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A B S T R A C T

Vocal intensity, which is quantified typically with the sound pressure level (SPL), is a key feature of speech.
To measure SPL from speech recordings, a standard calibration tone (with a reference SPL of 94 dB or 114 dB)
needs to be recorded together with speech. However, most of the popular databases that are used in areas
such as speech and speaker recognition have been recorded without calibration information by expressing
speech on arbitrary amplitude scales. Therefore, information about vocal intensity of the recorded speech,
including SPL, is lost. In the current study, we introduce a new open and calibrated speech/electroglottography
(EGG) database named Aalto Vocal Intensity Database (AVID). AVID includes speech and EGG produced by
50 speakers (25 males, 25 females) who varied their vocal intensity in four categories (soft, normal, loud
and very loud). Recordings were conducted using a constant mouth-to-microphone distance and by recording
a calibration tone. The speech data was labelled sentence-wise using a total of 19 labels that support the
utilisation of the data in machine learning (ML) -based studies of vocal intensity based on supervised learning.
In order to demonstrate how the AVID data can be used to study vocal intensity, we investigated one multi-
class classification task (classification of speech into soft, normal, loud and very loud intensity classes) and
one regression task (prediction of SPL of speech). In both tasks, we deliberately warped the level of the
input speech by normalising the signal to have its maximum amplitude equal to 1.0, that is, we simulated
a scenario that is prevalent in current speech databases. The results show that using the spectrogram feature
with the support vector machine classifier gave an accuracy of 82% in the multi-class classification of the vocal
intensity category. In the prediction of SPL, using the spectrogram feature with the support vector regressor
gave an mean absolute error of about 2 dB and a coefficient of determination of 92%. We welcome researchers
interested in classification and regression problems to utilise AVID in the study of vocal intensity, and we hope
that the current results could serve as baselines for future ML studies on the topic.

1. Introduction

In speech communication, speakers regulate vocal intensity on
many occasions, for example, to emphasise something, to be heard in
noisy conditions or over a long distance, or to signal vocal emotions
such as anger or sadness. Vocal intensity is quantified typically with
the sound pressure level (SPL), which is defined in the dB scale as the
logarithm of the ratio between the sound pressure and the standard
reference pressure of 20 μPa (see Eq. 9.2b in Titze (1994)). In their
tutorial on measurement of SPL (Švec and Granqvist, 2018), Švec
and Granqvist described two approaches that can be used in speech
and voice recordings to measure SPL. The first approach is to use a
special device, a sound level meter (SLM), to register SPL. The second
approach corresponds to first recording a standard calibration tone (a
sinusoidal of 1 kHz with a reference SPL of 94 dB or 114 dB) and
then computing SPL as the RMS (root mean square) ratio between

∗ Corresponding author.
E-mail address: manila.kodali@aalto.fi (M. Kodali).

the speech signal and the calibration tone (Švec and Granqvist, 2018).
The latter approach is beneficial because it can be done with cheaper
equipment (i.e. a calibrator) and it enables computing SPL values from
the recorded speech signals afterwards, which in turn, makes it possible
to vary settings such as the frequency weighting or the speech unit
over which the SPL is computed. In both approaches, the mouth-to-
microphone distance is essential and should always be reported with
SPL measurements because the obtained SPL values are higher when
measured close to the mouth and lower when captured further away
from the mouth (Švec and Granqvist, 2018). In the past few decades,
SPL measurements have been reported in many studies investigating
intensity regulation of speech (e.g. Holmberg et al., 1988; Titze and
Sundberg, 1992; Hodge et al., 2001; Alku et al., 2006, 2002; Liénard,
2019; Nash, 2014), and these studies have shown that healthy speakers
can vary vocal intensity over a wide SPL range. In an investigation
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by Coleman et al. (1977), for example, speakers produced vowels using
their maximum and minimum vocal effort, and the results showed that
the SPL values (measured using a mouth-to-microphone distance of 6
in.) varied from 48 dB in soft speech to 126 dB in very loud speech.

Audio equipment (e.g. loudspeakers) change sound intensity by
simply amplifying or attenuating the level of the sound waveform.
In other words, increasing intensity in audio equipment corresponds
to multiplying the sound waveform with a constant that is larger
than unity and decreasing intensity corresponds to multiplying the
waveform with a constant that is smaller than unity. The intensity regu-
lation of natural speech is conducted by the physiological human voice
production apparatus, and it uses various complicated mechanisms. As
discussed by Titze in Titze (1994), the intensity regulation mechanisms
of natural speech consist of three parts corresponding to adjustments
below the larynx, within the larynx and above the larynx. Below the
larynx, intensity is affected by controlling the aerodynamic output of
the lungs (particularly by varying the subglottal pressure) to the vocal
system. Within the larynx, regulation of intensity happens by modifying
the vibration of the vocal folds. An increase in intensity is obtained by
raising the flow amplitude through the glottis and by decreasing the
length of the glottal closing phase. Above the larynx, vocal intensity can
be modified by adjusting the resonances of the vocal cavity, especially
the first formant, to coincide with the harmonics of the glottal source.
Due to the complex nature of the above-described intensity regulation
mechanisms in voice production, changing the intensity of natural
speech is not a simple multiplication of the waveform with a constant
gain as in audio equipment, but the produced speech changes in many
ways in terms of its acoustic and prosodic characteristics. Previous
studies have shown that the fundamental frequency (F0) and the first
formant of speech typically rise and the spectral tilt lowers when vocal
intensity is raised (e.g. Hodge et al., 2001; Huber et al., 1999; Lienard
and Benedetto, 1999). In terms of prosodic features, previous studies
have shown that raising of vocal intensity affects phone durations
shortening bilabial stops and lengthening stressed vowels (Schulman,
1989).

Even though regulation of vocal intensity is an important topic in
speech communication, speech databases that are widely used today
in speech technology (e.g. TIMIT (Anon, 1993), LibriSpeech (Anon,
2022), NIST SRE (Greenberg et al., 2020)) do not include information
about SPL. In other words, speech signals of these databases have
been collected without using a constant mouth-to-microphone distance
combined with either registering SPL during the recordings using an
SLM or by recording a (standard) calibration tone to measure SPL from
the recorded speech afterwards. We argue that there are two potential
explanations for the absence of SPL information in most current speech
databases. First, many popular openly available speech databases have
been collected for the purposes of data-driven speech technology topics
such as automatic speech recognition (ASR), speaker recognition (SR)
and text-to-speech synthesis (TTS) that call for expertise in machine
learning (ML). It might be that even though SPL measurements are in
principle easy to conduct, many researchers in these popular speech
technology domains are simply not as familiar with acoustical measure-
ment of SPL as researchers in the voice research community. Second,
current speech databases have been collected mainly to provide train-
ing and testing data to develop ML models for popular research areas,
particularly ASR, SR and TTS. For these areas, SPL of the recorded
speech is not of interest because training/testing of ML models can
be done using time domain speech signals represented on arbitrary
amplitude scales (e.g. by scaling the recorded speech signal so that its
maximum absolute value is 1.0).

In the current article, we introduce a new open database collected
at Aalto University (Finland) that includes speech signals produced
in different vocal intensity categories.1 The database, called the Aalto

1 In this study, we use the term ‘vocal intensity’, which is widely used
in speech acoustics and voice research (e.g. Titze, 1994). In phonetics, the

Vocal Intensity Database (AVID), aims to help research of both the
speech technology community and the voice research community by
providing open access speech data to investigate vocal intensity. The
launching of AVID is motivated by two goals. First, AVID aims to
contribute to basic research in speech and voice production by pro-
viding open access to speech and electroglottography (EGG) data that
has been produced in four different intensity categories (soft, normal,
loud and very loud) and recorded together with a standard calibration
tone using a constant mouth-to-microphone distance. Second, since the
SPL values of the recorded speech signals can be determined (due to
the calibrated recordings), it is possible to utilise the AVID data to
study the following new interesting research question: By using the
intensity category or the SPL of a recorded speech signal as ground
truth, would it be possible to train ML networks to predict the signal’s
intensity category or its SPL even though the signal is presented using
an arbitrary amplitude scale as in most current databases? Studying
this problem is feasible because speech includes acoustical cues brought
about by the human intensity regulation mechanism, and these cues
could be used by the machine despite the most obvious acoustical
intensity cue (i.e. information about the signal’s amplitude) is absent.
Two interesting ML tasks can be studied in this research area: (1)
prediction of the intensity category of a speech signal, which is a multi-
class classification problem and (2) prediction of the SPL of a speech
signal, which is a regression problem. The results achieved by studying
these tasks can be applied in speech-based biomarking of health and
in forensic speech research. In the former, the prediction of the vocal
intensity category could be used in the detection of disorders such as
Parkinson’s disease and heart failure that have shown to affect the
intensity regulation mechanisms of speech (Clark et al., 2014; Fox and
Ramig, 1997; DeKeyser et al., 2016; Mittapalle et al., 2022). In the
latter application area, automatic classification of vocal intensity cat-
egory is of interest to distinguish speech recordings where the speaker
has deliberately used soft speech in order not to be overheard (Zhang
and Hansen, 2011). Previous studies have mainly addressed binary
classification problems in which ML has been used to automatically
distinguish a certain vocal intensity mode such as whispering (e.g.
Zhang and Hansen, 2011; Meenakshi and Ghosh, 2015; Sarria-Paja and
Falk, 2013) or shouting (e.g. Pohjalainen et al., 2013; Baghel et al.,
2020; Laffitte et al., 2016) from speech of normal loudness. However,
there are only a few investigations (Kodali et al., 2023b; Zhang and
Hansen, 2007; Zelinka et al., 2012) that have addressed the multi-class
classification problem and to the best of our knowledge, the regression
problem has not been studied yet in any article. We argue that the
best way to raise general interest in the proposed ML-based research
questions is to use the strategy that has been followed in many recent
works (Sharma et al., 2021; Zhou et al., 2022; Wielgat et al., 2021; Alku
et al., 2019; Kibria et al., 2022), that is, to publish a journal article that
describes the background and details of the speech corpus collected.

This article is organised as follows. In Section 2, the recording of
the AVID database is described together with the organisation of the
database and labelling of the data. Section 3 visualises the collected
data in terms of three acoustical features. In Section 4, the ML exper-
iments to be conducted in the study are explained. Section 5 provides
the results of the ML experiments by first reporting the results of
the multi-class classification experiments and then the results of the
regression experiments. Finally, a discussion and conclusions of the
study are provided in Sections 6 and 7, respectively.

term ‘vocal effort’ is used in studying the same phenomena (Traunmüller and
Eriksson, 2000). We regard these two terms as synonymous.
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Fig. 1. A speaker conducting a speaking task in the recording environment.

2. Data

2.1. Recording

Speech signals were recorded from 50 speakers (25 males and
25 females), who produced speech in four intensity categories (soft,
normal, loud, and very loud). In each category, the speakers were
allowed to use their habitual regulation of vocal intensity. In addition to
the acoustic speech signal, we also recorded electroglottography (EGG)
signals that measure the degree of contact between the vocal folds. (For
a review of EGG, see Herbst (2020)). Though both the acoustic speech
signal and the EGG signal were collected, this article focuses solely on
the former because it is the key modality in speech technology. All the
speakers were students at Aalto University, and none of them had a
history of any speech, voice or hearing disorders. The male speakers
were 20 to 38 years old, and the female speakers were 21 to 31 years
old. The speech signals were produced in English, and all participants
were proficient in English. The recordings were performed in a listening
room that fulfilled the requirements of ITU-R BS.1116-1 (Rec, 1997).
The DPA 4065-BL headset condenser microphone was used to record
the acoustic speech signal. The microphone was placed at a distance of
5 cm from the speaker’s lips. To record the EGG signal, the EG2-PCX2
EGG device was used. The recordings were conducted using a sampling
frequency of 44.1 kHz and a resolution of 32 bits. The other equipment
used in the recordings were an Amprobe SM-CAL1 calibrator (Anon,
2021a), an RME Babyface sound card (Anon, 2021b) and a laptop.
Using the calibrator, a calibration tone (a sinusoidal of 1 kHz) of 94 dB
in SPL was recorded before each speaker’s speech/EGG recording.

To elicit soft speech, the speaker was instructed to ‘Speak softly but
do not whisper; speak as you would talk to your peer in a lecture.’ For
normal speech, the speaker was instructed to ‘Speak as you would talk
to your friend during a lecture break and intervals.’ In order to elicit
loud speech, the speaker was instructed to ‘Speak as a lecturer,’ and
for very loud speech to ‘Speak as you would talk to someone in a noisy
room but do not to shout.’ Note that the speaker was not instructed to
use a predefined SPL in any category but he/she was allowed to use
his/her habitual vocal intensity in each four category. Fig. 1 shows a
speaker in the recording environment.

The data collection process was divided into two sessions (Session
1 and Session 2) both of which consisted of two speaking tasks: the
sentence reading task (SENT) and the paragraph reading task (PARA).
Session 2 was a repetition of Session 1, and the tasks were identical in
both sessions. In the SENT task, each speaker was asked to recite 25

Table 1
Number of speech files in each of the four intensity categories for the
two speaking tasks (SENT and PARA) of the AVID database.

Intensity category SENT task PARA task

Soft 2500 200
Normal 2500 200
Loud 2500 200
Very loud 2500 200
Total 10 000 800

isolated sentences in each of the four intensity categories. The ortho-
graphic transcriptions of the sentences were selected from the TIMIT
database (Garofolo, 1993). To make the speaker produce sentences of
different duration, orthographic transcriptions of different lengths were
selected from TIMIT by varying the number of words per sentence
from three to seven. This procedure yielded five sentence lengths,
and by selecting five different orthographic transcriptions for each
sentence length, 25 sentences were obtained in each intensity category.
In the PARA task, each speaker was asked to recite two different text
paragraphs in all four vocal intensity categories. The first paragraph
was identical for all the speakers, and it was taken from a weather
forecast (Anon, 2021c). The second paragraph was different for the
speakers, and it was obtained by selecting excerpts from a novel (Anon,
2008) that covered approximately an equal number of words for each
speaker. The size of the raw data in AVID is approximately 16 h. In
total, the SENT task consisted of 10 000 sound files (25 sentences ×
50 speakers × 4 intensity categories × 2 sessions), with 2500 files per
each intensity category. The PARA task consisted of 800 sound files
(2 paragraphs × 50 speakers × 4 intensity categories × 2 sessions),
with 200 files per each intensity category. Table 1 shows the number
of speech files in both the SENT and PARA tasks for each of the four
intensity categories.

2.2. Organisation of AVID

The collected data was saved to the AVID database, and the repos-
itory was organised using the structure shown in Fig. 2. The recorded
raw data, including both the speech and EGG waveforms, was saved to
Repository 1 as stereo wav files using the original sampling frequency
of 44.1 kHz. Since the main goal of AVID is to provide training and
testing data for speech-based ML experiments in the study of vocal
intensity, the acoustic speech signals were separated from the origi-
nal stereo recordings and saved to Repository 2 as mono wav files.
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Fig. 2. Repository structure of the AVID database. The recorded raw data (speech and EGG) was saved to Repository 1. Repository 2 consists of manually segmented
one-sentence-long labelled speech signals.

Repository 2 was divided into two sections: the first one for the speech
signals downsampled to 16 kHz, and the second one for the speech
signals saved using the original sampling frequency of 44.1 kHz. In this
study, we only use the signals of the former section of Repository 2,
because 16 kHz is the 𝑑𝑒 𝑓𝑎𝑐𝑡𝑜 sampling frequency for speech in ML
experiments. All the speech signals saved into Repository 2 are one-
sentence-long signals that were manually segmented from the recorded
signals produced both in the SENT and PARA tasks.

2.3. Labelling: Intensity category labels and SPL labels

In order to use the collected speech data in multi-class classifi-
cation studies of vocal intensity, the sentences of Repository 2 were
labelled with the intensity category (i.e. soft/normal/loud/very loud)
used by the speaker in the production of the corresponding signal. In
the remainder of this article, we refer to this categorical label as the
‘𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑙𝑎𝑏𝑒𝑙’. We would like to point out that with this
label, the recorded sentences are separated into four distinct classes in
the most straightforward manner according to the speaking task given
to the speaker. It is worth reminding that speakers were allowed to
use their habitual regulation of vocal intensity in the recording and
therefore it is possible that a sentence labelled ‘soft’ has a larger SPL
than a sentence labelled ‘normal’ because the former was produced by
a speaker that simply has a habitually loud voice. Hence, the intensity
category label is not based on the SPL of the produced sentence but is
𝑠𝑢𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒.

Instead of labelling the collected data using only the straightforward
approach described above, we supplied the AVID database with a
rich set of objective SPL values, called the ‘𝑆𝑃𝐿 𝑙𝑎𝑏𝑒𝑙𝑠’, in order to
use the data in a more diverse range of classification and regression
studies of vocal intensity. As will be demonstrated in Section 4, these
continuous SPL labels can be used in two types of ML experiments:
(1) in automatic classification of speech into intensity classes that
are defined objectively using SPL boundaries and in (2) regression
studies, where the SPL of a speech sentence is predicted. The AVID
database provides each sentence of Repository 2 with as many as 18
SPL labels that cover the most prevalent SPL parameters in frequency
weighting, time weighting and time averaging, as described in Švec

and Granqvist (2018). The SPL labels were computed as follows. First,
we removed silent segments and segments of unvoiced speech from
the recorded signals, as recommended in Švec and Granqvist (2018),
Švec et al. (2005). The removal of silence was conducted using the
SOX tool (Barras, 2012), which assumes that frames of active speech
can be separated from silence based on an energy threshold. Second,
by using the silence-removed speech signals together with the calibra-
tion tone, we computed 18 different SPL values for each sentence in
Repository 2 by varying the following commonly used SPL settings:
frequency weighting, time weighting and time averaging. For frequency
weighting, we used the A-, C-, and Z (i.e., zero) weightings. For time
weighting, we used the slow (S), medium (M) and fast (F) weightings
with the time constant 𝜏 of 1 s, 0.125 s and 0.03 s, respectively. For time
averaging, we used the mean SPL and the equivalent SPL. Hence, by
combining three frequency weightings, three time weightings and two
time averaging methods, each sentence was labelled with a total of 18
different SPL values. All these computations were conducted using the
software tool available in Švec and Granqvist (2018). More details of
the frequency weightings, time weightings and time averaging methods
can be found in Švec and Granqvist (2018).

In the remainder of this article, we refer to the SPL of a speech signal
using a notation that specifies how the settings described above were
selected. We use the notation 𝐿𝑖𝑗𝑘, where 𝐿 is the SPL measured in
decibels, and 𝑖, 𝑗, and 𝑘 refer to the time averaging (equivalent (eq)
or mean), frequency weighting (A, C or Z) and time weighting used
(S, M or F), respectively. As an example, 𝐿𝑒𝑞𝑍𝐹 refers to the SPL value
measured using the equivalent time averaging, Z frequency weighting
and fast time weighting.

3. Acoustical analyses and visualisation of the AVID speech data

The speech signals from the SENT task were analysed between the
different vocal intensity categories using three parameters: SPL (𝐿𝑒𝑞𝑍𝐹 ),
fundamental frequency (F0) and spectral tilt. Spectral tilt was estimated
using the first mel-frequency cepstral coefficient (MFCC-1). These three
parameters were first computed for each individual sentence and then
averaged across all the sentences spoken by each speaker. The pa-
rameters were expressed using violin plots to visualise and compare
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Fig. 3. Distribution of SPL(𝐿𝑒𝑞𝑍𝐹 ) for male (a) and female (b) speakers in the four intensity categories used in the recording of AVID.

the parameter distributions between the different intensity categories.
Fig. 3 shows the distribution of SPL (𝐿𝑒𝑞𝑍𝐹 ) for each vocal intensity
category separately for male and female speakers. The figure shows an
increasing trend from soft to very loud, with the lowest SPL values for
soft and the highest SPL values for very loud. Similarly, the distribution
of F0, depicted in Fig. 4, shows that the fundamental frequency is
highest in very loud phonation and lowest in soft phonation, with
normal and loud phonations showing intermediate values. Fig. 5 shows
that the speakers’ spectral tilt values decrease from the soft mode to the
very loud mode (i.e. spectral envelopes become flatter).

To further analyse the three parameters, one-way ANOVA tests were
performed to examine statistical differences in the parameter values
between the intensity categories. The ANOVA tests were conducted
separately for each of the three parameters, treating the underlying
parameter as a dependent variable and the intensity category as an
independent variable. The null hypothesis was that there was no dif-
ference in the parameter values between the vocal intensity categories.
The results showed that the intensity category had a significant effect
on all three parameters (SPL in females: F(3, 96) = 176.0, 𝑝-value <
1.0e−38; SPL in males: F(3, 96) = 152.0, 𝑝-value < 1.0e−35; F0 in
females: F(3, 96) = 26.1, 𝑝-value < 1.0e−11; F0 in males: F(3, 96) =
27.0, 𝑝-value < 1.0e−12; MFCC-1 in females: F(3, 96) = 64.0, 𝑝-value
< 1.0e−23; MFCC-1 in males: F(3, 96) = 35.0, 𝑝-value < 1.0e−15).

The distributions shown in Figs. 3–5 indicate statistically significant
results, which suggest that the speakers performed their speaking tasks
properly. Furthermore, the results demonstrate significant differences
between the intensity classes, not only in the main measure of vocal
intensity (SPL) but also in two other acoustical speech features (F0 and
spectral tilt). Therefore, the collected material is well-suited to be used
as training and testing data in ML-based classification and regression
studies of vocal intensity.

4. ML experiments

As explained in Section 1, one motivation for the current study is
to raise awareness of the speech and voice research communities for
ML-based studies of vocal intensity. We are particularly advocating the
utilisation of ML in a scenario where the original intensity information
of speech is lost because the signal has been recorded without SPL
calibration and is therefore expressed on an arbitrary amplitude scale.
In order to demonstrate how ML models can be used together with
the AVID database for these kinds of research problems, the following
two tasks are studied in this section: (1) classification of the intensity
category of speech, which is a multi-class classification task and (2)
prediction of SPL of speech, which is a regression task. A schematic di-
agram describing these two ML tasks is shown in Fig. 6. This sub-section
describes the components of the pipeline used for two tasks, including
labels, features and models employed, and evaluation metrics. All

Table 2
Division of the speech signals into four SPL-based intensity categories based on SPL
boundaries (type of SPL: 𝐿𝑚𝑒𝑎𝑛𝑍𝐹 ).

SPL-based intensity category SPL boundaries SENT task

Soft SPL < 79 dB 2348
Normal 79 dB ≤ SPL < 86 dB 2525
Loud 86 dB ≤ SPL < 93 dB 2814
Very loud SPL ≥ 93 dB 2313

Total 10 000

the experiments described in this section are based on the sentence
data collected in Repository 2. Speech is expressed according to the
scenario advocated above, that is, the original intensity information is
deliberately removed by normalising the maximum amplitude of each
time-domain signal in each intensity category to 1.0.

4.1. Labels

For the classification task, we train the classifier using supervised
learning based on two different labelling approaches. The first approach
is based on the subjective ‘𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦 𝑙𝑎𝑏𝑒𝑙’ explained in Sec-
tion 2.3 (i.e. each sample is labelled according to the target intensity
category adopted by the speaker in the recordings). The second ap-
proach corresponds to first dividing the speech samples objectively into
four intensity categories based on the SPL (𝐿𝑚𝑒𝑎𝑛𝑍𝐹 ) of each sample,
and then labelling each sample with the corresponding category. The
boundaries were set to such SPL values that yielded approximately
the same number of instances in each of the four category. The SPL
boundaries used in the SPL-based intensity category label are described
in Table 2. As shown by the second column of the table, a speech signal
was labelled as ‘soft’ when its SPL < 79 dB, as ‘normal’ when its SPL
was 79–86 dB, as ‘loud’ when its SPL was 86–93 dB, and as ‘very loud’
when its SPL > 93 dB.

4.2. Feature extraction

Three widely used frequency domain representations (spectrograms,
mel-spectrograms and MFCCs) were used as features, and all of them
were extracted from the normalised speech signals. The speech signals
were segmented into frames of 25 ms using a Hamming window and a
5 ms overlap. Spectrograms were generated using a 1024-point FFT,
yielding a 513-D vector, whereas mel-spectrograms were computed
using the same FFT length and 128 mel filters, resulting in a 128-D vec-
tor. For MFCCs, a 39-D vector, which comprised delta and delta-delta
coefficients, was computed. To obtain feature vectors for each sentence,
the three features were aggregated separately over all the frames, and
two statistics (the mean and standard deviation) were computed. Thus,
the resulting feature vectors for spectrogram, mel-spectrogram, and
MFCC were 1026-D, 256-D, and 78-D, respectively.
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Fig. 4. Distribution of F0 for male (a) and female (b) speakers in the four intensity categories used in the recording of AVID.

Fig. 5. Distribution of MFCC-1 (the measure of spectral tilt) for male (a) and female (b) speakers in the four intensity categories used in the recording of AVID.

Fig. 6. Block diagram of the ML tasks studied: (a) the multi-class classification task, and (b) the regression task.

4.3. Models

For both ML tasks, we employed SVM/Support vector regressor
(SVR) and CNN as ML-based models. SVM is a commonly used super-
vised ML algorithm for classification and regression tasks, while CNN is
a widely used neural network model for classification and identification
tasks. The key difference between SVM and CNN lies in the fact that
SVM-based classification involves two distinct stages (feature extraction
and classification), whereas in CNN, these two stages are combined
into a single network, which implicitly carries out both steps. However,
input hand-crafted features can also be used in CNN.

To create the training, validation and testing sets, the nested cross-
validation (CV) method was used with the number of inner and outer
loops set to 5 (Pedregosa et al., 2011). The GroupKFold approach was
employed to divide the inner and outer loops, ensuring that the data

from the same speaker was not used simultaneously in the training,
validation and testing sets.

SVM was implemented using the Scikit-learn library, which uses
the ‘one-versus-one’ approach for multi-class classification (Pedregosa
et al., 2011). To optimise the hyperparameters of the SVM, Grid-
SearchCV was used to consider a subset of three kernel types, C and
gamma values. The hyperparameters used for both ML models are pre-
sented in Table 3. As there were numerous best-fitted hyperparameters
for each inner loop and each setup, the resulting optimal parameter
values are not reported in this article.

CNN was implemented using the Tensorflow library (Abadi et al.,
2015). The Adaptive Moment Estimation (ADAM) optimiser was utilised
with a learning rate of 0.001, and the batch size was set to 32. The
number of training epochs was 20, and early stopping was employed
to prevent overfitting. The cross-entropy function was used as the loss
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Table 3
Hyperparameters used for the ML models.

Model Hyperparameters

SVM/SVR c : {0.1, 1, 10}
gamma:{0.1, 1, 10}
kernel:{‘rbf’, ‘poly’, ‘sigmoid’}

CNN conv1: filters = 32, kernel size = 3, strides = 2, activation = ReLU
conv2: filters = 64, kernel size = 3, strides = 2, activation = ReLU
maxpool1: pool size = 2
conv3: filters = 96, kernel size = 3, strides = 2, activation = ReLU
conv4: filters = 128, kernel size = 3, strides = 2, activation = ReLU
maxpool2: pool size = 2
flatten layer: -
dense layer1: units = 64, activation = ReLU
dropout: rate = 0.4
dense layer2: units = 4, activation = softmax

function for classification task, while mean squared error was used for
regression task.

4.4. Evaluation metric

Performance of the multi-class classification systems was evaluated
using accuracy as the evaluation metric and using confusion matrices
to visualise misclassifications. For the regression task, the coefficient of
determination (𝑅2), mean absolute error (MAE) and root mean square
error (RMSE) were used as evaluation metrics. For an efficient regres-
sion model, 𝑅2 should be high and MAE and RMSE should be low. In
addition to these three metrics, the results of the regression experiments
were assessed visually by depicting the residual plots, Q-Q plots and
true 𝑣𝑠. predicted plots for the testing data. The evaluation metrics
were calculated for each outer loop, and then the mean and standard
deviation were determined across all the loops. The evaluation metrics
employed in this study are standard measures commonly utilised for
assessing both classification (Géron, 2022) and regression tasks (Chicco
et al., 2021).

Formulas for computing the evaluation metrics are outlined below:

Accuracy =
Number of correct predictions
Total number of predictions × 100%. (1)

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − �̂�𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − �̄�)2
. (2)

MAE = 1
𝑛

𝑛
∑

𝑖=1
|𝑦𝑖 − �̂�𝑖|. (3)

RMSE =

√

∑𝑛
𝑖=1(𝑦𝑖 − �̂�𝑖)2

𝑛
. (4)

where 𝑛 is the number of test sentences, �̂�𝑖 is the predicted SPL of
the 𝑖th test sentence, and 𝑦𝑖 is the actual SPL of the 𝑖th test sentence.
The mean SPL, �̄�, is given by

�̄� = 1
𝑛

𝑛
∑

𝑖=1
𝑦𝑖.

5. Results

5.1. Classification of intensity category of speech

The results of the intensity category classification experiments are
reported in Table 4. The performances are presented by label (inten-
sity category label 𝑣𝑠. SPL-based intensity category label), by feature
(spectrogram 𝑣𝑠. mel-spectrogram 𝑣𝑠. MFCCs), and by classifier (SVM
𝑣𝑠. CNN). The results show that a better classification accuracy was
obtained when using the objective SPL-based intensity category labels
than when using the subjective intensity category label. A comparison

Table 4
Mean and standard deviation of classification accuracy (in %). The values are shown
separately for the two labelling approaches (intensity category label and SPL-based
intensity category label), three feature sets (spectrogram, mel-spectrogram and MFCCs),
and two classifiers (SVM and CNN).

Labelling Features SVM CNN

Intensity category label
spectrogram 65.0 ± 2.0 64.0 ± 2.0
mel-spectrogram 64.0 ± 1.0 63.0 ± 2.0
MFCCs 63.0 ± 3.0 60.0 ± 3.0

SPL-based intensity category label
spectrogram 82.0 ± 3.0 81.0 ± 1.0
mel-spectrogram 73.0 ± 4.0 70.0 ± 4.0
MFCCs 65.0 ± 7.0 64.0 ± 6.0

Fig. 7. Confusion matrix for the SVM classifier using the spectrogram feature based
on the intensity category label. The rows are the actual intensity category, and the
columns are the predicted intensity category.

between the features shows that, in most of the cases, the spectro-
gram feature performed better than the mel-spectrogram and MFCCs.
Between the classifiers, there is not much difference in the performance
between the labelling approaches. The best accuracy was obtained by
using the SPL-based intensity category labelling, spectrogram feature
and the CNN classifier, for which an accuracy of 82.0% was obtained,
which is more than three times higher than the chance level (of 25%)
(see Table 4).

The confusion matrices for the best-performing systems are depicted
in Figs. 7 and 8 based on the (subjective) intensity category labelling
and based on the (objective) SPL-based intensity category labelling, re-
spectively. As can be seen from Fig. 7, the machine is able to classify the
soft category best, yet there are misclassifications where soft samples
are classified as normal (the neighbouring class of soft speech in Fig. 7)
but clearly fewer misclassifications where soft samples are classified
as loud or very loud. Using the same intensity category labelling, the
machine makes the second best result for the other extreme class (very
loud), yet there are more misclassifications where very loud samples
have been classified into the neighbouring class (loud) compared to the
number of misclassifications where soft samples have been classified
into its neighbouring category (normal). In particular, correct classi-
fication of loud samples is clearly challenging for the machine when
the intensity category labelling is used as indicated by the low relative
number of correct classifications for the loud class (46.96%) in Fig. 7.
By comparing confusion matrices of Figs. 7 and 8, it can be seen that
the classification result is better for the SPL-based intensity category
labelling (Fig. 8) compared to the intensity category labelling (Fig. 7)
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Fig. 8. Confusion matrix for the SVM classifier using the spectrogram feature based
on the SPL-based intensity category label. The rows are the actual intensity category,
and the columns are the predicted intensity category.

as already shown by the accuracy values reported in Table 4. From
the confusion matrix shown in Fig. 8, it can be seen that the machine
again makes the best result in the classification of soft samples and the
second best result in the classification of very loud speech. Compared
to Fig. 7, the largest improvement is achieved in the classification of
normal and particularly loud speech, for which misclassifications of
the correct category into the neighbouring class are clearly smaller.
The differences in the observations made above from Figs. 7 and 8 can
be explained by the differences in the principles of the two labelling
approaches. As an example, it is namely possible that in producing
loud speech (the class with the largest number of misclassifications in
Fig. 7) a speaker might have used softer voice compared to another
speaker’s normal speech. It is difficult for the machine to make correct
classifications when the labelling is based on pre-defined four intensity
categories but the speaker is able to use his/her habitual regulation of
vocal intensity. However, when the labelling is based on the categories
defined by the objective SPL boundaries (as explained in Section 2.3),
the mapping form the spectral features extracted by the machine to the
SPL of the produced sound is more straightforward, which helps the
machine to distinguish speech better into the four intensity categories.

5.2. Prediction of SPL of speech

The results of the regression task are reported in Table 5. The
performances are presented by feature (spectrogram, mel-spectrogram
and MFCCs) and by classifier (SVR and CNN). For SVR, the best metrics
were achieved using the spectrogram feature, which yielded an 𝑅2 of
92%, an MAE of 1.78 and an RMSE of 2.36. For CNN, the best metrics
were obtained using the spectrogram feature that gave an 𝑅2 of 91%, an
MAE of 1.83 and an RMSE of 2.44. Comparing between the features,
the spectrogram performed better than mel-spectrogram and MFCCs.
Between the classifiers, SVR performed clearly better than CNN.

Figs. 9 and 10 show the residual, Q-Q and true 𝑣𝑠. predicted SPL
plots for the best SVR and CNN models (i.e. based on the spectrogram
feature). The residual plot shows the residuals on the vertical axis and
the predicted SPL values on the horizontal axis, providing information
of the model’s error across various target regions and allowing us to
identify any presence of heteroskedasticity. The red horizontal line
indicates no error, and any points above or below the line represent

the magnitude of the error. Another method used to verify if residuals
follow a normal distribution is the Q-Q plot. If the residuals follow a
normal distribution, the observed quantiles plotted against the theoret-
ical quantiles of a normal distribution should result in a straight line.
The true 𝑣𝑠. predicted SPL plots show how well the models predict
SPL. A closely clustered plot around the line of perfect prediction (red
line) indicates accurate predictions, while a scattered plot indicates
inaccurate predictions.

From the residual plots shown by the leftmost panels of Figs. 9
and 10, it can be inferred that there are more positive residual values
than negative ones. This indicates that the predicted SPL value was
typically greater than the actual SPL value, implying that the ML
models overestimated the SPL of speech. From the Q-Q plots shown
in the middle panels of Figs. 9 and 10, it can be observed that most
data points follow a roughly straight line, indicating a distribution that
approximates normality. This suggests that, on average, the predicted
SPL values are close to the actual SPL values. However, the presence of
outliers in the plot indicates that there are specific instances where the
model’s predictions deviate from this average behaviour. These outliers
are likely a result of the overestimation bias observed in the residual
plots. As shown by the true 𝑣𝑠. predicted plots depicted in the rightmost
panels of Figs. 9 and 10, the data points are fairly closely clustered
around the red line (i.e. the line corresponding to perfect prediction).
It is worth observing that the true SPL values in these figures cover a
wide dynamic range of about 60 – 105 dB, which means that the models
have succeeded well in the prediction of SPL from speech signals of
greatly different intensity characteristics. In addition, we would like
to point out that the average absolute error between the red line and
the predicted data samples in the rightmost panels of Figs. 9 and 10
correspond to the MAE values reported in Table 5 for the spectrogram
feature. From the table, we can observe that that the mean MAE for the
two classifiers were 1.78 and 1.83 dB. In order to assess the magnitude
of these errors, we compared these current results with observations
made in speech intensity measurements between healthy and patholog-
ical speech. In Fox and Ramig (1997), for example, it was reported that
SPL of speech in speakers with Parkinson’s disease was 2.0–4.0 lower
than in speech of healthy talkers. Taken together, the results of our
preliminary regression experiments indicate that the prediction of SPL
from speech signals expressed on an arbitrary amplitude scale yields
an average error that is smaller than the SPL difference that has been
reported between healthy and pathological speech. This observation
suggests that the proposed ML-based methodology could potentially
be used in speech-based biomarking technology to predict SPL, a key
parameter that is affected in pathological voice, from recordings that
have been collected without using an SPL meter or without recording
an SPL calibration tone.

6. Discussion

In recent years, many speech databases have been collected in
speech technology areas such as ASR, TTS and speaker verification.
However, in most popular databases, only the speech signal has been
recorded without a calibration tone and without using an SLM. After
the recording, speech has been stored as a digital signal whose ampli-
tude values are expressed on an arbitrary amplitude scale that typically
varies from 0.0 to 1.0. For a speech signal that has been recorded
and stored this way, it is not possible to easily distinguish whether
the stored sample was produced, for example, softly or loudly because
the waveform has no appropriate amplitude domain information. In
addition, it is not possible to know afterwards what SPL of the sample
was in the recordings.

In this article, we studied the use of ML in the estimation of intensity
characteristics of speech signals that are expressed as described above
using arbitrary amplitude scales without calibration information. The
topic is justified because the intensity regulation mechanism of speech
affects not only the level of sound amplitude (as in audio equipment)
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Table 5
Mean and standard deviation of 𝑅2 (in %), MAE (in dB) and RMSE (in dB). The values are shown separately for the three feature sets
(spectrogram, mel-spectrogram and MFCCs) and two classifiers (SVR and CNN).

Features SVR CNN

𝑅2 MAE RMSE 𝑅2 MAE RMSE

spectrogram 92.0 ± 2.0 1.78 ± 1.6 2.36 ± 2.2 91.0 ± 2.0 1.83 ± 0.16 2.44 ± 0.26
mel-spectrogram 85.0 ± 5.0 2.51 ± 3.6 3.19 ± 4.5 83.0 ± 6.0 2.66 ± 0.36 3.39 ± 0.5
MFCCs 80.0 ± 7.0 3.10 ± 0.4 3.72 ± 0.5 75.0 ± 11.0 3.18 ± 0.66 4.03 ± 0.75

Fig. 9. Residual, Q-Q and true 𝑣𝑠. predicted SPL plots for the SVR model using the spectrogram feature.

Fig. 10. Residual, Q-Q and true 𝑣𝑠. predicted SPL plots for the CNN model using the spectrogram feature.

but also several other acoustical features of the signal. In order to
study the topic, a new open repository called the AVID database was
recorded. The database includes speech and EGG signals produced
in four intensity categories (soft, normal, loud and very loud) by 25
female and 25 male speakers. Two speaking tasks (sentence reading and
paragraph reading) were used to elicit the data. The data was labelled
using 19 labels: the intensity category label (referring to the intensity
class used by the speaker) and 18 SPL labels (referring to the sam-
ple’s measured SPL including a variety of standard settings). Statistical
analyses conducted on three key acoustic speech features (SPL, F0 and
MFCC-1) indicated that the speakers changed their voice production
manner considerably between the four target intensity categories and
produced signals of greatly different acoustical characteristics.

The main goal of the study was to demonstrate how the AVID
database can be used in investigating ML-based prediction of intensity
characteristics of speech. Using the collected speech data, one 4-class
classification task (automatic classification of intensity category) and
one regression task (prediction of SPL) were studied. Both tasks were
based on the scenario described above, that is, speech training and
test data were represented by sentence-long speech signals whose am-
plitude values were deliberately warped by normalising each sample
to have its waveform maximum amplitude equal to 1.0. Both ML
tasks used supervised learning in which the ground truth (i.e. intensity

category and SPL) was taken from the corresponding labels of AVID.
In addition, both tasks used popular spectral features (spectrogram,
mel-spectrogram and MFCCs) and popular ML models (SVM and CNN).
By using these classifier architectures, we aimed to find out the per-
formance achievable with state-of-the-art classifiers in the two tasks
so that the results could be used as reference performance by other
researchers studying the same ML tasks with the AVID data. The results
of the automatic classification experiments indicated that the best
accuracy (of 82%) was obtained using the spectrogram feature with
the SVM classifier when the intensity category was labelled with the
objective SPL-based intensity category label. Interestingly, the best ac-
curacy obtained in the same classification task based on the subjective
intensity category labels was lower (by 10% in absolute accuracy). This
result indicates that the prediction of the speaker’s habitual intensity
category is a more difficult problem for a machine than the prediction
of the intensity category, which is defined objectively based on the SPL
of the produced speech signal.

For predicting SPL, the results reported in Table 5 show that the
best system, which was based on the spectrogram feature and the
SVR model, yielded an MAE of 1.78 dB. A comparison between this
result and a previous study investigating parkinsonian and healthy
speech (Fox and Ramig, 1997) shows that the mean SPL error of the
best ML-based regressor of the current study was smaller than the SPL
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difference between parkinsonian and healthy speech reported in Fox
and Ramig (1997). This observation gives preliminary positive evidence
for the utilisation of the studied ML-based methodologies in speech-
based health technology in conditions where the key parameter of voice
production, SPL, needs to be estimated from speech that is expressed
on arbitrary amplitude scales. In addition to Parkinson’s disease, SPL
has been reported to be affected in several other pathologies (such as
heart failure (Mittapalle et al., 2022), glottic carcinoma (Jotic et al.,
2012) and cognitive impairment (De Stefano et al., 2021; Meilán et al.,
2020)) as well as in healthy voice when speakers are subject to vocal
loading (Laukkanen and Kankare, 2006; Södersten et al., 2002). There-
fore, we believe that the proposed ML-based approach to estimate SPL
in scenarios where neither SLM nor calibration information is available
has lots of potential to be used in studying speech-based biomarking of
different disorders, in speech therapy and in studying vocal loading.
To our knowledge, the regression task has not been studied before.
Therefore, the regression results obtained can be used as baselines in
future studies, where more advanced ML models are developed in order
to improve the prediction performance in the regression problem.

In the current article, the new AVID database was introduced and its
usage in the ML-based study of vocal intensity was preliminary demon-
strated. It is worth noting that the evaluations were conducted using
the popular CV approach (see Section 4.1.3), in which both the system
training and testing phases utilised samples from the same database
(i.e. the AVID repository). In other words, there was no mismatch
between the system training and testing in terms of issues such as
environmental noise (i.e. all the samples were recorded in the same
quiet listening room), language (i.e. all the samples were produced
in English) or state of health (i.e. all the samples were produced by
healthy young speakers). Therefore, a potential limitation of the current
study is that the ML experiments were conducted in non-mismatched
conditions and the results obtained do not provide direct evidence
whether the methodology can be generalised to real-word scenarios
where the test samples might be noisy or pathological, or they may
represent different languages. Further research is therefore required to
study how much the classification and regression performance reported
in this study is affected when, for example, systems trained with
the AVID samples are tested with speech data from other datasets.
Moreover, as described in Section 4.2.1, the ML experiments reported
in this article were conducted using three popular acoustic features
(spectrograms, mel-spectrograms and MFCCs) that are all frequency-
domain approaches. These features were selected because they have
been widely used in multi-class classification and regression ML tasks
in different areas of speech research. Moreover, since the main purpose
of the present article was to introduce the new AVID database and to
advertise the use of the data in ML-based research of vocal intensity,
the authors did not consider it necessary to include other types of
features in the current study. However, after the submission of the
present article, the authors have continued their ML-based studies of
vocal intensity by publishing a recent conference article (Kodali et al.,
2023a). In this conference paper, the authors study the same intensity
category classification task as in the current article by comparing the
three spectral features with embeddings from two pre-trained models
(Wav2vec2 (Baevski et al., 2020) and Whisper (Radford et al., 2022))
and using SVM as classifier. The results of these latest experiments show
that the pre-trained model embeddings outperform the spectral features
by providing an improvement of about 7% (absolute) in accuracy.

Compared to the popular databases that are used in major areas of
speech technology, the proposed AVID database is clearly smaller. As
described in Section 2.1, AVID includes 16 h of raw speech produced by
50 speakers, whereas the amount of speech and the number of speakers
in, for example, TIMIT (Anon, 1993), LibriSpeech (Anon, 2022), and
NIST Speaker Recognition Evaluation Test Set (Greenberg et al., 2019)
are considerably larger (630 speakers and 5 h of speech in TIMIT; 2500
speakers and 1000 h of speech in LibriSpeech; 220 speakers and 340 h
of speech in NIST). The main significance of AVID is the availability of

intensity information (i.e. SPL values, intensity category) that is lacking
in most popular databases. Compared to a few speech databases that
have been used in similar studies on vocal intensity, the size of AVID
data is, however, much larger. The dataset used in Zhang and Hansen
(2007) and Zelinka et al. (2012), for example, included 12 and 13
speakers, respectively, and all the speakers in both datasets were male.

7. Conclusions

This study introduced the AVID database, which includes calibrated
speech recordings produced by 50 speakers in four intensity categories.
As the main contribution, the study demonstrated that the AVID data
can be used to train ML models to estimate both the intensity category
and the SPL of speech in scenarios where the original level infor-
mation of speech is not available in the signal waveform. Therefore,
the proposed ML approaches can in principle be used to estimate
the intensity characteristics of speech samples of existing databases
that have been collected without recording the calibration tone. In
addition, the proposed ML methodologies can be used in the estimation
of speech intensity characteristics of new recordings that are conducted
in circumstances where the use of an SLM or recording of a calibration
tone is not possible (e.g. in recording speech of patients with a phone or
laptop in real-life conditions outside clinics). In particular, the authors
would like to point out that the best regression network gave an MAE
that was less than 2 dB in the SPL prediction task despite the original
level information of speech was deliberately removed. The authors
consider this achievement particularly important and it may have far-
reaching implications to the speech-based biomarking study of health
because it suggests that the studied ML technology could predict SPL of
speech with a precision that enables distinguishing healthy and patho-
logical voices despite their true SPL levels have not been measured with
an SLM. The AVID database is publicly available at Kodali et al. (2024).
The authors welcome researchers interested in intensity regulation of
speech to utilise the database. In particular, we encourage researchers
interested in classification and regression problems to utilise AVID in
the development of new deep-learning methods for the study of vocal
intensity.
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