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Cognitive training can lead to improvements in both task-specific strategies and general capacities, such as visuo-spatial working
memory (VSWM). The latter emerge slowly and linearly throughout training, in contrast to strategy where changes typically occur
within the first days of training. Changes in strategy and capacity have not been separated in prior neuroimaging studies. Here, we used
a within-participants design with dense temporal sampling to capture the time dynamics of neural mechanisms associated with change
in capacity. In four participants, neural activity was recorded with magnetoencephalography on seven occasions over two months of
visuo-spatial working memory training. During scanning, the participants performed a trained visuo-spatial working memory task,
a transfer task, and a control task. First, we extracted an individual visuo-spatial working memory-load-dependent synchronization
network for each participant. Next, we identified linear changes over time in the network, congruent with the temporal dynamics of
capacity change. Three out of four participants showed a gradual strengthening of alpha synchronization. Strengthening of the same
connections was also found in the transfer task but not in the control task. This suggests that cognitive transfer occurs through slow,
gradual strengthening of alpha synchronization between cortical regions that are vital for both the trained task and the transfer task.

Key words: working memory; cortical plasticity; cortical oscillations; MEG.

Introduction
Behavioral studies show that cognitive training can transfer to
other cognitive tasks (Klingberg et al. 2005; Gathercole et al. 2008;
Jaeggi et al. 2008; Schmiedek et al. 2010; Judd and Klingberg 2021),
but that the training gains can also be tasks specific (Gathercole
et al. 2019). Task specific changes could be implicit strategies
such as automatization of stimulus–response rules (Shiffrin and
Schneider 1977), or explicit strategies only relevant for the trained
task and tasks which are very similar (Ericsson et al. 1980). Trans-
ferable improvements, on the other hand, refer to enhancement
of a more general capacity such as visuo-spatial working memory
(VSWM) capacity, spatial ability, inhibitory ability, or IQ (Katz et al.
2018; Smid et al. 2020).

When studying the neural mechanisms of capacity improve-
ment, it is important to disentangle them from strategy related
changes. In a previous behavioral study (Ericson and Klingberg
2023), we found that the temporal dynamics of capacity improve-
ment differed from that of strategy. Capacity increased slowly and
linearly over several weeks, while strategy development was quick
and terminated on average after 3 days of training.

Neuroimaging studies of the neural correlates of VSWM capac-
ity have highlighted the importance of frontoparietal activity,
which has been shown using both fMRI and M/EEG (Constantini-
dis and Klingberg 2016). In particular, neural oscillations in and
between these regions are considered fundamental for VSWM
(Sauseng et al. 2019). Both local oscillations in frontoparietal

regions (Palva et al. 2011; Roux and Uhlhaas 2014) as well as
the inter-areal synchronization within (Palva et al. 2010; Chen
et al. 2023) and across frequencies have been shown to reflect
individual VSWM capacity (Siebenhühner et al. 2016; Berger et al.
2019).

In terms of neural changes induced by VSWM training,
frontoparietal connectivity appears to be specifically important.
During VSWM training, increased functional coupling between
frontoparietal regions has been detected with fMRI (Jolles
et al. 2013). In M/EEG, training is associated with strengthened
frontoparietal synchronization (Kundu et al. 2013) and parieto-
occipital synchronicity (Astle et al. 2015). However, these studies
compared neural activity before and after training. Repeated
measures throughout the training period would give further
insight into the temporal dynamics, which is important for
differentiating between strategy and capacity.

Repeated measurements limit the number of subjects for prac-
tical reasons. In a study with few subjects but many measure-
ments, within-participant statistics is more suitable (Molenaar
2004; Smith and Little 2018; Ince et al. 2022). In the case of cog-
nitive training, within-participant statistics could also be advan-
tageous for two other reasons. First, the architecture of networks
employed during complex cognitive tasks can vary substantially
between individuals (Thiebaut de Schotten and Forkel 2022). Sec-
ond, individual behavioral responses to cognitive training differ
to the group-averaged response (Ericson and Klingberg 2023),
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which implies that the group averaged neural dynamics might not
generalize well either (Fisher et al. 2018).

In this study, we followed four participants over 8 weeks of
VSWM training. We scanned the participants on seven occasions
during the training period using MEG. To better differentiate
between task specific and transferable improvements, the scan-
ning sessions were scheduled to be more frequent in the beginning
of the training when most of the improvement on the trained task
takes place. More specifically, the subjects were scanned on days
1, 2, 4, 9, 19, 29, and 39. In the scanner, the subjects performed a
trained task from the VSWM training program, one non-trained
VSWM transfer task and a recognition task that was used as a
control. Transfer from the training program to the non-trained
VSWM task has previously been established in behavioral studies
with several hundred subjects (Bergman-Nutley and Klingberg
2014; Ericson and Klingberg 2023).

We hypothesized that transferable improvement is linked to
a strengthened synchronization within VSWM-load-dependent
networks, defined individually for each participant. We fur-
thermore hypothesized that these individualized VSWM- load-
dependent networks, albeit unique to each participant, would
encompass frontoparietal regions. Finally, we hypothesized that
the synchronization increase would be linear throughout the
training period, reflecting the capacity component described in
our previous behavioral study (Ericson and Klingberg 2023).

Although the main aim of the study was to investigate neu-
ral correlates of transferable improvement, we also investigated
potential neural correlates of strategy. We did not have a prior
hypothesis about where strategy-related changes would emerge;
however, we expected these changes to occur within the first days
of training.

Materials and methods
Participants
The study included five participants aged 20, 21, 21, 22, and 26
(two men). One participant (woman, 20 years) dropped out after
the first session and was therefore not included in the analysis.
All participants consented to the study and the study design was
approved by the Swedish Ethics Committee.

Cognitive training program
The participants trained their VSWM at home using the VSWM
training software Cogmed (https://www.cogmed.com), which is
comprised of 12 related VSWM tasks. The training sessions were
25 minutes long and spanned over 8 weeks. The participants
practiced the VSWM training program on all weekdays, except for
the days when scanning was scheduled. Including both training
at home and sessions in the scanner, there were 39 training days
in total (Fig. 1A). The training was automatically recorded and
monitored remotely. All participants completed the full training
program of 40 days.

Behavioral improvement
To analyze the behavioral improvement from the training
program, we fitted the performance data to a piecewise linear
function using a Hidden Markov Model (HMM). According to
our behavioral study (Ericson and Klingberg 2023), the HMM
can approximate two processes of VSWM training—task-specific
strategy development and capacity improvement that transfers
to other tasks. During the first phase, both processes are present,
while only capacity improvement occurs in the second phase.
Thus, if a capacity improvement has occurred during the training,

the linear increase should be significant also in the second
training phase.

MEG scanning sessions
On days 1, 2, 4, 9, 19, 29, and 39, the participants were scanned
using MEG (S1–S7). Each scanning session contained a series of
blocks with 20 trials in each block. A block only contained trials
of the same sort and of the same level. Between each block,
there was a compulsory break of at least 30 seconds. The total
length of a session was about an hour. The stimuli were created in
Presentation (https://www.neurobs.com/index_html). There were
three scanning tasks in total—a trained task, a control task, and
a transfer task.

The trained task
The first task (Grid) was a trained task from the VSWM training
program, and it was included in all scanning sessions (Fig. 1B). It
required the participants to remember a sequence of positions
on a 4 × 4 grid, where the level corresponded to the number of
cues in the sequence. During training at home, the participants
reported the answers by clicking on the grid positions using the
computer mouse. However, in the scanner we did not have access
to a computer mouse. Instead, a number between 1 and 16 was
displayed in each grid position after the trial presentation and the
participants reported the numbers that corresponded to the right
grid positions verbally. The numbers were shuffled between each
trial. A measurement session contained 40 trials of Grid on level
5 and 40 trials on level 6.

The control task
In all scanning sessions, the participants also performed a control
task (Fig. 1B). This was a recognition task where a sequence of
letters was presented verbally, and the participants had to report
whether the letter Q had been presented in the sequence or not.
The sequences contained either five or six letters and similarly to
the trained task; each session had 40 trials on level 5 and 40 trials
on level 6.

The transfer task
Finally, the participant did a transfer task (Fig. 1B) in all sessions
except for S3. The transfer task was not part of the VSWM training
program, but it was also a working memory task. Here, the partic-
ipants were shown a sequence of cues, where each cue contained
three shapes. Two shapes were identical, while the third differed.
The task was to remember the positions of the odd shapes in the
sequence. Forty trials on level 5 were included in each session.
We excluded the transfer task from S3 in order for the schedule
to resemble that of our previous behavioral study (Ericson and
Klingberg 2023). In the paradigm used in our behavioral study,
with transfer tasks on days 1, 2, 10, 20, 30, and 40, we found no
significant task specific strategy development in the transfer task
after day 2. Thus, we applied a similar schedule here to minimize
the possibility of transfer effects. For this reason, we also limited
the number of trials per session to 40.

MEG acquisition and preprocessing
The MEG data were acquired with a 306-channel whole-head
MEG system (Elekta Neuromag TRIUX) at a sample frequency
of 1000 Hz. Temporal extension of signal space separation
(tSSS) method using MaxFilter software was applied to the
data to reduce external artifacts, interpolate bad channels,
and co-localize recordings in signal space individually for each
participant. We then applied independent component analysis
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Fig. 1. The experimental design. (A) The schedule for MEG-scans and for training. On days 1, 2, 9, 19, 29, and 39, all the tasks were performed in the
scanner. On day 4, only the trained task and the control task were performed in the scanner. On the remaining days, the subjects performed VSWM
training at home. (B) The three tasks performed in the scanner. On the top is the trained task, in the middle is the transfer task, and at the bottom is the
control task.

(ICA) to remove eye movement and heartbeat artifacts, and a
notch filter to remove line noise of 50 Hz and its harmonics.
Both ICA and notch filtering were performed with the python
toolbox MNE-Python (https://doi.org/10.5281/zenodo.592483). The
preprocessing steps were done on each subject and measurement
session separately.

Cortical parcellation and source reconstruction
T1-weighted structural MRI images (1 × 1 mm2) were acquired
for each subject with a 3 Tesla scanner (GE SIGNA Premier).
Anatomical reconstructions from the MRIs were created using the
software FreeSurfer (http://freesurfer.net/). The reconstructions
were parcellated into the 200-parcel Schaefer atlas with seven
networks (Schaefer et al. 2018). The signal was projected to the
parcel space using minimum norm estimation (MNE) with the
dSPM method using MNE-Python (Gramfort et al. 2014). Here,
the noise covariance matrix was constructed for each participant
and session using the 1000-ms windows between the start of the
trials and the presentations of cue 1 (load 0). The dipole sources
were separated by 5 mm and had a fixed orientation normal to
the pial surface. To collapse the source space into parcel space
we used a previously described method (Korhonen et al. 2014),
which optimizes the collapse-operator by maximizing the fidelity
between a simulated original time series and its reconstructed

signal. However, unlike the original method, we optimized the
collapse-operator numerically using the Python package PyTorch
(Paszke et al. 2019).

Time frequency analysis
The parcel time-series were separated into epochs of 1600 ms
spanning the delay period and 300-ms windows on either side of
the delay in order to avoid edge effects during the delay periods.
These windows were removed after the time frequency analysis
was completed. The epochs were then sorted into loads (0–6) and
trial type (trained, transfer, and control). Wavelet transformation
was performed using a bank of complex Morlet wavelets with
a time–frequency compromise parameter of m = 5 and approxi-
mately log-linearly spaced c frequencies ranging from 5 to 118 Hz.
After filtering, the narrow-band data were down sampled to a
sampling rate of five times the center frequency. The transforma-
tion was done using MNE-python (Cohen 2019).

Synchronization analysis
For each frequency, we calculated parcel-to-parcel synchroniza-
tion using the iPLV (Palva et al. 2018) value defined as

iPLV = imag
(

1
N

∑N

n=1

[
ei(Δθn)

])
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Fig. 2. The analysis pipeline. (A) The all-to-all synchronization matrix averaged across sessions and multiplied with the IEM. We had one of these for
each load and participant. (B) The synchronization matrix after edges that do not have significant load-dependent increase have been set to 0. (C) The
degree of edges in each brain parcel after clustering has been applied. (D) The baseline-corrected synchronizations for all loads (1–5) visualized for a
random edge. (E) The regression over time, on the top regressed on days, and on the bottom regressed on the logarithm of day. (F) Example of how
load-dependent edges for a subject could be divided up using the time-dependent analysis.

where �θ is the phase difference between two sources and N is
the number of samples in the time series. This gave us an all-to-
all synchronization matrix for each trial type and load between
0 and 5. We did not calculate synchronization for load 6, as it
only had half the number of trials of the other loads, meaning
that its iPLV value could not be accurately compared with that
of lower loads. Synchronization was computed separately for
each participant and measurement session. To identify edges that
could putative arise via source-leakage (Palva et al. 2018), we also
created a binary intractable edge matrix (IEM) based on source-
leakage (Wang et al. 2018) with 0s for intractable edges and 1s
elsewhere.

Identifying load-dependent VSWM networks
Using data from the trained task only, we aimed to identify indi-
vidual VSWM networks for each participant by extracting edges
from the synchronization matrices where the strength increased
under VSWM-load.

To identify frequencies of interest, we first computed the mean
synchronization strength of all edges during measurement ses-
sion one (S1). For each subject, we selected the frequency which
showed the largest mean change in synchronization under load.
For this load-dependent frequency, we constructed 42 synchro-
nization matrices for each participant (one for each load and each
measurement session). These matrices were then averaged across
measurement sessions, resulting in six synchronization matrices
per participant, one for each load (Fig. 2A). The matrices were
multiplied with the IEMs to alleviate the influence of source-
leakage.

From the time-averaged synchronization matrices, we extracted
the specific edges where the synchronization increase with load
was significant (Fig. 2B). Here, we did not want to assume a
monotone increase between loads 0 and 5, since synchronization

could potentially plateau or even decrease at high loads. Thus, we
defined the synchronization increase of an edge as its maximum
synchronization (i.e. synchronization for either load 1, 2, 3, 4, or
5) subtracted by its baseline synchronization at load 0. To define
a threshold for a significant synchronization increase, we created
six random synchronization matrices, representing loads 0–5, by
shuffling the synchronization matrix for load 0 six times. We
then calculated the synchronization increases for the edges of
these shuffled matrices. This procedure was repeated 1000 times
giving us a probability distribution of random synchronization
increase. The top 99th quantile was defined as the threshold for
a significant synchronization increase.

To remove remaining spurious findings arising from multiple
comparisons, we performed a cluster analysis. Here, we discarded
edges connected to parcels with less than five other connec-
tions, yielding 97.5% of the spurious connections. These remain-
ing edges were used to define a load-dependent synchronization
network for each subject (Fig. 2C).

All analysis was performed on an individual subject level. To
later investigate consistencies in VSWM networks between indi-
viduals, we calculated Pearson correlations between the averaged
synchronization matrices (Fig. 2A).

Identifying time-dependent changes in
synchronization
After a load-dependent VSWM network was defined for each
participant, we next investigated the changes within the network
over training sessions. Here again, all analysis was performed for
the trained task only.

First, the synchronization at load 0 was subtracted from loads
1 to 5, to correct for baseline synchronization. The synchroniza-
tions for load 1 to 5 were then regressed over training session
(Fig. 2D). To differentiate between fast changes that occur within
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the first sessions and could reflect strategy development, from
slow linear changes that possibly reflect capacity improvement,
we used both linear and log-based regression (Fig. 2E). Edges with
significant regression coefficients (P < 0.05) were extracted and
multiple comparison corrected using false discovery rate (FDR).
If a synchronization change was significant using both linear and
log-based regression, we chose the regression with the best fit cal-
culated using Akaike Information Criterion (AIC). Thus, all edges
were separated into five groups—linear increase, linear decrease,
logarithmic increase, logarithmic decrease, and no significant
change (Fig. 2F).

Testing transfer effect
Finally, when time-dependent changes in the trained task had
been identified within the load-dependent VSWM networks, we
tested if these changes were transferable. A transferable change
was defined as a change that occurred both in the transfer task
and in the trained task, but not in the control task. To quantify
changes over training session in the control and transfer tasks, we
used the synchronization between loads 1 and 5 rather than the
difference between loads 1 and 5 and baseline (load 0). This was
because we did not expect any load dependency in the control
task and thus, subtracting by the baseline at each session could
potentially remove any time-dependent changes. To make the
comparison fair, we did not subtract by baseline in the transfer
task either.

Results
Behavioral results
According to our model, all four subjects had an initial task
specific improvement in the first 2–5 days as well as a linear
capacity improvement during the VSWM training program (Fig. 3).
The capacity (βcap) increased significantly in all four subjects (βcap=
0.029, 0.025, 0.032, and 0.048 levels per training day, P < 0.05, one-
tailed), consistent with prior reports (Ericson and Klingberg 2023).

MEG results
Identifying a load-dependent VSWM network
We first visualized the mean synchronization strength for each
load in the trained task as a function of frequency (Fig. 4A–D).
In all participants, the mean synchronization had a peak in the
alpha-frequency band. However, the function of load dependency
differed between participants. While two participants had a load-
dependent increase throughout the trial (Fig. 4B, D), the alpha
synchronization returned to baseline at the end of the trial for
the other two participants (Fig. 4A, C). Furthermore, the frequency
of the individual alpha peaks differed. Two participants had an
alpha peak at 11 Hz (Fig. 4B, C), while the other two had an alpha
peak at 10 Hz (Fig. 4A, D). We also visualized a rolling average
of alpha synchronization throughout the trial. Alpha synchro-
nization increased during the delay period but decreased during
encoding, ramping up as a function load (Fig. 4E).

For the individual alpha peaks, we next identified load-
dependent VSWM networks using only data from the trained
task. The VSWM networks consisted of edges with a significant
alpha synchronization increase. These networks varied between
individuals (Fig. 5A–D), especially for one subject where the
network had much more activation in temporal areas compared
to others (Fig. 5D). However, there was no significant correlation
between the networks of any subjects (P > 0.05). Even though
there were large inter-individual differences, the differences

within individuals over time were smaller (Fig. 5E). If one network
was extracted per session and individual, the within participant
networks all correlated significantly (P < 0.05).

Identifying training related changes within the
VSWM network
Within the identified VSWM networks, we extracted edges where
there was a linear strengthening of synchronization over training
session, as this could reflect capacity improvements (Fig. 2E).
Three participants showed such a time-dependent increase in
the alpha band within parietal, somatomotor, and frontal regions
(Fig. 6A–C, FDR corrected with P < 0.05). When investigating sim-
ilarities in the synchronization increase between the three sub-
jects, we found an overlap around the intraparietal and superior
parietal cortex, and in the superior frontal gyrus around the
frontal eye field (Fig. 6D).

Testing the training related changes for transfer
To verify that the synchronization increase observed in the trained
task was transferable, we analyzed if the edges (Fig. 6A–C) were
also strengthened in the transfer task without being strengthened
in the control task. In all three participants, there was a significant
increase of synchronization in the transfer task (P = 0.004, 0.000,
and 0.000) but not in the control task (P = 0.188, 0.064, 0.178)
(Fig. 7), thus verifying that the linear synchronization increase
observed in the trained task was transferable.

Behavioral and neural changes in subject 3
Subject 3 did not show an increase of alpha synchronization over
time. After closer inspection we found that there was a switch
in synchronization frequency from alpha to theta starting in S3
(Fig. 8A–F). The theta network had a very different architecture
compared to the alpha network (Fig. 8G). We did not find transfer-
able time-dependent changes in this theta network.

When investigating the behavioral result, we found that the
model fit for subject 3 was the worst. This was related to the fact
that subject 3 had a performance drop below the baseline level
on the fourth day (Fig. 8H). If we removed the first 3 days from
subject 3’s behavioral data and start the analysis on day 4, which
had the lowest performance overall, the pattern changed. Now we
again saw a quick increase to begin, but the capacity component
(βcap = 0.001) was not significantly positive (Fig. 8I).

The observed alterations in both network structure and fre-
quency during the first week of training suggest a strategy change.
This is also supported by the fact that the switch happened
abruptly, that the theta increase did not transfer to the transfer
task, and because no behavioral capacity improvement occurred
when the behavioral data was reanalyzed using day 4 as a base-
line.

Discussion
Here we aimed to identify neural mechanisms underlying transfer
after VSWM training. To be congruent with the linear increase
of the capacity component in our prior behavioral study (Ericson
and Klingberg 2023), we hypothesized that VSWM transfer would
correspond to a linear strengthening of synchronization within
individual networks that also show a load-dependency.

First, we analyzed behavioral improvement in the training pro-
gram. We used the previously developed HMM algorithm to divide
the improvement up into a task-specific strategy component and
a capacity component (Ericson and Klingberg 2023). According to
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Fig. 3. The behavioral changes from VSWM training analyzed using the HMM (Ericson and Klingberg 2023). (A) Subjects 1, (B) Subject 2, (C) Subject 3,
and (D) Subject 4. ∗P < 0.05, ∗∗∗P < 0.001.

Fig. 4. Global synchronization pattern from S1. (A)–(D) Synchronization density for the delay periods of each load for subjects 1–4, respectively. (E) A
rolling average of synchronization at the alpha peak for the whole trial. The dotted lines mark the beginning and end of cue presentations.
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Fig. 5. The degree of synchronization for each parcel in the load-dependent network. (A)–(D) The degree for subjects 1–4, respectively, calculated using
the time-averaged synchronization matrices. (E) The degree for subject 2 from S1, S2, and S7.

Fig. 6. Results from the regressions. (A)–(C) Flat maps showing edges with significant time-dependent linear increase of alpha synchronization.
(A) Subject 1, (B) Subject 2, and (C) Subject 4. (D) Parcels that overlap in all three subjects. The overlapping parcels are color coded to their corresponding
networks.
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Fig. 7. Changes in synchronization for the edges that show a linear strengthening of synchronization in the trained task. To the left is the change in the
transfer task and to the right is the change in the control task. ∗∗P < 0.005, ∗∗∗P < 0.001. (A) Subjects 1, (B) Subject 2, and (C) Subject 4.

the model, all participants had a positive capacity component,
showing an increase of capacity during training. The change from
the first phase, with both strategy and capacity, to the second
phase of only capacity occurred between training days 2 and 5
(Fig. 3).

Next, we defined an individual load-dependent VSWM network
for each participant using MEG data from a trained task. Within
these networks, we investigated if there was a linear strengthen-
ing of synchronization over training sessions for the trained task.
We found an increase of alpha synchronization in three out of four
participants. This pattern was most consistent across the intra-
parietal and superior parietal cortices, and in the superior frontal
gyrus around the frontal eye field. The activity of these specific
brain regions are known to correlate with VSWM (Rottschy et al.
2012). The same increase was also observed in the transfer task,

but not in the control task. The transfer effect suggests that a
strengthening of alpha synchronization is related to a VSWM
capacity increase and not to a task specific improvement.

The within-participant design revealed consistency in both net-
work architecture and peak frequency across time. Notably, it was
possible to define the VSWM networks by identifying significant
load-dependent changes within single subjects, and therefore
without restricting the analysis to predefined regions of interest.
Similarly, training-induced changes also exhibited significance
at the individual level, effectively making each subject a self-
contained replication of the findings.

Alpha synchronization has previously been linked with VSWM
capacity (Sauseng et al. 2009; Palva et al. 2010; Riddle et al. 2020),
but it has also been associated with visuospatial attention (Lobier
et al. 2018; D’Andrea et al. 2019). This aligns with the notion

D
ow

nloaded from
 https://academ

ic.oup.com
/cercor/article/34/2/bhad527/7529137 by Aalto U

niversity user on 15 February 2024



Ericson et al. | 9

Fig. 8. An analysis of subject 3 related to the change of alpha to theta synchronization. (A) – (F) The synchronization density for S2–S7. (G) The
synchronization degree for the theta network. (H) The original HMM of the behavioral data. (I) The HMM without the first 3 days.

that the control of visuospatial attention and VSWM share a
common neural substrate (Ikkai and Curtis 2011; Panichello and
Buschman 2021). As such, the strengthening of alpha synchro-
nization could also translate into improvements in visuospatial
attention, explaining why VSWM training can yield enhance-
ments in non-VSWM cognitive tasks (Klingberg et al. 2005; Jaeggi
et al. 2008; Schmiedek et al. 2010).

The specific role of alpha synchronization in VSWM and visu-
ospatial attention remains a subject of speculation. Nevertheless,
a clue might be found in studies of visual processing (Kastner
et al. 2020). In both humans and monkeys, the processing of
new visual information is dynamic, alternating between periods
of high and low processing. For example, low visual processing
occurs during eye saccades and may serve as a crucial mecha-
nism for maintaining visual stability during rapid eye movements.
Intriguingly, intracranial recordings from monkeys show that peri-
ods of low visual processing are characterized by a parietal-driven
alpha synchronization. A similar mechanism might be adapted
in VSWM tasks, where attention should also focus on internally
maintained items during delays rather than external stimuli.
However, more translational research is needed in order to link
intracranial findings in primates with similar electrophysiology
mechanisms in humans.

In terms of structural changes, enhanced synchronization
has been linked to both white matter and synaptic plasticity

(Womelsdorf et al. 2007; Uhlhaas et al. 2010). Both these
processes operate over a period of weeks (Buonomano and
Merzenich 1998; Bonetto et al. 2021), matching the temporal
dynamics of capacity improvement. While a gradual increase
of cortical activation in prefrontal regions has been observed in
electrophysiological recordings in monkeys after VSWM training
(Qi et al. 2011), white matter plasticity in the frontoparietal
network is documented both in development (Klingberg 2006;
Peters et al. 2012) and training (Takeuchi et al. 2010; Caeyenberghs
et al. 2016), and is likely related to an increased myelina-
tion in the superior longitudinal fasciculus (Metzler-Baddeley
et al. 2017). Thus, both processes are probable candidates
for the structural alterations responsible for the enhanced
synchronization.

Finally, it is important to note that the alpha synchronized
network could also encompass subcortical regions, which are
difficult to measure with MEG. For example, certain parts of
the striatum contain fibers originating from both prefrontal and
parietal regions (Selemon and Goldman-Rakic 1988; Haber 2003;
Darki and Klingberg 2018). Maturation of these convergent striatal
regions has been correlated with frontoparietal connectivity and
executive functions, including VSWM capacity, during childhood
(Darki et al. 2020). Furthermore, synchronicity in particularly in
the alpha-frequency has often been associated with thalamocor-
tical interconnections (Hughes and Crunelli 2005).
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Even though the VSWM networks were consistent within
subjects, there were large interindividual differences between the
subjects. One of the most pronounced individual patterns was
the switch from alpha to theta activity in one subject. A large-N,
group-study of training, might have found an average increase
of both alpha and theta during the training period. However,
the within-participant analysis revealed that the increase of
theta in subject 3 actually coincided with a reduction of alpha
synchronization. This highlights a major benefit of within-
participant designs.

A drawback with a small N-design is that it will always be lim-
ited by the fact that interindividual analyses are underpowered.
We could for example not compare the behavioral improvement
to the change of synchronization between subjects. A larger sam-
ple size is needed in order to answer such questions.

We did not find any consistent neural changes related to early,
task specific improvements, even though the largest behavioral
improvements occurred in the beginning of the training period
(Fig. 3). There were neural changes within single subjects during
the first three measurements, the most obvious being the switch
from alpha to theta activity in subject 3, but these effects could
not be replicated in other subjects. One possibility is that task-
specific changes are in fact very individual, and thereby difficult
to replicate. It is also possible that implicit strategies, such as
automatization of stimulus response rules, develop during encod-
ing rather than the maintenance period which was analyzed in
the present study.

In conclusion, in three out of four participants, VSWM training
led to an increased alpha synchronization in a network with
interindividual overlap around the intraparietal sulcus and the
frontal eye field. An increase of alpha synchronization within the
same network was also identified in the transfer task but not in
the control task. This suggests that increased frontoparietal alpha
synchronization could be a neural correlate of transfer in VSWM
training.
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