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A B S T R A C T

This article proposes a novel methodology for incorporating electrical sheet cutting deterioration in elec-
tromagnetic finite-element simulations of energy conversion devices. While the existing methods account
for the deterioration in the numerical integration either by increasing the mesh refinement or boosting the
Gaussian quadrature order, the proposed method is based on the re-computation of quadrature weights and
coordinates for a modeled deterioration, taking its explicit dependency into account. To validate the proposed
method, numerical solutions are compared with electromagnetic analytical solutions in a beam geometry. A
comprehensive analysis is then performed to evaluate the relative error, considering various model parameters.
This analysis leads to a systematic procedure for selecting the optimal element size to achieve desired error
levels. The procedure is successfully applied to a transformer geometry, and the computational performance
of the proposed method is compared with the existing approaches through a time-stepping analysis. The
results show that the proposed method is computationally more efficient than the existing approaches, and
it eliminates the need to increase the mesh refinement or boost the order of the quadrature. It can be easily
adapted for any type of deterioration profile.

1. Introduction

The use of electrical steel sheets in electromechanical energy con-
version devices requires cutting the sheets into appropriate shapes by
different techniques (e.g., punching, laser-cutting, waterjet cutting, and
electrical discharge machining), which deteriorates the magnetization
properties and increases the iron losses [1,2]. To accurately simulate
the energy conversion devices, magnetization, and iron loss models that
include the cutting deterioration should be developed and identified
based on experimental results and implemented into the finite-element
(FE) simulation tools in a correct manner.

Continuous local material modeling is one of the popular ap-
proaches to model the deterioration of the magnetization of electrical
steel sheets with a deterioration profile beginning from the cut edge
towards the middle of the material. This profile was often modeled
using exponential [3–5] or quadratic functions [6,7] parameterized as a
function of the distance from the cut edge. A similar approach was used
to include the effect of deterioration in the loss coefficients of empirical
formulas (i.e., Bertotti’s method [8] and Jordan’s method [9]) [5,6,10,
11]. So far, successful results have been obtained in the material mod-
eling stage with the use of these approaches compared to experimental
findings.

∗ Corresponding author.
E-mail address: ismet.t.gurbuz@aalto.fi (I.T. Gürbüz).

While the continuous iron loss models accounting for the cutting
deterioration have been commonly used at the post-processing stage of
the FE simulations, there are two primary approaches for implementing
the magnetization properties: (i) dividing the simulated geometry into
smaller sections with distinct magnetic properties and (ii) modeling
the magnetic properties as a continuous function of distance from the
cut edge. While the first approach is easier to implement, the second
approach offers a more accurate physical representation. Despite its
advantages, implementing this approach poses several challenges, in-
cluding numerical integration, appropriate selection of FE order, and
increased computational time.

In the first approach, multiple regions or layers are created within
the machine geometry and characterized by unique magnetization
curves. This method was applied in the simulation of an induction
machine, resulting in 5 regions in both the stator and rotor, as reported
in [7]. A similar approach was adopted in [2] for the simulation of a
capacitor motor and a synchronous generator, though the number of
layers was not specified. In [12], FE simulations were performed for
a permanent magnet-assisted synchronous reluctance motor, including
the effect of cutting on the magnetization of the stator material, using 3
distinct regions. Moreover, in [13], the effect of cutting on a permanent
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magnet synchronous motor was analyzed through FE simulations divid-
ing the stator into 6 layers and applying specific magnetization curves
to each layer. None of these studies provided information on the order
of the elements or the selection of Gauss integration points.

The second approach to FE simulation involves the calculation of
the distance to the cut edge, which is then used to obtain the local
magnetization characteristics for each integration point in a continuous
manner. To achieve enough accuracy, very fine meshes were used near
the deteriorated edges with first-order elements in [11] and second-
order elements in [14], without further details on how the integration
points and weights were selected. Due to the computational burden of
using very fine meshes near the cut edge for certain geometries, the use
of higher order elements with coarser meshes was proposed in [15] to
reduce the computational time of the FE simulation of an induction
motor with the inclusion of exponential deterioration profile. It was
found that second-order polynomials were suitable for representing
the flux density, and third-order elements were chosen accordingly.
The use of an adequate number of integration points was mentioned,
but specific details were not given. Better computational speed was
achieved in [4] through the use of mixed-order elements. The use of
the ‘‘same’’ number of Gauss integration points for all elements was
mentioned, but no additional information was provided.

The literature review shows that there have been several studies
on the implementation of cutting deterioration into FE machine sim-
ulation using either discrete modeling based on region subdivision or
continuous modeling. Nevertheless, in these studies, the selection of
the integration points for the quadrature has not been detailed, and
the spatial dependency of the deterioration term on the numerical
integration has been ignored. However, the deterioration term, whether
exponential or quadratic, has an explicit dependency on the space and
thus alters the form of the function to be integrated. Therefore, this
dependency should be taken into account in the quadrature to en-
sure more precise numerical integration in a computationally efficient
manner.

In this article, we propose a novel methodology for incorporating
exponential deterioration in numerical integration based on the re-
computation of the quadrature weights and coordinates for the modeled
deterioration profile. The proposed method is first validated through
comparisons with analytical solutions for a linear magnetostatic prob-
lem in a beam geometry. Comprehensive analyses are then conducted
to examine the accuracy of the iron loss calculation, taking into account
various parameters. In light of these analyses, a systematic procedure
for selecting the optimal element size to achieve the desired error level
is developed. This procedure is then applied to the 2-D FE simulation
of a nonlinear problem in a transformer geometry. Circuit equations
in the windings are coupled with the magnetostatic problem in the
transformer core and then solved with a time-stepping analysis, where
the computational efficiency of the proposed method compared to the
existing ones is investigated. The proposed method is analyzed and
validated for an exponential deterioration profile, but it is applicable
to any form of deterioration profile and cutting method, with the need
to identify the appropriate material coefficients.

2. Material modeling with cutting deterioration

In this paper, to facilitate the proposed incorporation methodology,
we adopted continuous permeability and loss modeling approaches
found in the existing literature. Initially, following the continuous
local material modeling approach in [7], we express the single-valued
reluctivity 𝜈 as a function of magnetic flux density norm 𝐵 and the
shortest distance from the cut edges 𝑟(𝑥, 𝑦) using two reluctivity curves,
one for the case where the material would be fully undamaged 𝜈un(𝐵)
and one for the case where the material would be fully damaged 𝜈dam(𝐵)
such that

𝜈(𝐵, 𝑟) = 𝜈un(𝐵) +
(

𝜈dam(𝐵) − 𝜈un(𝐵)
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛥𝜈(𝐵)

𝑒−𝑟∕𝜏r (1)

Table 1
Identified model parameters of the reluctivity curves.

Parameter 𝒄un 𝒄dam
𝑐1 8.3 4.0
𝑐2 5.3 × 105 T2𝑐1 1.6 × 105 T2𝑐1

𝑐3 2.9 × 105 m∕H 7.6 × 106 m∕H
𝑐4 121 m∕H 507 m∕H

Fig. 1. (a) Geometries of the measured samples. The samples are assembled by joining
different numbers of strips. The details of the samples and measurements are available
in [17]. (b) Measured data and modeled reluctivity curve for 𝜈un(𝐵) and 𝜈dam(𝐵) with
the deterioration profile 𝑒−𝑟∕𝜏r . The modeled reluctivity matches successfully with the
measurements in [17] with an absolute relative error of less than 5%.

where 𝜈un(𝐵), 𝜈dam(𝐵), and 𝜏r are model parameters to be identified
based on the experimental results. In line with the methodologies in [4,
5], we used an exponential deterioration profile 𝑒−𝑟∕𝜏r and assumed
a continuous behavior throughout the sample for practical consid-
erations. This approach removes the necessity of identifying a spe-
cific degradation depth, which has exhibited diverse treatment across
various studies.

The reluctivity curves 𝜈un(𝐵) and 𝜈dam(𝐵) in (1) are parameterized
by Marrocco’s equation proposed in [16], which expresses 𝜈(𝐵) as

𝜈(𝐵) = 𝐵2𝑐1

𝐵2𝑐1 + 𝑐2
(𝑐3 − 𝑐4) + 𝑐4. (2)

Here, 𝒄 = [𝑐1 𝑐2 𝑐3 𝑐4]T is a vector of model parameters that needs to
be identified. Consequently, the vectors of model parameters 𝒄un and
𝒄dam need to be identified for 𝜈un(𝐵) and 𝜈dam(𝐵), respectively. These can
be determined through a fitting procedure using experimental results
of samples exposed to different levels of cutting deterioration. In this
paper, we use the experimental results in [17], identify 𝒄un from the
measurements of the EDM-cut sample, and use 𝒄un and the measure-
ment results of the other samples to identify 𝒄dam and 𝜏r . The value
of 𝜏r is identified as 1∕640 in m and the vector of model parameters
obtained are given in Table 1. Geometries of the measured samples,
the modeled reluctivity curves for these samples, and their comparison
with the measured data are shown in Fig. 1.

Taking inspiration from the robustness and mathematical practi-
cality of the approach introduced in [5], similar to the magnetization
model used in Section 2, we express the total iron loss density 𝑝Fe under
the sinusoidal excitation of frequency 𝑓 and amplitude of flux density
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Fig. 2. (a) Identified hysteresis and dynamic loss coefficients 𝑘hy(𝑟) in W kg−1 Hz−1 T−2

and 𝑘dy(𝑟) in W kg−1 Hz−2 T−2. (b) The measured and modeled losses at 10 Hz and
100 Hz with the identified coefficients. The modeled losses match successfully with
the measurements in [17] with an absolute relative error of less than 8.5% for each
sample at 10 Hz, 25 Hz, 50 Hz, and 100 Hz.

𝐵m using Jordan’s two-component method with hysteresis and dynamic
loss coefficients 𝑘hy(𝑟) and 𝑘dy(𝑟) [9]:

𝑝Fe = 𝑘hy(𝑟)𝐵2
m𝑓 + 𝑘dy(𝑟)𝐵2

m𝑓
2 with

𝑘hy(𝑟) = 𝑘hy,un +
(

𝑘hy,dam − 𝑘hy,un
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛥𝑘hy

𝑒−𝑟∕𝜏hy

𝑘dy(𝑟) = 𝑘dy,un +
(

𝑘dy,dam − 𝑘dy,un
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛥𝑘dy

𝑒−𝑟∕𝜏dy

(3)

where 𝑘hy,un, 𝑘dy,un, 𝑘hy,dam, 𝑘dy,dam, 𝜏hy, and 𝜏dy are model parameters
need to be identified based on the experimental results. It should
be noted here that although the dynamic loss components might not
explicitly depend on the cutting, the interaction between the hysteresis
and the classical eddy-current affects these components.

Similar to the identification procedure for the reluctivity model, we
identify 𝑘hy,un and 𝑘dy,un from the measurements of the EDM-cut sample,
and use those and the measurement results of the other samples to iden-
tify 𝑘hy,dam, 𝑘dy,dam, 𝜏hy, and 𝜏dy. Fig. 2 shows the identified coefficients
and the modeled losses based on these coefficients in comparison with
the measurement results.

3. Implementation of material models into finite-element analysis

3.1. Formulation

In a 2-D FE simulation, the Galerkin-discretized [18] electromag-
netic field problem can be expressed as

𝑺(𝒂)𝒂 = 𝒇 (4)

where 𝑺 is the stiffness matrix, 𝒂 contains the nodal vector potentials,
and 𝒇 is the load vector. Including the effect of cutting in the reluctivity
using (1), the entries of the stiffness matrix 𝑆𝑖𝑗 with the nodal shape
functions 𝑁𝑖 and 𝑁𝑗 in domain 𝛺 become

𝑆𝑖𝑗 = ∫𝛺

(

𝜈un(𝐵) + 𝛥𝜈(𝐵)𝑒−𝑟∕𝜏r
) (

∇𝑁𝑖
)

⋅
(

∇𝑁𝑗
)

𝑑𝛺, (5)

which can be represented in two parts as 𝑆𝑖𝑗 = 𝑆1,𝑖𝑗 + 𝑆2,𝑖𝑗 such that

𝑆1,𝑖𝑗 = ∫𝛺
𝜈un(𝐵)

(

∇𝑁𝑖
)

⋅
(

∇𝑁𝑗
)

𝑑𝛺 (6)

𝑆2,𝑖𝑗 = ∫𝛺

(

𝛥𝜈(𝐵)𝑒−𝑟∕𝜏r
) (

∇𝑁𝑖
)

⋅
(

∇𝑁𝑗
)

𝑑𝛺. (7)

The correct calculation of 𝑆𝑖𝑗 requires the proper numerical integration
of the 𝑆1,𝑖𝑗 and 𝑆2,𝑖𝑗 terms for all domains. As the reluctivity term in
𝑆1,𝑖𝑗 does not depend explicitly on coordinates, the numerical integra-
tion can be accurately performed with 2-D Gaussian quadrature for
triangular elements with the well-known weights and coordinates [19].
However, the exponential weighting function in 𝑆2,𝑖𝑗 has an explicit
spatial dependency. Therefore, the same Gaussian quadrature used
for the integration of 𝑆1,𝑖𝑗 cannot yield an accurate result for 𝑆2,𝑖𝑗 .
The weights and coordinates of the integration points should be re-
computed taking the exponential deterioration function into account.
To address this issue, we propose a new approach, which will be
detailed in the upcoming part.

3.2. Numerical integration with exponential deterioration

In a triangular domain 𝛺 in 𝜉𝜂 reference coordinate system with
𝛺 = {𝜉, 𝜂 ∶ 0 ≤ 𝜉, 𝜂, 𝜉 + 𝜂 ≤ 1}, we express the quadrature rule
for the integration of function 𝑓 (𝜉, 𝜂) weighted with an exponential
deterioration function 𝑒−𝑟(𝜉,𝜂)∕𝜏r such that

∫𝛺
𝑒−𝑟(𝜉,𝜂)∕𝜏r𝑓 (𝜉, 𝜂)𝑑𝜉𝑑𝜂 ≈ 1

2

𝑛int
∑

𝑘=1
𝑤𝑘𝑓 (𝜉𝑘, 𝜂𝑘) (8)

where 𝑛int is the number of integration points, 𝑤𝑘 are the weights, and
(𝜉𝑘, 𝜂𝑘) are the coordinates of the integration points in the reference
element. By definition, the quadrature should be exact for all poly-
nomials in the complete polynomial space for degree 𝑛pol {𝜉𝑖𝜂𝑗 , 0 ≤
𝑖, 𝑗, 𝑖 + 𝑗 ≤ 𝑛pol}, when the polynomials replace 𝑓 (𝜉, 𝜂) [19]. Following
this definition, a nonlinear system of equations can be built by replacing
𝑓 (𝜉, 𝜂) in (8) with each of polynomials in the complete polynomial
space 𝑃1(𝜉, 𝜂), 𝑃2(𝜉, 𝜂),… , 𝑃𝑚(𝜉, 𝜂) with 𝑚 = (𝑛pol+1)(𝑛pol+2)∕2 as follows:

∫𝛺
𝑒−𝑟(𝜉,𝜂)∕𝜏r𝑃1(𝜉, 𝜂)𝑑𝜉𝑑𝜂 = 1

2

𝑛int
∑

𝑘=1
𝑤𝑘𝑃1(𝜉𝑘, 𝜂𝑘)

∫𝛺
𝑒−𝑟(𝜉,𝜂)∕𝜏r𝑃2(𝜉, 𝜂)𝑑𝜉𝑑𝜂 = 1

2

𝑛int
∑

𝑘=1
𝑤𝑘𝑃2(𝜉𝑘, 𝜂𝑘)

⋮

∫𝛺
𝑒−𝑟(𝜉,𝜂)∕𝜏r𝑃𝑚(𝜉, 𝜂)𝑑𝜉𝑑𝜂 = 1

2

𝑛int
∑

𝑘=1
𝑤𝑘𝑃𝑚(𝜉𝑘, 𝜂𝑘).

(9)

If the terms on the left-hand side are computed accurately, the resulting
nonlinear equation system can be solved to obtain 𝑛int , 𝑤𝑘, and (𝜉𝑘, 𝜂𝑘)
for domain 𝛺.

Following this property, in the pre-computation stage of the FE
simulations, we build the complete nonlinear system of equations in (9)
for each domain of a meshed geometry by computing the left-hand side
integrals numerically with an adaptive quadrature method. We then
solve (9) by using a nonlinear solver based on Levenberg–Marquardt
algorithm by keeping 𝑛int the same as in the Gaussian quadrature
in [19]. Next, we store the computed weights and coordinates, and
then compute and store the shape functions and their derivatives at
the computed coordinates for each domain. The entire process can be
done in parallel in the pre-computation stage of the FE solution.

During the FE solution, we perform the numerical integration of
𝑆1,𝑖𝑗 with the Gaussian quadrature weights and coordinates, and shape
functions and their derivatives at those coordinates. We perform the
numerical integration of 𝑆2,𝑖𝑗 using the re-computed and stored weights
and coordinates, and shape functions and their derivatives for the
corresponding domain with the same 𝑛int as in 𝑆1,𝑖𝑗 . Thus, for each FE
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domain, including the mapping between 𝜉𝜂 reference coordinate system
and 𝑥𝑦 global coordinate system, the calculation of 𝑆2,𝑖𝑗 is obtained as
follows:

𝑆2,𝑖𝑗 =
1
2

𝑛int
∑

𝑘=1
𝑤𝑘

[

𝜈(𝐵)
(

𝑱−1∇𝜉𝜂𝑁
′
𝑖
)

⋅
(

𝑱−1∇𝜉𝜂𝑁
′
𝑗

)

|𝑱 |
]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
computed at the re-computed coordinates (𝜉𝑘 ,𝜂𝑘)

(10)

where

𝑱 =

⎡

⎢

⎢

⎢

⎣

𝜕𝑥
𝜕𝜉

𝜕𝑦
𝜕𝜉

𝜕𝑥
𝜕𝜂

𝜕𝑦
𝜕𝜂

⎤

⎥

⎥

⎥

⎦

, ∇𝜉𝜂 =

⎡

⎢

⎢

⎢

⎣

𝜕
𝜕𝜉
𝜕
𝜕𝜂

⎤

⎥

⎥

⎥

⎦

, (11)

and 𝑁 ′
𝑖 , 𝑁

′
𝑗 are the shape functions at the re-computed coordinates. In

the remainder of the paper, we adopt the following terminology:

• Proposed method: The numerical integration of 𝑆1,𝑖𝑗 with the Gaus-
sian quadrature weights and coordinates, and shape functions
and their derivatives at those coordinates; and the numerical
integration of 𝑆2,𝑖𝑗 with the re-computed and stored weights
and coordinates, and shape functions and their derivatives at re-
computed coordinates in the pre-computation stage. The same
terminology is also used for the numerical integration of similar
forms.

• Classical method: The numerical integration of 𝑆1,𝑖𝑗 and 𝑆2,𝑖𝑗 in a
combined form as 𝑆𝑖𝑗 in (5) with the Gaussian quadrature weights
and coordinates, and shape functions and their derivatives at
those coordinates. The same terminology is also used for the
numerical integration of similar forms.

4. Applications and results

In this section, we apply the proposed method to two different ge-
ometries and compare it against the application of the classical method.
A short description of the applications in the studied geometries is as
follows:

(i) Beam geometry: We model the deterioration in the magnetiza-
tion using a linear material law in a magnetostatic case. We
derive an analytical solution and use it as a reference to eval-
uate the accuracy of the FE solutions and numerical integration
methods.

(ii) Transformer: We model deterioration in both the magnetization
and iron losses using a nonlinear material law in 2-D FE sim-
ulations. We select the element size based on the results from
the beam geometry and couple the magnetostatic problem in the
transformer core with circuit equations in the windings. Then,
we perform a time-stepping analysis to evaluate the accuracy
of numerical integration methods in calculating iron losses and
investigate the computational performance of these methods.

4.1. Beam geometry

A beam geometry with two deteriorated edges in the 𝑥𝑦-plane is
studied (Fig. 3(a)). The vectors of magnetic flux density 𝑩 = 𝐵(𝑥)𝒖𝑦
and magnetic field strength 𝑯 = 𝐻(𝑥)𝒖𝑦 are aligned in the 𝑦-direction.
Both edges of the beam are considered to be deteriorated by cutting
and the minimum distance to the closest cut edge is used for 𝑟(𝑥, 𝑦) in
the material modeling (see (1)).

4.1.1. Analytical and numerical solutions
The magnetic flux 𝛷 per thickness (Wb/m) is enforced with a

predefined average flux density 𝐵p such that

𝛷 = 2∫

𝐿

0
𝐵(𝑥)𝑑𝑥 = 𝐵p2𝐿. (12)

Fig. 3. (a) Studied beam geometry in the 𝑥𝑦-plane with the deteriorated edges along
the 𝑦 axis. (b) Mesh of the simulated beam geometry for ℎ = 𝐿 = 10 mm and 𝑒size = 𝐿∕8.

Fig. 4. Comparison of 𝐵(𝑥) obtained from the analytical reference solution and FE
simulations using proposed and classical methods with 𝑒size = 𝐿∕8, 𝑛el = 2, 𝑛quad = 2, and
𝑛int = 3 for 𝐵p = 1 𝑇 and 𝜏 = 𝜏r = (1∕640) m. It should be noted that a continuous
exponential decaying deterioration is considered throughout the sample (see (1)). The
results match successfully.

In the absence of current density 𝑱 , Ampere’s law is

∇ ×𝑯 =
𝜕𝐻(𝑥)
𝜕𝑥

= 0. (13)

Using the magnetization model in (1) for the constitutive relationship
between 𝑯 and 𝑩 for the linear material case (with a generic represen-
tation of decay constant 𝜏 to distinguish it from the identified decay
constant 𝜏r), the differential equation in (13) becomes
(

𝜈un + 𝛥𝜈𝑒−(𝐿−|𝑥|)∕𝜏
) 𝜕𝐵(𝑥)

𝜕𝑥
+ 𝛥𝜈

𝜏
𝑒−(𝐿−|𝑥|)∕𝜏𝐵(𝑥) = 0. (14)

Due to the symmetry reasons, it is sufficient to solve (14) only for the
positive region of the geometry (0 < 𝑥 < 𝐿), for which the analytical
solution can be expressed as

𝐵(𝑥) = 𝐵c
𝜈un + 𝛥𝜈

𝜈un + 𝛥𝜈𝑒−(𝐿−𝑥)∕𝜏
, (15)

where 𝐵c is a constant and can be obtained by inserting (15) into (12)
and solving for 𝐵c. The analytical solution is exact and considered to
be a reference for the comparisons.

For the numerical solution, a homogeneous Dirichlet condition is
applied on the deteriorated edges by setting the nodal vector potentials
to 𝑎(𝑥 = ±𝐿) = ±𝛷∕2. The problem in Fig. 3(a) with the dimensions
ℎ = 𝐿 = 10 mm is simulated for meshes with both second-order and
third-order triangular elements, labeled as 𝑛el = 2 and 𝑛el = 3, for a wide
range of element sizes 𝑒size =

[

𝐿∕8, 𝐿
]

(see Fig. 3(b) for 𝑒size = 𝐿∕8) and
a wide range of decay constants 𝜏 =

[

1∕104, 1∕10
]

m.
With the proposed method, we keep the order of quadrature 𝑛quad

at the minimum required order 𝑛quad = 2(𝑛el − 1) (i.e., 𝑛quad = 2 for
𝑛el = 2 and 𝑛quad = 4 for 𝑛el = 3) and choose the corresponding number
of integration points 𝑛int (i.e., 𝑛int = 3 for 𝑛quad = 2 and 𝑛int = 6 for
𝑛quad = 3). With the classical method, we boost 𝑛quad gradually to reach
to a similar accuracy as the proposed method, which is achieved for
𝑛quad = 8 and correspondingly 𝑛int = 16.

Fig. 4 shows an example comparison of the FE simulation results
obtained using classical and proposed methods, with the analytical
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Fig. 5. The figure illustrates the relative error, denoted by 𝜖, between the analytical reference solution and numerical solution in the calculation of the variation of 𝐵2
m from the

undamaged case for the beam geometry in Fig. 3. The simulations are obtained using both (a) second-order and (b) third-order triangular elements, labeled as 𝑛el = 2 and 𝑛el = 3.
For both 𝑛el = 2 and 𝑛el = 3, the results are obtained for a wide range of 𝜏∕𝐿 and 𝑒size∕𝐿 values using proposed and classical methods, with the latter utilizing different orders of
quadrature 𝑛quad and corresponding number of integration points 𝑛int . The used values of 𝑛el, 𝑛quad, and 𝑛int are indicated inside the figures. The red dashed lines inside the figures
indicate where 𝜖 = ±5%.

reference for the meshed geometry in Fig. 3(b) for a predefined average
flux density 𝐵p = 1 T and decay constant 𝜏 = 𝜏r = (1∕640) m, where
𝜏r = (1∕640) m is the identified decay constant for the magnetization
model in (1) (see Fig. 1(a)). The details of 𝑛el, 𝑛quad, and 𝑛int are given
inside the figure.

As Fig. 4 shows, the FE simulation results have a high level of
accuracy compared to the analytical solution, which validates the
correct implementation of the FE algorithm and the applicability of the
proposed method.

4.1.2. Analysis
To determine how accurately the numerical integration method

reflects on the increase of the iron losses in a deteriorated material
due to the variation of the square of the RMS flux density 𝐵2

rms (as
𝑝Fe ∝ 𝐵2

rms), the variation from the square of the RMS flux density
of the undamaged case 𝐵2

un for both the FE-simulated cases and the
corresponding analytical solution is calculated. This is represented by
the following equations:

𝛥𝐵2
FE = 𝐵2

FE − 𝐵2
un (16)

𝛥𝐵2
A = 𝐵2

A − 𝐵2
un (17)

where 𝐵2
FE and 𝐵2

A are the squares of the RMS flux densities obtained
from the FE and analytical solutions, respectively. Then, the relative
error 𝜖 between the FE-simulated and analytical solutions is calculated
by

𝜖 =

(

𝛥𝐵2
FE − 𝛥𝐵2

A

𝛥𝐵2
A

)

. (18)

Fig. 5 illustrates 𝜖 calculated for each FE-simulated case, which is
performed using both proposed and classical methods for the numerical
integration. As the deterioration profile is a function of both decay
constant and distance from the cut edge, the data in the plots is given
per length 𝐿, which is 10 mm for the simulated geometry in Fig. 3(a),
and this allows easy adaptation to similar geometries with different
𝐿. To show a range where the absolute relative error is acceptable,
e.g. |𝜖| < 5%, red dashed lines are used in the plots correspondingly.

Fig. 5 shows that for a fixed decay constant 𝜏∕𝐿, 𝜖 decreases as
the element size 𝑒size∕𝐿 decreases. This is expected as denser meshes

provide greater accuracy in the FE simulations. Additionally, as the
decay constant 𝜏∕𝐿 decreases, the value of the required element size
𝑒size∕𝐿 to reach the acceptable accuracy decreases. The reason is that
as the decay constant 𝜏∕𝐿 decreases, the decay becomes steeper, which
can be captured with the use of smaller elements. In the same manner,
for a fixed element size 𝑒size∕𝐿, 𝜖 decreases as decay constant 𝜏∕𝐿
increases.

For a fixed decay constant 𝜏∕𝐿 and utilizing the same method for
numerical integration, whether proposed or classical, FE simulations
performed with the third order triangular elements (𝑛el = 3) always
yield better accuracy than those with the second order triangular
elements (𝑛el = 2) due to a better representation of the approximated
quantities with the shape functions. It is observed that the same accu-
racy level can be reached with the use of much coarser meshes. For
instance, with the proposed method, while the absolute relative error
of less than 5% for the case 𝜏∕𝐿 = 1∕(2.5 × 101) is reached when
𝑒size∕𝐿 = 1∕8 with 𝑛el = 2, the use of 𝑒size∕𝐿 = 1∕2 is sufficient for
the case with 𝑛el = 3.

For a fixed order of triangular elements 𝑛el and using the same
order of quadrature 𝑛quad, the proposed method typically yields better
accuracy than the classical method for the same simulated case. In most
cases, the same level of accuracy can be achieved with the coarser
meshes. For instance, when 𝑛el = 2 and 𝑛quad = 2, the proposed method
reaches an absolute relative error of less than 5% for the case 𝜏∕𝐿 =
1∕(5 × 101) when 𝑒size∕𝐿 = 1∕8, while the classical method requires the
use of 𝑒size∕𝐿 = 1∕16 to achieve the same accuracy.

For a fixed order of triangular elements 𝑛el and using the classical
method, increasing the order of quadrature 𝑛quad and correspondingly
the number of integration points 𝑛int increases the accuracy for the
same simulated case. As the results show, the use of proposed method
with for instance 𝑛el = 2 and 𝑛quad = 2 and the use of classical method
with 𝑛el = 2 and 𝑛quad = 8 yield a similar level of accuracy, and require a
similar 𝑒size∕𝐿 to reach a specific accuracy. However, for 𝑛quad < 8, the
proposed method predominantly yields better accuracy than the classical
method for the same simulated case.

4.1.3. Optimal element size selection
Next, we investigate the threshold element size 𝑒size∕𝐿 required to

achieve |𝜖| < 5% as a function of the decay constant 𝜏∕𝐿 for each
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Fig. 6. The figure illustrates the required 𝑒size∕𝐿 for the simulated 𝜏∕𝐿 using (a) second
order and (b) third order triangular elements, labeled as 𝑛el = 2 and 𝑛el = 3, to achieve
|𝜖| < 5%. Since the simulations were performed with maximum 𝑒size∕𝐿 = 1, the axis
is limited to 1. 𝜏r∕𝐿, 𝜏hy∕𝐿, and 𝜏dy∕𝐿, where 𝜏r = (1∕640) m, 𝜏hy = (1∕3600) m,
𝜏dy = (1∕240) m, and 𝐿 = 10 mm, are shown with the red dashed lines.

simulated case in Fig. 5 as well as the identified material model decay
constants in Section 2. To achieve this, in addition to the simulated
cases in Fig. 5, simulations for the identified material model decay
constants (𝜏r = (1∕640) m, 𝜏hy = (1∕3600) m, and 𝜏dy = (1∕240) m)
are performed. For a fixed decay constant 𝜏∕𝐿, the values of the largest
element size 𝑒size∕𝐿 where |𝜖| < 5% and the smallest element size 𝑒size∕𝐿
where |𝜖| > 5% are then extracted. Afterward, these values are used
in the interpolation to obtain the threshold 𝑒size∕𝐿 where |𝜖| = 5%.
Exceptionally, if |𝜖| = 5% is already reached when 𝑒size∕𝐿 = 1, the
threshold is also set to 𝑒size∕𝐿 = 1. Fig. 6 illustrates the required element
size 𝑒size∕𝐿 as a function of the decay constant 𝜏∕𝐿. The identified
model decay constants 𝜏r , 𝜏hy, and 𝜏dy per 𝐿 are shown with the red
dashed lines.

Fig. 6 shows that for the second order triangular elements (𝑛el = 2),
both the classical method with 𝑛quad = 8 and the proposed method
have similar requirements for the element size 𝑒size∕𝐿 for any value
of decay constant 𝜏∕𝐿. The classical method with 𝑛quad = 2 has similar
requirements for 𝑒size∕𝐿 as the others when 𝜏∕𝐿 > 3×10−1, but requires
a smaller 𝑒size∕𝐿 when 𝜏∕𝐿 ≤ 3 × 10−1. For the third order triangular
elements (𝑛el = 3), both the proposed method and the classical method
with 𝑛quad = 8 have similar requirements for the element size 𝑒size∕𝐿
when 𝜏∕𝐿 ≤ 2 × 10−2 and 𝜏∕𝐿 ≥ 10−1. When 2 × 10−2 < 𝜏∕𝐿 < 10−1,
the proposed method has a higher threshold for the element size 𝑒size∕𝐿,
and thus requires a coarser mesh. The classical method with 𝑛quad = 2
has similar requirements for the element size 𝑒size∕𝐿 as the others when
𝜏∕𝐿 > 2 × 10−1, but requires a denser mesh and a smaller element size
𝑒size∕𝐿 when 𝜏∕𝐿 ≤ 2 × 10−1.

Although this whole analysis is performed with a linear material,
the presented scenarios in Fig. 5 can be employed to select the element
size for a given accuracy in various applications. In the next section,
we will adopt this procedure for selecting the required element size for
transformer applications.

4.2. Transformer

A transformer geometry in the 𝑥𝑦-plane is studied through 2-D FE
simulations (Fig. 7(a)). In these simulations, the deterioration in the

Fig. 7. (a) Simulated 2-D transformer geometry. ℎin = 20 mm, ℎout = 40 mm, and
𝐿 = 10 mm. It should be noted that all edges of the transformer are assumed to be
deteriorated by cutting. (b) Flux density distribution obtained from the FE simulation
using proposed method with 𝑛el = 2, 𝑛quad = 2, and 𝑒size = 𝐿∕6.

Table 2
Parameters used in the circuit equations.

Parameter Value

Amplitude of supply voltages 240
√

2 V
Frequency of excitations 50 Hz
Number of turns 5955
Resistance of windings 0.30 Ω

magnetization and iron losses are modeled using the presented models
in Section 2. The dimensions of the simulated transformers are chosen
such that ℎin = 20 mm, ℎout = 40 mm, and 𝐿 = 10 mm. All edges
of the transformer are considered to be deteriorated by cutting and
the minimum distance to the closest cut edge is used for 𝑟(𝑥, 𝑦) in the
material modeling (see (1) and (3)).

4.2.1. Simulation results and analysis
In order to evaluate the accuracy of the numerical integration meth-

ods in the computation of iron losses and compare their computational
performance, a time-stepping analysis is carried out whereby the circuit
equations in the transformer windings are solved in a coupled manner
with the magnetostatic problem in the magnetic core. Sinusoidal volt-
ages with an amplitude of 240

√

2 V and a frequency of 50 Hz are applied
to the primary and secondary windings of the transformer, and the
number of turns in each winding is adjusted to yield a current density
𝐽 = 5 × 106 A∕m2. The input parameters used in the circuit equations
of both primary and secondary windings are listed in Table 2.

The deterioration in the magnetization is included in the FE solution
of the electromagnetic field problem using the formulation in (1) with
the identified parameters in Fig. 1(b). The total iron losses 𝑃Fe are
computed in a post-processing manner after obtaining the FE solution
utilizing the iron loss model in (3) with the identified parameters in
Fig. 2(a). In order to account for the contribution of each harmonic in
the losses, Fourier harmonic analysis is performed for each element.
Following a similar approach to [20,21], total hysteresis and dynamic
losses 𝑃hy and 𝑃dy over the volume 𝑉 are calculated such that

𝑃hy = ∫𝑉

[ ∞
∑

𝑛=1

(

𝑘hy,un + 𝛥𝑘hy𝑒
−𝑟∕𝜏hy

)

𝐵2
m,𝑛

(

𝑛𝑓s
)

]

𝑑𝑉 , (19)

𝑃dy = ∫𝑉

[ ∞
∑

𝑛=1

(

𝑘dy,un + 𝛥𝑘dy𝑒
−𝑟∕𝜏dy

)

𝐵2
m,𝑛

(

𝑛𝑓s
)2
]

𝑑𝑉 , (20)

where 𝑓s is the supply frequency, 𝑛 is the harmonic number, and 𝐵m,𝑛
is the peak value of the flux density norm for the 𝑛th harmonic for
the corresponding element. Each of the integrals is in a similar form as
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Table 3
Details of the simulated cases.

𝑛el 𝑛quad Method 𝑒size Nodes
in iron

Case 1 2 2 Classical 𝐿∕12 76 416
Case 2 2 8 Classical 𝐿∕6 19 104
Case 3 2 2 Proposed L/6 19104

Case 4 3 4 Classical 𝐿∕6 31 840
Case 5 3 8 Classical 𝐿∕3 7960
Case 6 3 4 Proposed L/3 7960

(5) and thus can be numerically integrated with both the proposed and
classical methods.

To accurately estimate the iron losses within a specified error range,
proper selection of 𝑒size is crucial in FE simulations. Proper selection
of 𝑒size enables accurate numerical integration of each term with the
deterioration decay constant parameters used in the modeling (𝜏r =
(1∕640) m, 𝜏hy = (1∕3600) m, and 𝜏dy = (1∕240) m). The most accurate
estimation can be reached by first finding the required element size 𝑒size
for each deterioration decay constant parameter and then choosing the
minimum among those to account for the worst case. Following this
property, for each simulated case, element size 𝑒size can be selected
based on the corresponding threshold value for 𝜏hy = (1∕3600) m. The
simulations are performed for both second and third-order triangular
elements (𝑛el = 2 and 𝑛el = 3) using the proposed and classical methods
for the numerical integration within the FE simulation and also in the
post-processing for the computation of the total iron losses over the
volume 𝑃Fe. Table 3 shows the details of the simulated cases, referred to
as Cases 1–6 in the upcoming parts, and the selected values of element
sizes 𝑒size. Fig. 7(b) shows an example of the flux density distribution
obtained from the simulations using the proposed method with 𝑒size =
𝐿∕6, 𝑛el = 2, and 𝑛quad = 2.

As there is no analytical solution for the nonlinear case to use as a
reference, a very dense mesh with 𝑒size = 𝐿∕12 is simulated using the
proposed method with the third order triangular elements (𝑛el = 3). 𝑃hy
and 𝑃dy are computed at the post-processing stage and then considered
as a reference, i.e, 𝑃hy,ref and 𝑃dy,ref . Similar results, with an absolute
error of less than 0.1%, are obtained from the simulations of the same
mesh discretization using the classical method with 𝑛el = 3 and 𝑛quad = 8,
which verifies the feasibility of the reference selection. Then, absolute
relative errors for hysteresis loss 𝜖hy and dynamic loss 𝜖dy for each
simulated case in Table 3 are calculated as follows:

𝜖hy =
|

|

|

𝑃hy,FE − 𝑃hy,ref
|

|

|

𝑃hy,ref
, (21)

𝜖dy =
|

|

|

𝑃dy,FE − 𝑃dy,ref
|

|

|

𝑃dy,ref
, (22)

where 𝑃hy,FE and 𝑃dy,FE denote the hysteresis and dynamic losses for the
FE-simulated cases. Fig. 8 shows the calculated 𝜖hy and 𝜖dy.

As shown in Fig. 8, 𝜖hy and 𝜖dy are below 2% for all simulated cases,
confirming the validity of the element size 𝑒size procedure presented in
Section 4.1. It is observed that 𝜖hy is slightly higher than 𝜖dy, which is
expected as 𝜏hy < 𝜏dy. The best accuracy is achieved when 𝑛el = 3.

4.2.2. Computational time analysis
The FE simulations are performed for all the cases in Table 3

using a time-stepping analysis for two supply periods, discretizing
each period into 400 steps. The simulations are performed in MATLAB
software using Intel® CoreTM i5-11600 @ 2.80 GHz processor with
32 GB RAM. The iterations are set to stop when the norm of the nodal
vector potentials reaches below 1 × 10−5. During the simulations, CPU
times for pre-computation, time-stepping, and post-processing stages
are recorded. Table 4 shows the recorded CPU time data for each
simulated case, denoted as Cases 1–6 (see Table 3 for the details of the
cases).

Fig. 8. Calculated 𝜖hy and 𝜖dy . Each plot shows the calculations of the simulations
conducted with both second-order and third-order triangular elements, labeled as 𝑛el = 2
and 𝑛el = 3. For the same triangular element order 𝑛el value, 3 different combinations
of the quadrature order 𝑛quad and numerical integration method are simulated, which
makes 6 cases in total (see Table 3).

Table 4
Details of the CPU time data of the simulated cases.

Av. no. of Pre- Time- Post- Total
iterations computation stepping processing
per step

Case 1 2.5 – 28378 s 104.5 s 28482 s
Case 2 2.5 – 3017 s 27.9 s 3045 s
Case 3 2.5 0.5 s 2719 s 39.9 s 2759 s

Case 4 2.5 – 4306 s 25.9 s 4332 s
Case 5 2.5 – 355.9 s 7.8 s 363.7 s
Case 6 2.5 0.8 s 313.1 s 11.9 s 325.8 s

Table 4 shows that the majority of computational time is spent
in the time-stepping stage. The pre-computation stage takes less than
1 s and can be considered to be negligible in the analysis of total
computational time. For the simulations with 𝑛el = 2 (Cases 1–3), the
CPU time recorded in the time-stepping stage of the cases using the
classical method with 𝑛quad = 8 (Case 2) and the proposed method
(Case 3) is significantly less than that of the case using the classical
method with 𝑛quad = 2 (Case 1). Similarly, for the simulations with
𝑛el = 3 (Cases 4–6), the CPU time recorded in the time-stepping stage
of the cases using the classical method with 𝑛quad = 8 (Case 5) and the
proposed method (Case 6) is significantly less than that of the case using
the classical method with 𝑛quad = 4 (Case 4). The reason behind the
significant differences can be directly attributed to the increased degree
of freedom due to denser meshes.

The use of the proposed method leads to a 9.9% and 12% less
computational time in the time-stepping stage for the simulations with
𝑛el = 2 and 𝑛el = 3 respectively, compared to the use of the classical
method with 𝑛quad = 8. Although the post-processing stage is longer
when the proposed method is used, it is significantly shorter than the
time-stepping stage and does not significantly impact the total compu-
tational time. As a result, the overall difference in the computational
time becomes 9.4% and 10.4% for the simulations with 𝑛el = 2 and
𝑛el = 3 respectively.

Comparison of the simulated cases with 𝑛el = 2 and 𝑛el = 3
(i.e., Cases 1, 2, 3 compared to Cases 4, 5, 6, respectively) shows that
using 𝑛el = 3 results in shorter computational time, despite the in-
creased degree of freedom that typically leads to longer computational
time for a fixed 𝑒size. However, as 𝑛el = 2 requires a smaller 𝑒size (as
shown in Table 3) to achieve the specified accuracy, it results in higher
computational time in the studied cases.

5. Discussions

The results of this study indicate that the utilization of the proposed
method enabled the use of larger 𝑒size and thus coarser meshes in
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comparison to the classical method for the same values of 𝑛el and 𝑛quad
(as shown in Fig. 6 and Table 3), while still achieving a predefined level
of accuracy (as shown in Fig. 8). This led to a significant decrease in the
computational time required for the time-stepping analysis conducted
for the transformer application. In the simulated cases, 10–13 times
difference was observed in the total computational time of a time-
stepping analysis, including the time spent in pre-computation and
post-processing stages (as shown in Table 4).

For the same triangular element order 𝑛el, when the use of the
proposed method is compared with to use of the classical method with
boosted Gaussian quadrature order 𝑛quad = 8, it was seen that they
required similar element size 𝑒size and thus similar mesh discretization
(as shown in Fig. 6 and Table 3) to achieve a predefined level of
accuracy (as shown in Fig. 8). Despite the use of the same 𝑒size, the
time-stepping analyses for the transformer showed that the use of
the proposed method resulted in up to 10.4% shorter total computa-
tional time for the simulated cases (as shown in Table 4) with the
single-valued material law.

In addition to this difference in the computational time, there are
two main drawbacks of boosting the Gaussian quadrature order 𝑛quad
and corresponding number of integration points 𝑛int . The first drawback
is that in the case of a hysteretic material law based on the hysteron
decomposition, it results in a much poorer performance compared to
the use of the proposed method in terms of both computational time
and memory allocation. The second drawback is the uncertainty in the
selection of the required quadrature order 𝑛quad. In the simulated cases
of this study, a similar level of accuracy with the proposed method was
reached by boosting the quadrature order 𝑛quad up to 8, but for any
other study, this selection might be ambiguous. Nonetheless, with the
proposed method, the minimum required quadrature order 𝑛quad based
on the triangular element order 𝑛el can always be employed.

6. Conclusion

In this paper, a novel methodology to incorporate the cutting dete-
rioration in FE simulation is proposed. The findings of the study have
proved the accuracy of the proposed method as well as its computational
efficiency compared to the existing methods. While this study focused
on incorporating exponential deterioration, the method can be adapted
to accommodate any type of deterioration profile and cutting method.
Additionally, the presented systematic approach for selecting the re-
quired element size to reach a specific predefined level of accuracy is
expected to provide a perspective for future studies.
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