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Abstract. Vegetation productivity is a critical indicator of
global ecosystem health and is impacted by human activities
and climate change. A wide range of optical sensing plat-
forms, from ground-based to airborne and satellite, provide
spatially continuous information on terrestrial vegetation sta-
tus and functioning. As optical Earth observation (EO) data
are usually routinely acquired, vegetation can be monitored
repeatedly over time, reflecting seasonal vegetation patterns
and trends in vegetation productivity metrics. Such metrics
include gross primary productivity, net primary productiv-
ity, biomass, or yield. To summarize current knowledge, in
this paper we systematically reviewed time series (TS) lit-
erature for assessing state-of-the-art vegetation productivity
monitoring approaches for different ecosystems based on op-
tical remote sensing (RS) data. As the integration of solar-
induced fluorescence (SIF) data in vegetation productivity
processing chains has emerged as a promising source, we
also include this relatively recent sensor modality. We de-
fine three methodological categories to derive productivity
metrics from remotely sensed TS of vegetation indices or
quantitative traits: (i) trend analysis and anomaly detection,
(ii) land surface phenology, and (iii) integration and assimila-
tion of TS-derived metrics into statistical and process-based
dynamic vegetation models (DVMs). Although the majority
of used TS data streams originate from data acquired from
satellite platforms, TS data from aircraft and unoccupied
aerial vehicles have found their way into productivity mon-
itoring studies. To facilitate processing, we provide a list of
common toolboxes for inferring productivity metrics and in-
formation from TS data. We further discuss validation strate-
gies of the RS data derived productivity metrics: (1) using in
situ measured data, such as yield; (2) sensor networks of dis-
tinct sensors, including spectroradiometers, flux towers, or
phenological cameras; and (3) inter-comparison of different
productivity metrics. Finally, we address current challenges
and propose a conceptual framework for productivity metrics
derivation, including fully integrated DVMs and radiative
transfer models here labelled as “Digital Twin”. This novel
framework meets the requirements of multiple ecosystems
and enables both an improved understanding of vegetation
temporal dynamics in response to climate and environmental
drivers and enhances the accuracy of vegetation productivity
monitoring.

1 Introduction

Vegetation productivity, the rate at which solar energy is con-
verted into biomass through photosynthesis, is the origin of
all fuel, fibre, and food by which humanity and many other
species live and should therefore be closely monitored. The
total amount of photosynthesis on Earth defines the planetary
boundary of production, which is a measure of how much
of the planet’s productivity humans have appropriated (Ryu
et al., 2019). According to the United Nations (UN), the
global population is expected to reach 9.7 billion by 2050,
presenting a significant challenge for ensuring sufficient fu-
ture food production. The productivity of plants is a cru-
cial factor in meeting this challenge, as it directly affects the
amount of food that can be produced. Plant productivity thus
fundamentally delineates the habitability of our planet (Run-
ning et al., 2000).

The intensification and spatial expansion of human activi-
ties in recent centuries have profoundly altered the world’s
natural and cultural landscapes (Winkler et al., 2021) and
have had a significant impact on ecosystem processes and
their functions in society. An integrative proxy for this global
change is the altered regime of vegetation productivity.

As a key characteristic of ecosystem conditions, global
vegetation productivity reflects both the spatial distribution
and change in the vegetation coverage (EEA, 2021). The key
climatic drivers of vegetation productivity are temperature,
water supply, and solar radiation (Madani et al., 2018), which
interact to constrain the magnitude and temporal dynamics of
ecosystem productivity depending on soil conditions. In the
twenty-first century, it is expected that vegetation productiv-
ity will decrease due to the impacts of climate change in the
Northern Hemisphere and may negatively affect the global
land carbon (C) sink with unknown feedback effects (Zhang
et al., 2022b).

Due to variations in vegetation composition, climate, soil
properties, and management practices, among other factors,
vegetation productivity is heterogeneous across space. In
addition, this variation occurs at all timescales, from diur-
nal over seasonal to inter-annual. Thus, to achieve accu-
rate global estimates of plant productivity that explicitly ac-
count for spatial and temporal variation, it is essential to ac-
quire continuous spatial observations over time using optical
Earth observation (EO) satellites. Remotely sensed time se-
ries (TS) from those EO data streams provide the basis for
phenological monitoring, which is unequivocally related to
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productivity (e.g. Zhu et al., 2016). Phenological monitor-
ing is the study of the timing of recurrent, annual biological
events (e.g. budburst, flower blossoming, leaf senescence),
and shifts in the timing of seasonal phenological events have
been shown to be related to inter-annual variations in annual
productivity (e.g. Park et al., 2019). Consequently, among the
objectives of the EO satellite missions launched in the last
5 decades, primary importance has been given to observing
the productivity and health of natural and cultivated vegeta-
tion land covers (e.g. Chevrel et al., 1981; Huete et al., 2002;
Zhang et al., 2003; Atzberger, 2013). Novel satellite sys-
tems are launched constantly, and significant improvements
in data-driven and physically based data analysis techniques
are made (Baret and Buis, 2008).

These developments demand a systematic overview of the
state-of-the-art TS studies related to vegetation productiv-
ity, presenting the unprecedented availability of continuous
multi-sensor data streams, constantly updated data reposito-
ries, and the latest processing techniques and toolboxes. Re-
cent review papers have focused on global land surface phe-
nology (LSP) research (Zeng et al., 2020; Caparros-Santiago
et al., 2021) but lacked the relationship to vegetation pro-
ductivity. Other reviews were restricted to specific ecosys-
tems (Berra and Gaulton, 2021) or sensors (Eitel et al., 2016).
Microwave-based studies were covered by Teubner et al.
(2018); Wild et al. (2022).

Therefore, we formulate for this review the following main
research question: what are the state-of-the-art methods for
estimating vegetation productivity using remotely sensed TS
data streams, and what are the key gaps, challenges, and op-
portunities for further improvement?

To address this question, our main emphasis is on the pre-
cise EO-based estimation of productivity with consideration
of the trend towards the increasing availability of higher-
spatial-resolution EO data. Global change is resulting in a
landscape that is more fragmented, scattered, and character-
ized by small-scale patterns. One example is the upcoming
trend of agroforestry to make agriculture more resilient. As a
consequence, the analysis of productivity needs to integrate
high-resolution EO data. Hence, we will focus on the litera-
ture that uses remotely sensed optical TS and derived proxies
for quantifying productivity, with a greater emphasis on the
spatial scale than on the minimum number of time steps.

The review is divided into seven sections, where Sect. 1
provides a tangible definition of productivity and introduces
the main productivity metrics and methods. Section 2 de-
scribes the available optical sensor platforms. Section 3 pro-
vides the methods in detail and toolboxes for processing,
analysing, and modelling TS data streams. In Sect. 4 we
outline three different strategies for validating productivity
products. The outcomes of the systematic literature review
are provided in Sect. 5. In Sect. 6 we provide an outlook on
future challenges to assess vegetation productivity from TS
data, followed by a conclusion (Sect. 7).

1.1 Definition of productivity adopted for this review

Productivity in ecosystems quantifies the rate at which
autotrophic organisms, such as green plants, convert en-
ergy into organic metabolic assimilates (Scurlock and Ol-
son, 2002; Larcher, 2003). Vegetation productivity is con-
trolled by two processes: (i) the assimilation of CO2 sub-
strate through photosynthesis (source activity) and (ii) tis-
sue growth from the accumulated carbohydrates into stored
biomass (sink activity) (Körner, 2015). Plant photosynthesis
is driven by incoming photosynthetic active radiation, CO2
concentrations, temperature, and water and nutrient avail-
ability (e.g. Ryu et al., 2019).

Vegetation productivity is commonly defined by four mea-
sures: gross primary productivity (GPP), net primary pro-
ductivity (NPP), net ecosystem productivity (NEP), and net
biome productivity (NBP). The interplay of these main pro-
ductivity measures is illustrated in Fig. 1.

Over small spatial extents (< 1 km2), NEP is usually
directly estimated through eddy-covariance (EC) methods,
where the vertical, turbulent fluxes of CO2 are measured
within the atmospheric boundary layer using CO2 concen-
tration measurements from an infrared gas analyser (IRGA)
along with high-frequency sonic anemometer wind veloc-
ity measurements. NEP is subsequently partitioned into GPP
and ecosystem respiration (Re), where estimated Re values
are commonly derived from nighttime fluxes (i.e. NEP=Re)
when GPP is zero and extrapolated to daytime fluxes. The
ratio of NPP to GPP is termed the carbon use efficiency and
represents the capacity to which plants are able to transform
assimilated CO2 into stored biomass, after carbon losses
through autotrophic respiration (Ra). The carbon use effi-
ciency of vegetation varies according to factors such as plant
species, nutrient availability, light, temperature, and water
availability. However, the ratio of NPP to GPP is typically
thought to be around 0.45, according to empirical studies,
satellite products and process-based models (He et al., 2018),
indicating that 55 % of the carbon captured by plants is di-
rected towards respiration and thus cannot be utilized for net
production and growth (Field et al., 1998). NBP is the net
amount of carbon dioxide that is assimilated by an ecosys-
tem over a period of time, after accounting for all losses of
carbon dioxide through respiration, decomposition, and other
processes. NBP is thus a measure of the overall health and
productivity of an ecosystem, and it is an important factor
in the global carbon cycle. Input and losses of NBP are on
a rather long timescale for natural landscapes, and for agri-
culture it refers to harvest (e.g. Prescher et al., 2010; Turner
et al., 2007).

Although NPP and GPP are common metrics to express
the productivity of any ecosystem, in the literature different
definitions or terms can be found. For instance, in agroe-
cosystems, productivity often refers to aboveground (and
below-ground) biomass (AGB) and yield (Chopping et al.,
2011; Mariotto et al., 2013). In forestry, productivity is also
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often related to AGB or harvestable wood (Battles, 2022).
For natural ecosystems, AGB, (e.g. Ramoelo et al., 2015;
Lumbierres et al., 2017) but also directly NPP and GPP, is
commonly used to express productivity (see, e.g. reviews
by Anav et al., 2015; Liao et al., 2023). In the current re-
view, we refer to all of these productivity metrics, which are
summarized in the following.

Definitions of productivity metrics

Productivity is the rate at which a quantity (e.g. energy) is ac-
cumulated by producers (e.g. plants) over time within a given
area. Here we give an overview of metrics for productivity
adopted in our review.

– Gross primary productivity (GPP). This is the total
amount of C photosynthesized by plants (Myneni et al.,
1995) in a given time (g C m−2 d−1) and also describes
the largest carbon flux between the biosphere and the at-
mosphere (approximately 130 Gt C yr−1) (Krause et al.,
2022).

– Net primary productivity (NPP). This denotes the re-
maining C from photosynthesis after respiration losses
from plants (Ra) (g C m−2 d−1), which is invested for
the maintenance of cells and the growth of tissues (Rox-
burgh et al., 2005).

– Net ecosystem productivity (NEP). This is defined as
NPP minus soil heterotrophic respiration (Rh) by mi-
croorganisms (g C m−2 d−1), i.e. C loss from the de-
composition of woody detritus, soil organic matter, veg-
etation mortality, grazing, etc. (Landsberg and Gower,
1997). It reflects the temporal change in C that can
be stored in an ecosystem (Harmon et al., 2011). NEP
thus quantifies the loss or accumulation of C within an
ecosystem and defines if it is acting as a sink or source
of C.

– Net biome productivity (NBP). This represents the net
change in carbon within ecosystems on a regional scale.
It is calculated by adjusting NEP for lateral carbon
transfers to neighbouring biomes, which may occur
through various processes such as harvest, organic mat-
ter export in rivers, or losses from disturbances such
as wildfires (e.g. Schulze et al., 2021; Prescher et al.,
2010).

– Aboveground biomass (AGB). This is the total amount
of plant matter on the soil surface in a given area or
ecosystem that has accumulated over time, as a result of
photosynthesis and plant metabolism (kg C m−2). AGB
plays a crucial role in quantifying the productivity of
forests as it specifies the amount of stored carbon per
unit area and subsequently the capacity for water filtra-
tion, soil retention, and biodiversity conservation (Pow-
ell et al., 2010; Goetz et al., 2009).

– Crop yield. This is defined as the amount of the har-
vested product (e.g. kilograms of grain) per unit cropped
area (kg ha−1) and is a measure of productivity referring
to the part of biomass that can be used for the nutrition
of humans, feeding of livestock, the production of fuel,
or construction materials (Carletto et al., 2015).

– Harvestable wood. This refers to productivity in forests,
typically given in cubic metres of harvestable wood
grown per year on a forested site (m3 ha−1) (FAO,
2010).

1.2 Measuring productivity with optical Earth
observation data

The presence of strong absorption features in optical wave-
lengths, which relate to biochemical properties such as pig-
ment and water content, has led to a large body of research
using optical sensors to monitor vegetation productivity, mit-
igating the need for direct measurements (e.g. Boisvenue
et al., 2016; Brinkmann et al., 2011; Cai et al., 2021; Dusseux
et al., 2022; Erasmi et al., 2021; Hill and Donald, 2003).
Given the employment of optical sensors routinely recording
data at different scales, generated data streams have grad-
ually become a well-established source of information in a
wide array of vegetation monitoring applications, such as as-
sessing climate change impact and carbon modelling (e.g.
Campbell et al., 2022; Wocher et al., 2022), drought mon-
itoring (e.g. Atzberger et al., 2013), or biodiversity assess-
ment (e.g. Lausch et al., 2020).

Traditionally, spectral vegetation indices (VIs) have been
used to derive plant productivity metrics (e.g. Erasmi et al.,
2021; Fiore et al., 2020). Advanced studies focused on dy-
namically integrating vegetation traits within more complex
data-driven and process-based models to estimate GPP (e.g.
Ardö, 2015; Pei et al., 2022). For instance, light use effi-
ciency (LUE) schemes (Monteith, 1972) can model GPP as a
function of the amount of incoming photosynthetically active
radiation (PAR) and the fraction of absorbed PAR (fAPAR)
along with an LUE term (e.g. Zhao et al., 2005; Wang et al.,
2017); see also the extensive review by Pei et al. (2022) and
seminal papers by Moulin et al. (1998) and Delécolle et al.
(1992). VIs that are sensitive to fAPAR and related vegeta-
tion traits (e.g. chlorophyll content, leaf area index or LAI)
have been integrated into LUE-based approaches to repre-
sent physiological constraints on GPP (e.g. Gitelson et al.,
2003; Cheng et al., 2014b; Xie et al., 2019). Data-driven
remote sensing (RS)-based approaches may include the es-
tablishment of statistical relationships through empirical ap-
proaches or, more recently, with machine learning (ML) al-
gorithms (see review by Liao et al., 2023). Over the last
decade, solar-induced fluorescence (SIF) from space mea-
surements has become increasingly popular, giving a more
direct measure of photosynthetic activity and thus serving as
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.

Figure 1. Distinction and interplay between GPP, NPP, NEP, and NBP with autotrophic (plants) and heterotrophic respiration. Inspired
by Mancini et al. (2016).

perhaps the most straightforward remotely sensed proxy for
GPP (e.g. Frankenberg et al., 2011; Guanter et al., 2012).

In the most complex modelling approaches, GPP is
inferred using process-based dynamic vegetation models
(DVMs) (e.g. Krinner et al., 2005; Sitch et al., 2003; Liu
et al., 2014). DVMs can be both diagnostic and prognostic
tools, able to simulate responses to climatic change including
prognoses of carbon budgets (e.g. Rayner et al., 2005; Ardö,
2015). Ardö (2015) suggested that the integration of the real-
istic processes simulated by DVMs with high-resolution RS
observations (i.e. in the form of VIs and traits) may sup-
port more accurate productivity metrics estimation. These
approaches are discussed in more detail in Sect. 3.

Overall, the development of methodologies is further ac-
celerated by a vast increase in the long-term vision of EO
data, the availability of historical data, and enhanced fa-
cilities through numerous data repositories. Subsequently,
data analytics and data-driven ML methods have helped the
spread and penetration of these (big) data into data-based ser-
vices worldwide (Liu, 2015; Gorelick et al., 2017).

2 Sensor platforms for vegetation productivity
monitoring

Over the last 2 decades, the optical EO domain has seen
an increasing number of space missions with various sen-

sors aboard, complemented by airborne campaigns and in
situ measurements from widespread ground-based networks.
This increase in the abundance of EO data has contributed to
the establishment of consistent global databases with quality-
checked optical data, which can be used to estimate vege-
tation productivity metrics, such as GPP, NPP, AGB, yield,
among others (see Sect. 1.1) at almost any spatial and tem-
poral scales (Kuenzer et al., 2015). The relevant sensor plat-
forms serving to collect observations for deriving vegetation
productivity information are graphically illustrated in Fig. 2
and described in the following sections.

2.1 Time series from EO satellites

In recent years, the availability of free satellite data has dra-
matically increased, amounting to petabytes of data. This ex-
pansion is due to the decreasing costs of data acquisition and
the constant reduction in required computational resources
and storage infrastructure. The review by Ustin and Middle-
ton (2021) provides a detailed description of this trend. The
availability of such data reinforces the usefulness of satel-
lite data streams for capturing vegetation dynamics at various
spatial scales, from monitoring local ecological habitats to
conducting global studies (Cavender-Bares et al., 2020). Fig-
ure 3 summarizes the available optical (main) sensors start-
ing from the 1970s with their spatial resolution and revisit
time.

https://doi.org/10.5194/bg-21-473-2024 Biogeosciences, 21, 473–511, 2024
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Figure 2. Overview of near and RS platforms used for vegetation productivity related TS analysis, i.e. flux towers with an exemplary
footprint, phenocams, UAVs, aircraft, and satellites. The platforms are arranged in order from left to right, starting with the highest spatial
resolution and progressively decreasing (i.e. from high to low), although EC footprint sizes may vary. In terms of temporal resolution, the
leftmost platforms, i.e. phenocams, typically offer higher optional temporal resolutions. Moving towards the right, the temporal resolution
decreases (e.g. with aircraft platforms), and it then increases again as we transition towards EO satellite platforms. Figure elements are our
own creations, except for the flux tower is from https://www.licor.com/env/support/Eddy-Covariance/videos/ec-method-02.html, last access:
13 January 2024 and EC footprint (Kljun et al., 2015).

Low-elevation orbit (LEO) satellites have onboard sensors
scanning at moderate (i.e. hectometric to kilometric) spa-
tial resolutions, such as the Advanced Very High-Resolution
Radiometer (AVHRR), Moderate Resolution Imaging Spec-
troradiometer (MODIS), Visible Infrared Imaging Radiome-
ter Suite (VIIRS), PROBA-V (Project for On-Board Auton-
omy – Vegetation), and Ocean and Land Colour Instrument
(OLCI) onboard Sentinel-3. They provide high-frequency
and long-term TS and thus support a deep investigation of
the land surface phenology and trends along with a thorough
monitoring of vegetation productivity of the entire Earth (see
reviews by Zeng et al., 2020; Pipia et al., 2022). On the
other hand, geostationary Earth observation (GEO) satellites
offer an opportunity to capture rapid changes in vegetation
dynamics thanks to their high revisit frequency, spanning
over a few minutes. For instance, mapping vegetation on
an hourly basis by means of GEO satellites was explored
by Fensholt et al. (2006), using the SEVIRI instrument on-
board Meteosat Second Generation (MSG). Another mission
of interest is NASA’s Earth Polychromatic Imaging Cam-
era (EPIC) onboard NOAA’s Deep Space Climate Observa-
tory (DSCOVR) (Yang et al., 2017). The EPIC team’s pri-
mary responsibility is to develop and validate algorithms that
produce a series of products, including the vegetation green

LAI (GLAI) and its sunlit portion at a spatial resolution of
10 km. GLAI and its sunlit portion are critical state param-
eters in many ecosystem productivity models (e.g. Bonan
et al., 2003; Bi et al., 2022).

Launched in 2018, the ECOSTRESS mission onboard the
International Space Station (ISS) delivers nominally daily
land surface temperature (LST) products in taking advan-
tage of the fast orbiting ISS (note that the real revisit period
for a given location is variable and depends on the instru-
ment’s orbital cycle on board the ISS). The spatial resolu-
tion of the products is 70 m except for two products of 30 m,
due to the low altitude (Li et al., 2021b). In addition to the
opening of the Landsat archives in 2008, further momentum
was gained through the European Sentinel missions (Berger
et al., 2012). From 2015 onward, Sentinel-2 (S2) optical im-
agery has been offering unprecedented perspectives on the
temporal variability of plant productivity of different ecosys-
tems, e.g. grasslands (Dusseux et al., 2022) or forests (Lin
et al., 2019) and its divergence over fine spatial scales. Com-
pared to earlier land satellite missions, such as MODIS or
Landsat, S2 provides improvements in revisit time (5 d at the
Equator), spatial resolution (10–20 m) and spectral configu-
ration (more and narrower vegetation-related bands) (Drusch
et al., 2012). A 5 d revisit time may still pose limitations in
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Figure 3. Optical EO sensors providing TS data starting from the 1970s. Different colours indicate the revisit time, and the spatial resolution
for each sensor is given within the corresponding bars.

acquiring a satisfactory number of cloud-free scenes required
to construct a comprehensive composite product for produc-
tivity modelling in a dynamic ecosystem. This constraint be-
comes particularly crucial during transitional phases such as
bud-burst and senescence, as well as (a)biotic stress events
or following rainfall in water-limited ecosystems like dry-
lands. It is worth mentioning that the near-polar orbit of S2
allows for a higher number of acquisitions when approach-
ing the poles. For instance, over the high Arctic archipelago
of Svalbard, S2 images can be obtained twice a day, allow-
ing for regional-scale mapping of plant productivity via LSP
metrics (Karlsen et al., 2021). For continental Europe, con-
tinuous phenological mapping using S2 is today operational
in the Copernicus pan-European High-Resolution Vegetation
Phenology and Productivity product suite (HR-VPP) project
(Tian et al., 2021). The exploitation of Sentinel-3 OLCI data
even ensures a daily global coverage although at a moder-
ate spatial resolution (300 m), but with a higher number of
bands, allowing the derivation of essential vegetation traits
for productivity monitoring studies (e.g. Yang et al., 2021b;
Reyes-Muñoz et al., 2022).

Until recently, a fine temporal revisit time was at the ex-
pense of fine spatial resolution. However, a new generation of
satellite constellations is breaking these formerly restrictive
inter-dependencies (see Fig. 3) with, for instance, the Plan-
etScope satellites that offer multispectral images at 3 m spa-
tial resolution in daily revisit intervals (Roy et al., 2021).

2.2 Time series from piloted aircraft and unoccupied
aerial vehicles

Aircraft constitute flexible and adaptable platforms to ex-
plore new protocols of measurements, support applied stud-
ies (e.g. Cheng et al., 2014a; Atzberger et al., 2015), and
therefore provide data for the derivation of productivity met-
rics. However, in contrast to orbital platforms, the regular
acquisition of TS using an aircraft is a logistical and finan-
cial burden. This may explain why we could identify only
a few studies that employed piloted aircraft to acquire op-
tical TS for the estimation of vegetation productivity met-
rics, such as Damm et al. (2015) focusing on SIF. In this
study, the authors conducted a thorough evaluation of the cor-
relation between far-red SIF measured at 760 nm and GPP
across three ecosystems, namely perennial grassland, crop-
land, and mixed temperate forest, using multi-temporal Air-
borne Prism EXperiment (APEX) acquisitions. The authors
concluded that RS of SIF more consistently correlated to
GPP than conventional greenness-based indices.

To capture time trends on a smaller patch scale, unoc-
cupied aerial vehicles (UAV) have emerged as a more effi-
cient and cheaper option than aircraft. Theoretically, UAVs
meet most requirements for TS acquisitions regarding cov-
ering high spatial, spectral, and temporal resolutions (Berni
et al., 2009; Aasen et al., 2018). UAVs are flexible and in con-
trast to satellite systems may be deployed whenever weather
conditions are favourable for a desired measurement. Also,
UAVs offer the necessary flexibility to sample diurnal cy-
cles, which are relevant to capturing trends in productivity.
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To date, a range of multi-spectral and a few science-grade
hyperspectral sensors have become available on the commer-
cial market (Aasen et al., 2018), allowing for even faster sys-
tem integration. In terms of TS analysis for productivity, so
far UAV measurements have been mainly employed to fill
gaps in satellite observations caused by cloudiness or sparse
data (Dash et al., 2018; Alvarez-Vanhard et al., 2021). A re-
cent phenotyping UAV study, however, collected UAV data
from a soybean field trial at unprecedented temporal reso-
lution (Borra-Serrano et al., 2020), which allowed for fitting
growth curves with high accuracy (> 90 %) to derive relevant
traits but also seed yield.

2.3 Multi-sensor and multi-scale synergies for time
series

As data from different platforms and sensor modalities pro-
vide complementary information in terms of spatial, spec-
tral, and temporal domains, the fusion of RS observations
is increasingly coming into focus. For example, in the re-
view study by Berger et al. (2022), the synergistic usage
of multiple optical spectral domains was described to de-
tect the stress of crops. Since productivity is affected by
crop stress, improved stress detection and monitoring would
also help in productivity studies. While biotic and abiotic
stressors can only be disentangled through synergistic multi-
sensor usage, in productivity studies this synergy may be
less relevant. Instead, multi-scale approaches, for instance,
by combining spectral information from aircraft, UAVs, and
EO satellites (as described above) are more essential. In this
way, advantages of at least two platform types can be ex-
plored, such as more frequent availability or higher spatial
resolution data (e.g. Gevaert et al., 2015; Sagan et al., 2019;
Alvarez-Vanhard et al., 2021). By providing a higher num-
ber of observations, multi-sensor fusion improves the spa-
tiotemporal continuity through gap-filling, leading to higher
consistency and accuracy of current satellite products related
to vegetation productivity (e.g. Claverie et al., 2018; Mani-
vasagam et al., 2019; Sadeh et al., 2021). Although not ex-
plicitly treated in this review, the fusion of synthetic aperture
radar (SAR) and optical TS data can additionally be ben-
eficial for productivity monitoring in regions with frequent
cloud coverage (e.g. Pipia et al., 2019; Mercier et al., 2020;
Caballero et al., 2023).

3 Time series processing methods for vegetation
productivity monitoring

This section introduces several methods for deriving produc-
tivity metrics from remotely sensed TS data, including trend
analysis, land surface phenology, and process models. Each
method has its own strengths and weaknesses, and the best
approach to use will depend on the specific application. The
final sub-chapter of this chapter will introduce a variety of

toolboxes that can be used to process and analyse remotely
sensed TS data and derive productivity metrics. By providing
a comprehensive overview of the different methods and tools
available, this paper aims to help researchers and practition-
ers select the best approach to deriving productivity metrics
from remotely sensed TS data for their specific needs.

3.1 Time series sources and pre-processing

3.1.1 Vegetation indices

Spectral VIs are widely applied methods for monitoring
trends and deriving plant productivity metrics (e.g. Gutman,
1999; Huete et al., 2002; Atzberger and Eilers, 2011a; Ras-
mussen et al., 2014; Kang et al., 2018; Zeng et al., 2020;
Shammi and Meng, 2021). Certainly, the most widely used
VI in EO observation TS analysis is the normalized differ-
ence vegetation index (NDVI) (Rouse et al., 1974; Tucker,
1979). Its popularity comes from the fact that NDVI explores
the contrasting behaviour of reflectance in the visible red and
near-infrared (NIR) spectral domains, which strongly relate
to vegetation biomass and, by extension, canopy-level plant
photosynthetic activity. NDVI has the great benefit of be-
ing available to the research community through long obser-
vational records of more than 5 decades, specifically from
AVHRR, the Landsat series, and MODIS (e.g. Huang et al.,
2021; Li et al., 2021a). In addition to NDVI, other VIs have
also been used to model temporal variations in productiv-
ity, including the enhanced vegetation index (EVI), which
also accounts for canopy background and atmospheric influ-
ences (Huete et al., 2002). Multiple studies have explored TS
of NDVI and EVI with direct linkages to vegetation produc-
tivity metrics, such as GPP (e.g. Shi et al., 2017; Shammi and
Meng, 2021), or as part of GPP assimilation schemes (e.g.
Zhang et al., 2015; Liu et al., 2021a). However, biomass-
sensitive VIs often overestimate GPP at the start and end of
the growing season, when leaf chlorophyll content decouples
from LAI (Croft et al., 2014, 2015). Recently, novel VIs have
been proposed for TS analysis, such as the Plant Phenology
Index (PPI, Jin and Eklundh, 2014), which is used for the cal-
culation of the HR-VPP product at 10 m resolution as part of
the Copernicus Land Monitoring Service (Tian et al., 2021).

Despite their widespread usage, spectral VIs also suf-
fer from several drawbacks. Reducing the spectral signals
into simple indices intrinsically leads to remaining spec-
tral information unexploited, which potentially could inform
about plant physiology (e.g. Atzberger et al., 2011; Ver-
relst et al., 2019a). In general, these parametric methods ne-
glect the effect of the background soil and other confound-
ing factors (e.g. Darvishzadeh et al., 2008; Verrelst et al.,
2008, 2010; Gao et al., 2022). In addition, they tend to be
proxies for a small set of the physiological properties of
vegetation only, leaving their empirical biophysical and bio-
chemical meaning often ambiguous (e.g. Myneni et al., 1995;
Morcillo-Pallarés et al., 2019).
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3.1.2 Quantitative traits

A more explicit cause–effect alternative to obtaining TS of
VIs can be derived from the radiative transfer theory. Radia-
tive transfer models (RTMs) offer the possibility of deriving
biochemical and biophysical traits at leaf (e.g. Jacquemoud
et al., 1996; Ceccato et al., 2001; Féret et al., 2017) and
canopy levels (e.g. Myneni et al., 1997; Rautiainen, 2005;
Richter et al., 2009; Darvishzadeh et al., 2011) from opti-
cal remotely sensed data. RTMs describe the relationship be-
tween biochemical and biophysical traits and plant optical
properties based on physical laws. Various inversion strate-
gies have been developed based on lookup tables, numerical
optimization methods, and ML methods, i.e. so-called hy-
brid approaches. An overview of RTM-based retrieval meth-
ods is provided by the reviews of Kimes et al. (1998), Baret
and Buis (2008), Verrelst et al. (2015a), and Verrelst et al.
(2019a). Building upon these RTM inversion strategies, a
few traits are operationally retrieved from routinely acquired
EO data of land missions such as MODIS or S2. The most
widely produced vegetation products are LAI and fAPAR
but also fractional vegetation cover and to a lesser extent
canopy chlorophyll content (e.g. Myneni et al., 2015; Yan
et al., 2016; Fang et al., 2019; Xu et al., 2022). To obtain
productivity metrics, TS data streams of the traits have been
integrated into various GPP assimilation schemes (e.g. Jung
et al., 2007; Xie et al., 2019; Chen et al., 2022).

Apart from those routinely generated vegetation products,
a wide range of experimental studies present alternative re-
trieval methods or methods focused on the retrieval of other
biochemical traits, e.g. leaf and canopy water content and
leaf chlorophyll content (e.g. Croft et al., 2020; Estevez et al.,
2021; Caballero et al., 2023). Typically, these studies have
been limited to the processing of single-date observations
or at best multi-temporal acquisitions for a restricted time
window. Given those experimental retrievals, efforts to pro-
vide TS of a range of biochemical and biophysical traits were
conducted by a few studies (e.g. Verger et al., 2016; Salinero-
Delgado and Verrelst, 2021). An important note on the use of
RTMs to derive quantitative traits concerns their sensitivity
to phenological developmental stages of vegetation: Schiefer
et al. (2021) demonstrated that trait retrieval accuracy has a
strong dependency on phenology. A possible solution would
be to use expert knowledge and in situ data to enable a more
precise parameterization of the RTMs depending on the phe-
nological (macro)phase. At the same time, fast processing
speeds are required to retrieve traits from TS data streams.
This points towards hybrid retrieval schemes including ac-
tive learning, i.e. relying on tuning RTM simulations against
in situ measured traits and training of ML algorithms (e.g.
Verrelst et al., 2021; Berger et al., 2021).

An overview of widely used quantitative traits in TS pro-
cessing available from RTM inversion and their potential
relationship to vegetation productivity is given in Table 1.
These traits can be further used within defined method-

ologies to derive productivity metrics given in Sect. 1.1,
such as GPP. The capability of advanced RTMs such as
SCOPE (Soil Canopy Observation, Photochemistry and En-
ergy fluxes, (Van der Tol et al., 2009; Yang et al., 2021a))
to model SIF is promising. SIF is a strong proxy for actual
photosynthetic activity in canopies (e.g. Porcar-Castell et al.,
2014; Verrelst et al., 2015b, 2016), and over the years vari-
ous SCOPE-based SIF retrieval schemes have been proposed
to derive GPP, usually by taking ecosystem-specific charac-
teristics into account (e.g. Damm et al., 2015; Norton et al.,
2019; Pacheco-Labrador et al., 2019; Yang et al., 2022).

3.1.3 Gap-filling and smoothing methods

Continuous, complete, and unbiased TS data are often a key
prerequisite to monitoring of vegetation productivity using
optical EO sensors. Here, one of the biggest challenges is
data gaps. In reality, the availability of continuous data is
often hampered by (1) sub-optimum to inadequate weather
conditions, such as clouds, snow, dust, and aerosols (e.g.
Kandasamy et al., 2013), or (2) instrumentation errors and
uncertainties (Graf et al., 2023), as well as calibration is-
sues (e.g. Brinckmann et al., 2013). Cloud cover is the most
stringent limitation of optical satellite data. The majority of
the terrestrial Earth’s surface is more or less regularly cov-
ered by clouds, and for some areas persistent cloud cover
can last for weeks (e.g. Atkinson et al., 2012; Wilson and
Jetz, 2016). In such cases, data sparsity leads to biased es-
timates, decreased statistical power, increased standard er-
rors, and substantial uncertainty in findings (Dong and Peng,
2013). For instance, clouds can mask key stages of phenolog-
ical events, leading to unreliable monitoring practices such
as productivity predictions (e.g. Karlsen et al., 2018). No-
tably, the amount of data gaps and noise strongly depends on
the season, topography, location, or environment (e.g. Beck
et al., 2006; Vuolo et al., 2017).

The spatiotemporal gap-filling of missing TS data has
therefore become a crucial step for monitoring the life cycle
of vegetation and inter- and intra-annual variations in plant
productivity (e.g. Beck et al., 2006; Schwartz, 2013; Kovács
et al., 2023; Belda et al., 2020a; Amin et al., 2022). A high-
quality signal can be assumed to represent the true seasonal
trajectory of vegetation and should be carefully processed to
retain the short-term character of data (e.g. using smoothing
filters or splines). Signals with a high degree of noise need
to be constrained by fitting to a predefined function to avoid
unrealistic variations (e.g. asymmetric Gaussian or logistic
functions). TS filters and splines can to some degree bal-
ance between retaining or smoothing short-term variations,
and with these methods parameter settings can be defined
that balance smoothness with fidelity to the data (Atzberger
and Eilers, 2011b). Important considerations when applying
smoothing to TS data are whether data should be fitted to the
upper envelope to compensate for signal bias (Chen et al.,
2004; Jönsson and Eklundh, 2004), how to treat data points
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Table 1. Overview of widely used biophysical variables inferable from RTM inversion to assess vegetation productivity information.

Trait Description Key references

Green leaf area index (GLAI) GLAI quantifies the photosynthetically active foliage area
and is proportional to gross photosynthesis and an important
driver of net primary production.

Myneni et al. (2002),
Baret et al. (2007),
Baret et al. (2013)

Fraction of absorbed photosynthetically
active radiation (fAPAR)

FAPAR refers to the amount of incoming solar radiation ab-
sorbed by live vegetation in the spectral range from 400–
700 nm, divided by the total amount of absorbed radiation.

Knyazikhin et al. (1998),
Myneni et al. (1997),
Gobron et al. (2006)

Leaf chlorophyll content (LCC) LCC refers to the total chlorophyll a+ b content per unit
leaf area (µg cm−2). Chlorophyll molecules are responsi-
ble for harvesting the incoming PAR required to drive the
light-dependent reactions of photosynthesis. LCC is closely
related to leaf photosynthetic capacity.

Croft et al. (2020),
Croft et al. (2017),
Luo et al. (2019)

Canopy chlorophyll content (CCC) CCC as the product of (G)LAI and LCC quantifies the
amount of photosynthetically active radiation absorbed by
a canopy and therefore relates to primary productivity.

Ali et al. (2020),
Gitelson et al. (2014),
Gitelson et al. (2015)

Solar-induced fluorescence (SIF) SIF is an electromagnetic signal emitted by chlorophyll a of
photosynthesizing plants and provides a mechanistic proxy
for photosynthesis.

Frankenberg et al. (2011),
Guanter et al. (2012),
Porcar-Castell et al. (2014)

labelled as sub-optimal quality (e.g. cloud shadow pixels),
and how to handle long periods of missing data (Beck et al.,
2007; Jönsson et al., 2018; Bolton et al., 2020). Gap-filling
and smoothing methods can be categorized into (1) smooth-
ing and interpolation methods, (2) data transformation meth-
ods, and (3) fitting methods (Kovács et al., 2023). An ex-
haustive overview of available methods is provided in recent
reviews by Zeng et al. (2020) and Pipia et al. (2022), and it
is therefore not repeated here.

3.2 Assessment of vegetation productivity using trend
analysis and anomaly detection

Long TS data streams of VIs (Sect. 3.1.1) or quantitative
traits (Sect. 3.1.2) are particularly well suited for trend anal-
ysis, a widely used method for monitoring plant productiv-
ity (Eastman et al., 2009). Such analysis includes aspects
such as abrupt or gradual changes in trends, as well as tim-
ing, number, and direction of such changes (Verbesselt et al.,
2010). An example of TS decomposition is shown in Fig. 4.
Each of these components can be further analysed, for ex-
ample, using separate trend models for annually derived at-
tributes (Stellmes et al., 2013; Munawar and Udelhoven,
2020).

Regarding trend analysis, the study by Karkauskaite et al.
(2017), for instance, explored data from MODIS (from 2000
to 2014) to evaluate the performance of PPI, NDVI, and EVI
in analysing the trends of SOS in boreal regions of the North-
ern Hemisphere. The authors compared the VI trend results
with in situ GPP-retrieved SOS from a network of flux tower
observations. Although all three VIs produced similar trends
in SOS, a pronounced land cover dependence was observed,

with PPI-SOS outperforming the other two spectral indices
in approximating vegetation productivity, i.e. GPP.

In the context of anomaly detection, specific indices have
been proposed: the Vegetation Condition Index (VCI) (Ko-
gan, 1995) informs about overall vegetation conditions by
referencing actual NDVI values with long-term statistics over
the same period. The main application of VCI is related
to drought detection (Klisch and Atzberger, 2016; Rembold
et al., 2015a). Similarly, the Vegetation Productivity Index
(VPI) (Smets et al., 2015) was proposed to detect anoma-
lies in vegetation productivity. Importantly, these methods
were developed for natural ecosystems such as boreal forests
or sub-tropical savannahs where the vegetation type is as-
sumed to not change from year to year. Thus, these indices
are not appropriate for ecosystems with regular changes in
species composition, e.g. agricultural croplands with crop ro-
tation schedules. A deep-learning approach for forecasting
VCI was presented by Lees et al. (2022), demonstrating the
usefulness of detecting drought conditions in Kenya using
this anomaly index.

In addition to decomposing and analysing trend patterns
of a VI TS, an option is linking the VI to other environ-
mental variables that influence vegetation productivity us-
ing distributed lag models (Udelhoven, 2011). However, rela-
tionships between climatic variables and responses in VI TS
tend to be non-linear, spatially non-stationary, and sensitive
to the scale of analysis. Simple regression model techniques
such as ordinary least squares (OLS) fail to model vegetation
productivity accurately. To overcome such shortcomings, ge-
ographically weighted regression (GWR) approaches were
suggested (Georganos et al., 2017).
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Figure 4. Generic plot showing the different components for TS analysis. Point observations result from the coupling of a general trend, a
seasonal component, and a remainder quantity. The decomposition allows for measuring the trend at specific points by disentangling seasonal
effects.

3.3 Assessment of vegetation productivity using land
surface phenology

Land surface phenology describes the seasonal timing and
duration of vegetative growth using TS of VIs (Sect. 3.1.1)
or biophysical variables (Sect. 3.1.2) (De Beurs and Hene-
bry, 2004). Typical LSP metrics are dates and values for the
start of the season (SoS), end of the season (EoS), length of
the growing season (LoS), the peak of the season (PoS), sea-
son amplitude, and steepness of the greening and browning
periods (Reed et al., 1994; Beck et al., 2006). Depending on
the vegetation type studied, varying names can be found in
the literature, such as the onset of greenness and the start of
senescence for deciduous forests (e.g. Duchemin and Cour-
rier, 1999; Kang et al., 2003; Badeck et al., 2004). A di-
versity of mathematical methods have been proposed for ex-
tracting the metrics from smooth seasonal trajectories. Most
are based on absolute or relative thresholds of the seasonal
amplitude (e.g. Bolton et al., 2020; Jönsson and Eklundh,
2004), whereas others are purely mathematical parameters,
such as inflexion points or derivatives of different order (e.g.
Fisher et al., 2006; Elmore et al., 2012; Melaas et al., 2013).
A comprehensive review of the definition and extraction of
LSP metrics is provided by Zeng et al. (2020).

Commonly, LSP metrics are used to study the impact of
environmental changes on ecosystems: shifts in LSP, e.g. the
earlier timing of SoS, indicate climate change (Abbas et al.,
2021). For instance, Wood et al. (2021) used 3 decades of
AVHRR data over the U.S. Northwestern Plains to study the
impact of climate change and agricultural management on
phenology. They concluded that climate factors such as pre-
cipitation and temperature can have a significant impact on
productivity, but other factors such as soil nutrients, distur-
bance, and management practices also play a role.

The concept of LSP also has its drawbacks. Apart from
the influence of the smoothing technique and the method
used to extract the LSP metrics, Helman (2018) stressed that
changes in vegetation species composition rather than phe-
nological transitions could produce a false-positive signal in
LSP. Moreover, LSP metrics show high sensitivity to the fre-
quency and temporal coverage of observations as well as
cloud contamination, which can affect the estimation of pro-
ductivity metrics (Younes et al., 2021).

3.4 Assessment of vegetation productivity using
dynamic process models and data assimilation

A more advanced perspective is given by combining re-
motely sensed TS data with simulations of plant physiolog-
ical processes and their temporal development. Simulated
plant growth driven and/or constrained by TS data streams
and environmental covariates can be used to study processes
that are not directly quantifiable from the satellite data itself
– such as the amount of AGB increase over time (Delécolle
et al., 1992). Here, EO data offer the possibility of providing
a dynamic, spatially continuous parameterization of model
input variables (e.g. Bach and Mauser, 2003; Verhoef and
Bach, 2003; Hank et al., 2015).

Process-based dynamic vegetation models can have differ-
ent levels of complexity concerning their ability to simulate
biophysical and biochemical processes in plants (e.g. Quil-
let et al., 2010; Ardö, 2015). Based solely on empirical data,
canopy structure dynamics models (CSDMs) have been pro-
posed to simulate a TS of canopy traits such as LAI as a func-
tion of temperature (growing degree days) (e.g. Baret et al.,
2000; Koetz et al., 2005). Using the concept of LUE, Goudri-
aan and Monteith (1990) described vegetation dry matter ac-
cumulation as a function of leaf area expansion. By including
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further knowledge about physiological processes and plant
morphology, more advanced DVMs can be created to sim-
ulate ecosystem productivity such as for boreal forests (e.g.
Liu et al., 1997) or croplands (e.g. Delécolle et al., 1992;
Launay and Guerif, 2005; Liu et al., 2016). For instance,
The Breathing Earth System Simulator (BESS) model (Ryu
et al., 2011; Jiang and Ryu, 2016) couples atmosphere and
canopy processes, two-leaf photosynthesis, and energy bal-
ance to provide evapotranspiration and GPP.

Fischer et al. (1997) already distinguished three different
strategies to combine remotely sensed TS of vegetation with
process-based models, which can be seen as state-of-the-art,
as delineated in Fig. 5: (1) model forcing, (2) model recal-
ibration, and (3) coupled forward modelling. In the model
forcing strategy (Fig. 5, 1), the remotely observed state vari-
ables (e.g. fAPAR, LAI) are forced (input) into the process
model (e.g. BESS by Tagliabue et al., 2019). In the recalibra-
tion strategy (Fig. 5, 2), also known as “data assimilation”,
remotely sensed state variables are used to readjust DVM pa-
rameters or inputs whenever an observation becomes avail-
able. While the first two strategies involve inverse modelling
to obtain the remotely sensed state variables, the third ap-
proach relies entirely on forward modelling (Fig. 5, 3). It
couples a DVM with an RTM to simulate vegetation optical
properties, which are then compared to remotely sensed data.
The main advantage of this strategy is the avoidance of in-
verse modelling, which is not only ill-posed but usually also
computationally intensive. Shiklomanov et al. (2021), for in-
stance, coupled three existing models, namely the Ecosys-
tem Demography model version 2 (ED2, Medvigy et al.,
2009), PROSPECT-5 (Féret et al., 2008), and a simple soil
reflectance model to the EDR model. Their model predicts
the full range of high-spectral-resolution surface reflectance,
which is dependent on the current state of the ED2 model.
Another relevant example is provided by Wang et al. (2023)
with Climate Modeling Alliance (CliMA) Land, which is
able to simulate data streams of productivity metrics such
as GPP, transpiration, canopy reflectance, and fluorescence
spectra that can be observed by satellites in a high tem-
poral resolution. The authors demonstrated the potential of
CliMA Land in tracking the spatial patterns of productivity
metrics (GPP) compared to data-driven methods. Similarly,
Poulter et al. (2023) recently coupled the LPJ-wsl global
DVM and the canopy radiative transfer model PROSAIL.
LPJ-PROSAIL can generate global, gridded TS of daily vis-
ible to shortwave infrared (VSWIR) spectra (400–2500 nm)
taking into account temporal and spatial variability. Overall,
these studies demonstrate that the model couplings (DVM
and RTM) are valuable tools for monitoring the development
of vegetation activity at the global scale, in strong relation
to the carbon cycle and hydrology. With this, the method can
provide the prerequisite of the Digital Twin concept allowing
for model productivity with high fidelity for longer time peri-
ods, and it can eventually evaluate different future scenarios.

3.5 Toolboxes for vegetation productivity studies

A variety of sophisticated software packages have been de-
veloped to facilitate the processing and analysis of large im-
age TS and ultimately provide key information about veg-
etation dynamics and ultimately about productivity metrics.
In most cases, these packages are openly available and share
common purposes, although they differ in specific features
and methodologies. Broadly, we can distinguish toolboxes
for TS processing, TS analysis and change detection, traits
retrieval, and process modelling (i.e. DVM). Table 2 lists the
toolboxes according to this categorization, including func-
tionalities and implementation. Note that we have compiled
this list to the best of our knowledge; however, it is possible
that it may not include all existing toolboxes.

TIMESAT (Jönsson and Eklundh, 2004), for instance, is
able to transform noisy signals into smooth seasonal curves
and to extract seasonality metrics, like SoS, EoS, and LoS,
or integrated values. Originally developed for coarse spa-
tial resolution data (e.g. AVHRR or MODIS), with mostly
equidistantly spaced temporal observations, recent versions
have adopted the characteristics of satellites with high spa-
tial resolution but infrequent temporal observations, such as
Landsat and S2. While TIMESAT uses least-squares meth-
ods, the Decomposition and Analysis of Time Series soft-
ware (DATimeS) (Belda et al., 2020a) expands established
TS interpolation methods to over 20 conventional (e.g. Whit-
taker smoother Eilers, 2003) and advanced ML fitting algo-
rithms, like Gaussian process regression (GPR), which is par-
ticularly efficient for reconstructing multi-seasonal vegeta-
tion patterns (Belda et al., 2020b). In this way, DATimeS pro-
vides interpolated VI and trait values from unevenly spaced
TS and associated uncertainties and allows for extraction of
phenological metrics for each crop and season. DATimeS
then also enables the calculation of the same seasonality met-
rics as TIMESAT and also has built the option to fuse TS
of two data sources, e.g. optical and radar data (Pipia et al.,
2019). Apart from TIMESAT and DATimeS, there are other
software tools to analyse VI TS data for phenology-related
studies including Phenological Parameters Estimation Tool,
enhanced TIMESAT, Phenosat, CropPhenology, and QPhe-
noMetrics (Zeng et al., 2020).

TimeStats (Udelhoven, 2011) goes beyond the extraction
of phenological metrics as it expands TS analysis methods to
parametric and non-parametric methods for trend detection,
generalized least-squares regression, distributed lag models,
cross-spectra analysis, windowed trend and frequency anal-
ysis, continuous wavelet transform, and empirical mode de-
composition. Based on some of those methods within TimeS-
tats, predefined workflows were implemented in a web inter-
face called EOTSA (Earth Observation Time Series Analy-
sis) Toolbox (Leopold et al., 2020). EOTSA allows online
access to satellite data archives (currently the full PROBA-V
database) without the need for local data storage. Figure 6
shows two examples where NDVI TS was analysed at the
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Figure 5. Three strategies to combine remotely sensed TS with process-based DVMs: (1) model forcing, (2) data assimilation (including
model recalibration and re-initialization), and (3) coupled forward modelling of DVMs and RTMs (Digital Twin).

Table 2. Toolboxes recommended and used for converting remotely sensed TS into gap-filled VI and vegetation trait products and to derive
LSP metrics and trends, which can all be ultimately used for estimating productivity metrics. Note that this list is not necessarily exhaustive
but rather a selection of some of the most notable tools that we are aware of to the best of our knowledge.

Toolbox Functionality Implementation Reference

TS processing:

TIMESAT Gap-filling/phenology metrics Standalone Jönsson and Eklundh (2004)
DATimes Gap-filling/phenology metrics/TS fusion MATLAB GUI Belda et al. (2020a)

TS analysis and change detection:

TimeStats Trend, seasonal, and multivariate analysis IDL virtual machine Udelhoven (2010)
EOTSA Trend, seasonal, and multivariate analysis Web interface, R Studio Leopold et al. (2020)
BFAST Phenology metrics/breakpoint analysis R Studio Verbesselt et al. (2010)
HiTEmpo Model-based change detection algorithm – Van Den Bergh et al. (2012)
SPIRITS Indicators/anomalies Java virtual machine Eerens et al. (2014)
R libraries Indicators, analysis, visualization R Studio e.g. Araya et al. (2018)

Traits retrieval:

EnMAP-Box 3 Data-agnostic handling of multi-sensor TS data Python, QGIS plugin van der Linden et al. (2015)
ARTMO Quantitative traits/RTMs, ML MATLAB GUI Verrelst et al. (2012)

Process modelling:

PCSE DVM forward modelling, satellite data assimilation Python PCSE: The Python Crop Sim-
ulation Environment – Python
Crop Simulation Environment
5.5 documentation.

continental scale using EOTSA. In the first example, sea-
sonal characteristics (mean NDVI, annual magnitude, peak-
ing time) were derived (step 1), followed by a trend analysis
(step 2) (Fig. 6b). The colour composite of the trends for the
seasonal characteristics reveals spatiotemporal patterns. Fig-
ure 6c shows an example of multivariate TS analysis in which
NDVI was regressed against lagged rainfall using distributed
lag modelling after pre-whitening the TS. Regions with pos-
itive correlation at higher lags depict the dependence of veg-

etation biomass production on accumulated previous rainfall
amounts. These can be, for instance, located in semi-arid ar-
eas occupied by natural grassland.

BFAST (Verbesselt et al., 2010) is a generic change de-
tection approach that considers seasonal, trend, and remain-
der components through iterative estimation of the time and
number of abrupt changes within TS, and characterisation of
change by its magnitude and direction typically applied in
forest monitoring studies.
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Figure 6. Land cover map of Africa and legend (a), trend analysis for a TS of MODIS satellite images (period: 2015–2019) displayed as an
RGB colour composite (b), and results from distributed lag modelling where NDVI was regressed against lagged rainfall (c). Prepared with
EOTSA RStudio version.

HiTempo (Van Den Bergh et al., 2012) is a software tool
created to aid in the study of TS analysis of hyper-temporal
sequences of satellite image data. The platform was specif-
ically designed to simplify the exhaustive evaluation and
comparison of algorithms while ensuring the reproducibility
of experiments.

SPIRITS (Eerens et al., 2014) is a comprehensive software
toolbox designed for environmental monitoring, with a par-
ticular emphasis on generating clear and evidence-based in-
formation for crop production and decision-makers. SPIR-
ITS provides a vast array of tools for extracting vegetation
indicators from image TS and estimating the potential impact
of anomalies on crop production (Rembold et al., 2015b).
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With its user-friendly graphical interface, SPIRITS offers an
integrated and adaptable analysis environment that facilitates
sequential tasking and provides a high degree of automation
for processing chains.

The EnMAP-Box 3 (van der Linden et al., 2015) provides
a user-friendly GUI with tools for collecting and visualizing
spectral profiles from various sources such as raster images.
Furthermore, the QGIS processing framework has been ex-
panded by incorporating many algorithms typically utilized
in EO data and imaging spectroscopy analysis for a diversity
of ecosystems. The “Agricultural Applications”, for instance,
provide empirical and physically based trait retrieval strate-
gies which can be explored for deriving productivity infor-
mation (e.g. Danner et al., 2021).

Regarding RTMs, the Automated Radiative Transfer Mod-
els Operator (ARTMO) toolbox (Verrelst et al., 2011) is an
outstanding example. ARTMO provides GUI-based access
to several leaf and canopy RTMs and atmospheric RTMs and
offers sophisticated strategies for forward and inverse mod-
elling including state-of-the-art ML methods.

Finally, there are a host of available R packages, e.g. Crop-
Phenology, for extraction of crop phenology from TS based
on VIs (Araya et al., 2018); the phenofit package, intended
for daily vegetation TS and monitoring of vegetation phe-
nology from satellite VIs (Kong et al., 2022); or LPDynR,
a tool to calculate the Land Productivity Dynamics indica-
tor (Rotllan-Puig et al., 2021). Moreover, there are Python li-
braries for phenology and vegetation productivity apps avail-
able for ODC. The aim of the ODC initiative is to enhance
the worth and influence of worldwide EO satellite data. It
does so by offering an open and free-to-use data exploita-
tion structure and by encouraging a community to cultivate,
maintain, and expand the technology and its range of appli-
cations (Killough, 2018).

While the aforementioned toolboxes focus on the usage of
remotely sensed data only, we found only a few tools that
allow users to work with DVMs. Many DVMs are (often)
based on FORTRAN programming and lack graphical user
interfaces or high-level programming interfaces. The Python
Crop Simulation Environment (PCSE) has ported old-style
DVMs to modern Python programming, but considerable
coding skills are still required to make use of it. PCSE of-
fers a platform for carrying out crop simulation modelling
along with tools to read supporting data (such as weather,
soil, and agricultural management) and components for sim-
ulating various biophysical processes including phenology,
respiration, and evapotranspiration. Additionally, PCSE fea-
tures implementations of widely used crop and grassland
simulation models like WOFOST, LINGRA, and LINTUL3.
WOFOST, for instance, has been employed in the operational
crop yield forecasting system MARS, which is used to mon-
itor crops and predict yields worldwide (De Wit et al., 2019;
Lecerf et al., 2019). Furthermore, the code of specific process
models has been made available via the specific websites of
the model authors, e.g. the BESS model.

Figure 7. Interplay of the three main approaches (field-based: in situ
validation, sensor networks, and multi-product intercomparisons) of
validating vegetation productivity, as a function of time, spatial rep-
resentation and accuracy.

4 Validation of RS-based primary productivity
estimates

Validation is a critical step in ensuring the accuracy and re-
liability of estimated quantities or (vegetation) products de-
rived from remotely sensed TS datasets (Justice et al., 2000).
The validation process involves comparing the estimates with
those from independent sources, such as in situ observations,
to evaluate their overall quality and suitability for a partic-
ular application. The comparison between remotely sensed
data products and ground-based measurements enables the
detection of errors and biases in the retrieved products and
improves the interpretation and understanding of the under-
lying ecological processes (Wu et al., 2019). Ultimately, val-
idation is essential for ensuring that remotely sensed TS data
can be used to accurately estimate GPP, NPP, and other veg-
etation productivity metrics.

4.1 Validation strategies

In the context of productivity monitoring, we distinguish
three distinct validation methods:

1. in situ validation,

2. local sensor networks,

3. multi-product intercomparison.

These methods are illustrated in Fig. 7, which showcases
how they interplay to provide accuracy, time resolution, and
spatial representation, as further elaborated below.

The first validation strategy involving in situ validation in-
volves comparing RS data products to direct ground-based
observations of productivity metrics. Examples include the
direct determination of AGB, litter biomass, and crop yield.
In many cases, in situ data are collected by harvesting plots
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and determining dry biomass (e.g. Zhang and Zhang, 2016;
Liu et al., 2021b). One prominent dataset is the ORNL
DAAC Net Primary Productivity data collection (ORNL
DAAC, 2023). It comprises field measurements of AGB and
estimated NPP from roughly 100 terrestrial study sites across
the globe, including different types of forests, grasslands, and
crops. These data were gathered from various published liter-
ature and other available sources of information. In situ vali-
dation provides a means of calibrating models to ensure con-
sistency over time, which is essential for long-term studies.

The second validation strategy, local sensor networks, is
perhaps the most widespread and promising strategy for vali-
dating productivity products (i.e. metrics) from EO data. This
category refers to a network of distinct sensors, compris-
ing spectral radiometers, phenocams, and eddy-covariance
(EC) flux towers (e.g. Baldocchi et al., 2001; Baldocchi,
2003; Hilker et al., 2011; Toomey et al., 2015). Such an
approach requires deploying validation sites or observation
networks with standardized observation protocols (Morisette
et al., 2006). The employment of spectroradiometers, pheno-
cams, and EC systems is a valuable tool for both providing
continuous, high-resolution (i.e. sub-daily) estimates of veg-
etation productivity over daily to decadal time frames and
serving as validation for satellite-based products. Phenocams
capture time-lapse images of vegetation, allowing for the
monitoring of phenological events such as leaf emergence,
flowering, and senescence. This information is valuable for
tracking the growth and development of vegetation, as well
as for identifying changes in productivity due to environ-
mental stressors. For example, the SpecNet network (Spec-
Net, 2022) aims to link optical measurements with flux
sampling and standardized field optical methods (e.g. Ga-
mon et al., 2006, 2010). The Committee on Earth Observ-
ing Satellites (CEOS) Group on Calibration and Validation
is currently leading efforts concerning the development of
best-practice phenology validation protocols and the estab-
lishment of ground-reference sites across different biomes
(NASA, 2023). The use of EC techniques for providing direct
measurements of the exchange of carbon, water, and energy
between vegetation and the atmosphere (Baldocchi et al.,
2001) has provided an extremely valuable means of measur-
ing plant productivity across diurnal to decadal timescales.
The longest-running flux tower is located in Harvard Forest
and has been providing continuous measurements at half-
hourly intervals since 1989 (Urbanski et al., 2007). Sev-
eral national and regional networks of flux towers exist (e.g.
Ameriflux, Chinaflux, Ozflux, ICOS), which has enabled the
contribution of EC data to improve our understanding of
plant–environment interactions to go beyond a single site
or ecosystem to regional-to-global studies. To address data
consistency and allow cross-site comparisons, FLUXNET
was established in 1997, which is a “network of networks”
and has led to harmonized methods and datasets. The latest
dataset of FLUXNET, FLUXNET2015, contains gap-filled
TS data streams of GPP, Re, and meteorological data for

1500 site years, along with an estimation of uncertainties (Pa-
storello et al., 2020). However, there are concerns about the
spatial and temporal representative of EC data, due to the
disproportionate predominance of flux towers being located
in North America and Europe (Chu et al., 2017). To scale
from the footprint of individual flux tower sites to gridded,
spatially and temporally explicit products, a variety of ML
techniques have been employed, including neural networks,
regression trees, and kernel methods (Beer et al., 2010; Jung
et al., 2011, 2020). EO data are usually used, along with
meteorological data within the ML algorithms, to extrapo-
late across time and space. These EC-derived products, such
as those within the FLUXCOM initiative (Jung et al., 2020)
have been extensively used in validating other sources of veg-
etation productivity estimates, including those from satellite-
based EO data streams and terrestrial biosphere models (Chu
et al., 2017).

The integration of these diverse ground-based sensing
techniques together with EO data streams is suitable for mon-
itoring large-scale vegetation dynamics, and it can aid in
the interpretation and validation of productivity models ob-
tained from remotely sensed data (Balzarolo et al., 2014).
From a technical point of view, it is common to find litera-
ture that explores the accuracy of satellite imagery validated
through such near-surface sensors. Additionally, there is in-
creasing usage of similar networks focused on different as-
pects of vegetation and supported by the spread of low-cost
and IoT sensors, for example, the TreeTalker network (Valen-
tini et al., 2019; Tomelleri et al., 2022).

The third validation strategy, multi-product comparison,
involves the benchmarking of multiple productivity prod-
ucts or different models using EO data. This validation ap-
proach requires a thorough comparison of the obtained prod-
ucts with similar ones to check for consistency (Beer et al.,
2010; Lin et al., 2022; Meroni et al., 2012). A critical aspect
of this approach is ensuring that the models or products be-
ing compared are fit for purpose. In other words, they must
be appropriate for the specific application or use case. Ad-
ditionally, the cross-comparison of distinct types of models,
such as (an ensemble of different) DVMs and data-driven ap-
proaches (e.g. Ardö, 2015; Jung et al., 2020), can provide
valuable insights into the strengths and weaknesses of each
model type. Benchmarking models using EO data can help to
improve their accuracy and reduce errors in their predictions,
which is essential for applications such as monitoring global
climate change and assessing the health of ecosystems. It can
also aid in developing more advanced primary productivity
models that can better account for the complexities of eco-
logical processes and environmental variability.

4.2 Bridging the scaling gap

Scaling issues remain one of the most significant challenges
in extracting vegetation productivity, regardless of the metric
chosen (Zeng et al., 2020; Caparros-Santiago et al., 2021).
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The disparity in spatial and temporal resolution between in
situ measurements and remotely sensed data often creates un-
certainty in the extracted vegetation productivity estimates.
While in situ (point) observations are typically species spe-
cific, RS platforms capture a mixture of vegetation types
within their large geographic footprint. Consequently, di-
rectly comparing in situ and remotely derived productivity
estimates can be difficult if not impossible. Furthermore,
while in situ observations or local sensor networks provide
a high level of detail and accuracy, their geographical cov-
erage is often limited and may not be indicative for large-
scale studies (see also Fig. 7). In contrast, EO data products
from multiple satellites offer broader coverage, but they suf-
fer from coarser spatial resolutions. This trade-off between
detail and coverage presents a significant challenge in scal-
ing in situ observations or local sensor networks (categories
1 and 2) into the larger scale captured by EO data. There-
fore, to overcome the scaling challenge and enhance the ac-
curacy of remotely derived vegetation productivity metrics
(see Sect. 1.1), an effective protocol for the calibration and
validation of such metrics using in situ observations, sensor
networks, and multi-product and multi-model intercompar-
isons is essential; see also the multiscale validation scheme
as outlined in Malenovskỳ et al. (2019).

5 Systematic literature review on time-series-based
applications for vegetation productivity

This section aims to complement the previous sections by
taking a tour across principal thematic applications through
a meta-review. We do not assess the calculation of produc-
tivity applied in these studies. Instead, we aim to provide a
thorough overview of how remotely sensed TS data were ex-
plored to estimate productivity for agricultural, forestry, and
other natural ecosystem applications. In this way, readers will
be redirected towards specific scientific studies analysing
productivity with a multitude of proxies and methods for
these application domains.

5.1 Systematic literature review

The systematic literature review followed the guidelines of
the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) (Page et al., 2021). The SCOPUS
and Web of Science web catalogues were queried for pub-
lished, peer-reviewed studies. In SCOPUS, the title, abstract,
and keywords were searched with the query “time AND se-
ries AND productivity AND ‘remote sensing’ AND (vegeta-
tion OR forest OR crop)”, while the topic field in the Web
of Science catalogue was searched for “ ‘time series’ AND
(vegetation OR forest OR crop) AND productivity”. The re-
sulting 915 records of the two databases were merged into
one database by omitting duplicated records as identified by
their DOI (Fig. A1). The records were further screened to

Figure 8. Histogram of number time steps used by the reviewed
studies. A total of 33 studies with ≥ 1000 steps have been removed
in order to facilitate representation.

include research articles and conference contributions in the
English language, excluding review studies. Furthermore, the
studies were required to use RS analysis of terrestrial vege-
tation with at least two observations in time. For each entry,
a range of attributes was recorded (Table 3).

Unlike other studies, which defined a TS as consisting of a
minimum of several observations, we included studies with a
minimum of two images without an upper limit. This allowed
us to include studies that have traditionally been labelled un-
der the topic of change detection analysis. We chose to do
this for two reasons. First, we believe that the minimum num-
ber of observations in a TS is arbitrary, and we wanted to take
a more comprehensive approach to examining the aspect of
time. Second, the number of studies using long TS consist-
ing of high-resolution (10–30 m pixel size) images is rela-
tively small. Considering only long TS data streams would
have excluded many studies that observe productivity from
Landsat and Sentinel-2 satellites.

Figure 8 shows the number of published papers per num-
ber of explored TS observations. Note that the x axis starts
with “2”. There is a skewed normal distribution with a me-
dian of 227 temporal observations and a long tail towards
a higher number of observations. The 75th percentile is
reached at 786 observations.

Figure 9a summarizes which RS-derived products or
methods were used by the studies to approximate produc-
tivity. Note that some studies referred to productivity but did
not specifically state if the generated products were meant
to be a representation of productivity, this required care in
the interpretation of the results. Generally, productivity prox-
ies were categorized into (1) VIs, being the simple algebraic
transformation of spectral observations (see also Sect. 3.1.1);
(2) phenological metrics, i.e. derivatives of observations over
time, as described in Sect. 3.3); (3) traits, i.e. biophysical or
biochemical properties of vegetation at the time of observa-
tion (see also Sect. 3.1.2); (4) processes, which implies the
use of DVM (see also Sect. 3.4); and finally (5) land use and
land cover change classifications (LULCCs). VIs were most
often employed to describe productivity, as seen in almost
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Table 3. Attributes retrieved from selected studies for the systematic review.

Attributes Definitions

Sensor/platform Sensors and platforms used in the study
Spatial resolution Ground sampling distance of primary data product used in the analysis (in metres)
Land cover Land cover according to IGBP land cover classes plus the category of LULCC
Study area category Size of study area in administrative terms (local, region, country, multi-country,

continental, pan-continental, global)
Study area size Size of study area (in km2)
Time series start/end [date] Start and end date of time series
Revisit Frequency of observations in the time series (in days)
Time series steps Number of observations between start and end date (alternative to revisit)
Definition productivity Primary RS products used to derive productivity metrics (VI/LSP/traits/process/LULCC)

50 % of all analysed studies. Specifically, most studies relied
on NDVI TS, which may be the most used and well-known
method to analyse TS in the context of vegetation productiv-
ity. VIs were followed by traits, processes, and phenological
metrics, and cover characteristics as less often used proxies.

Figure 9b and c show the trends in spatial resolution and
sensors underlying the vegetation productivity studies, re-
spectively. In both panels, three phases can be distinguished:
first, the dominance of AVHRR-based and coarse-resolution
studies until 2005 (e.g. Wessels et al., 2004). In this period,
only 21 studies (3.7 %) were published. Second, a rising con-
tribution of MODIS and Landsat marked the period from
2005 until 2017 (e.g. Boisvenue et al., 2016). During this pe-
riod the number of studies per year increased from 6 (1.1 %)
in 2005 to 52 (9.2 %) in 2017. In Fig. 9b, the years 2013
and 2016 appeared to be outliers with the highest portion of
studies having a larger than 1000 m resolution. The 2016 out-
lier can be explained with the publication of the Global In-
ventory Monitoring and Modeling System (GIMMS) third-
generation NDVI (NDVI3g) long-term TS dataset based on
AVHRR (Pinzon and Tucker, 2014). The last phase started
in 2017 and is marked by an increasing trend towards sub-
1000 m resolution studies driven by the increased availability
of longer-term Landsat and MODIS TS. Studies combining
both sensors make up 6.3 % of all (e.g. Knauer et al., 2017;
Kussul et al., 2017). Moreover, an unprecedented amount of
other sensor TS data became available; see Fig. 3. Despite
the launch of the Sentinel-2A only being in 2015, 29 studies
(5.1 %) have already made use of it for analysis (e.g. Abdi
et al., 2021).

In Fig. 9d, trends in assessed aggregated land cover types
of the reviewed studies are indicated. The category “Other”
includes studies covering multiple land cover types and land
cover and land use change studies. Hereby, the dominance of
agricultural studies can be clearly seen, followed by the mul-
tiple, forests (e.g. Boisvenue et al., 2016), and finally grass-
lands categories (e.g. Brinkmann et al., 2011).

5.2 Agricultural applications

Exploration of TS data has been focused on cultivated areas
due to the high significance of agroecosystems for provid-
ing global food security. In agricultural applications, grain
or fruit yield is often considered the primary metric for pro-
ductivity. Being indicated as “Vegetation Index” or “Traits”
in Fig. 9a, these studies used VIs or quantitative traits as
one of several inputs in data-driven or process models (e.g.
He and Mostovoy, 2019; Ma et al., 2021; Guo et al., 2019)
or transformed those into phenological metrics, such as cal-
endar and thermal time or LoS (e.g. Duveiller et al., 2013;
Azzari et al., 2017) to predict yield. With regards to VIs,
mainly NDVI was used to predict crop yield (e.g. Lopresti
et al., 2015; Suijker and Medrano, 2018). For instance, corn
and soybean yield was estimated from 6-year TS MODIS-
driven NDVI by training regression tree-based models (John-
son, 2014), and for grapes the yield was forecasted by train-
ing a separate artificial neural network with Landsat NDVI,
LAI, and normalized difference water index (NDWI) over 3
years (Arab et al., 2021). In a more complex set-up, Houborg
et al. (2015) retrieved leaf chlorophyll content from Land-
sat TS data to constrain community land model simulations
of GPP, while Yan et al. (2009) predicted the seasonal dy-
namics of GPP using a satellite-based vegetation photosyn-
thesis model (VPM). The inclusion of multiple and hetero-
geneous data sources as inputs for ML models can improve
results for crop yield forecasting. For instance, Perich et al.
(2023) evaluated four different methods (including ML and
deep learning) for pixel-based, within-field crop yield fore-
casts for five cereal crops from S2 time series data across 5
years (2017–2021) and 54 fields. While their models showed
good performance in general, the results also demonstrated
that the ability to predict yield for unseen years varied. This
indicates that EO data alone might not be sufficient to explain
complex productivity metrics such as yield. The importance
of climate TS data, such as maximum temperatures and ac-
cumulated rainfall, along with EO data when training ML
models was emphasized for crop yield forecasting by Kamir
et al. (2020).
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Figure 9. Results of systematic literature review: (a) definitions and RS products used in the context of vegetation productivity, i.e. to derive
the productivity metrics, in reviewed studies. (b) Trends in spatial resolutions (pixel size) at which spatial products were produced in reviewed
studies. (c) Trends in satellite missions (or sensors) used. Only the four dominant missions, AVHRR, MODIS, Landsat, and Sentinel-2, are
shown. (d) Trends in assessed aggregated land cover types in reviewed studies. The category “Other” includes studies covering multiple land
cover types and land cover and land use change studies.

As a more direct proxy for plant photosynthetic activity,
SIF may be able to directly indicate yield or agricultural pro-
duction. The study by Somkuti et al. (2020), for instance,
showed the potential of integrated GOSAT-derived SIF TS
data to estimate crop yield. This research line of yield predic-
tion has since then been adapted using other satellite sources
of SIF (e.g. GOME-2, TROPOMI), thereby confirming that
SIF contributes to improved yield prediction models (e.g.
Peng et al., 2020; Sloat et al., 2021; Li et al., 2022).

5.3 Applications in forestry

In the last 3 decades, the bulk of research on forest pro-
ductivity TS has focused on estimating AGB and thus car-
bon sequestration and better understanding the role of forests
in regulating the climate. To accomplish these tasks, vari-
ous types of data have often been combined, such as TS of
satellite multispectral data (Landsat) with light detection and
ranging (lidar) and radar (e.g. Powell et al., 2010; Pflug-
macher et al., 2014; Nguyen et al., 2020). The review by
Nguyen et al. (2020) stated that innovative Landsat-based ap-
proaches for estimating forest AGB dynamics across space
and time have been developed in recent years. Methods have
become more advanced and robust over time. For instance,
Landsat data can be used to fill in missing data points in AGB
maps, which can improve the overall quality of the maps and
make them more useful for applications such as carbon ac-
counting and forest monitoring. Landsat data have been also
used to estimate AGB over large areas and long time peri-
ods, even in areas where there are limited field data. Further-
more, recovery metrics can be used to improve the accuracy

of AGB models since Landsat data can provide information
about the dynamics of forests over time, which is not always
captured by traditional AGB models.

Furthermore, forest disturbances can play a crucial role
in ecosystem dynamics affecting productivity. Therefore, TS
analysis of forest productivity is a fundamental tool for
analysing the magnitude and frequency of such events. Many
of these forest disturbances are related and have increased
due to climate change. Storms and forest fires have been
highlighted as the most significant abiotic disturbances in
Europe in recent years (Senf and Seidl, 2021). In addition,
satellite TS analysis shows an increased trend in the fre-
quency and intensity of droughts, and illustrative studies have
been conducted for northern Europe (e.g. Reinermann et al.,
2019; Senf et al., 2020; Descals et al., 2023). Climate change
is also increasing the frequency of biotic disturbances like
insect outbreaks (Senf et al., 2017; Olsson et al., 2017). In-
sect outbreaks in forests have a significant impact on pro-
ductivity by defoliating trees and changing the structure of
the forest. All these factors put our forests under increasing
pressure and limit the forests’ role as the global carbon sink.
Therefore, it is essential to monitor temporal and spatial pat-
terns of forest productivity by adopting suitable tools like
EO data. To this end, many novel initiatives are related to
this specific ecosystem. Examples are actions based on avail-
able data like the FAO’s Global Forest Observations Initia-
tive (GFOI) (Penman et al., 2016). In recent years, the main
concern in forest science has moved towards accurate carbon
stock and fluxes estimations, for which the focus on EO has
shifted from multispectral proxy productivity estimations to
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precise forest extension and AGB measurements by means of
lidar, radar, and SIF observations. Remotely sensed SIF has
become a widely used method to study temporal variations in
deciduous and evergreen forests. In particular, SIF retrieved
from GOSAT (Lee et al., 2013), GOME-2 (e.g. Koren et al.,
2018; Getachew Mengistu et al., 2021), and TROPOMI (e.g.
Doughty et al., 2019) was explored to study the relatively
subtle seasonal variations in tropical forests and provided
new insights into vegetation activity during the transitions
between wet and dry seasons.

5.4 Applications for natural ecosystems

For natural ecosystems, many studies assessed spatial and
temporal trends in vegetation productivity for specific
ecosystem types, often based on phenology indicators de-
rived from TS of spectral VIs or by integrating those in
DVMs. Among natural ecosystems, several studies focused
on African semi-arid ecosystems (Sahel, South Africa) (Fen-
sholt et al., 2013), the Arctic tundra (Beamish et al., 2020),
the northern taiga (Canada, Alaska, Siberia, and Scandi-
navia) (Fiore et al., 2020) and the central Asian grasslands,
specifically in the Tibetan Plateau (You et al., 2019; Liu et al.,
2020) and the Chinese–Mongolian area (Tüshaus et al., 2014;
Gao et al., 2017). Regarding productivity, these studies as-
sessed droughts, fires, changes in phenology metrics, land
degradation, and vegetation mortality (e.g. Mayr et al., 2018;
Buitink et al., 2020). The most used EO missions are MODIS
and AVHRR, mainly through the analysis of NDVI and GPP
TS, or to a lesser extent, other proxies (EVI, fAPAR) or met-
rics (NPP) of productivity (e.g. Rankine et al., 2017; Lara
et al., 2018). The spatial coverage of these studies is global
or regional, while the temporal extent is decadal, as MODIS
and AVHRR cover a larger time period, from the 1980s to the
present. Multiple studies took advantage of MODIS ready-
to-use products (NDVI, EVI, fAPAR, GPP or NPP), which
are compatible with specific phenology analysis software;
see also Sect. 3.5. The MODIS GPP algorithms were also
used in GPP estimation studies (e.g. Feagin et al., 2020) and
for a comparison with a LUE-based DVM (Liu et al., 2011).
Studies also compared the results of estimating GPP using
MODIS and S2 TS data (e.g. Cai et al., 2021).

More recently, satellite SIF data became a valuable source
for productivity estimations in natural ecosystems, among
others to better capture seasonal periods of water stress and
early-season GPP dynamics in drylands (Smith et al., 2018;
Wang et al., 2019). Similarly, Merrick et al. (2019) studied
satellite SIF data for different biomes, such as grasslands
and savannas (among others). The authors concluded that
the inclusion of SIF facilitated the differentiation of various
vegetation types based on their functional characteristics and
seasonal changes, explaining differences in year-round pro-
ductivity dynamics. Despite being one of the most sensitive
ecosystems, wetlands have been the least researched in the
TS context, which might be due to their complexity. A few

studies explored MODIS TS and EC flux tower data (e.g.
Kang et al., 2018; Wang et al., 2021). Wang et al. (2021), for
instance, used TS of the MOD17A3 annual NPP product to
reveal spatial and temporal trends of NPP in China, among
others. Analyses for wetlands are also oriented towards clas-
sifying changes in wetland extent on multi-temporal S2 im-
agery. Products derived from multi-temporal data were used
(S2, Landsat), like NDVI for instance, to model NPP by
means of the Carnegie–Ames–Stanford approach (Zhang,
2021; Zhang et al., 2022a).

5.5 The role of productivity as a sink for carbon across
ecosystems

Vegetation productivity, or GPP specifically, characterizes
the “gross” terrestrial carbon sink, the gross amount of CO2
annually sequestered by vegetation. NPP corresponds to the
net carbon gain by plants, as it is the difference between the
carbon produced by GPP and Ra (Fig. 10). The appropriation
of NPP is also a measure of vegetation contribution to cli-
mate change mitigation (Alexandrov and Matsunaga, 2008).
Overall, knowledge about the productivity of aboveground
carbon stocks in forests, agriculture, and natural ecosystems
is essential for global climate scenarios (Erasmi et al., 2021).

Terrestrial ecosystems, along with the oceans, serve as a
natural buffer that restricts the increase in CO2 in the atmo-
sphere by absorbing and sequestering nearly half of emitted
CO2 (Friedlingstein et al., 2022).

Figure 10 delineates the different levels of productivity,
which are GPP, NPP, NEP, and NBP with respect to their
carbon loss processes and flux densities over time. With in-
creasing timescales, the four main fluxes are characterized by
decreasing amounts of stored carbon due to diverse loss pro-
cesses (GPP > NPP > NEP > NBP). Compared to GPP and
NPP; NEP and especially NBP are relatively small (Wat-
son et al., 2000). As denoted in Fig. 10, distinct ecosys-
tems vary a lot in this respect. While an agricultural system
(non-permanent crops) usually releases all carbon during one
season, natural and forest ecosystems can store carbon for
decades, depending on climate, but also on the amount of
woody vegetation and tree age (Machwitz et al., 2015). This
emphasizes the crucial role of TS data acquisition in moni-
toring the development of these carbon pools.

Due to the vast expansion of cultivated surfaces world-
wide, the role of productivity of managed land within the
global carbon cycle has also increased significantly and de-
serves particular dedication. Hereby, different factors have
been found to influence the dynamics of carbon as sources or
sinks, such as climate, tillage measures, fertilization or irri-
gation, among others (Luo et al., 2010). For example, tillage
usually leads to a loss of soil organic carbon by organic
decomposition; however, in combination and depending on
other management practices a larger amount can be stored
again by the crops (Haddaway et al., 2017).
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Figure 10. Overview of productivity terms along with their loss processes and C flux density over timescales and for the main ecosystems.
Note that the given percentages are common average values and may vary.

The largest terrestrial carbon sink is the world’s forests. In
a general view, the global forest carbon stock in 2020 was
662 Gt (FAO, 2020), from which 44 % is contained in the
AGB. The tropics have the largest proportion of the world’s
forests, and hence they are highly relevant in terms of global
climate regulation. However, tropical rainforests are under
threat due to deforestation, logging, or cultivation, among
other factors. These human activities lead to the loss of bio-
diversity and carbon storage and thus to a transition of being
carbon sources for the atmosphere. Also, other forest types
play essential roles in this context, such as needle-leaf forest
systems. A study in southern Sweden, for instance, focused
on the plantation of needle-leaf trees (Grelle et al., 2023).
The stands underwent a transition from positive (sources)
to negative (sinks) annual carbon fluxes approximately 8 to
13 years after disturbance, influenced by site productivity and
management, with net carbon gains of around 5 tC ha−1 yr−1.
Additionally, tree-crop-based agroecosystems, such as vine-
yards, have been linked to carbon storage facilities, with
fixation rates up to 7.23 tC ha−1 yr−1, where the contribu-
tion of root systems implies 9 %–26 % (Brunori et al., 2016)
(which, however, cannot be quantified by EO techniques). A
recent study on carbon density simulation in woody vegeta-
tion highlighted the need to advance model–data integration
employing TS data streams for a better understanding of the
global terrestrial carbon cycle (Bultan et al., 2022).

6 Challenges and outlook

Our review revealed that multiple gaps, challenges, and op-
portunities exist to accurately estimate vegetation productiv-
ity from remotely sensed TS data streams. In this final sec-
tion, we will discuss the main priority areas of research giv-
ing an outlook towards required efforts.

6.1 Key challenges

Efficient use of increasingly available and longer time se-
ries datasets. Over the past few decades, there has been
an increasing number of TS datasets made available with
enhanced spatial details as depicted in Fig. 3. Despite this
progress, there may still be limitations in terms of the spa-
tial and temporal resolutions for specific objectives and ap-
plications of monitoring vegetation productivity trends and
processes. Some of these limitations include gaps in avail-
able long-term datasets due to persistent cloud cover, and
discontinuity of sensors, leading to uncertainties in variable
retrievals being relevant for vegetation productivity metrics.
While with the advent of cloud-computing platforms access
to EO data TS has never been as easy as nowadays, access to
other RS resources (local airborne campaigns) is more frag-
mented and not always open. From a user’s perspective, cur-
rently there are a broad range of high-level, free, and easy-to-
use toolboxes available (as shown in Table 2), allowing and
facilitating efficient TS processing.
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Processes and factors affecting vegetation productivity.
One important goal will be to adopt TS datasets to develop
and test methods for heterogeneous natural environments, as
the current focus is largely on croplands (see Fig. 9d). Satel-
lite TS data streams can effectively capture, characterize, and
quantify the spatiotemporal variation in natural processes.
However, some approaches (discussed in Sect. 3) may only
provide a relative characterization of vegetation productiv-
ity. To increase our understanding, process-based models (i.e.
DVMs) are required to provide the mechanistic basis (link-
ing to modelling domains) necessary to capture productivity
variations in natural environments. Integrated modelling is a
potential approach to address this need.

Availability of validation data and approaches. Effective
validation of remotely sensed vegetation productivity prod-
ucts and derived productivity metrics is essential for ensuring
their reliability and usefulness for a variety of applications.
However, the collection of appropriate validation data (see
Sect. 4) can be challenging for certain ecosystems. More-
over, there may be discrepancies in the terminology used by
different scientific communities, which can hinder effective
communication and collaboration. Thus, it is crucial to facil-
itate interdisciplinary exchanges to promote a common un-
derstanding of the terminology and concepts related to RS, as
well as to foster collaborations that can help address knowl-
edge gaps and advance the field.

Use of TS-based approaches to identify drivers of produc-
tivity change. TS-based approaches can be utilized to identify
the drivers of productivity change, particularly concerning
critical societal issues such as deforestation, land degrada-
tion, and climate change. Bultan et al. (2022), for instance,
summarized that plant productivity has been underestimated
using DVMs due to missing data from unprecedented ex-
treme events, such as droughts. By providing a long-term
perspective and enabling the detection of subtle changes over
time, accurate TS data can help here and support more accu-
rate predictions of future trends and impacts. Therefore, the
use of TS-based approaches can play an important role in in-
forming decision-making processes and promoting sustain-
able development.

Role for deep-learning (DL) approaches to be adopted
for explorative analysis and support system understanding.
Classical RS data analysis methods for vegetation monitor-
ing (including productivity studies) usually require (man-
ual) selection of appropriate features from the input data,
for instance, spectral indices, texture metrics, or temporal
segments. The abundance of ways to derive such variables
makes it difficult to find the most effective set of predic-
tors for the automated identification of disturbances in veg-
etation productivity. Deep learning (DL) has been identi-
fied as a powerful method that can learn the most appropri-
ate data transformations to get the most relevant data fea-
tures for solving a specific problem (Kattenborn et al., 2021;
Cherif et al., 2023). However, a key condition is the avail-
ability of a large training dataset, i.e. if the dataset is small,

then conventional ML methods may be more suitable. For
analysing data streams of temporal dynamics, recurrent neu-
ral networks (RNNs) are of particular interest because they
can recognize temporal patterns regardless of data gaps due
to missing images or cloud cover. Similar to convolutional
neural networks (CNNs) for spatial patterns, RNNs make a
selection of temporal features (e.g. trend, phenological indi-
cators) obsolete (Kattenborn et al., 2021). A combination of
RNN and CNN potentially enables an end-to-end processing
scheme in the spatial and temporal domain and is considered
by some authors a potential game changer in analysing TS
data for vegetation applications such as productivity studies
(Reichstein et al., 2019). Transformers are an alternative to
RNNs that originate from natural language processing. Like
RNNs, transformers are designed to process sequential in-
put data, but unlike RNNs, they process the entire input all
at once, which allows for more parallelization and reduced
training times. Very recently, transformers have started to ad-
vance into RS applications (Aleissaee et al., 2023).

6.2 Development of an integrated modelling approach
towards the Digital Twin concept

We suggest that vegetation productivity research should fo-
cus on the integration of suitable multi-domain radiative
transfer models (e.g. SCOPE) with process models (i.e.
DVMs) (Moulin et al., 1998; Delécolle et al., 1992) to build
Digital Twins of various ecosystems (Berger et al., 2022).
This concept of real-time virtual representations allows us to
mirror behaviour and states over the lifetimes of ecosystems
and thus has the potential to overcome current limitations.
Therefore, we should aim to develop a conceptual Digital
Twin framework that implies a DVM with a fully integrated
RTM for efficient vegetation productivity monitoring using
RS TS data streams. Such integrated models directly sim-
ulate remotely observed signals based on the status of the
underlying DVM at a point in time. This means the coupled
DVM–RTM simulates the spectral signatures of the canopy
(400 to 2500 nm) as well as SIF emission, along with physi-
ological processes. To effectively assimilate the sensor data,
it is necessary to create strategies that consider the varying
availability of data from different sensors and sensor modali-
ties over time. These strategies should enable continuous up-
dates to the model, allowing for partial assimilation of vari-
ables while maintaining internal constraints and connections
to additional variables.

Utilizing DVMs, which offer a continuous sequence of
temporal growth dynamics, can be beneficial in identifying
anomalies and enhancing the creation of continuous sys-
tem descriptions. In this regard, incorporating a comprehen-
sive numerical model that assimilates such data represents
a significant advancement. Moreover, to accelerate the for-
ward simulations, surrogate models, or emulators can be
used to replace some of the more intricate models (Verrelst
et al., 2019b). Since DVMs are partly driven by weather vari-
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ables, they may also allow the integration of weather fore-
casts and/or climate scenarios in such model designs. This
dynamic nature would meet the requirements of a Digital
Twin of ecosystems, which besides the representation of the
current status also predicts their future behaviour (Verdouw
et al., 2021).

7 Conclusions

Monitoring vegetation productivity is critical for understand-
ing its health and functioning across ecosystems. In recent
years, the increasing availability and quality of optical TS
data streams resulted in a large-scale use for monitoring veg-
etation productivity metrics (e.g. GPP, NPP, crop yield, or
AGB) for their range of application domains adopting both
RS-derived phenological indicators and increasingly more
complex integrated modelling approaches. In this review, we
identified a vast number of studies that used remotely sensed
TS data streams and distinct methods for inferring produc-
tivity metrics. These efforts led to valuable insights into veg-
etation dynamics across ecosystems, including agriculture,
forests, grasslands, and others. As the perhaps most urgent
topic nowadays, spatially explicit estimation of vegetation
productivity is crucial for understanding the role of ecosys-
tems in the carbon cycle. By using satellite data to estimate
the amount of carbon stored in vegetation, we can better un-
derstand the impact of land use changes (e.g. deforestation)
and other human activities on the global carbon balance, and
thus climate change. The availability of long-term satellite
TS data streams with improved spatial and temporal detail
has increased steadily over the past decades. More recently,
the emergence of routinely acquired SIF products proved to
provide a more direct linkage towards photosynthetic activ-
ity and became increasingly integrated into vegetation pro-
ductivity processing chains. Validation efforts in ensuring the
accuracy, robustness, and reliability of RS-based productiv-
ity estimates are another essential aspect of the processing
chains. Validation can be performed in several ways, includ-
ing in situ measurements, local sensor networks, and inter-
comparisons of available productivity products or models.
The definition of harmonized validation strategies is critical
to ensure that the methods used to infer productivity from
EO data are robust and accurate across various ecosystems
and conditions. It also provides confidence in the data and
models used to inform management decisions and climate
change mitigation strategies. Additionally, we foresee that
due to the advancements in artificial intelligence, the pro-
cessing approaches of TS data streams will diversify, and at
the same time the modelling approaches will significantly ad-
vance towards holistic processing and representations of veg-
etation productivity. Our proposed conceptual framework of
a Digital Twin aims to address the limitations of existing ap-
proaches and may provide more accurate and efficient pro-

ductivity estimation supporting the management of ecosys-
tems at varying scales.

Appendix A

Figure A1. Identification of studies via databases and registers ac-
cording to PRISMA (Page et al., 2021).
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