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Individuals’ phenotypes, including the brain's structure and function, are largely determined by genes and their interplay. The rest-
ing brain generates salient rhythmic patterns that can be characterized noninvasively using functional neuroimaging such as mag-
netoencephalography (MEG). One of these rhythms, the somatomotor (rolandic) beta rhythm, shows intermittent high amplitude
“events” that predict behavior across tasks and species. Beta rhythm is altered in neurological disease. The aperiodic (1/f) signal
present in electrophysiological recordings is also modulated by some neurological conditions and aging. Both sensorimotor beta
and aperiodic signal could thus serve as biomarkers of sensorimotor function. Knowledge about the extent to which these brain
functional measures are heritable could shed light on the mechanisms underlying their generation. We investigated the heritability
and variability of human spontaneous sensorimotor beta rhythm events and aperiodic activity in 210 healthy male and female adult
siblings’ spontaneous MEG activity. The most heritable trait was the aperiodic 1/f signal, with a heritability of 0.87 in the right hemi-
sphere. Time-resolved beta event amplitude parameters were also highly heritable, whereas the heritabilities for overall beta power,
peak frequency, and measures of event duration remained nonsignificant. Human sensorimotor neural activity can thus be dissected
into different components with variable heritability. We postulate that these differences partially reflect different underlying signal-
generating mechanisms. The 1/f signal and beta event amplitude measures may depend more on fixed, anatomical parameters,
whereas beta event duration and its modulation reflect dynamic characteristics, guiding their use as potential disease biomarkers.

Key words: 1/f (aperiodic) component; beta oscillation; heritability; magnetoencephalography; resting state; sensorimotor

Significance Statement

The resting brain shows a prominent, highly modulated beta-range rhythm closely linked to sensorimotor function in health
and disease. We investigated the heritability of human spontaneous sensorimotor beta rhythm and its different components
in a large cohort of 210 siblings’ magnetoencephalography (MEG) data. We find that, particularly, beta event amplitude and
its variation, as well as aperiodic signal characteristics, are highly heritable. The study demonstrates that time-resolved elec-
trophysiological measures of spontaneous human sensorimotor brain activity are determined to a significant degree by genes.
We discuss the findings in the context of known and postulated structural underpinnings of MEG signal generation, to high-
light their translational relevance. The findings have clinical implications, for example, when considering sensorimotor beta
alterations as biomarkers of neurological disease.
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Introduction
Individuals’ phenotypes are largely determined by their genetic
blueprint that regulates properties ranging from cell products
(Barroso and McCarthy, 2019) to system-level brain macrostruc-
ture (Geschwind et al., 2002; Peper et al., 2007). Genetic
influences also underlie functional brain measures which are
constant within, but highly variable between individuals.
Electroencephalography (EEG) and magnetoencephalography
(MEG) have been successfully applied to quantify the heritability
and identify genetic determinants of functional brain measures
(Van Beijsterveldt et al., 1996; Smit et al., 2006; Koten et al.,
2009; Renvall et al., 2012; van Pelt et al., 2012).

The brain generates “background” electrical activity with
salient rhythmic, but also arrhythmic patterns during wakeful
resting. One of the prominent spontaneous rhythms is the soma-
tomotor (rolandic) beta rhythm (Hari and Salmelin, 1997) that is
observed across several mammalian species (Haegens et al., 2011;
Feingold et al., 2015; Sherman et al., 2016). It is modulated by
perceptual and cognitive functions, including tactile processing
(Pfurtscheller et al., 2001; Haegens et al., 2011), motor function
(Salmelin and Hari, 1994; Feingold et al., 2015), action percep-
tion (Hari et al., 1998; Babiloni et al., 2002), and attention
(Van Ede et al., 2011; Sacchet et al., 2015). Beta band activity is
modulated over time, manifesting in intermittent high amplitude
“events” (Feingold et al., 2015; Jones, 2016) relevant for behavior:
In the sensorimotor cortex, beta event rate predicts behavior
across tasks and species (Shin et al., 2017). Both beta power
and beta events are altered in neurological conditions affecting
motor function, such as genetically determined Unverricht–
Lundborg disease (Silén et al., 2000), stroke (Laaksonen et al.,
2012), and Parkinson's disease (Vinding et al., 2020; Pauls et
al., 2022).

Besides rhythmic, or periodic, components, MEG power spec-
tra also contain aperiodic (1/f) components (He, 2014). These
two are important to disentangle as they are probably generated
by different neural mechanisms. Aperiodic signal is believed to
represent excitation–inhibition balance (Gao et al., 2017), and
it is modulated, for example, by brain maturation (McSweeney
et al., 2021; Hill et al., 2022), aging (Voytek et al., 2015; Wilson
et al., 2022), and several neurological and psychiatric conditions
(Molina et al., 2020; Ostlund et al., 2021; Semenova et al., 2021).
Cortical beta rhythm (Laaksonen et al., 2012; Pauls et al., 2022)
and aperiodic activity (Helson et al., 2023) both relate to clinical
symptoms, show good or excellent test–retest reliability (Pauls et
al., 2023), and thus have potential as diagnostic or prognostic
biomarkers.

Interpretability of rhythmic and aperiodic neural signals is
important for both research and clinical diagnostic applications.
MEG signal arises from spatial and temporal summation of
underlying neuronal activity (Buzsáki et al., 2012). Structure
and function are closely related: for example, peak oscillation fre-
quency decreases with increasing cortical thickness and process-
ing hierarchy (Mahjoory et al., 2020). Decoding the structure–
function–genetics relationship of M/EEG signal generation could
help understand signals’ individuality and their degradation in
neurological diseases, raising their value as diagnostic tools:
M/EEG may detect pathology before observable structural
changes in neurological disorders (Terry et al., 1991).
Heritability reflects the contribution of genetic versus environ-
mental factors to the differences observed between individuals,
and the quantification of the heritability of neural signals can
thus lead to insights of the biology behind the measurable

phenotypes (Visscher et al., 2008). Beta and other frequency
bands’ global spectral power is heritable (Van Baal et al., 1996;
Van Beijsterveldt et al., 1996; Smit et al., 2005; Salmela et al.,
2016); the beta power variability has been linked to a GABAA

receptor locus (Porjesz et al., 2002). Heritability of time-resolved
beta events, however, has not been investigated.

We investigated the heritability and variability of time-resolved
human cortical sensorimotor beta rhythm and aperiodic activity
using healthy adult siblings’ spontaneous MEG data. We propose
that knowledge about the relative heritability of different neural
components of sensorimotor activity can shed light on the under-
lying generating mechanisms and help interpret changes observed
in, for example, patient populationswith sensorimotor dysfunction.

Materials and Methods
Subjects. Two hundred ten Finnish-speaking siblings from 100 fam-

ilies participated in the study (8 families with three siblings, 1 family with
four; 148 females [mean ± SD age 29 ± 10 years, range 18–60 years], 62
males [30 ± 9 years, range 19–52 years]; 206 right-handed, three ambi-
dextrous, one left-handed). None of the participants had a history of neu-
rological or psychiatric disorders. The study was approved by the
Hospital District of Helsinki and Uusimaa ethics committee, and all par-
ticipants gave their written informed consent to participate.

MEG recordings. Spontaneous cortical activity was recorded in a
magnetically shielded room with a 306-channel Vectorview neuromag-
netometer (Elekta Oy) that contains 204 planar gradiometers and 102
magnetometers. Head positioning was measured at the beginning of
the measurement. Three minutes of data were collected while partici-
pants were resting with their eyes open (REST), as well as while they
clenched both hands alternatingly about once per second, self-paced,
keeping the eyes open (MOT). The MEG signals were bandpass filtered
at 0.03–200 Hz and sampled at 600 Hz.

MEG signal processing and beta event extraction. For suppressing
external artifacts, MEG data were preprocessed using the signal space
separation method (SSS; Taulu and Simola, 2006) implemented in
MaxFilter software (MEGIN Oy). Individual MEG recordings were
transferred to one subject's head space using a signal space separation-
based head transformation algorithm (Taulu et al., 2004), implemented
in MaxFilter. Further signal processing was done using MNE-Python
version 0.22 (Gramfort et al., 2013). After bandpass filtering the data
to 2–48 Hz with a one-pass, zero-phase, noncausal FIR filter (MNE
firwin filter design using a Hamming window), power spectral density
(PSD) was calculated using Welch's method (MNE's psd_welch func-
tion) with a nonoverlapping Hamming window and 1024-point fast
Fourier transformation (FFT).

The subsequent analysis steps are illustrated in Figure 1. The data
analysis was performed on the 204 gradiometer signals. First, a channel
pair with the highest spectral peak in the beta range (the peak channel
pair) was selected from the region of interest (ROI) of 15 gradiometer-
channel pairs per hemisphere centered over the sensorimotor cortices,
and the frequency at the power peak noted (peak beta frequency)
(Fig. 1A). In order to quantify PSD at each recording site, we computed
the vector sum of the two orthogonally oriented planar gradiometers at
each sensor location (vector PSD):

PSDvector =
√
(PSD2

ch1 + PSD2
ch2).

The resulting 15 vector-sum PSDs per hemisphere were then decom-
posed into a periodic and aperiodic component using FOOOF
(Donoghue et al., 2020). FOOOF models the power spectrum as a com-
bination of two distinct functional processes: an aperiodic component,
reflecting 1/f-like characteristics (exponential decay with an offset and
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an exponent), and a variable number of periodic components (putative
oscillations), as peaks rising above the aperiodic component. After sub-
traction of the aperiodic component, the remaining periodic component
was plotted for all 15 vector-sum PSDs for both REST and MOT condi-
tions in the frequency range of 14–30 Hz. The resulting plots were
visually inspected by two observers (K.A.M.P. and O.K.) to manually
select the beta signal frequency modulated most by MOT compared
to REST.

As the manual channel selection may be prone to human observer
bias, we compared the inter-rater agreement between two slightly differ-
ent approaches, conducted independently years apart on the same data.
The peak beta band frequencies had previously been extracted by one of
the authors (H.R.) without separating the 1/f aperiodic signal part and by
using Welch's method with 4096-point FFT, eight data segments over-
lapping by 50% and Hamming windowing. When allowing deviation
of ±3 Hz in the extracted peaks (taken the different FFT sizes and differ-
ent handling of the aperiodic 1/f component), the two approaches
resulted in 85% agreement, which is considered good.

Using the manually selected peak frequencies, the periodic compo-
nents of the 15 vector-sum PSDs were searched automatically to deter-
mine the recording channel with the highest peak and its frequency
(±1 Hz) for both hemispheres’ ROIs, and visually inspected again
by K.A.M.P.

The peak beta frequency and corresponding peak power of the cho-
sen vector-sum PSD, the total beta band power (periodic part of PSD area
under curve (AUC) from 14 to 30 Hz, 1/f component subtracted), as well
as the aperiodic component information obtained via FOOOF (offset and
exponent chi), were further used in the heritability analysis. All electro-
physiological parameters included in the heritability analysis are illus-
trated in Figure 1C.

The channel pair and peak beta frequency corresponding to the cho-
sen vector-sum PSD were used for beta burst analysis (Fig. 1B). Beta
event extraction was carried out similarly to the method described in

Pauls et al. (2022): the channel pair's raw unfiltered time series data
were downsampled to 200 Hz, high-pass filtered at 2 Hz and decom-
posed by convolving the signal with a set of complex Morlet wavelets
over the frequency range of 7–47 Hz with 1 Hz resolution and
n_cycles = frequency/2. The signal was then averaged within the individ-
ual narrow-band beta frequency range, that is, ±1.5 Hz around the indi-
vidual peak beta frequency, discarding the other frequencies. The vector
sum over the two channels’ beta band time series was calculated as
described above, and the resulting signal was rectified to obtain one
beta band amplitude envelope for the channel pair. The envelope was
smoothed with a 100-ms FWHM kernel and thresholded at the 75th per-
centile value. Periods exceeding this threshold for 50 ms or longer were
defined as beta events. Beta event parameters are illustrated in Figure 1C.
For event amplitude and event duration, the mean, median, robust max-
imum (defined as mean of the top 5% values), and standard deviation
values were calculated. Furthermore, events per second (event rate)
and event dispersion were calculated similarly to Pauls et al. (2022).
Times between beta events were defined as waiting times. To estimate
the variation of waiting times (event dispersion), we calculated the coeffi-
cient CV proposed by Shinomoto et al. (2005), defined as the waiting
times’ standard deviation σ divided by their mean μ:

CV =
s

m
.

All values were calculated for both hemispheres in all subjects (Fig. 1C).
Effect sizes for MEG features were based on Cohen's d values for

single-group designs:

D =M/S,

where M and S are the mean and the standard deviation of the feature
values across subjects (Goulet-Pelletier and Cousineau, 2018).

Figure 1. Extraction of sensorimotor beta phenotype characteristics. A, Channel selection. A ROI was defined for both hemispheres. The 15 selected gradiometer-channel pairs were combined
into 15 vector-sum PSDs (one per channel pair). The periodic spectral component of the vector-sum PSD was obtained using FOOOF. From these, a peak beta frequency and peak channel pair
were selected. B, Beta event extraction. The peak channel pair and peak frequency selected in A were used to calculate the channel pair's amplitude envelope. From the raw data,
narrow-band-filtered data were obtained using wavelet decomposition, and the individual channels’ band-filtered signals were combined to one amplitude envelope using vector sum cal-
culation. C, Parameters for heritability analysis. Both PSD characteristics [beta peak power and frequency, total beta power at 14–30 Hz (periodic part), 1/f exponent; top panel] and time-
resolved beta oscillatory characteristics (beta events; bottom panel) were used in the heritability analysis.
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Heritability analysis. Heritability is defined as the proportion of
(additive) genetic variance of the total phenotypic variance of a popula-
tion.

h2 = Vgenetic/Vphenotypic.

Phenotype heritabilities were calculated using the software program
Merlin version 1.1.2 (Abecasis et al., 2002), which employs a variance
component approach as detailed by Amos (1994). Heritability estimates
are calculated based on variance components. The coefficient estimating
genetic variance is adjusted by the degree of relationship, which is 0.5
(50% shared genes) in full siblings. The full sibling status of our study
individuals has been confirmed by [an earlier] DNA analysis (Renvall
et al., 2012).

Merlin requires nonnegative values for correct interpretation, so phe-
notypes with negative values were multiplied by −1. Such a transforma-
tion is standard for theMerlin analysis tool. Correctness of the input data
format was checked by the Pedstats program (Wigginton and Abecasis,
2005). As the analysis assumes the studied phenotypes to be normally
distributed while many of them were not, we also reran the analyses after
first correcting the phenotype values’ distributions with the inverse nor-
mal correction internal toMerlin. As both analyses produced highly con-
cordant results, we report here the results based on the noncorrected
values.

The probability of the observed heritability values being different
from zero was assessed by permuting the family labels of the study sub-
jects 6,000 times and calculating the heritability for each of the permuted
datasets. For each phenotype, the number of permutations k where the
permuted heritability was higher than the heritability observed in the
real data was recorded and used to calculate the one-tailed probability
of the observed heritability exceeding zero as k/6,000. This permutation
scheme may slightly inflate the permuted heritabilities, as it does not
explicitly ensure that the permutation does not reproduce any of the
original sibships. This may lead to conservative significance estimates.
Likewise, to correct for the multiple tests performed (n= 30), we per-
formed a Bonferroni correction, which may be overly conservative con-
sidering that some of the phenotypes were correlated.

Code and data accessibility. These data cannot be made publicly
available due to Finnish data protection law. Data can, however, be
shared for research collaboration with an amendment to the research

ethics permit and a related data transfer agreement. All analysis code
is available on GitHub (https://github.com/BioMag/Beta-sibling-study).

Results
A summary of the beta band phenotypic features (both beta PSD
features as well as beta band burst characteristics) is given in
Table 1. Figure 2A shows examples of different beta power spec-
tral phenotypes observed, and Figure 2B depicts beta band phe-
notypes for pairs of siblings. Typical PSD phenotypes were (1)
ones with a narrow peak on either side of 20 Hz, (2) a broad
band activity typically spanning 15–25 Hz, and (3) two distinc-
tive peaks, one typically in the lower beta range (14–20 Hz)
and the other in the high beta range (20–30 Hz).

Heritability results are shown in Table 2. Overall, the right-
hemispheric parameters were more heritable than the
left-hemispheric ones. The right hemisphere's 1/f aperiodic expo-
nent and offset were significantly heritable (exponent h2 = 0.87,
offset h2 = 0.69). Measures of beta burst amplitudes were also
significantly heritable (range of significant heritability values h2

of 0.28–0.81). Notably, of the beta burst amplitude measures,
the measures reflecting the dynamic range (beta event amplitude
maximum and its standard deviation) were most highly heritable.
Apart from the peak beta power with moderate effect size in both
hemispheres (Cohen's d=0.74–0.77), all effect sizes were either
large (Cohen's d> 0.80) or very large (Cohen's d> 1.2).

Discussion
To our knowledge, this is the first study investigating the herita-
bility of spontaneous time-resolved sensorimotor beta event
dynamics and aperiodic neural activity. Time-resolved beta event
amplitude parameters were highly heritable, whereas the herita-
bilities for peak frequency and measures of event duration were
not significantly different from zero. Interestingly, the most her-
itable trait was the aperiodic 1/f exponent, with a heritability of
0.87 in the right hemisphere. Overall, the right-hemispheric phe-
notypic traits were more heritable than the left-hemispheric ones.

Table 1. PSD (beta and 1/f) and beta event descriptives

Left hemisphere Right hemisphere

Mean Median SD Range Mean Median SD Range

PSD characteristics
Peak beta frequency (Hz) 19.7 19.3 3.0 14.1–25.8 19.8 19.3 3.1 14.1–29.3
Peak beta power (fT/cm)2 276 144 374 15–3,231 133 70 173 5–1,251
Total beta band power (periodic) 2,979 1,686 3,318 164–16,284 1,093 619 1,322 26–9,652
1/f component exponent 1.03 1.01 0.19 0.34–1.76 1.07 1.05 0.18 0.67–1.66
1/f component offset −22.95 −22.99 0.37 −23.75 to −21.75 −23.28 −23.32 0.34 −24.19 to −22.25

Beta event characteristics
Duration (ms) Mean 256.9 248.0 49.4 181.7–498.2 265.2 253.7 50.0 182.0–454.0

Median 199.0 195.0 32.3 152.5–420.0 201.4 195.0 34.9 150.0–355.0
Standard deviation 198.4 182.4 63.2 99.8–487.5 213.0 198.3 67.4 67.3–531.7
Robust maximum 858.0 788.6 257.4 439.5–2,145.0 912.1 852.2 263.9 382.7–2,135.0

Amplitude (fT/cm) Mean 325 285 165 104–994 221 188 113 73–654
Median 301 260 155 93–984 203 173 105 70–618
Standard deviation 86 71 48 21–264 62 52 34 14–202
Robust maximum 564 486 286 174–1,467 390 335 196 114–1,128

Event rate (1/s) 1.00 1.00 0.16 0.50–1.36 0.97 0.98 0.16 0.55–1.37
Dispersion 1.14 1.05 0.44 0.65–5.59 1.16 1.06 0.44 0.41–5.58

Parameters used in the heritability analysis. Peak frequency—frequency between 14 and 30 Hz most modulated by hand movement; peak power—PSD amplitude at peak frequency; total beta band power (periodic)—total AUC from
14 to 30 Hz of the periodic part of the signal (1/f signal component subtracted); 1/f component chi—exponential decay coefficient and offset describing 1/f (aperiodic) signal component. Beta event characteristics: robust maximum—mean of
top 5% values; burst rate—number of bursts/recording time; dispersion—SD(inter-burst intervals)/mean(inter-burst intervals).
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Heritability of MEG/EEG traits including beta oscillatory
activity
Heritability of electrophysiological traits has been little investi-
gated to date. In twin studies, EEG alpha, beta, theta, and delta
range peak frequencies (Van Beijsterveldt et al., 1996), occipital
alpha power and peak frequency at rest (Smit et al., 2006), as
well as MEG visual task-related gamma peak frequency (van
Pelt et al., 2012) have been found to be highly heritable. We
have previously demonstrated that auditory evoked fields’ ampli-
tude (Renvall et al., 2012), as well as occipital resting-state alpha

oscillatory activity (Salmela et al., 2016), are heritable in siblings
and that MEG power spectral features at rest allow identification
of sibling relationship (Leppäaho et al., 2019). These MEG traits
were associated with certain genetic loci/genomic regions
(Renvall et al., 2012; Salmela et al., 2016; Leppäaho et al., 2019)
but it is likely that most functional brain traits are controlled
polygenetically. Furthermore, functional connectivity in theta,
alpha and beta bands as measured with MEG appears progres-
sively more similar as the strength of the genetic relationship
increases (Colclough et al., 2017).

Figure 2. Beta phenotypes. A, Phenotypic spectrum of beta activity. Examples of typical beta range PSD patterns: left - narrow beta peak, middle - broad range, “beta brush” like activity,
right - double peaks of comparable strength, one in the lower, one in the higher beta range. B, Beta PSD patterns in siblings. Examples of siblings’ beta PSD patterns (two families with two
siblings, one family with three siblings, one family with four siblings).

Table 2. Heritability h2 of the oscillatory phenotypes calculated by Merlin

Left hemisphere Right hemisphere

h2 p n sig. (/6,000) h2 p n sig. (/6,000)

PSD characteristics
Peak beta frequency 0.45 0.0047 28 0.41 0.0103 62
Peak beta power 0.28 0.0648 389 0.58 0.0072 43
Total beta band power (periodic) 0.49 0.0068 41 0.44 0.0157 94
1/f component exponent* 0.47 0.0035 21 0.87 0.0000* 0
1/f component offset* 0.35 0.0258 155 0.69 0.0000* 0

Beta event characteristics
Duration Mean 0.45 0.1350 810 0.36 0.0222 133

Median 0.28 0.1338 803 0.40 0.0172 103
Standard deviation 0.49 0.2495 1,497 0.32 0.0412 247
Robust maximum 0.47 0.2383 1,430 0.33 0.0372 223

Amplitude Mean* 0.35 0.0060 36 0.75 0.0002* 1
Median* 0.45 0.0110 66 0.72 0.0002* 1
Standard deviation* 0.28 0.0005* 3 0.81 0.0000* 0
Robust maximum* 0.49 0.0007* 4 0.79 0.0000* 0

Event rate 0.47 0.0543 326 0.38 0.0137 82
Dispersion 0.35 0.2850 1,710 0.00 1.0000 6,000

The nominal probability that the heritability differs from zero is calculated from an empirical distribution based on 6,000 permutations of the sibship statuses/family IDs of the subjects. The variables and values that are significant after a
Bonferroni correction for multiple testing are given in bold. * indicates variables and values with significant heritability findings.
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MEG signal generative mechanisms and possible relation to
heritability
MEG measures magnetic fields arising from the temporal and
spatial summation of electric currents occurring in the underly-
ing brain tissue (Buzsáki et al., 2012). The measured raw signal
time series can be summarized in different ways, for example,
as PSD. Reduction in global beta power can result from various
changes in the neuronal signaling, such as smaller amplitude
beta oscillation events, or fewer or shorter beta oscillation events
without simultaneous changes in amplitude. Thus, decomposing
beta power into components gives additional information about
the underlying neural processing. We postulate that these MEG
dynamical measures reflect different aspects of MEG signal gen-
eration. The top panel of Figure 3 schematically summarizes fac-
tors that contribute to the generation of MEG signals, and the
bottom panel indicates how those factors may relate to the func-
tional parameters addressed in this study.

What underlies the heritability of beta event amplitude?
We postulate that the MEG beta event amplitude reflects rela-
tively fixed anatomical factors summarized in Figure 3 (top
panel, left). Pyramidal cells are neocortex’ most abundant cell
type. Synaptic currents and their state-dependent modulation
are the main determinants of intra- and extracellular field
strength, and their spatial summation is governed by pyramidal
cell morphology, cortical microstructure, and layering, as well
as synaptic input density (Buzsáki et al., 2012). Beta event ampli-
tudes are probably crucially dependent on these microstructural
properties: While both temporal and spatial superposition deter-
mine event amplitude, especially the amplitude's dynamic range

is limited by local cortical microstructure. Interestingly, in the
current study, event amplitudes’ dynamic range measures (stan-
dard deviation, maximum) were most strongly heritable.

Brain anatomical traits such as cortical thickness (Geschwind
et al., 2002; Schmitt et al., 2014) and cortical myelination
(Schmitt et al., 2020) have previously been shown to be heritable.
By late adolescence, differences in cortical thickness in the
sensorimotor regions are largely due to heritable factors, whereas
environmental factors play only a weak role (Schmitt et al., 2014).
Thus, throughout development, sensorimotor cortical structure
appears increasingly governed by the underlying genetics.

Both beta peak amplitude and the power at the beta band
(which is determined by the amplitude, number, and duration
of individual beta events) appeared more heritable in the right
than the left hemisphere. Our result is in agreement with earlier
studies that have found cortical morphology/volume to be more
genetically controlled in the right than left hemisphere in right-
handed individuals (Geschwind et al., 2002); functional studies
point in the same direction (Smit et al., 2006).

Why are event duration parameters not similarly heritable?
In the current cohort, measures of beta event duration were not
significantly heritable. Temporal summation of neural events,
which determines the timing and duration of beta events, arises
from the interplay between several brain areas, their connections
and relative input timings and strength (Fig. 3, top panel, right).
Important cortical pyramidal cell afferent inputs originate from
other adjacent pyramidal cells (intrinsic input) (Lorente de No,
1949), corticocortical connections (Kandel et al., 2000), and tha-
lamic connections, including connections from sensory organs,

Figure 3. Sources of MEG signals and their putative relationship to the MEG parameters examined in the present study. The schematic figure's top panel summarizes the main anatomical and
morphological factors, as well as factors determining timing of events, that contribute to the generation of MEG signals. The bottom part indicates the putative relationship of those factors to the
MEG parameters examined here. We postulate that the 1/f signal and beta event amplitude parameters are more heavily dependent on fixed, anatomical parameters, whereas beta event
duration and its modulation are more dynamic characteristics, yet keeping in mind that timing is very much constrained by network anatomy. Brain slice modified from: https://commons.
wikimedia.org/wiki/File:Human_basal_ganglia_nuclei_as_shown_in_two_coronal_slices_and_with_reference_to_an_illustration_in_the_sagital_plane.svg.
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and from other cortical areas (“higher-order” thalamic input)
(Sherman et al., 2016; Mo and Sherman, 2019). Computational
models suggest that sensory-induced beta events are generated
by synchronous bursts of excitatory synaptic drive to superficial
and deep cortical layers, with asymmetry in the respective input
strengths (Jones et al., 2009; Sherman et al., 2016; Neymotin et al.,
2020): The stronger the superficial input, the more prominent is
the beta activity (Sherman et al., 2016). Experimental data are
compatible with this model (Sherman et al., 2016; Bonaiuto et
al., 2021; Law et al., 2022). Thus, beta event timing and duration
appear to depend on the timing and strength of inputs from sev-
eral different cortical and subcortical input sources.

Network resonance could also play a role in beta event gener-
ation: In a dopamine-depleted state, cortical beta events are asso-
ciated with increased synchrony between EEG/ECoG cortical
activity and basal ganglia spiking activity (Cagnan et al., 2019).
In animal models of parkinsonism, high cortical beta synchrony
can be generated by changing the relative timings between tha-
lamic and corticocortical inputs (Reis et al., 2019). Hence, net-
work resonant properties could contribute to temporal
summation at least in some disease states, but possibly in a
dopamine-dependent fashion also in healthy brains.

Thus, compared to spatial summation, temporal summation
relies on more individual factors and their interplay (e.g., net-
work structural and functional properties), making heritability
more multifactorial and thus less likely to show heritability in
the present analysis. Methodological factors could also contrib-
ute to the lack of heritability: signal-to-noise ratio of the record-
ings affects event duration more than event amplitude measures.
Finally, the resting-state beta event duration could be a randomly
fluctuating parameter, governed by stochastic events and their
timing. These explanations, however, seem less likely given the
outlined experimental evidence, as well as our test–retest reliabil-
ity results (Pauls et al., 2023).

Why is the aperiodic signal component heritable?
Aperiodic signal components were the most heritable of the
investigated parameters in the present study. The aperiodic signal
is closely related to anatomical microstructure: Cortical pyrami-
dal cells and their dendritic morphology and density are believed
to be the most important determinants of the mammalian corti-
cal 1/f signal observed with MEG (Lindén et al., 2010; Buzsáki et
al., 2012). The 1/f signal is thought to stem from passive dendrite
filtering properties (Halnes et al., 2016) but it is also modulated in
an activity-dependent way (Pettersen et al., 2014). It has been
shown to be affected by brain maturation (McSweeney et al.,
2021; Hill et al., 2022) and aging (Voytek et al., 2015; Wilson
et al., 2022) as well as neurological (Semenova et al., 2021) and
psychiatric diseases (Ostlund et al., 2021). Furthermore, 1/f
reflects the attentional state (Waschke et al., 2021) and may con-
tribute to the integration of signals over longer periods of time
(Maniscalco et al., 2018). Thus, the signal's relative stability
over extended periods of time, and its close relationship to corti-
cal microstructure may explain the high heritability.

Stability of beta events and aperiodic activity—a prerequisite
for clinical use
Movement-related beta suppression and rebound at the sensor-
imotor cortices show excellent test–retest stability over weeks
in EEG recordings (Espenhahn et al., 2017). Similarly, beta
rhythm modulation after tactile and proprioceptive stimulation
was recently demonstrated to be highly reproducible in healthy
subjects within a year (Illman et al., 2022). In an independent

cohort of 50 healthy subjects measured twice during wakeful rest-
ing, both the aperiodic power spectral features as well as several
beta event characteristics showed good to excellent test–retest
stability (Pauls et al., 2023). Recordings of 2–3 min of resting
state data were sufficient to obtain stable results for most param-
eters, speaking for their feasibility in clinical settings. In the
future, the heritability of dynamic oscillatory activity also outside
the somatosensory cortices could be addressed. This would, how-
ever, likely require automated approaches which, in turn, might
be more prone to signal-to-noise variations than the partly man-
ual phenotyping applied here.

Limitations
As the analysis assumes normal distribution of the phenotypes,
the fact that many of the phenotypes were nonnormally distrib-
uted may have decreased the statistical power of the study. The
permutation procedure adopted for testing the significance of
the heritability values should, however, correct for any inflation
of the heritabilities caused by the nonnormality. The analyses
were additionally conducted with the internal normality correc-
tion functionality of Merlin, resulting in values qualitatively sim-
ilar to (although slightly more significant than) those based on
the noncorrected data presented here.

Anymeasurement noise contributes to the phenotypic variabil-
ity, thus reducing estimated heritability. The effect sizes calculated
here did not suggest a systematic effect of signal-to-noise ratio on
the observed heritabilities: for example, the effect size for event
duration was higher than the effect size for event amplitude.
Furthermore, in our recent study (Pauls et al., 2023), the test–retest
reliability of somatomotor beta activity was not directly related to
relative heritabilities observed in the current study. Thus, the
observed heritability differences do not solely reflect differences
in the signal reliability or the signal-to-noise ratio.

Conclusion
We here show that the human sensorimotor beta and aperiodic
cortical activity can be dissected into highly heritable and non-
heritable components. We postulate that the different heritabili-
ties reflect, in part, different underlying signal-generating
mechanisms and their weighting in the generation of different
signal characteristics. In combination with increased information
resulting from the time-resolved beta signal decomposition, the
results generate an interesting framework to interrogate and
interpret M/EEG data both in healthy subjects as well as patient
populations. This framework also increases the potential of
whole-brain electrophysiologymeasures, such as beta band activ-
ity, as disease biomarkers.
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