location of the horizon line, albeit other
pixels can also be incorrectly classified as horizon. To over-
come this a line fitting algorithm, robust against outliers, is
required. The proposed process for automatically detecting
the horizon line from an arbitrary image and using a CNN,
is described next.

Since a pixel-wise segmentation of an image is desired, the
two classes are divided as follows: a training patch is la-
belled as horizon iff the horizon line strictly passes through
its centre; while any other patch would be considered as
non-horizon, including those where the horizon is visible,
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Fig. 1. Proposed network architecture for horizon segmen-
tation.

but does not cross the patch through its centre. Then,
since the CNN needs to discern between only two classes, it
does not need to be too complicated nor computationally
expensive. We propose a network architecture based on
Girshick (2015) and presented in Table 1, where the input
layer consists of a three-dimensional matrix containing
three patches of 64x64 pixels, one for each color channel
of red, green and blue.

To train the CNN, a suitable data-set needs to be as-
sembled. It would consist of only two classes: horizon and
non-horizon, as introduced before. The ground truth data
from the previous section can be used to this end, where a
number of patches of a pre-defined size are extracted along
the horizon line (passing through their centre). Then, the
same amount of patches are extracted at random for the
non-horizon case. The number of examples for each of the
classes needs to be similar, as to not over-train the network
with one of the classes, thus creating a bias towards the
non-horizon class in the present case.

Lastly, as mentioned before the segmentation process may
not be completely accurate, and to estimate correctly the
horizon line, a line fitting algorithm with strong robustness
against outliers is required. For this, we propose the use
of the robust estimator described in Torr and Zisserman
(2000) and termed MLESAC. This estimator is based
on the well known Random Sample Consensus approach
(RANSAC) for producing hypothetical solutions, however
it chooses as best solution the one which maximizes a log
likelihood estimate (including both inliers and outliers),
instead of the one which maximizes the number of inliers
(as in the traditional RANSAC algorithm).

2.3 Horizon tracking

Once the horizon line has been identified in the first of a
sequence of images, the analysis of subsequent images may
be focused towards tracking such line using other more
efficient algorithms. The two algorithms described below
use the Standard Hough Transform (SHT) to search for
the horizon line within a binary image containing multiple
edge line candidates. In each method, a different approach
is taken to obtain the binary image.

Two-stage ROI, Hough transform analysis. Using as a
priori information the location of the horizon line in the

previous image, the dynamics dominating the platform on
which the camera is attached to, as well as the period
between captured frames; it is possible to substantially
reduce the search-space for the horizon line in the current
image.

In the first stage, a Region of Interest (ROI) is defined
in the current image Ik using the detected horizon line
in the previous image Ik−1 with parameters θk−1 and
ρk−1. The ROI area is delimited between two new lines,
with parameters θk−1 and ρk−1 −∆ρ (top line) and θk−1

and ρk−1 + ∆ρ (bottom line); and the image’s vertical
sides. The value of ∆ρ is unique for each platform type
and conditions that will influence the expected rate of
change in the platform’s attitude; and a sensible value
can be obtained empirically from a short sequence of
images, where setting too large values may lead to poor
tracking performance, and too small values can prevent
the algorithm from correctly tracking the horizon in highly
dynamic situations. Then, an edge detection algorithm is
run on the ROI patch to highlight all potential lines that
might belong to the horizon line. The algorithm selected
for edge detection is the well-known Canny edge detection,
since it will look both for strong and weak edges. The result
from the Canny edge detection process is a binary image
containing information of a large number of edges detected
in the image, and from which the true horizon line needs
to be extracted.

In the second stage, the previously described standard
Hough transform is used to extract the true horizon line.
To reduce the computation time and direct the search, the
computation of the Hough transform space is limited by
∆θ2 and ∆ρ2. That is, the parameter space is computed
between θk−1 ±∆θ2 and ρk−1 ±∆ρ2. Last, the strongest
peak within the parameter space is selected as the horizon
line and its parameters are defined as θpeak and ρpeak.

Texture based analysis. Generally, textured images that
include a large amount of edges (i.e. lines) will difficult
the task of finding the edges and lines of interest, in the
present case, the horizon. However, such cases can also
be used as an advantage, specifically when the secondary
lines are located within a fast and randomly changing
background (e.g. the area of the image right under the
horizon line); and the principal lines divide such back-
ground with another that presents a smoother texture.
In such context, the horizon will be the separation line
between two, distinct regions of the image, namely the
sky right above the horizon line, and the icy waters right
below. The aforementioned two regions can be segmented
by running a statistical analysis of the local variation in
texture. This analysis can be done using the local Shannon
entropy (Shannon (2001)), which is a statistical measure
of randomness, present in this case in a patch or neigh-
bourhood around a pixel.

Similarly to the previous method, at first a rectangular
Region Of Interest is selected in the current image using
the extreme, vertical pixel coordinates from the horizon
line detected in the previous image, thus disregarding
its inclination angle. Then, the entropy filter is used to
process this part of the image, obtaining a grayscale matrix
with higher values corresponding to higher randomness
present around the current pixel. To obtain a binary image
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Fig. 1. Proposed network architecture for horizon segmen-
tation.

but does not cross the patch through its centre. Then,
since the CNN needs to discern between only two classes, it
does not need to be too complicated nor computationally
expensive. We propose a network architecture based on
Girshick (2015) and presented in Table 1, where the input
layer consists of a three-dimensional matrix containing
three patches of 64x64 pixels, one for each color channel
of red, green and blue.

To train the CNN, a suitable data-set needs to be as-
sembled. It would consist of only two classes: horizon and
non-horizon, as introduced before. The ground truth data
from the previous section can be used to this end, where a
number of patches of a pre-defined size are extracted along
the horizon line (passing through their centre). Then, the
same amount of patches are extracted at random for the
non-horizon case. The number of examples for each of the
classes needs to be similar, as to not over-train the network
with one of the classes, thus creating a bias towards the
non-horizon class in the present case.

Lastly, as mentioned before the segmentation process may
not be completely accurate, and to estimate correctly the
horizon line, a line fitting algorithm with strong robustness
against outliers is required. For this, we propose the use
of the robust estimator described in Torr and Zisserman
(2000) and termed MLESAC. This estimator is based
on the well known Random Sample Consensus approach
(RANSAC) for producing hypothetical solutions, however
it chooses as best solution the one which maximizes a log
likelihood estimate (including both inliers and outliers),
instead of the one which maximizes the number of inliers
(as in the traditional RANSAC algorithm).

2.3 Horizon tracking

Once the horizon line has been identified in the first of a
sequence of images, the analysis of subsequent images may
be focused towards tracking such line using other more
efficient algorithms. The two algorithms described below
use the Standard Hough Transform (SHT) to search for
the horizon line within a binary image containing multiple
edge line candidates. In each method, a different approach
is taken to obtain the binary image.

Two-stage ROI, Hough transform analysis. Using as a
priori information the location of the horizon line in the

previous image, the dynamics dominating the platform on
which the camera is attached to, as well as the period
between captured frames; it is possible to substantially
reduce the search-space for the horizon line in the current
image.

In the first stage, a Region of Interest (ROI) is defined
in the current image Ik using the detected horizon line
in the previous image Ik−1 with parameters θk−1 and
ρk−1. The ROI area is delimited between two new lines,
with parameters θk−1 and ρk−1 −∆ρ (top line) and θk−1

and ρk−1 + ∆ρ (bottom line); and the image’s vertical
sides. The value of ∆ρ is unique for each platform type
and conditions that will influence the expected rate of
change in the platform’s attitude; and a sensible value
can be obtained empirically from a short sequence of
images, where setting too large values may lead to poor
tracking performance, and too small values can prevent
the algorithm from correctly tracking the horizon in highly
dynamic situations. Then, an edge detection algorithm is
run on the ROI patch to highlight all potential lines that
might belong to the horizon line. The algorithm selected
for edge detection is the well-known Canny edge detection,
since it will look both for strong and weak edges. The result
from the Canny edge detection process is a binary image
containing information of a large number of edges detected
in the image, and from which the true horizon line needs
to be extracted.

In the second stage, the previously described standard
Hough transform is used to extract the true horizon line.
To reduce the computation time and direct the search, the
computation of the Hough transform space is limited by
∆θ2 and ∆ρ2. That is, the parameter space is computed
between θk−1 ±∆θ2 and ρk−1 ±∆ρ2. Last, the strongest
peak within the parameter space is selected as the horizon
line and its parameters are defined as θpeak and ρpeak.

Texture based analysis. Generally, textured images that
include a large amount of edges (i.e. lines) will difficult
the task of finding the edges and lines of interest, in the
present case, the horizon. However, such cases can also
be used as an advantage, specifically when the secondary
lines are located within a fast and randomly changing
background (e.g. the area of the image right under the
horizon line); and the principal lines divide such back-
ground with another that presents a smoother texture.
In such context, the horizon will be the separation line
between two, distinct regions of the image, namely the
sky right above the horizon line, and the icy waters right
below. The aforementioned two regions can be segmented
by running a statistical analysis of the local variation in
texture. This analysis can be done using the local Shannon
entropy (Shannon (2001)), which is a statistical measure
of randomness, present in this case in a patch or neigh-
bourhood around a pixel.

Similarly to the previous method, at first a rectangular
Region Of Interest is selected in the current image using
the extreme, vertical pixel coordinates from the horizon
line detected in the previous image, thus disregarding
its inclination angle. Then, the entropy filter is used to
process this part of the image, obtaining a grayscale matrix
with higher values corresponding to higher randomness
present around the current pixel. To obtain a binary image

(sky/sea), a clustering algorithm is used, namely the k-
means algorithm (Arthur and Vassilvitskii (2006)) with
only two classes. Next, the binary image is cleaned of
sporadic holes within the icy water or high intensity vari-
ations detected in the sky using morphological operations
(Peterlin (1996)), specifically an operation of closing the
image (that is, a dilation operation followed by an erosion),
and then an opening (an erosion operation followed by a
dilation).

Then, the Canny edge detection process is run on the
binary image, providing a substantially reduced number of
line candidates. Lastly, the Hough transform as described
previously is used to extract the best possible candidate
line, corresponding to the horizon.

3. EXPERIMENTS AND RESULTS

The experimental setup used for capturing data com-
prises a standard laptop PC and a Basler acA4112-8gc
machine vision camera (Basler (2022)). Among the most
relevant features of the camera, it is worth mentioning its
large resolution at 12.3 megapixels and a global shutter.
The camera was set to record at 0.5Hz and the images
were saved in raw format, and then converted to the
standard RGB format. The image capturing system was
mounted in the crow’s nest of the S.A. Agulhas II, and
data capture was performed during the vessel’s resupply
voyage to Antarctica in 2018-2019. The implementation
of the methods and processing of data was performed in
Matlab® environment and using functions from the Image
processing toolbox Matlab (2022a). Data collection was
performed first, and the processing was done offline at a
later stage, using an Intel® Core i7-9750H CPU and an
NVIDIA® Geforce RTX 2070 8Gb GPU (for training and
applying the neural network to images).

The process of running the CNN-based method for horizon
detection is presented in Fig. 2. The feature map from
the softmax layer is obtained and overlayed on the input
image, from which a region is shown in Fig. 2a. The feature
map is an intensity image with values [0-1] displaying the
certainty with which the network considers a pixel as part
of the horizon. Then, Fig. 2b presents a binary view of the
horizon as the result of the last, classification layer. The
coordinates of all horizon considered pixels are then used
to fit a line (Fig. 2c, as described in the methods section.
Lastly, the resulting line and thus the detected horizon is
presented in Fig. 2d.

Next, in Fig. 3a an example image is presented where a
previously detected horizon line is highlighted as a dashed
line. In addition, the bounding box around the previous
horizon line is shown with two continuous lines, and where
∆θ was set to 100 pixels. The Canny edge detection result
of the ROI area (a small patch is presented in Fig. 3b), is
the input for the Hough transform.

Then, Fig. 4 depicts the process of using the texture-
based horizon tracking on a single image, given the horizon
parameters from the previous image in the sequence. First,
the input image is converted to grayscale (Fig. 4a), and
then processed using the entropy filter with a neighbour-
hood of 9x9 pixels (Fig. 4b). The result of running the k-
means segmentation with only two classes is shown in Fig.

a) Activation points (pink).

b) Detected horizon pixels.

c) Line fitting using MLESAC.

d) Detected horizon line (dashed red line).

Fig. 2. Horizon detection using CNN.

a) ROI and previous horizon.

b) Canny edge of patch from ROI.

Fig. 3. The horizon line detected in a previous image is
plot over the current image, as well as the Region
of Interest (ROI) in the top figure (a). Then, the
bottom figure (b) presents a small patch of the result
of running Canny edge detector on the above ROI,
highlighting the challenges of such environments.

4c, which is then cleaned using morphological operations
(Fig. 4d). It is important to note that in Fig. 4e the
discontinuous line is, in fact, uninterrupted but due to the
detected edges being only one pixel wide using the Canny
method, it is not displayed correctly. The resulting horizon
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a) Grayscale patch of a sea-ice image.

b) Entropy based filter applied on the patch.

c) Segmentation using k-means clustering.

d) Cleaning using morphological operations.

e) Edge detection using the Canny filter.

f) Final horizon line detected using Hough.

Fig. 4. Horizon detection using texture analysis.

line is presented in Fig. 4f as a dashed, red line overlaid
on the ROI of the input image.

The processes described in the methods section were
applied on a total of nine case studies, which span over
several days and each comprising sequences of 100 images
where the ground truth line for the horizon was manually
identified. The first image from each sequence is presented
in Fig. 5. In the particular case of the CNN-based method
for horizon detection, the first 90 images in each of the
selected sequences were used to train the network, totalling
almost 50000 example patches for the horizon class, and
as many for the non-horizon class. The training of the
network took around three hours. Then, the same trained
network was run on the remaining 10 images from each
case.

Next, the detection (CNN) and tracking (Hough, texture)
accuracy results are presented and compared in Tables 1
and 2. The error metric used is the well known Root Mean
Square Error (RMSE), computed as the error between the
parameters of the ground truth line and the estimation of
the algorithm used. First, the RMSE (in radians) of the
θ angle is introduced in Table 1, followed by the RMSE
(in pixels) of the ρ distance in Table 2. For both tables,
results with a superscript are further examined in Fig.
6 for the CNN-based results, in Fig. 7 for the Hough-
based results, and lastly in Fig. 8 for the texture-based
ones. Other results are considered within an acceptable
error margin, and hence not displayed. Lastly, the average
processing time per image for each of the methods and

Case 1 Case 2 Case 3

Case 4 Case 5 Case 6

Case 7 Case 8 Case 9

Fig. 5. Example images from each study case.

cases selected, are presented in Table 3. In parenthesis,
the minimum and maximum times are given as well.

Table 1. Theta RMSE (radians) per case and
method used for detection or tracking.

CNN Hough Texture

Case 1 0.0036rad 0.0025rad 0.0024rad

Case 2 0.0075rad1 0.0010rad 0.0026rad

Case 3 0.0205rad1 0.0007rad 0.0044rad3

Case 4 0.0018rad 0.0010rad 0.0011rad

Case 5 0.0046rad 0.0012rad 0.0043rad

Case 6 0.0333rad1 0.0034rad 0.0017rad

Case 7 0.0112rad1 0.0024rad2 0.0009rad

Case 8 0.0022rad 0.0036rad 0.0008rad

Case 9 0.0046rad1 0.0086rad2 0.0015rad

Table 2. Rho RMSE (pixels) per case and
method used for detection or tracking.

CNN Hough Texture

Case 1 12.02px 5.55px 4.86px

Case 2 96.60px1 2.26px 4.86px

Case 3 168.57px1 3.52px 21.75px3

Case 4 4.77px 2.01px 2.37px

Case 5 15.17px 2.24px 10.56px

Case 6 147.77px1 6.79px 3.80px

Case 7 124.14px1 18.65px2 2.01px

Case 8 3.83px 26.07px 2.09px

Case 9 99.04px1 25.33px2 2.60px

Table 3. Average processing times per image
and method in seconds.

CNN Hough Texture
Case 1 1.47s (1.39/1.65) 0.19s (0.17/0.21) 0.38s (0.28/0.51)
Case 2 1.44s (1.38/1.70) 0.20s (0.19/0.22) 0.35s (0.29/0.47)
Case 3 1.53s (1.39/2.16) 0.21s (0.20/0.23) 0.39s (0.32/0.56)
Case 4 1.52s (1.38/2.25) 0.24s (0.21/0.32) 0.64s (0.47/0.86)
Case 5 1.60s (1.42/3.57) 0.28s (0.24/0.33) 0.57s (0.41/0.75)
Case 6 1.52s (1.40/1.84) 0.16s (0.15/0.23) 0.49s (0.40/0.62)
Case 7 1.47s (1.41/1.66) 0.13s (0.11/0.15) 0.52s (0.42/0.67)
Case 8 1.48s (1.39/1.70) 0.17s (0.13/0.28) 0.42s (0.35/0.53)
Case 9 1.50s (1.41/1.92) 0.15s (0.13/0.21) 0.54s (0.42/0.67)
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a) Grayscale patch of a sea-ice image.

b) Entropy based filter applied on the patch.

c) Segmentation using k-means clustering.

d) Cleaning using morphological operations.

e) Edge detection using the Canny filter.

f) Final horizon line detected using Hough.

Fig. 4. Horizon detection using texture analysis.

line is presented in Fig. 4f as a dashed, red line overlaid
on the ROI of the input image.

The processes described in the methods section were
applied on a total of nine case studies, which span over
several days and each comprising sequences of 100 images
where the ground truth line for the horizon was manually
identified. The first image from each sequence is presented
in Fig. 5. In the particular case of the CNN-based method
for horizon detection, the first 90 images in each of the
selected sequences were used to train the network, totalling
almost 50000 example patches for the horizon class, and
as many for the non-horizon class. The training of the
network took around three hours. Then, the same trained
network was run on the remaining 10 images from each
case.

Next, the detection (CNN) and tracking (Hough, texture)
accuracy results are presented and compared in Tables 1
and 2. The error metric used is the well known Root Mean
Square Error (RMSE), computed as the error between the
parameters of the ground truth line and the estimation of
the algorithm used. First, the RMSE (in radians) of the
θ angle is introduced in Table 1, followed by the RMSE
(in pixels) of the ρ distance in Table 2. For both tables,
results with a superscript are further examined in Fig.
6 for the CNN-based results, in Fig. 7 for the Hough-
based results, and lastly in Fig. 8 for the texture-based
ones. Other results are considered within an acceptable
error margin, and hence not displayed. Lastly, the average
processing time per image for each of the methods and
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Fig. 5. Example images from each study case.

cases selected, are presented in Table 3. In parenthesis,
the minimum and maximum times are given as well.

Table 1. Theta RMSE (radians) per case and
method used for detection or tracking.

CNN Hough Texture

Case 1 0.0036rad 0.0025rad 0.0024rad

Case 2 0.0075rad1 0.0010rad 0.0026rad

Case 3 0.0205rad1 0.0007rad 0.0044rad3

Case 4 0.0018rad 0.0010rad 0.0011rad

Case 5 0.0046rad 0.0012rad 0.0043rad

Case 6 0.0333rad1 0.0034rad 0.0017rad

Case 7 0.0112rad1 0.0024rad2 0.0009rad

Case 8 0.0022rad 0.0036rad 0.0008rad

Case 9 0.0046rad1 0.0086rad2 0.0015rad

Table 2. Rho RMSE (pixels) per case and
method used for detection or tracking.

CNN Hough Texture

Case 1 12.02px 5.55px 4.86px

Case 2 96.60px1 2.26px 4.86px

Case 3 168.57px1 3.52px 21.75px3

Case 4 4.77px 2.01px 2.37px

Case 5 15.17px 2.24px 10.56px

Case 6 147.77px1 6.79px 3.80px

Case 7 124.14px1 18.65px2 2.01px

Case 8 3.83px 26.07px 2.09px

Case 9 99.04px1 25.33px2 2.60px

Table 3. Average processing times per image
and method in seconds.

CNN Hough Texture
Case 1 1.47s (1.39/1.65) 0.19s (0.17/0.21) 0.38s (0.28/0.51)
Case 2 1.44s (1.38/1.70) 0.20s (0.19/0.22) 0.35s (0.29/0.47)
Case 3 1.53s (1.39/2.16) 0.21s (0.20/0.23) 0.39s (0.32/0.56)
Case 4 1.52s (1.38/2.25) 0.24s (0.21/0.32) 0.64s (0.47/0.86)
Case 5 1.60s (1.42/3.57) 0.28s (0.24/0.33) 0.57s (0.41/0.75)
Case 6 1.52s (1.40/1.84) 0.16s (0.15/0.23) 0.49s (0.40/0.62)
Case 7 1.47s (1.41/1.66) 0.13s (0.11/0.15) 0.52s (0.42/0.67)
Case 8 1.48s (1.39/1.70) 0.17s (0.13/0.28) 0.42s (0.35/0.53)
Case 9 1.50s (1.41/1.92) 0.15s (0.13/0.21) 0.54s (0.42/0.67)

(a) Case 2 CNN θ (b) Case 2 CNN ρ

(c) Case 3 CNN θ (d) Case 3 CNN ρ

(e) Case 6 CNN θ (f) Case 6 CNN ρ

(g) Case 7 CNN θ (h) Case 7 CNN ρ

(i) Case 9 CNN θ (j) Case 9 CNN ρ

Fig. 6. Visual presentation of only the problematic results
from the CNN-based horizon estimator against the
manually obtained ground truth line parameters.

4. DISCUSSION

The proposed Convolutional Neural Network performed
well in most cases, but it has become clear that a larger
training data-set is required to obtain more accurate re-
sults. This can be seen from Fig. 2a-b, where only a

(a) Case 7 Hough θ (b) Case 7 Hough ρ

(c) Case 9 Hough θ (d) Case 9 Hough ρ

Fig. 7. Visual presentation of only the problematic results
from the Hough-based horizon estimator against the
manually obtained ground truth line parameters.

(a) Case 3 Texture θ (b) Case 3 Texture ρ

Fig. 8. Visual presentation of only the problematic results
from the texture-based horizon estimator against the
manually obtained ground truth line parameters.

small amount of pixels were correctly classified as horizon.
Nevertheless, as expected the RANSAC based line fitting
algorithm performed well and managed to find and disre-
gard outliers. The cases which presented a large error are
further analysed in Fig. 6, where sub-figures a-b and g-h
present an error that we relate to an insufficiently trained
network. However, in the cases of Fig. 6 c-f and i-j, the
error was sporadic and not reproducible, and a closer in-
spection indicated good agreement between the estimates
and ground truth. We have not managed to identify the
culprit causing these errors, and further investigation is
needed.

Then, Fig. 3b confirms our initial affirmation regarding
the challenges of a sea-ice environment: the broken ice field
creates a large amount of secondary lines, many of which
can be extended into a single and incorrect horizon line.
Next, Fig. 7b presents the risk of accumulated error from
an initial incorrect solution, a drift that purely tracking
algorithms may encounter if not paired with control points.
On the other hand, in Fig. 7c-d it can be observed how
the algorithm can recover itself from incorrectly estimated
horizon lines, due to a high clutter of edges
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All in all, the proposed texture-based algorithm has man-
aged to achieve the lowest overall error score as can be
seen from Tables 1 and 2, although at the expense of a
slightly higher computational cost when compared to the
Hough-based algorithm. The slightly higher error in the
study case number 5 was due to a small number of images
where the horizon line was incorrectly detected, although
the algorithm quickly recovered in all cases. Then, the
error depicted in Fig. 8 is due to an insufficient amount
of texture contrast close to the horizon line, mainly due to
poor visibility conditions and darkness.

Lastly, Table 3 introduces the average times each algo-
rithm spent per image, as well as the minimum and max-
imum times present in that run sequence. The processing
times for the CNN-based method was one order of mag-
nitude higher when compared to the tracking algorithms.
Overall, all those processing times offer only an estimate,
as the processing platform itself (i.e. computer) and its
operating system can greatly influence the actual values.

5. CONCLUSION

We proposed an automated process for horizon detection
and tracking in polar sea regions, which present unique
challenges for machine vision applications. With the pro-
posed methods, we are able to estimate the location of the
horizon line in an arbitrary image containing sea-ice and
other clutter elements, such as icebergs. Data was collected
onboard the ice-breaker S.A. Agulhas II during its resup-
ply voyage to Antarctica in 2018-2019. Our automated
process was compared to manually obtained ground-truth
data and the results indicate good agreement, especially
in the texture-based tracking algorithm.

In the future, more development should be done to increase
the accuracy and precision of the Convolutional Neural
Network based method for horizon detection, which may
include a larger training data-set and a refinement of
the network’s architecture. Then, new cases with a larger
variety of weather conditions should be introduced, for a
more comprehensive case study. Such additional cases may
include for example fog, rain and snow; all of which may
heavily impact a camera’s operation.

The initial results show that our automated horizon de-
tection and tracking methods have great potential in pro-
viding valuable information for navigating a ship in ice
infested waters and for any other platform located in such
remote areas.
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