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Abstract. Leaf area index (LAI) and fraction of photosynthetically active radiation (FPAR) are critical biophys-
ical parameters for the characterization of terrestrial ecosystems. Long-term global LAI/FPAR products, such as
the moderate resolution imaging spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite
(VIIRS), provide the fundamental dataset for accessing vegetation dynamics and studying climate change. How-
ever, existing global LAI/FPAR products suffer from several limitations, including spatial–temporal inconsisten-
cies and accuracy issues. Considering these limitations, this study develops a sensor-independent (SI) LAI/FPAR
climate data record (CDR) based on Terra-MODIS/Aqua-MODIS/VIIRS LAI/FPAR standard products. The SI
LAI/FPAR CDR covers the period from 2000 to 2022, at spatial resolutions of 500 m/5 km/0.05◦, 8 d/bimonthly
temporal frequencies and available in sinusoidal and WGS1984 projections. The methodology includes (i) com-
prehensive analyses of sensor-specific quality assessment variables to select high-quality retrievals, (ii) appli-
cation of the spatial–temporal tensor (ST-tensor) completion model to extrapolate LAI and FPAR beyond areas
with high-quality retrievals, (iii) generation of SI LAI/FPAR CDR in various projections and various spatial
and temporal resolutions, and (iv) evaluation of the CDR by direct comparisons with ground data and indirectly
through reproducing results of LAI/FPAR trends documented in the literature. This paper provides a compre-
hensive analysis of each step involved in the generation of the SI LAI/FPAR CDR, as well as evaluation of the
ST-tensor completion model. Comparisons of SI LAI (FPAR) CDR with ground truth data suggest an RMSE
of 0.84 LAI (0.15 FPAR) units with R2 of 0.72 (0.79), which outperform the standard Terra/Aqua/VIIRS LAI
(FPAR) products. The SI LAI/FPAR CDR is characterized by a low time series stability (TSS) value, suggesting
a more stable and less noisy dataset than sensor-dependent counterparts. Furthermore, the mean absolute error
(MAE) of the CDR is also lower, suggesting that SI LAI/FPAR CDR is comparable in accuracy to high-quality
retrievals. LAI/FPAR trend analyses based on the SI LAI/FPAR CDR agree with previous studies, which indi-
rectly provides enhanced capabilities to utilize this CDR for studying vegetation dynamics and climate change.
Overall, the integration of multiple satellite data sources and the use of advanced gap filling modeling techniques
improve the accuracy of the SI LAI/FPAR CDR, ensuring the reliability of long-term vegetation studies, global
carbon cycle modeling, and land policy development for informed decision-making and sustainable environmen-
tal management. The SI LAI/FPAR CDR is open access and available under a Creative Commons Attribution
4.0 License at https://doi.org/10.5281/zenodo.8076540 (Pu et al., 2023a).
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1 Introduction

The leaf area index (LAI) is a fundamental parameter for
quantifying the structural and functional characteristics of
terrestrial vegetation canopies, defined as half of the total
green foliage per unit of horizontal ground area (Chen and
Black, 1992; Chen, 1996). LAI plays an essential role in
models of ecological processes, global primary productivity,
climate dynamics, water cycle, and the carbon cycle anal-
ysis (Sellers et al., 1997; Boussetta et al., 2013; Piao et al.,
2015; Fang et al., 2019; Chen et al., 2022). The fraction of in-
cident photosynthetically active radiation (400–700 nm) ab-
sorbed by vegetation (FPAR) is an important biophysical pa-
rameter used to quantify the energy absorption capacity of
the vegetation canopy (Knyazikhin et al., 1998a; Myneni et
al., 2002). LAI and FPAR are key climate variables and bio-
diversity metrics identified by the United Nations Global Cli-
mate Observing System (GCOS) (Skidmore et al., 2015).

In recent decades, there has been a remarkable increase
in the use of global long-term satellite-derived LAI/FPAR
datasets from various sensors, e.g., the Advanced Very High-
Resolution Radiometer (AVHRR), the Moderate Resolution
Imaging Spectroradiometer (MODIS), and the Visible In-
frared Imaging Radiometer Suite (VIIRS). Among these, the
LAI/FPAR products from MODIS on the Terra platform have
been widely used since 2000 and represent a milestone in
operational generation of vegetation parameters from satel-
lite observations (Knyazikhin, 1999; Myneni and Park, 2015;
Yan et al., 2016, 2021c). The LAI/FPAR are also available
from MODIS on the Aqua platform and VIIRS on the Suomi
National Polar-Orbiting Partnership (S-NPP) and the Joint
Polar Satellite System (JPSS) satellites since 2002 (2012),
ensuring the extension of the Terra MODIS long-term data
record (Justice et al., 2013). The MODIS/VIIRS LAI/FPAR
datasets have contributed significantly to many studies, such
as terrestrial carbon sinks, understanding seasonal and inter-
annual variations in equatorial forests, analyses of spatial pat-
terns of drought, and climate and energy flux dynamics (Tang
et al., 2013; Mariano et al., 2018; Chen et al., 2019, 2022;
Sun et al., 2022).

Two weaknesses of the MODIS/VIIRS LAI/FPAR prod-
ucts have been identified (i.e., temporal stability and abso-
lute accuracy), which limit their application in vegetation dy-
namic studies (Fang et al., 2012a, 2019; Yan et al., 2021a).
These problems mainly arise due to uncertainties in input in-
formation to the operational retrieval algorithm such as sur-
face reflectance and land cover type (Knyazikhin, 1999; Fang
et al., 2019; Tian et al., 2000). Several post-processing tech-
niques have been proposed to remove uncertainties in the
MODIS/VIIRS LAI/FPAR standard products. These tech-
niques include (1) identifying areas with a high fraction of
water area in the satellite pixel and removing their impact on
the retrieval using a mixed pixel correction method (Xu et

al., 2020; Dong et al., 2023); (2) integration of prior knowl-
edge of reflectance variations into the generation of the im-
age composite (Pu et al., 2023b); and (3) accounting for the
canopy hotspot effect in the retrieval technique (Yan et al.,
2021b). These methods would increase product spatial cov-
erage. Furthermore, the scientific community also developed
various gap filling techniques to extrapolate retrievals be-
yond areas with valid satellite observations such as (1) cu-
bic splines (Mitášová and Hofierka, 1993); (2) spatial linear,
bilinear, and kriging interpolations (Xu et al., 2015; Smith,
1981; Oliver and Webster, 1990); and (3) various temporal
extrapolation techniques (Holben, 1986; Lange et al., 2017;
Roerink et al., 2000; Zhu et al., 2011; Das and Ghosh, 2017;
Chu et al., 2021; Wang et al., 2023). However, most of the
approaches are characterized by high computational costs or
lack of information necessary for their implementation at the
global scale. Consequently, most research has been limited
to specific regions (e.g., China and North America), leaving
a significant gap in developing a climate data record (CDR)
which, by definition, is a consistently processed time series
of uncertainty-quantified data, located in time and space, of
sufficient length and quality to be useful for climate timescale
analyses (Merchant et al., 2017).

The objective of this paper is to develop a long-term LAI
and FPAR CDR using standard LAI and FPAR products
from MODIS and VIIRS sensors. Our approach includes
(i) comprehensive analyses of sensor-specific quality assess-
ment (QA) variables to select high-quality retrievals, (ii) ap-
plication of the spatial–temporal tensor (ST-tensor) comple-
tion model (Chu et al., 2021) to extrapolate LAI and FPAR
beyond areas with high-quality retrievals, (iii) generation of
SI LAI/FPAR CDR in various projections and various spatial
and temporal resolutions, and (iv) evaluation of the CDR by
direct comparisons with ground measurement and indirectly
through reproducing results of LAI/FPAR trend analyses to
revisit the “Greening Earth”.

The paper is organized as follows: Section 2 introduces the
data used in this study and the study area. Section 3 details
the steps involved in generating the SI LAI/FPAR CDR, in-
cluding analyses of sensor-specific QA, generation of high-
quality filtered SI LAI/FPAR time series, and applying the
ST-tensor completion model. The results of the validation
and evaluation are presented in Sect. 4. Section 5 discusses
the underlying factors that contributed to the improvement
of the SI LAI/FPAR CDR and the associated issues and chal-
lenges. The final section summarizes the key findings and
highlights the significance of the research.
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2 Datasets and study area

2.1 LAI/FPAR products: MOD15A2H, MYD15A2H, and
VNP15A2H

The MODIS/VIIRS LAI/FPAR inputs surface bidirectional
reflectance factors (BRFs) in the red and near-infrared (NIR)
spectral bands, their uncertainties, sun-sensor geometry, and
biome classification map, and they retrieve the LAI and
FPAR for each satellite pixel. The retrieval technique consists
of a main algorithm, which is based on the radiative transfer
equation (RTE), and a backup algorithm, which uses empir-
ical relationships between the normalized difference vege-
tation index (NDVI) and canopy LAI/FPAR (Myneni et al.,
2002; Yan et al., 2018; Knyazikhin, 1999; Knyazikhin et al.,
1998b). The main algorithm compares the observed spectral
BRF with those evaluated from the RTE-based entries stored
in a look-up table (LUT) for a suite of canopy structures and
soil patterns that represent an expected range of typical con-
ditions for a given biome type. All canopy/soil patterns for
which modeled and observed BRFs differ within a speci-
fied uncertainty level are considered as acceptable solutions.
The mean values of LAI and FPAR, and their dispersions,
are reported as retrievals and their uncertainties. When this
method fails to localize a solution, the backup method is uti-
lized (Myneni et al., 2002; Yan et al., 2018).

Analyses of the performance of the MODIS LAI/FPAR
algorithm indicate that the best-quality, high-precision re-
trievals are obtained from the main algorithm. In the case of
dense canopies, the BRFs saturate and become weakly sen-
sitive to changes in canopy properties. The reliability of pa-
rameters retrieved under the condition of saturation is lower
than that generated by the main algorithm using unsaturated
BRF. The algorithm path is the key quality assessment (QA)
flag that provides information about the overall quality of the
LAI/FPAR. It includes four values (from highest to lowest
quality): the main algorithm without saturation, the main al-
gorithm with saturation, the backup algorithm due to sun-
sensor geometry, and the backup algorithm due to other rea-
sons. The QA variables provide information about the cloud
state, aerosol load, and the presence of snow, which are in-
herited from the upstream BRF product (Knyazikhin, 1999;
Myneni and Park, 2015; Yan et al., 2016; Park et al., 2017).

The daily retrievals are composited over an 8 d period
by selecting the LAI and FPAR pair corresponding to the
maximum FPAR value generated by the main algorithm
(Knyazikhin and Myneni, 2018). The backup algorithm re-
trievals are selected only when no main algorithm retrievals
are available during the 8 d compositing period. The 8 d
composited LAI/FPAR product is distributed to the pub-
lic from the NASA EOSDIS Land Processes Distributed
Active Archive Center (Myneni et al., 2015; Myneni and
Knyazikhin, 2018).

In this study, we used the Collection 6 (C6) MOD15A2H,
C6 MYD15A2H, and the Collection 1 (C1) VNP15A2H

LAI/FPAR products. The products are available at 500 m
sinusoidal grid and are updated every 8 d, resulting in ap-
proximately 46 composites per year. MOD15A2H data have
been available since 18 February 2000, MYD15A2H since
14 July 2002, and VNP15A2H since 17 January 2012. These
datasets are distributed in standard hierarchical data format
(HDF) files. Each HDF file contains six scientific datasets
(SDS): FPAR, LAI, FparLai_QC, FparExtra_QC, FparStd-
Dev, and LaiStdDev. The LAI and FPAR layers contain the
LAI/FPAR retrievals, while the FparLai_QC and FparEx-
tra_QC layers provide information about the algorithm paths
and atmospheric conditions. This quality information under-
lies the first step in generating SI LAI/FPAR CDR, as de-
tailed in Sect. 3.1.

2.2 Land cover map: MCD12Q1

The MODIS land cover product (MCD12Q1) provides a
global map of land cover types at a spatial resolution of
500 m and an annual time step (Sulla-Menashe and Friedl,
2018). In this study, we used the LAI legacy classifica-
tion scheme (LC_Type_3), which categorizes global vegeta-
tion into eight biomes: grasses and cereal crops (biome 1),
shrubs (biome 2), broadleaf crops (biome 3), savannas
(biome 4), evergreen broadleaf forests (EBF; biome 5), de-
ciduous broadleaf forests (DBF; biome 6), evergreen needle-
leaf forests (ENF; biome 7), and deciduous needleleaf forests
(DNF; biome 8) (Sulla-Menashe and Friedl, 2018). The
biome classification map is an important auxiliary dataset for
MODIS/VIIRS LAI/FPAR operational algorithms. It reduces
the number of unknowns of the inverse problem through the
use of simplifying assumptions (e.g., leaf normal orienta-
tion) and standard constants (e.g., leaf albedo and patterns of
ground reflectance) that are assumed to vary with the biome
(Knyazikhin, 1999). A global distribution of the eight biomes
is shown in Fig. 1.

2.3 Ground LAI/FPAR reference

The growing utilization of earth observation (EO) products
has highlighted the importance of addressing product un-
certainty through validation based on ground measurements
(Baret et al., 2006; Yang et al., 2006; Fang et al., 2012b). In
our study, we validated the SI LAI/FPAR CDR by compar-
ing their values with LAI and FPAR ground reference data
from version 3 of the Copernicus Ground-Based Observa-
tions for Validation (GBOV) and version 2 of the DIRECT
database (Brown et al., 2020, 2021). The combined utiliza-
tion of both sets of measured data provides comprehensive
coverage across the globe, encompassing a diverse array of
representative biome types. The only notable exceptions are
the eastern part of China and Eastern Europe, which lacks the
measurement sites.

GBOV, part of the Copernicus Global Land Service, aims
to facilitate the use of ground-based observations to vali-
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date EO products and ensure their quality and consistency.
GBOV collects multiyear ground-based observations from
global networks and upgrades existing sites or establishes
new ones to bridge thematic or geographic gaps (Brown et
al., 2020; Bai et al., 2022). To ensure data quality, the GBOV
reference database has undergone rigorous quality control
procedures and includes various measurements such as top of
canopy reflectance, surface albedo, LAI, FPAR, proportion
of ground cover, soil moisture at 5 cm depth, and surface tem-
perature. GBOV data are available through the open GBOV
portal (https://gbov.acri.fr, last access: 21 December 2023).
We used the GBOV LAI/FPAR maps since 2014 as a ref-
erence dataset. We selected 29 GBOV sites of 3 km× 3 km
each (see Fig. 1). The LAI/FPAR reference maps were av-
eraged over the 3 km× 3 km area for product assessment.
Statistics based on downloaded data, i.e., the GBOV valida-
tion dataset used in this study, consisted of 9805 LAI and
10 548 FPAR measurements.

The DIRECT LAI, FPAR, and vegetation cover are avail-
able as spatially averaged values over 3 km× 3 km reference
maps (Brown et al., 2021). Following the CEOS WGCV LPV
good practice, the ground data are enhanced with high spa-
tial resolution imagery to account for spatial heterogeneity.
This dataset includes 176 global sites representing seven ma-
jor biome types, covering the period from 2000 to 2021.
Forest sites without understorey are filtered out of the DI-
RECT database (https://calvalportal.ceos.org/lpv-direct-v2.
1, last access: 21 December 2023). The dataset used in this
study contains 446 LAI and 109 FPAR measurements.

2.4 Study area

Figure 1 shows distribution of biome types and selected
GBOV and DIRECT validation sites. We selected a study
area of global world, and selected the typical area of 86 to
30◦W and from 20◦ S to 10◦ N (inset in Fig. 1), contain-
ing Amazonian forests to highlight the importance of various
steps in developing the SI LAI/FPAR CDR. Obtaining high-
quality observations over this area is difficult due to a large
amount of cloud-contaminated data. It is therefore particu-
larly valuable to assess the quality of our LAI/FPAR CDR in
this region.

2.5 Metrics for evaluating

In this study, we assessed the variability of SI LAI/FPAR
CDR using two metrics: time series stability (TSS) (Weiss et
al., 2007; Zou et al., 2022) and mean absolute error (MAE)
(Zhou et al., 2015). Both metrics provide insight into the un-
certainties associated with a dataset. TSS quantifies the devi-
ation of a value at a given time (t0) from the linear interpola-
tion line calculated from the preceding and succeeding time
series data points (Eq. 1):

TSS(t0)=

|(X (t1)−X (t−1))× t0− (t1− t−1)×X (t0)
− (X (t1)−X (t−1))× t−1+ (t1− t−1)×X (t−1)|√

(X (t1)−X (t−1))2
+ (t1− t−1)2

. (1)

We analyzed three adjacent time series data points, X (t1),
X (t0), andX (t−1), obtained at the following (t1), current (t0),
and the previous (t−1) times, respectively. To ensure a fair
comparison, we calculated the cumulative TSS based on the
same length of time series. The TSS represents the deviation
of a value at a given point in time from the linear interpola-
tion line, and in this study, higher TSS values indicate greater
variability over time.

The MAE metric is employed in this study to evaluate the
accuracy of the retrieval methods by measuring the average
absolute difference between the predicted and actual values.
Following the approach proposed by Zhou et al. (2015), the
MAE is calculated as the discrepancy between the reference
and the retrieved series. (The process of generating the refer-
ence time series is discussed in Sect. 3.2.) We used the MAE
as a metric to assess the similarity (Eq. 2):

MAE=
2

√∑N
i=1(retrieved(i)− reference(i))2

N
. (2)

Furthermore, performance analyses indicate that the re-
trievals from the main algorithm without clouds and aerosols
provide the highest quality and accuracy (Pu et al., 2020).
Therefore, we used a retrieval index (RI), which represents
the percentage of pixels with high-quality retrievals (Xu et
al., 2018; Yan et al., 2018, 2021a), as an indicator of the un-
certainty of the LAI/FPAR retrievals (Eq. 3). This RI serves
as an additional measure to assess the uncertainty associated
with LAI/FPAR retrievals and is calculated as follows:

RI=
Number of high-quality pixels

Number of all pixels
. (3)

2.6 Calculation of LAI/FPAR trends

Trends in annual average SI LAI/FPAR CDR (2001–2022)
are evaluated by the Mann–Kendall (MK) test. The MK test
is a non-parametric statistical test commonly used for cli-
mate diagnostics and prediction. It enables the detection of
monotonic trends in time series data, helping to determine if
significant trends exist (Hamed and Rao, 1998). The MK test
is employed as follows:

Earth Syst. Sci. Data, 16, 15–34, 2024 https://doi.org/10.5194/essd-16-15-2024
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Figure 1. Distribution of the selected GBOV and DIRECT sites. Amazonian forests used as a study area to assess various steps in developing
LAI/FPAR CDR is shown as a red square. The background color indicates the biome types from the MCD12Q1 classification schemes of the
year 2017 (grasses and cereal crops (biome 1), shrubs (biome 2), broadleaf crops (biome 3), savannas (biome 4), evergreen broadleaf forests
(EBF; biome 5), deciduous broadleaf forests (DBF; biome 6), evergreen needleleaf forests (ENF; biome 7), and deciduous needleleaf forests
(DNF; biome 8)). The blue and purple dots represent the GBOV3.0 and DIRECT2.1 sites.

S =

n−1∑
i=1

n∑
j=i+1

sgn
(
xj − xi

)
(4)

Var(S)=
n (n− 1)(2n+ 5)−

m∑
i=1
ti (ti − 1)(2ti + 5)

18
(5)

Zs =


S−1
√

Var(S)
, if S > 0

0, if S = 0
S+1
√

Var(S)
, if S < 0

. (6)

Equation (4) calculates the sum (S) of step function values,
which represent the differences between values at different
points (xj and xi) in the time series. The function sgn(x)
takes the value 1 if its argument is a positive number, and−1
otherwise. The variables n and m denote the number of data
points and the number of tied groups (recurring datasets), re-
spectively. Next in Eq. (5), the variance (Var(S)) is calculated
by assessing the magnitude of S to evaluate the statistical sig-
nificance of the detected trends. Where the ti is the number
of the ties (the number of repeats in the extent i). Finally, we
calculated the test statistic Zs (Eq. 6). When |Zs|> Z1−α/2,
the null hypothesis (i.e., no trend) is rejected and the α is a
special significance level. Here, we use the significance level
of α = 0.05 and the Z1−α/2 = 1.96. Thus, the trends with
P ≤0.05 are considered to be statistically significant in this
study.

3 Methodology

Our methodology includes four key steps as shown in Fig. 2:
(1) filtering low-quality observations based on QA values;
(2) consolidating the filtered Terra/Aqua/VIIRS LAI/FPAR
into filtered SI LAI/FPAR time series; (3) gap filling the
missing values using a spatial–temporal tensor completion
model; and (4) generating the SI LAI/FPAR CDR in differ-
ent projections and spatial–temporal resolutions. The details
are described in the following subsections.

3.1 Step 1: filtering the low-quality observations based
on QA values

The FparLai_QC and FparExtra_QC layers within the MOD-
IS/VIIRS LAI/FPAR products provide information about the
quality of LAI/FPAR, which include algorithm path, cloud
and aerosol contaminations, and other factors that lower the
reliability of retrievals. Best-quality, high-precision retrievals
are obtained from the main algorithm. With a high proba-
bility the main algorithm fails in the case of cloud- and/or
snow-contaminated pixels, or pixels with a high aerosol load
(Yan et al., 2021a). As depicted in Table 1, the first step elim-
inates LAI/FPAR values retrieved by the backup algorithm
as well as suspicious values from the main algorithm, which
could be affected by clouds, aerosols, and cloud shadows.
Note that the quality flags of the Terra-MODIS and Aqua-
MODIS products are consistent, while VIIRS slightly dif-
fers from the two MODIS QA (e.g., the absence of MOD-
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Figure 2. Schematic flowchart of the generation of the SI LAI/FPAR CDR.

LAND_QC for VIIRS). All three LAI/FPAR products have
the same algorithm path and atmospheric conditions. After
removing suspicious and low-quality values, we get a filtered
Terra/Aqua/VIIRS LAI/FPAR dataset.

3.2 Step 2: consolidating the filtered Terra/Aqua/VIIRS
LAI/FPAR into filtered SI LAI/FPAR time series

After completing the first step, we obtained three filtered
LAI/FPAR time series of different spatial coverage. We con-
solidated the three time series into a filtered SI LAI/FPAR
time series as follows: first, a fill value assigned to a pixel,
if there are no high-quality LAI/FPARs from any sensor dur-

ing the compositing period. Second, if there is only one pair
of high-quality LAI and FPAR for the pixel, it is taken as
the CDR value with the accompanying quality flag set to 1.
Finally, if several high-quality retrievals are available for a
given pixel during the compositing period, their average is
the CDR value. The corresponding quality flag is set to 1 in
this case. We generated a 23-year (2000–2022) time series of
the filtered SI LAI/FPAR using this procedure. As Zhou et
al. (2015) argued, this time series can be used as a reference
to estimate an absolute reconstruction error. The reference
LAI/FPAR map is shown in Figs. S1 and S2 in the Supple-
ment.

Earth Syst. Sci. Data, 16, 15–34, 2024 https://doi.org/10.5194/essd-16-15-2024
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Table 1. The quality flags used in step 1.

Terra Aqua VIIRS

MODLAND_QC Good quality (main algorithm) Good quality (main algorithm) –
Retrieval algorithm path Main algorithm Main algorithm Main algorithm
Cloud state Clear or assumed clear Clear or assumed clear Confidently clear or probably clear
Cloud shadow No cloud shadow detected No cloud shadow detected No cloud shadow
Internal cloud mask No clouds No clouds –
Cirrus No cirrus detected No cirrus detected No
Land–sea path Land Land –
Fill value No No No

3.3 Step 3: gap filling the missing values using a
spatial–temporal tensor completion model

Our next step is gap filling, i.e., replacing fill values with
estimates of LAI and FPAR. We used an ST-tensor comple-
tion model as our spatial–temporal gap filling method (Chu
et al., 2021). This method is particularly well suited for cor-
recting remote sensing images due to its ability to capture
intrinsic multidimensional correlations. This technique has
proven successful in many applications such as hyperspectral
image recovery and reconstruction of missing data in remote
sensing images (He et al., 2017; Zheng et al., 2019; Zhang
et al., 2019; Chu et al., 2022, 2021). The ST-tensor comple-
tion model used in this study can be broken down into the
following four steps:

1. Tensor rearrangement. The LAI/FPAR time series have
three distinct features. First, they possess spatial neigh-
borhood similarity based on the first law of geography
(Goodchild, 2009). Second, they have temporal neigh-
borhood correlation, assuming vegetation growth is
continuous and smooth (Cong et al., 2012). Finally, they
exhibit periodic temporal similarity because vegetation
growth varies periodically (Whitt and Ulaby, 1994).
While the original tensor form adequately captures spa-
tial neighborhood similarity and temporal neighborhood
correlation, it does not directly express periodic tem-
poral similarity. Therefore, it is necessary to transform
the original tensor into a new tensor that includes all
three features. As shown in step 3 of Fig. 2, this study
transforms the one-dimensional multiyear time series
for each pixel into a two-dimensional matrix. In this
matrix, each row represents a 1-year time series. At the
same time, the two-dimensional spatial image is trans-
formed into a one-dimensional vector. The following
equation illustrates this transformation:

Xm·m·T → Ym2·ny·nd , (7)

where X is the original tensor, Y is the transformed ten-
sor, m denotes the spatial length of the original tensor,
and T denotes the total number of observations in the
entire time series, which is basically equal to the num-

ber of years (ny) multiplied by the number of observa-
tions in a year (nd).

2. Iteration updates the weight values and gap fills the
missing values. The current third-order tensor can be de-
composed into three matrices by three different modes.
The tensor rank is defined in different ways and is
mainly determined by the correlation and similarity of
the elements in the different domains of the tensor. A
smaller tensor rank indicates a higher similarity be-
tween the values of the tensor elements, which also
implies that the missing values are filled consistently
across all three dimensions, resulting in the best gap
filling. The tensor rank can be defined by considering
the three expansion matrices’ rank order. Therefore, the
data filling process in this study can be represented by
the following equation, which aims to optimize problem
solving:

min
3∑
i=1

wn rank(Yn), (8)

where wn is the weight corresponding to Yn which is al-

ways non-negative and satisfies
3∑
i=1
wn = 1. In the pro-

cess of solving Eq. (8), it is first necessary to iteratively
determine the weight values. We initialize the weights
of the three expansion matrices as equal (w1 = w2 =

w3 = 1/3) and then update them iteratively using the
method based on singular value decomposition intro-
duced by Chu et al. (2021). Once the weight values
are obtained, Eq. (8) can be solved efficiently using the
algorithm proposed by Ji et al. (2017). This algorithm
uses a logarithmic operator, which better approximates
the tensor rank than the classical kernel parameteriza-
tion, leading to higher accuracy (Ji et al., 2018).

3. Iterate L1 trend filtering. After the ST-tensor comple-
tion process, although a gap-free LAI/FPAR time series
can be obtained, some residual noise may still exist due
to the uncertainties in flag data. Thus, we employ an
iterative L1 trend filtering method, known for its flexi-
bility in de-noising one-dimensional time series data by
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regularizing the residual and smoothing terms (Chu et
al., 2021, 2022; Eilers, 2003). In this method, we de-
note the noisy time series as y and the fitted series as z.
The objective of the L1 trend filtering method is to bal-
ance two conflicting objectives: (a) fidelity to the origi-
nal series and (b) smoothness of the filtered series. This
is achieved by optimizing the following objective func-
tion (Eq. 9):

Q=
1
2
‖y− z‖22+ λ‖Dz‖1, (9)

whereDz represents the second-order difference matrix
and λ is the regularization parameter that balances the
fidelity and smoothness terms.
In practice, this method is well suited to preserving the
detailed characteristics of turning points, thanks to the
L1 parametric constraint. Furthermore, due to the com-
pletion of the ST-tensor process, the remaining noise
can be assumed to have a negative bias. In our approach,
data with flag= 0 is considered as noise, while flag= 1
is considered as almost noiseless. The iterative process
is as follows: in the first and second iterations, the L1
trend filter is applied to smooth the LAI/FPAR time se-
ries, preserving the good data while replacing only the
noisy values that fall below the smoothed series. Sub-
sequent iterations then replace all the noise. By itera-
tively repeating this process, we achieve a good balance
between noise reduction and the preservation of good
data. At the end of the filtering step, the results are both
gap- and noise-free.

4. Reshape the tensor. Following the reverse process of re-
arrangement in step 1), the filled and filtered LAI/FPAR
tensor is returned to its original form.

3.4 Step 4: generating the SI LAI/FPAR CDR at different
projections and spatial–temporal resolutions

Our final step aims to generate CDRs at different spatial and
temporal resolutions projected on WGS1984 and sinusoidal
grids. First, we calculated the bimonthly LAI/FPAR using
a weighted averaging method. The spatial resolution of the
data was then adjusted to 5 km by nearest neighbor interpo-
lation. Following this step, the projection was transformed
from sinusoidal to WGS1984 and the data were further in-
terpolated from a spatial resolution of 500 m down to 0.05◦

using the block average method. As a result of these transfor-
mations, we obtained six different versions of the SI LAI/F-
PAR CDR, as shown in Table 2. Finally, the SI LAI/FPAR
CDR with 500 m spatial resolution were uploaded to Google
Earth Engine (GEE) for users to mix and match with other
datasets, and due to the ease of using this in GEE, all datasets
were reprojected to WGS1984 using the gdalwarp function
with a crs of EPSG:4326 for ease of ingestion. The other
four versions of SI LAI/FPAR CDR can be found on Zenodo
(detailed in the section “Data availability”).

4 Results

4.1 Evaluation for the generating steps of SI LAI/FPAR
CDR over the Amazon forest

The assessment of vegetation dynamics in the Amazon rain-
forest, including seasonal changes, is challenging due to per-
sistent cloud cover that interferes with optical remote sensing
observations. Therefore, during the evaluation process of the
SI LAI/FPAR CDR, each step was assessed using the Ama-
zon forest region (Fig. 2) as a representative study area. In
the first step, considering the significant presence of EBF
(50.26 %) in the Amazon forest region, this part compares the
LAI/FPAR time series from Terra/Aqua/VIIRS before and
after filtering the low-quality observations. There is a nega-
tive correlation between the RI and the contrast in LAI/FPAR
values before and after filtering, which can be explained by
significant differences in the quality of retrievals produced
by the main and backup algorithms. This filtering process
has reduced the magnitude of the LAI variation, leaving their
values in the range of 5–6 (Fig. 3), as expected (Samanta et
al., 2012a, b). Filtered FPAR values vary around its interan-
nual average of 0.85 (Fig. S3). Furthermore, we observed a
consistent intra-annual variation in LAI/FPAR, indicating a
clear seasonal dynamic in the EBF.

Figure 4 illustrates percentages of high-quality retrievals
from single sensors and after step 2 for selected Amazon for-
est region (inset in Fig. 1) for the 2013–2022 overlap period.
Table 3 summarizes the changes after the implementation of
step 2 for the whole and overlap periods. For the overlap pe-
riod the percentages increase from 41.09 % (Terra), 29.55 %
(Aqua), and 30.90 % (VIIRS) to 58.50 % in filtered SI time
series. If the time interval is extended to the whole dataset
record period (2000–2022), the percentages increase from
41.68 %, 26.73 %, and 14.85 % to 54.07 %. Consequently,
the percentage of pixels that need to be gap filled reaches
45.93 %. Table 3 also shows a low frequency of high-quality
retrievals available simultaneously from all sensors: 12.45 %
for the overlap period and 6.02 % for the entire acquisition
period. Furthermore, Fig. 4 also illustrates that the percent-
age varies with biome type: it takes values of 46.30 % for
EBF (northwest region) and 67.51 % for savannas (southeast
region). Figure 5 highlights the discontinuity of the spatial–
temporal distribution of the quality flag generated by the data
consolidation algorithm (Sect. 3.2). For example, the RI for
DOY 001 in 2014 (rain season) is 52.66 %, while for DOY
193 in 2014 (dry season) it is 76.63 %. This lack of a clear
pattern in the spatial–temporal distribution of the pixels to
be gap filled places significant demands on the subsequent
filling process.

In step 3, we replaced fill values with LAI/FPAR esti-
mates produced by the ST-tensor completion model. The
goal of this section is to assess the performance of this
technique in terms of whether the recovered pixels are
spatially–temporally reasonable. First, Figs. 6 and S4 pro-
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Table 2. Projections and spatial/temporal resolutions of SI LAI/FPAR CDR.

Resolution ID Projection Spatial resolution Temporal resolution Dimensions Repository

500m_8day WGS1984 500 m 8 d 43 200× 86 400 rows/columns GEE
500m_bimonth WGS1984 500 m Half month 43 200× 86 400 rows/columns GEE
5km_8day Sinusoidal 5 km 8 d 4320× 8640 rows/columns Zenodo
5km_bimonth Sinusoidal 5 km Half month 4320× 8640 rows/columns Zenodo
0.05degree_8day WGS1984 0.05◦ 8 d 3600× 7200 rows/columns Zenodo
0.05degree_bimonth WGS1984 0.05◦ Half month 3600× 7200 rows/columns Zenodo

Figure 3. The temporal comparisons between the original Ter-
ra/Aqua/VIIRS LAI and filtered Terra/Aqua/VIIRS LAI for the
EBF of the Amazon forest region. Panels (a)–(c) represent Ter-
ra/Aqua/VIIRS, respectively. The blue and purple lines indicate
original and filtered LAI (left y axis), and the shadow indicates the
RI (right y axis). The RI is negatively correlated with the differ-
ence between the original and filtered values, suggesting that this
procedure reduces the impact of poor-quality retrievals on the time
series.

vide compelling visual evidence of the excellent performance
achieved by the ST-tensor completion model. In the spatial
domain, it is significant that the LAI/FPAR values obtained
after gap filling exhibit a high concordance with the original
high-quality SI LAI/FPAR values of the nearest neighboring
pixels. This underscores the model’s ability to preserve spa-
tial consistency. Meanwhile, in the temporal domain, the gap
filling LAI/FPAR exhibits highly correlated seasonal vari-

ation with biome type at the pixel scale. Furthermore, the
improved stability of the LAI/FPAR time series is a notable
evidence of this process. In summary, these results collec-
tively emphasize the substantial enhancement in the quality
of LAI/FPAR data following the application of the ST-tensor
completion model, both in terms of spatial fidelity and tem-
poral coherence.

4.2 Intercomparison at the global scale

Here we evaluate the SI LAI/FPAR CDR as well as the
LAI/FPAR derived from the original Terra/Aqua/VIIRS data
using the TSS and MAE metrics. The results suggest sig-
nificant improvements in the SI LAI/FPAR CDR compared
with the original Terra/Aqua/VIIRS LAI/FPAR datasets. As
shown in Figs. 7–8 and S5–S6, SI LAI/FPAR CDR (8 d tem-
poral resolution, 0.05◦ spatial resolution, and WGS84 projec-
tion) have a higher number of “blue” pixels and lower num-
ber of “red” pixels, indicating lower TSS and MAE values.
Specifically, the TSS (Fig. 7) of SI LAI CDR (65.06) is much
lower than original Terra LAI (168.25), original Aqua LAI
(172.50), and original VIIRS LAI (167.35). Similarly, the
TSS (Fig. S5) of SI FPAR CDR (12.67) is the lowest com-
pared with the original Terra FPAR (39.68), original Aqua
FPAR (41.18), and original VIIRS FPAR (37.94). These val-
ues indicate that the SI LAI/FPAR CDR has reduced volatil-
ity and noise compared with the original versions. The MAE
(Fig. 8) shows a similar trend as TSS, with the MAE de-
creasing from 0.80 (original Terra LAI), 0.79 (original Aqua
LAI), and 0.75 (original VIIRS LAI) to 0.39 (SI LAI CDR).
Furthermore, the MAE decreases from 0.16 for the original
Terra FPAR, 0.17 for the original Aqua FPAR, and 0.16 for
original VIIRS FPAR to 0.10 for SI FPAR CDR (Fig. S6).
This suggests that the SI LAI/FPAR CDR is more closely
related to a high-quality LAI/FPAR reference than the orig-
inal Terra/Aqua/VIIRS LAI/FPAR. In addition, the variation
of TSS/MAE with latitude confirms these improvements, as
the SI LAI/FPAR CDR shows smaller mean values and stan-
dard deviation of TSS/MAE compared with the original Ter-
ra/Aqua/VIIRS LAI/FPAR.

Evidently, these improvements are particularly noticeable
in the selected Amazon forest region, where both the TSS
and MAE of SI LAI/FPAR CDR show a significant de-
creasing trend compared with the original Terra/Aqua/VI-
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Figure 4. The spatial distribution of filtered Terra (a), Aqua (b), VIIRS (c), and SI (d) RI in the selected Amazon forest region (inset in
Fig. 1) in the overlap period (2013–2022).

Figure 5. Spatial distribution of the quality flag of the data con-
solidation algorithm (see Sect. 3.2). Panels (a) and (b) represent
DOYs 1 and 193. A flag value of 0 is gray coded, while other col-
ors correspond to the quality flag= 1 for various combinations of
the sensors. The color corresponding to flag= 0 represents the No-
Sensor category, while the other colors represent flag= 1. “Non-
Veg” means this pixel is “Non-vegetated land”. “No Sensor” means
there is no high-quality LAI/FPAR in this pixel. “Terra Only”,
“Aqua Only”, and “VIIRS Only” means there is only one high-
quality LAI/FPAR from Terra/Aqua/VIIRS. “Terra & Aqua” means
there are high-quality LAIs/FPARs from Terra and Aqua, same
meaning for “Terra & VIIRS” and “Aqua & VIIRS”. All sensors
means there are 3 high-quality LAIs/FAPRs from 3 sensors.

IRS LAI/FPAR (Figs. S7–S10). The magnitude decrease of
TSS for SI LAI/FPAR CDR is above 300/60, and the mag-
nitude decrease of MAE is above 1.5/0.2, which exceeds
other global regions. This implies a significant improvement
in the SI LAI/FPAR CDR, especially when dealing with large
amounts of missing data. Furthermore, similar improvements
are observed when the temporal resolution is bimonthly
(Figs. S11–S14). Overall, these results highlight the signifi-
cant improvement achieved with the SI LAI/FPAR CDR over
the original Terra/Aqua/VIIRS LAI/FPAR, demonstrating its
enhanced performance and accuracy.

4.3 Validation using ground LAI/FPAR measurements

Figure 9 shows comparisons of the SI LAI CDR and orig-
inal Terra/Aqua/VIIRS LAI with the GBOV ground data.
The SI LAI CDR shows highest accuracy, as evidenced
by R2

= 0.72 and RMSE = 0.84, followed by the original
VIIRS LAI (R2

= 0.67 and RMSE = 0.89) and then the
original Terra/Aqua LAI (R2

= 0.63 and RMSE = 0.95 for
both Terra/Aqua). Similar results are observed in the case
of FPAR, where the SI FPAR CDR outperforms the origi-
nal Terra/Aqua/VIIRS FPAR. The R2 values increased from
the original Terra/Aqua/VIIRS FPAR by 0.74/0.72/0.76
to 0.79 (SI FPAR CDR), while the RMSE decrease from
0.17/0.18/0.16 to 0.15 (Fig. S15). It is important to note
that all datasets show a tendency to overestimate low LAI/F-
PAR values and underestimate high FPAR values. However,
the SI LAI/FPAR CDR shows a closer fit to the 1 : 1 line
compared with the original Terra/Aqua/VIIRS LAI/FPAR. In
addition, the SI LAI/FPAR CDR shows significant improve-
ments across all RI ranges. The R2 values increased by ap-
proximately 0.02 to 0.21 from the original Terra/Aqua/VIIRS
LAI/FPAR to SI LAI/FPAR CDR, while the RMSE values
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Figure 6. The spatial performance of the ST-tensor method for DOY 1 (a), 89 (b), 177 (c), and 281 (d) in 2014 in the Amazon forest region.
The left panels and right panels represent the filtered SI LAI and ST-tensor ST LAI, respectively.

decreased by approximately 0.01 to 0.22 (Figs. 10 and S16).
Especially with the RI in the range of [0, 0.5), the enhance-
ments were the most significant among all RI ranges for both
Terra/Aqua/VIIRS, which indicates that the SI LAI/FPAR
CDR represents a significant improvement over the LAI/F-
PAR obtained using the backup algorithm.

Improvements were also observed based on comparisons
with the DIRECT ground truth data. Compared with the
original Terra/Aqua/VIIRS LAI, the R2 values of SI LAI
CDR increased by 0.04/0.14/0.02, while the RMSE val-
ues showed a decrease by 0.04/0.19/0.02 (Fig. 11). Simi-
larly, there is an increasing trend in R2 of 0.09/0.05/0.06

for FPAR, accompanied by a decreasing trend in RMSE of
0.02/0.01/0.02 (Fig. S17). The improvement from original
Aqua LAI to SI LAI CDR was the most pronounced in LAI,
with R2 increasing from 0.46 to 0.62 and RMSE decreas-
ing from 1.19 to 1.00. The improvement from original Terra
FPAR to SI FPAR CDR was the most pronounced in FPAR,
with R2 increasing from 0.71 to 0.82 and RMSE decreasing
from 0.13 to 0.11. The improvement is also reflected in the
fact that the SI LAI/FPAR CDR scatters vs. DIRECT LAI/F-
PAR are closer to the 1 : 1 line.

https://doi.org/10.5194/essd-16-15-2024 Earth Syst. Sci. Data, 16, 15–34, 2024



26 J. Pu et al.: Sensor-independent LAI/FPAR CDR

Figure 7. The global distribution of LAI TSS in each 0.05◦× 0.05◦ grid from 2013 to 2022. Panels (a)–(c) display the TSS of the original
Terra/Aqua/VIIRS LAI, respectively, and (d) shows the TSS of SI LAI CDR. A WGS1984 projection is used here and the temporal resolution
is 8 d. Panels (b) and (d) represent latitudinal transects (0.05◦ interval) of TSS values for LAI. Red lines and shading represent the mean
values and standard deviations of LAI TSS of the 0.05◦ latitude zone.

Figure 8. Same as Fig. 7, but the metric is MAE. The global distribution of LAI MAE in each 0.05◦× 0.05◦ grid from 2013 to 2022 is
shown.
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Figure 9. Comparisons of the original Terra/Aqua/VIIRS LAI and SI LAI CDR with ground GBOV LAI. The bin for the x and y axes is 0.1
and the color indicates the number of pixels in this bin.

Figure 10. The R2 and RMSE between original Terra/Aqua/VIIRS LAI and SI LAI CDR and GBOV LAI in different RI ranges.

4.4 Revisit the “Greening Earth”

Previous studies have shown a significant greening trend in
global leaf area (Zhang et al., 2017; Chen et al., 2019; Cortés
et al., 2021). However, due to loss of sensor calibration, at-

mospheric contamination of the vegetation signal influenced
the previous studies. Thus, this study aims to provide fur-
ther insight into “Greening Earth” by analyzing the high-
quality SI LAI/FPAR CDR. The results obtained from this
study provide a clear indication of the greening trend of
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Figure 11. Comparisons of original Terra/Aqua/VIIRS LAI and SI LAI CDR with ground DIRECT2.1 LAI measurements. The numbers
corresponding to N in (a-1)–(a-3) are the number of all DIRECT measurements for the period covered by Terra/Aqua/VIIRS, respectively,
and N in (b-1)–(b-3) corresponds to N in (a-1)–(a-3), respectively.

vegetation. Specifically, according to SI LAI CDR, almost
one-third (30.71 %) of the vegetated areas are greening and
only 6.67 % of the vegetated areas show a browning trend
(Fig. 12a). These findings are also supported by the results of
the SI FPAR CDR, where about 31.26 % of the vegetated area
is greening and only 6.50 % is browning (Fig. 12b). In terms
of overall global vegetation status, the analysis suggests a
significant increase in greenness from 2001 to 2022. The LAI
shows a significant increasing trend of 2.33 % per decade and
the FPAR also shows a significant increasing trend of 1.93 %
per decade, which can be translated to a constant net increase
in leaf area. Focusing on individual regions, SI LAI/FPAR
CDR also highlights the significant contribution of China and
India to the global greening trend. These regions show signif-
icant increases in vegetation greenness, supporting the over-
all global trend observed in the analysis. However, there are
scattered browning trends in the high latitudes of the North-
ern Hemisphere, southern part of the African continent, and
Amazon forest region.

5 Discussion

Improving the quality of LAI/FPAR time series is cru-
cial to ensure the reliability of vegetation studies. There-
fore, it is necessary to explore various techniques of post-
processing satellite-derived LAI/FPAR. In the operational
data processing, the main RT-based algorithm produces best-
quality and high-precision parameters. With a high proba-
bility the main algorithm fails in the case of cloud- and/or
snow-contaminated pixels, or pixels with a high aerosol load.

When this happens, the backup method is utilized. This
causes high frequency noise in the LAI/FPAR time series,
which indirectly leads to time series instability and absolute-
accuracy problems. Therefore, the first step in the develop-
ing SI LAI/FPAR CDR production process was to eliminate
poor-quality retrievals to ensure that subsequent steps, such
as gap filling, are not affected by noise. As a result, the first-
step filtering principle is also relatively more stringent. Pre-
vious studies on the reconstruction of MODIS/VIIRS LAI
time series often only filter the backup algorithm (Huang et
al., 2021), but this study also filters the main algorithms that
have been affected by clouds and aerosols. The findings af-
ter step 1 are consistent with previous studies investigating
the dynamics of vegetation phenology in tropical rainforest
(Myneni et al., 2007; Samanta et al., 2012a; Hashimoto et
al., 2021; Sun et al., 2022), which also indirectly proves the
necessity of this step.

The current MODIS/VIIRS LAI/FPAR retrieval algorithm
considers the effect of SZA on LAI, but also FPAR depends
on SZA (Knyazikhin et al., 1998a; Pu et al., 2020). The
newly proposed SI LAI/FPAR CDR differs from the previ-
ously reconstructed sensor-dependent time series by its SI
feature, which includes both morning and afternoon high-
quality retrievals. By accounting for the effects of satellite
transit times at different times of the day, particularly in rela-
tion to SZA variations, the SI LAI/FPAR CDR avoids poten-
tial systematic biases. Thus, the SI property allows FPAR to
be unaffected by a single observation. In addition, the process
of consolidating the original Terra/Aqua/VIIRS LAI/FPAR
into an SI LAI/FPAR CDR also provides as much informa-
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Figure 12. Map of trends in annual average SI LAI/FPAR for 2001–
2022. Statistically significant trends (Mann–Kendall test; P ≤ 0.05)
are color coded. Gray areas show vegetated land with statistically
insignificant trends. White areas depict barren lands, permanent ice-
covered areas, permanent wetlands, and built-up areas. Blue areas
represent water.

tion as possible for the subsequent gap filling step (Ganguly
et al., 2008; Xiao et al., 2014).

In recent years, numerous spatial–temporal reconstruction
methods have been proposed from different perspectives.
However, most of these methods are based on empirical fil-
tering and function fitting approaches, neglecting the use
of prior information or statistical properties. The ST-tensor
model used in this study differs from previous models in that
it considers the strong correlation between temporal and spa-
tial scales (Chu et al., 2021). In addition, the ST-tensor model
considers the consistency of variability across years, effec-
tively exploiting the internal correlation of the LAI/FPAR (Ji
et al., 2018; Li et al., 2019). As a result, the gap filled LAI/F-
PAR shows a high degree of consistency with the original
high-quality data, thus preserving the integrity of the origi-
nal measurements. This reduction in the frequency of noise
within the LAI/FPAR time series is highly beneficial for phe-
nology studies and agricultural management. Additionally,
the L1 trend iteration step of the ST-tensor model ensures that
certain anomalous observations, such as forest degradation
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due to fire, are not inadvertently smoothed by the algorithm.
This capability contributes to the reliability and accuracy of
the model.

This study establishes the accuracy of the SI LAI/FPAR
CDR through direct ground validation, which includes rig-
orous evaluation against ground measurements and related
metrics. The results of this validation process demonstrate
the reliability of the product. Furthermore, we also compared
the above by analyzing results (see Sect. 4.4) reported by re-
cent studies (Chen et al., 2019; Zhang et al., 2017), and both
greening and browning trends are consistent. These results
confirm the previous understanding of “Greening Earth” and
indirectly prove the reliability of SI LAI/FPAR CDR. The SI
LAI/FPAR CDR analysis provides a valuable tool for moni-
toring and understanding the dynamics of global vegetation
change. The consistency of the study’s results with those of
previous research adds to the robustness and credibility of
the product. The provision of multiple spatial and temporal
resolution versions of the SI LAI/FPAR CDR in this study
greatly enhances the ability to study global and local vegeta-
tion change and climate dynamics.

6 Code and data availability

The SI LAI/FPAR CDR is openly available at
https://doi.org/10.5281/zenodo.8076540 (Pu et al., 2023a),
https://code.earthengine.google.com/?asset=projects/sat-io/
open-datasets/BU_LAI_FPAR/wgs_500m_8d (Pu and
Roy, 2023a, only available for logged-in users), and
https://code.earthengine.google.com/?asset=_projects/
sat-io/open-datasets/BU_LAI_FPAR/wgs_500m_bimonthly
(Pu and Roy, 2023b, only available for logged-in users).

The “Readme” files about data description, data availabil-
ity, and example code of GEE and MATLAB for SI LAI/F-
PAR CDR can be found at https://github.com/JiabinPu/
Sensor-Independent-LAI-FPAR-CDR (Pu, 2023).

7 Conclusions

This study developed an SI LAI/FPAR CDR based on Terra-
MODIS/Aqua-MODIS/VIIRS LAI/FPAR standard products
and an ST-tensor completion model. The CDR covers a sub-
stantial temporal period from 2000 to 2022, with spatial
resolutions of 500 m/5 km/0.05◦ and temporal resolutions
of 8 d or a half month. The generation of the SI LAI/F-
PAR CDR was evaluated at each step. Evaluation results
show that the elimination of low-quality LAI/FPAR and
consolidating Terra/Aqua/VIIRS LAI/FPAR into SI LAI/F-
PAR are effective in the production process; and the ST-
tensor completion model was excellent in gap filling. The
ground-based validations show that the newly generated SI
LAI/FPAR CDR achieves higher accuracy compared with
the original Terra/Aqua/VIIRS LAI/FPAR products. Specif-
ically, the SI LAI/FPAR CDR shows the highest accu-

racy (R2
= 0.72/0.79 and RMSE= 0.84/0.15 for LAI/F-

PAR) among all LAI/FPAR products with GBOV LAI/FPAR
as benchmark. Similarly, the SI LAI/FPAR CDR shows an
increased R2 magnitude of 0.04–0.16/0.05–0.09 and a de-
creased RMSE magnitude of 0.02–0.19/0.01–0.02 based on
DIRECT LAI/FPAR. The evaluation results also show that
the SI LAI/FPAR CDR has a lower TSS compared with the
original Terra/Aqua/VIIRS LAI/FPAR product, which sug-
gests that this CDR has less noise and provides more stable
time series. Conversely, the MAE is also lower, indicating
that the SI LAI/FPAR CDR is closer to high-quality LAI/F-
PAR retrievals compared with Terra/Aqua/VIIRS LAI/FPAR
products. Additionally, the reproduced results of the “Green-
ing Earth” study demonstrate the consistency of trend analy-
sis based on the SI LAI/FPAR CDR with previous findings.
The same consistency analysis greatly enhances the ability
to conduct further studies on vegetation dynamics and cli-
mate change. By exploiting the integration of multiple satel-
lite data sources and applying advanced gap filling tech-
niques, the SI LAI/FPAR CDR presented in this study pro-
vides a valuable resource for researchers studying vegetation
dynamics and their relationship to climate change. Overall,
the rigorous evaluation and validation conducted throughout
the study provide confidence in the accuracy and reliability
of the SI LAI/FPAR CDR, further strengthening its utility for
diverse applications in environmental science and land man-
agement.

Supplement. The supplement related to this article is available
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