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A B S T R A C T

This paper presents a method to reduce lateral vibration amplitudes in large rotating machines. The method
is based on avoiding resonances by altering the natural frequencies of the rotor system at each rotating speed
during operation. While many research papers have considered altering support stiffness during crossing critical
speeds, continuous adjustment methods have received less attention. Continuous on-line adjustment of the
natural frequencies of a rotor system is possible to a large range by adjusting the support stiffness of the
bearing housings. The optimal foundation stiffness tuning policy can be defined utilizing a rotordynamic model
or experimental measurements, effectively creating a resonance-free operating speed region, where vibrations
are drastically reduced. It is shown through full-scale experimental laboratory tests, that the subcritical and
supercritical response of the rotor system is significantly decreased during run-up and run-down with the
optimal foundation stiffness tuning strategy. The developed method can be applied to reduce vibrations in
any rotating machinery, where a variable foundation stiffness control can be installed. Moreover, this on-line
foundation stiffness tuning strategy could also be applied in combination with resonance crossing methods
involving stiffness manipulation.

1. Introduction

In many of the applications employing large flexible rotors, the
operating speed is defined by the process, resulting in variable speed
operation. Variable speed applications are challenging for vibration
mitigation, as it is difficult to avoid resonances originating from many
excitation sources. Subcritical resonances occur when the natural fre-
quencies of a rotor system coincide with the excitation frequencies at
rotating speeds below the critical speed [1]. These excitation frequen-
cies are often harmonics of the fundamental frequency, i.e., integer
multiples of the rotating speed of the rotor. Common sources of excita-
tions observed at some integer multiples of the fundamental frequency
include mass unbalance, misalignment, rolling-element bearings [2–
7], gears, process machinery and rotor asymmetry [8,9]. Subcritical
resonances may also be caused by excitations at non-integer multiples
of the rotating speed, such as those originating from defects in rolling-
element bearings [10]. In variable speed machinery, where vibrations
lead to constraints in the machine use, vibration attenuation methods
are crucial.

Amplitude of resonant vibrations in a system is dependent on its
damping characteristics. Bearings and support structures are typically
the primary source of damping. The damping properties of the sup-
porting structures can be enhanced through passive means, such as
squeeze-film dampers, which rely on energy dissipation through viscous
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friction [11,12]. Squeeze film dampers can be applied together with
rolling element bearings [13,14], as well as with journal bearings [15],
to promote damping and stability of rotor systems. If damping of the
rotor system is insufficient, passive vibration absorbers such as tuned-
mass dampers can be considered. Vibration isolators, another form
of passive vibration damping, aim to separate system vibrations from
its surroundings. Various designs have been explored for vibration
isolators [16,17]. In all these passive vibration mitigation methods,
optimal damping and stiffness are considered to determine the most
effective damping properties for the given system [18].

A major field of research in vibration mitigation of rotating systems
is active vibration control. In contrast to passive dampers, active con-
trol methods rely on actuators to actively apply energy to counteract
vibrations [19]. In most cases, the control is applied using electromag-
netic [20], piezoelectric [21], or hydraulic actuators [22]. Zaccardo
et al. [23] studied vibration control of flexible rotors with magnetic
actuators mounted on a fluid-film bearing. Jungblut et al. [24] used
piezo actuators acting on the bearing supports. The advantage of force
input on the bearing supports instead of the rotor directly is the lower
energy consumption. In their work, control strategy was devised, where
the elastic deformation of the rotor was used as a control variable.
D’amato et al. [25] investigated an observer-based tracking control
strategy for rotor systems supported by fluid film bearings. The method
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was validated with mathematical proof and numerical simulations.
As active control transfers energy directly in the controlled system,
it may cause adverse effects, such as instability [26]. Despite their
several advantages, active control methods are typically more complex
and energy intensive in comparison to passive or semi-active vibration
mitigation methods.

Semi-active vibration control differs from the active control as the
control is not directly applied to the degrees of freedom of the sys-
tem [27]. Semi-active vibration control relies on modifying the damp-
ing or stiffness properties of the system to tune the system response.
Various constructions have been considered to enable modifying the
stiffness and damping properties for the purposes of semi-active con-
trol methods [28–33]. Controllable stiffness and damping devices are
used in semi-active control for both vibration isolators and vibration
absorbers. Nelson et al. [34], studied skyhook damping as a means
to attenuate structural vibrations of a bridge. In this feasibility study,
they considered adjusting the damping properties of a variable orifice
damper to tune the system response. Unlike in the case of semi-
active control, in adaptive-passive systems, the stiffness or damping
varies during operation without the use of a controller [35]. Adaptive-
passive vibration control methods have been studied especially in the
field of seismic protection [36], and vibration isolation of rotating
machines [37].

It was realized already in the 90s that it is possible to reduce
the vibration responses during crossing of natural frequencies by mo-
mentarily lowering the natural frequency of the system with stiffness
switching devices when the system approaches resonance [38–41].
Since then, many research papers have applied the same principle for
mitigating resonant vibrations. Nieto et al. [42,43], used a stiffness
switching pneumatic vibration isolator to cross resonances. In [44], a
simulation study was conducted on temporarily lowering the support
stiffness during crossing over of critical speeds, thus limiting the time
spent in resonance. Similar approach was proposed by Hu et al. [45],
where numerical and experimental tests were considered to cross crit-
ical speed of a spherical superconducting rotor. Zhang et al. [46],
considered a switching strategy in a simulation study to evaluate the
feasibility of the resonance crossing approach in a turbojet application.
Jin et al. [47] also investigated the momentary stiffness reduction in an
application for suspension of a railway vehicle. The numerical results
were confirmed with laboratory-scale measurements. An alternative
path for mitigating resonant vibrations is acceleration scheduling [48].
In [49], a device capable of adjusting the support bearing position of
a rotor was investigated in a study combining stiffness switching and
acceleration scheduling. Ding et al. [50] also conducted a simulation
study to investigate the stiffness switching and acceleration scheduling
simultaneously.

Smart materials, including magnetorheological and electrorheolog-
ical fluids, as well as shape memory alloys, have gained significant
attention in the field of vibration control for rotating machines [51].
The damping properties of magnetorheological fluids can be manipu-
lated in disk dampers to achieve optimal damping for each mode of a
rotor system [52]. Greiner-Petter et al. [53] considered a mechanism
based on magnetorheological fluid valves and two springs to achieve
continuously adjustable damping with three different stiffness options.
Magnetorheological dampers can also be applied to suppression of
torsional vibrations [54], moreover, many studies have considered in-
troducing magnetorheological fluids to squeeze film dampers [55,56].
Wang et al. [57] developed an integral magnetorheological damper,
which enables the control of the magnitude and direction of the fluid
film force. The control method for this damper was further extended
with oil film zoning control to enhance the damping properties in
high frequencies [58]. The stiffness of shape memory alloys can be
manipulated by adjusting their temperature [59]. This effect can be
exploited to cross resonances without any acceleration of the rotor.
The resonance crossing is done by accelerating the rotor close to the
resonance speed and then stopping the acceleration while the stiffness

of the supports is decreased with temperature adjustment [60]. Several
studies have been dedicated to improving the material properties of
the shape memory alloy, as well as the configuration of the system to
decrease the response amplitudes and increasing the stiffness adjust-
ment speed [61–64], in these works, the focus has remained solely on
vibration attenuation during resonance crossing.

Foundation and bearing stiffness has a major influence on the
dynamics of rotating systems [65–67]. Most notably, the natural fre-
quencies of a flexible rotor are greatly affected by the stiffness of the
foundations [68,69]. While many studies have considered exploiting
variable stiffness to cross resonances, only a few studies have consid-
ered continuously adjustable stiffness to completely avoid resonances.
In a computational study by Homisin et al. [70], tuning method for tor-
sional vibrations of a maritime propulsion system was proposed. Their
method was based on crossing the first torsional natural frequency at
a low rotating speed, and then creating a resonance free region by
increasing the stiffness in proportion to the rotating speed. Unfortu-
nately no experimental validation was presented in their research. In
a preliminary computational study by Laine et al. [71], the feasibility
of a continuous foundation stiffness was evaluated for large rotating
systems in an application of semi-active vibration control. Tawfik [72]
used a device based on continuous stiffness adjustment to tune the
vibration response of a rigid rotor. In their approach, rather than
optimizing the resonance crossings, an algorithm based on artificial
neural network was used to tune the foundation stiffness to a value
which minimizes the vibration response. Several other works have also
considered continuously adjustable torsional stiffness devices for tuning
torsional natural frequencies [73–75], however, these research works
did not consider optimal adjustment.

This paper proposes a method for reducing lateral vibrations in
rotor systems based on a foundation stiffness control device with con-
tinuously adjustable stiffness. Rather than tuning the damping as in
conventional vibration absorbers, or rapidly altering the stiffness to
cross resonances, the device is used to optimally alter the dynamics
of the rotor system for each operating speed in a given operating
speed range. At subcritical speeds, the main criteria for adjustment
of the stiffness should be to limit the effect of resonances due to
the predominant excitation frequencies, i.e., integer multiples of the
rotating speeds. For supercritical systems, the critical speeds are the
most important source of vibrations. Adjusting the foundation stiffness
during operation enables avoiding resonances in a large speed range.
The authors claim the following original contributions:

1. An optimization law is derived for selecting the optimal foun-
dation stiffness at each rotating speed, which maximizes the
separation margin between the natural frequencies and the har-
monics of the fundamental frequency of the system.

2. A method is proposed for using the optimal foundation stiffness
adjustment during operation to avoid subcritical vibrations in a
variable-speed rotor system.

3. Simulation study based on a rotordynamic model is presented to
validate the proposed vibration mitigation method.

4. An experimental validation of the proposed method is conducted
with a full-scale laboratory test rotor. Adjustment devices inte-
grated into the horizontal supports of the bearing housings are
used to tune the foundation stiffness during operation.

The rest of the paper is structured as follows. In Section 2, the the-
oretical rotor system model is introduced along with the harmonic ex-
citation model used to simulate the subharmonic resonances. Section 3
presents the optimization method used to calculate the foundation stiff-
ness map for the tuning algorithm. Section 4 describes the experimental
rotor system. In Section 5, the numerical and experimental results of
the proposed vibration control method are presented and discussed.
Finally, some conclusions are drawn from the results.
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Fig. 1. Rotor dimensions and node positions. All the dimensions are in mm. The rotor system model consists of 21 Timoshenko beam elements and four point mass degrees-of-freedom
of the support models. Support models, consisting of the bearings and foundations, are connected to nodes 1 and 21 of the rotor model.

2. Rotor system model

A rotordynamic model based on a laboratory test rotor is estab-
lished. The rotor system model includes the rotor itself together with a
model of the supporting structure. The rotor model is developed using
measured geometrical dimensions, while the support models are based
on experimental measurements. This rotor model is used later as a
basis when the optimal tuning method is developed. The rotor model
consists of 21 Timoshenko beam elements. The rotor dimensions and
node positions are given in Fig. 1.

The system model can be written in matrix form with the equations
of motion

𝐌𝒙̈ + (𝐂 + 𝜇𝐊 + 𝜔𝐆)𝒙̇ +𝐊𝒙 = 𝐟 , (1)

where M, C, G, and K are the global mass, damping, gyroscopic and
stiffness matrices of the rotor system, respectively. These matrices are
obtained from the finite-element model of the rotor system, these
matrices include the bearing and support structure model. 𝒙 is the
vector of the free variables, and 𝐟 is the forcing vector. Damping is
modeled using stiffness proportional part of Rayleigh damping. The
damping coefficient 𝜇 is an experimentally determined parameter. The
steady-state solution to this system of equations is calculated using
the receptance matrix with the assumption of harmonic excitations.
The response is calculated separately at each rotating speed for each
harmonic component of the excitation force, and the total response at
each rotating speed is the sum of these individual responses, following
the principle of superposition.

2.1. Support structure model

The effect of the supports is included in the rotor model via addi-
tional non-rotating degrees of freedom. The support models are con-
nected to the rotor model at the bearing positions. A schematic of
the support system is shown in Fig. 2. Photo of the physical setup
and the equivalent spring–mass–damper model are shown in Fig. 3.
The supports are asymmetric in the horizontal and vertical directions.
The vertical and horizontal components are marked with the subscripts
v and h, respectively. The supports consist of stiffness and viscous
damping of the bearings, 𝑘b, 𝑐b, the equivalent mass 𝑚 given in ver-
tical and horizontal directions, as well as the equivalent stiffness and
viscous damping of the foundations 𝑘f and 𝑐f, respectively. The support
structure parameters are given in Table 1.

The bearings of the rotor rest on a cradle supported by very low
stiffness plate springs. The effective horizontal support is provided by
a cantilever beam, the length of which can be modified with position
controlled servomotors. The total effective beam length which can be
modified is 300mm, this is referred to as the HSA (horizontal stiffness
adjuster) position in the paper. The horizontal stiffness can be adjusted
rapidly at any rotating speed. The devices are software limited to
moving from one extreme to another in 10 s. For further technical
details on the stiffness adjustment devices the reader is referred to [76].

In the model, the equivalent stiffness values of the bearings are
tuned so that the lowest two natural frequencies are close to the mea-
sured ones, while the rotor model is based on geometrical dimensions.
Equivalent mass of the supports is estimated from the dimensions of
the bearing housings and the cradle. The damping properties of the

Table 1
Parameters of the support structure models.
Parameter Horizontal Vertical Unit

𝑘𝑏 30 50 MNm−1

𝑘𝑓 [2.75–12] 200 MNm−1

𝑐𝑏 43 43 kNm−1 s−1

𝑚 190 190 kg

Table 2
Comparison of measured and modeled natural frequencies and their relative errors.
Mode min 𝑘fx max 𝑘fx

Model Measured Error Model Measured Error

1st horizontal 10.6Hz 10.68Hz 0.75% 18.6Hz 18.7Hz 0.54%
2nd horizontal 14.6Hz 13.8Hz 5.8% 29.1Hz 30.0Hz 3.0%
3rd horizontal 44.7Hz 50.3Hz 11.1% 53.1Hz 55.9Hz 5.0%

1st verticala N/A 18.8 – N/A 18.8 –
2nd vertical 27.6 29.9 7.7% 27.6 29.9 7.7%
3rd vertical 64.0 56.3 13.7% 64.0 56.3 13.7%

a Structural mode which is not included in the rotor system model.

rotor system varies between different values of foundation stiffness. The
damping is applied through the stiffness proportional Rayleigh damping
(cf. Eq. (1)). The damping coefficient 𝜇 is estimated by matching the
dissipation rate of the first elastic mode to an estimate calculated from
unbalance response measurements at the highest and lowest natural
frequency condition. The estimated values of 𝜇 are 0.065 s in the high
natural frequency condition and 0.015 s in the low natural frequency
condition. For simplicity, it is assumed, that the damping coefficient is
proportional to the first horizontal natural frequency. Numerical values
used in the support structure model are given in Table 1.

In this model, the horizontal foundation stiffness can be varied
in the range of 2.75MN∕m to 12MN∕m. Adjustment is simultaneous
at both bearing locations. A smaller relative change in stiffness is
needed to change the natural frequencies in the lower frequency range.
The foundation stiffness is always assumed to be equal in both ends
of the rotor. No noticeable cross-coupling effects are present in the
foundations. Comparison of the natural frequencies of the model and
experimental measurements is shown in Table 2.

The first three horizontal bending modes of the rotor system are
shown in Fig. 4. As expected, the mode shapes are not greatly af-
fected by the foundation stiffness adjustment, while their respective
frequencies are greatly altered. The first two modes are more sensitive
to the foundation stiffness adjustment than the third mode. The differ-
ence in sensitivity is due to the amount of relative movement at the
foundations, as can be confirmed in Fig. 4.

It should be noted, that several research works have linked the
support asymmetry to excitation of backward whirl modes [77–81].
In most practical applications of large rotating machinery, the support
stiffness is asymmetric by default, thus there is no major concern asso-
ciated with increasing or decreasing this asymmetry during operation.
The vibration amplitude is calculated as the maximum displacements of
the rotor orbit from the origin in the horizontal direction. The present
study omits detailed analysis of the whirl modes, as the primary focus
is on the relative change in vibration amplitudes.
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Fig. 2. Schematic of the foundation stiffness adjustment device. The bearing housing is supported by a base plate, which is suspended in the air by two horizontally flexible plate
springs. Horizontal stiffness is provided by a cantilever beam, the effective height of which can be controlled with the horizontal stiffness adjuster (HSA) device. The structure is
identical at both bearing locations.

Fig. 3. Support structure model. The laboratory setup is seen in (a), and the equivalent model in (b). The equivalent model consists of the non-rotating degrees of freedom in
horizontal and vertical directions, the bearing stiffness and damping 𝑘b , 𝑐b, and the foundation stiffness and damping, 𝑘f , 𝑐f. The foundation stiffness can be controlled in horizontal
direction with the horizontal stiffness adjuster device.

Fig. 4. Three lowest horizontal bending modes of the rotor system model. The mode
shapes at minimum foundation stiffness are shown in (a) and with maximum foundation
stiffness in (b). When minimum foundation stiffness is applied, there is less bending
especially in the modes 1 and 2 when compared to the high stiffness case. The decrease
in the foundation stiffness is associated with less bending of the rotor and increased
displacement in the supports. The natural frequencies associated with these mode
shapes are given in Table 2.

2.2. Excitation model

The primary source of excitation in rotating machines is unbalance,
where the axis of rotation deviates from the axis of the mass centroid.
Balancing is performed to decrease the amount of unbalance, but it
can never be completely eliminated. The frequency of the excitation
caused by unbalance is equal to the rotating speed. When the rotating
machine is operated below the critical speed, resonances caused by
higher order harmonics become significant source of vibration. The
unbalance excitation is described by the equation

𝐹ub(𝑡) = Re
[

𝑚𝜀𝜔2𝑒𝑗(𝜔𝑡+𝜙ub)
]

, (2)

where 𝐹 is the unbalance force, 𝑚 is the unbalance mass, 𝜀 is the
distance of the unbalance mass from the axis of rotation, 𝜙ub is the
phase of each excitation, 𝜔 is the rotating speed, 𝑗 is the imaginary
number and Re[⋅] denotes the real part of complex number. The location
for the excitation in the rotor model should be chosen so that all the
modes of interest are excited. In this paper, we focus on the three lowest
lateral modes. Modal analysis reveals that by applying the excitation
to node 7 of the rotor model, all these modes of interest can be
effectively excited. The 1x harmonic of the excitation force is calculated
by assuming an unbalance mass of 500 g at 10 cm distance from the axis
of rotation.

Many models have been proposed for modeling the excitations
caused by rolling element bearings [82]. Significant proportion of
the harmonic excitations caused by rolling-element bearings can be
attributed to the roundness profile of the bearing inner race [9]. Other
sources include misalignment [83], contacts and deformation [84], and
outer race waviness [85]. To model the most significant sources of
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Table 3
Horizontal force components of the bearing excitations calculated by
Choudhury et al. [7].
Waviness
component 𝑛

Non-drive end Drive end

𝐴𝑛 (μm) 𝜙𝑛 (deg) 𝐴𝑛 (μm) 𝜙𝑛 (deg)

1 0.76 123.8 0.06 179.6
2 13.18 273.7 5.24 356.4
3 5.57 182.5 1.67 141.8
4 7.367 265.5 1.63 213.3

vibrations, while preserving reasonable simplicity of the model, the
bearing excitation is calculated according to the base excitation method
proposed by Choudhury et al. [7]. The excitation parameters (Table 3.),
which were applied in the analyses were determined in the previous
study, where the measured bearing inner race geometries were used
as an input to a bearing kinematic model. The forced movement of
the rotor transferred to the rotor through the bearing stiffness and
damping. The total base excitation due to the inner ring waviness can
be presented in the complex form as

𝐹bw(𝑡) = Re
[

∑

𝑛
𝐴n(𝑘b + 𝑗𝑐b𝑛𝜔)𝑒𝑗(𝑛𝜔𝑡+𝜙𝑛)

]

(3)

where 𝐴𝑛 and 𝜙𝑛 are the amplitude and phase of the 𝑛:th bearing
excitation component. Here the excitations are considered up to the
fourth order. This model is preferred over more complex bearing kine-
matic models, as the steady-state solution can be directly calculated
without numerical integration, while preserving a fair accuracy of the
response [7].

3. Optimal foundation stiffness tuning method

This section presents the proposed vibration control method. The
principle of the resonance avoidance is to increase the separation mar-
gin between the most important excitations and the natural frequencies
of the rotor during operation based on an optimal mapping. In con-
trast to methods considering crossing the resonances by momentarily
lowering the foundation stiffness [42–44,46,47], the proposed method
relies on continuous foundation stiffness adjustment to avoid the res-
onances in a pre-defined operating speed range. These resonances
are completely eliminated in the optimization range by adjusting the
foundation stiffness as the operating speed varies.

The optimality condition is based on maximizing the separation
margin between the fundamental frequency and integer fractions of
the natural frequencies at each rotating speed. The system natural
frequencies must be known as function of the foundation stiffness
adjustment for the optimization. In this study, a rotordynamic model
and impulse response tests were used to define the three lowest natural
frequencies of the rotor system. The measurements were conducted
at stationary condition for each foundation stiffness value (Fig. 6). A
fourth order polynomial function was then fit to the measurements to
obtain a continuous mapping from the chosen foundation stiffness set
point to the natural frequencies of the system. In the simulation cases,
the natural frequencies were calculated directly from the eigenvalues
of the system matrix each time the foundation stiffness is modified.

The optimal foundation stiffness mapping is based on accelerat-
ing with minimum foundation stiffness until the chosen excitation
frequency crosses the first natural frequency. After the resonance is
crossed, the separation margin between the chosen excitation and the
two lowest natural frequencies are maximized. The largest possible sep-
aration margin can be achieved by minimizing the difference between
the avoided excitation frequency and the natural frequencies of the

rotor system. The optimization problem can be written for an arbitrary
excitation frequency as

min
𝑘

𝑤|𝑓ex(𝜔) − 𝜆1(𝑘, 𝜔)| − (1 −𝑤)|𝑓ex(𝜔) − 𝜆2(𝑘, 𝜔)|

s.t. 𝑓ex(𝜔) − 𝜆1(𝑘, 𝜔) > 0,

𝑓ex(𝜔) − 𝜆2(𝑘, 𝜔) < 0,

𝑘min ≤ 𝑘 ≤ 𝑘max,

0 < 𝑤 < 1,

(4)

where 𝑓𝑒𝑥(𝜔) is the excitation frequency at a given operating speed
𝜔, and 𝜆1 and 𝜆2 are the first and second natural frequencies of the
system. The foundation stiffness value 𝑘 which minimizes this problem
maximizes the separation margin from the excitation to the natural
frequencies. The optimization weight 𝑤 can be used to adjust the
relative distance from the two resonances. In the following, value of
0.5 is used for the weight parameter to set the distances equal. The
excitation frequency 𝑓𝑒𝑥 can be an integer or non-integer multiple
of the rotating frequency. The additional constraints enforce that the
excitation frequency of interest never crosses the natural frequencies
in the optimization range.

The choice of the excitation frequencies to be avoided depends on
the application. The optimization range is limited by the maximum
natural frequency adjustment that can be achieved by modifying the
foundation stiffness, which in turn depends on the design of the rotor.
The maximum theoretical adjustment range can be analyzed with a
rotordynamic model by varying the support stiffness from zero to
infinity. After the analysis, an adjustment device can be designed in
accordance to the desired operating speed range.

In this paper, two speed range cases are considered. The two cases
are the lower speed subcritical vibration case, where the optimization
is done for the 2x harmonic of the fundamental frequency, and a
higher speed supercritical case, where the optimization is done for
the fundamental frequency, i.e., the 1x harmonic. The optimization
problem is defined in a way that the resonances corresponding to these
excitations are avoided in the operating speed range. The resonances
are passed at the lowest possible operating speed, where the excitation
power is smaller, as long as the damping of the system is not com-
promised by lowering the foundation stiffness. After crossing of the
resonances, optimal adjustment of the foundation stiffness then allows
for effectively extending the resonance-free operating speed range. The
optimal natural frequencies for both cases are illustrated in a diagram
shown in Fig. 7.

In the present study, impulse response tests were conducted to esti-
mate the natural frequencies of the system at each applied foundation
stiffness value. It should be noted, that while the impulse response tests
performed in static conditions are sufficient for this application, in the
case of high-speed machinery or overhung rotors, the gyroscopic effect
can significantly influence the natural frequencies. Thus, in those cases,
a refined rotordynamic model or measurements in operating conditions
should instead be used to evaluate the natural frequencies.

4. Experimental study

This section describes the used experimental hardware and the mea-
surement instrumentation. The test rotor was a 720 kg paper machine
guidance roll. The roll was supported by rolling-element bearings. The
measurement setup is displayed in Fig. 5. The test rotor is an example
of a flexible rotor, which exhibits several distinct bending and conical
modes during operation. The basis of the test-bench is a modified roll
grinder. The rotor was balanced using two balance planes before the
measurements.

Continuous adjustment of the horizontal foundation stiffness was
made possible in both ends of the rotor using a special research device
presented in Fig. 3. The horizontal foundation stiffness was modified
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Fig. 5. Test equipment used in the laboratory measurements. The non-drive end bearing is seen in figure (a), along with the accelerometers as well as the force sensors. The whole
rotor system is shown in (b), where the HSA (horizontal stiffness adjuster) devices, which are used to control the foundation stiffness, are located on both the bearing housings.
The laser displacement sensors are positioned near the middle of the rotor on the arch.

by adjusting the vertical position of the HSA (Horizontal Stiffness Ad-
juster), which alters the horizontal stiffness of the supporting structure
of the bearing housings. Moving the HSA beam support down decreases
the stiffness; on the other hand, higher HSA beam support position
increases the stiffness. A possible drawback of the moving contacts
in the devices is the possibility of backlash. An effort was made to
negate potential backlash problems by pre-loading all moving contacts,
i.e., the rollers of the HSA devices. A more detailed explanation of the
construction of the devices is given in [76].

Acceleration sensors mounted in vertical and horizontal direction
on the bearing housings were used in the impulse response tests. The
used accelerometers were Brüel & Kjær type 4381, which had maximum
peak amplitude of 2000 g, sensitivity of 10 pC∕ms−2 and bandwidth of
0.1Hz to 4800Hz. A total of four acceleration sensors were used, two
on each bearing housings. In the run-up test a total of six force sensors,
were used to measure the lateral bearing forces. Three of the force
sensors were mounted in each of the supports, two measuring the
vertical force and one measuring the horizontal force. The locations
of the sensors are presented in Fig. 5. The horizontal force sensors
were Kistler 9001A, which had a measuring range of 0N to 7.5 kN and
sensitivity of 4.3 pCN−1. The vertical force sensors were HBM PaceLine
CFW, which had a measuring range from 0N to 100 kN and sensitivity of
4.3 pCN−1. Additionally, the displacement of the horizontal motion of
the roll was measured at position 2m from the end of the non-drive end
bearing. Matsushita NAIS LM 300 laser sensors were used. The sensors
had a measurement range from 27mm to 33mm and a sensitivity of
1Vmm−1.

The rotor was rotated by an induction motor drive. Position-servo-
motors were used to adjust the beam supports in both the HSA devices.
A control program written in LabView was used to perform the control
system integration. Data acquisition from the sensors was done using
a National Instruments PCI-6259 data acquisition card. The used sam-
pling frequency was 5 kHz. These settings can be considered adequate
for measuring vibrations with frequencies lower than 200Hz. Kistler
type 5165A4 and type 5073A charge amplifiers were used to convert
the charge signals to voltage signals from accelerometers and force
sensors, respectively. Amplifiers for the force and acceleration sensors
were equipped with analog anti-aliasing filters with cutoff frequency of
200Hz. The analog output of the laser sensors was antialiasing filtered
with cutoff frequency of 2000Hz.

A series of impulse response tests was performed to identify the
vertical and horizontal natural frequencies of the rotor system. Due to
the highly asymmetric foundations, the natural frequencies of the rotor
are different in horizontal and vertical directions. The rotor was hit
with a hammer at several foundation stiffness states. The tests were
carried out in two separate measurements, one for the horizontal and
one for the vertical direction. The rotor was stationary and supported
by the bearings during the test. Fig. 6 displays the spectrograms of the
impulse response at each foundation stiffness instance. As expected, the
vertical natural frequencies of the rotor are not affected by the horizon-
tal foundation stiffness adjustment. The horizontal natural frequency is

Fig. 6. Spectrogram of the impulse response tests in (a) horizontal direction, (b)
vertical direction. The position of the horizontal stiffness adjuster is varied, causing
a shift in the horizontal natural frequencies 𝜆1, 𝜆2 and 𝜆3, of the rotor system. The
dashed lines correspond to fourth-order polynomial functions least-squares fit to the
peak values of the spectrum at each HSA (horizontal stiffness adjuster) position. The
horizontal natural frequencies are greatly altered while the vertical natural frequencies
remain constant, confirming that these frequencies are uncoupled.

proportional to the horizontal foundation stiffness. These experimen-
tally determined values are compared to the model in Table 2. A large
deviation is seen in the horizontal natural frequencies, indicating that
the subcritical resonance speeds can be shifted to a large extent. Peak
values of the responses corresponding to the three lowest horizontal
modes were detected at each HSA position. A curve fit to this data
provides a mapping from the position of the HSA to the horizontal
natural frequencies of the rotor system.

The optimization procedure given in Eq. (4) was applied to the
identified natural frequencies. In the case of this experimental mea-
surement, the HSA position was used as an input to the servo motors
controlling the foundation stiffness adjusting devices. A Campbell dia-
gram of the rotor system, seen in Fig. 7 is used to visualize the optimal
natural frequencies which are selected for each rotating speed in the
lower speed subcritical case and in the higher speed supercritical case.
The figure shows the natural frequencies without optimization, when
the stiffness is kept at maximum, and with the optimal foundation
stiffness, where the optimal foundation stiffness is updated at each
rotating speed to maximize the separation margin to the respective
excitation.
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Fig. 7. Campbell diagram of the experimental system. The optimal natural frequency maps are displayed for the lower speed subcritical case, and higher speed supercritical case.
In the baseline case, the support stiffness remains constant. The diagonal lines correspond to the first five harmonics of the rotating frequency.

5. Results and discussion

The effectiveness of the developed vibration mitigation method was
studied by means of numerical and experimental analyses. The studied
system is a rotor test-bench with a paper machine roll, supported
by cylindrical rolling element bearings. In the simulation study, the
optimal foundation stiffness mapping used in the control is derived
directly from the model. In the experimental study, the optimal nat-
ural frequency mapping was calculated using the natural frequencies
estimated from impulse response tests performed at standstill.

5.1. Simulated steady-state responses

Simulated steady-state responses are studied to evaluate the ef-
fectiveness of the developed foundation stiffness control method. The
simulated responses are based on the excitation model, applied to the
rotor model, both of which are detailed in Section 2. The steady-
state response is then calculated at each rotating speed from Eq. (1).
The response for each of the harmonic component of the excitation
is calculated separately and summed to get the total displacement
response orbits.

Two cases are considered in the simulation. A subcritical machine
with operating speed range from 400 to 720 rpm, and a supercritical
machine with operating speed range from 720 to 1400 rpm. Results
of the simulation study are shown in Fig. 8. The optimal foundation
stiffness tuning was applied to the rotor model by adjusting the hori-
zontal foundation stiffness according to the optimal foundation stiffness
mapping. In the lower speed case, the optimization is applied to the
2x excitation, and in the higher speed case on the 1x excitation. The
optimal mapping from rotating speed to foundation stiffness is defined
by solving the optimization problem in Eq. (4) for each rotating speed
in the optimization range. The natural frequencies were calculated di-
rectly from the eigenvalues of the rotor system model. The optimization
problem was solved using Powell’s method.

In the lower speed simulation case (Fig. 8), the total vibration
amplitudes corresponding to the subcritical resonances are significantly
decreased when the optimal foundation stiffness is applied. The res-
onances are shifted to lower rotation speeds, where they are crossed
before reaching the operating speed range. In the optimized response,
all resonances due to the interceptions of the excitation frequencies
and the two lowest natural frequencies are eliminated in from approx-
imately 320 rpm to 800 rpm. The resonance due to the 2x excitation
is crossed at approximately 320 rpm in the optimized response. The
resonance due to the 3rd natural frequency and the 5x excitation is
still present, as the higher order modes are not considered by the

optimization. According to this simulation, the relative amplitude of
the shifted resonance peaks are also smaller when the optimization is
applied, as they are crossed with less excitational energy at the lower
speed.

In the higher speed case (Fig. 8), the reductions in vibration ampli-
tudes are greater than in the lower speed case. Again, the resonances
due to the two lowest modes are eliminated in the operating speed
region, resulting in significant vibration attenuation at the optimization
range from 780 to 1400 rpm. The first critical speed is now crossed
approximately 550 rpm. The amplitude of vibrations in all resonance
crossings are decreased when they occur at lower rotating speeds. Mean
and maximum vibration attenuation values in the optimization range
are given in Table 4.

Based on these results, the considered approach is effective in
creating a resonance-free region in the chosen speed range. This is
especially useful in variable-speed machines, where the rotating speed
varies during operation, and in machines that need a strategy to pass
the critical speeds. Choosing the excitation to avoid is based on the
desired resonance-free operating speed. For high speed application, it
could even be beneficial to use the 3rd and 2nd natural frequency in
the optimization instead of the 1st and 2nd. In this case, the second
critical speed of the rotor system would also be crossed. Additional
optimization possibilities could also open if the rotor system itself can
be modified. If the rotor system can be modified, the crossover of the
critical and subcritical speeds could be selected more freely.

5.2. Experimental verification

Two run-up experiments were performed, one for the lower and one
for the higher speed case. The acceleration time was 450 s to reach 700
rpm in the lower speed case, and 110 s to reach 1380 rpm in the higher
speed case. The slow acceleration speed was chosen in the lower speed
case to ensure that the subcritical resonances are clearly distinguishable
in the measurements. Corresponding baseline measurements with equal
acceleration times were performed using maximum support stiffness
without optimization during the acceleration.

Considering the lower speed subcritical vibration case, the filtered
horizontal rotor displacement and bearing force amplitudes are dis-
played in Fig. 9. In addition to the anti-aliasing filters used in the
measurements, low-pass filtering was applied in post processing for
all signals with a cutoff frequency of 200Hz. Window length of 1000
samples was used for the peak-to-peak filter. The windowed peak-to-
peak value divided by two to approximate the vibration amplitude. The
displacement measurement was located 2 meters from the non-drive
end bearing, while the bearing force was measured from the bearing
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Fig. 8. Simulated responses. Optimal foundation stiffness maps are applied to shift the subcritical resonances to lower rotating speeds, as seen in the resonance interference
diagrams (a) and (b). The horizontal steady-state response is calculated at the center of the rotor for each rotating speed, figures (c) and (d). The resonances due to the two lowest
modes are eliminated in the operating speed region, where the foundation stiffness is adjusted based on the optimal mapping.

Table 4
Comparison of vibration amplitudes in the vibration mitigation results in the
optimization range of each case.
Measurement Subcritical Supercritical Unit

Simulation Measured Simulation Measured

Mean baseline
displacement

0.11 0.081 0.42 0.35 mm

Mean optimized
displacement

0.067 0.057 0.24 0.17 mm

Relative mean
Improvement

41.2 43.0 39.8 49.0 %

Maximum peak
reduction

73.1 64.7 80.0 94.0 %

pedestal. For this reason, the resonances which are due to bending
modes are predominant in the displacement measurement, while the
conical modes are more clearly visible in the force measurements. Effect
of the foundation stiffness control is nevertheless similar in both of the
measurement locations. In the baseline measurement, vibration peaks
are present at subcritical resonances during multiple points of the run-
up. To ensure that the subcritical resonances are clearly visible in the
data, the acceleration of the rotor was performed in a step-wise fashion,
with 5 s interval between each acceleration step. For this reason, small
force spikes are observed in the bearing force corresponding to these
acceleration times.

Results from the same bearing force measurements during the lower
speed run-up are shown in a spectrogram in Fig. 9. The subcritical
resonances can be clearly seen at the three lowest natural frequencies.
At the baseline measurements, these natural frequencies are approxi-
mately 18.7Hz, 30.0Hz, and 55.9Hz. Applying the optimal foundation
stiffness effectively eliminates the resonances in the control range. The
signal visible at exactly 50Hz in the measurements is due to network
disturbance, this error is constant in all operating points and does
not interfere with the results. A notch filter was chosen not to be
used, as the frequency is close to the third natural frequency. In the

baseline measurements, the subcritical resonances corresponding to the
crossings of the natural frequencies and the integer multiples of the
rotating speeds are evident. In addition to the excitations visible at the
integer multiples of the rotation speed, there are also excitations at non-
integer multiples of the rotating speed. Upon closer inspection, it can be
concluded that these non-integer excitations correspond to well-known
bearing frequencies, namely, the integer multiples of the fundamental
train frequency. A significant vibration peak is seen at the crossing of 5x
excitation of the fundamental train frequency at approximately 510 rpm.
This result implies, that for systems employing rolling element bearings,
the excitations arising from the bearing defects can be significant. If
a major resonance due to a non-integer frequency was detected after
applying the optimization, it could be mitigated by adjusting the weight
parameter 𝑤 in the optimization Eq. (4).

The results of the higher speed supercritical vibration case are
shown in Fig. 10. The results are shown as the windowed peak to
peak amplitude of horizontal displacement and vibration speed at the
midpoint of the rotor. Vibration speed is calculated by numerical dif-
ferentation of the displacement measurement. Control of the foundation
stiffness during the run-up and coast down effectively eliminates the
resonance due to the horizontal bending mode in the optimization
range. The vibration amplitudes are decreased by an order of mag-
nitude in the optimization region. The critical speed is shifted to a
significantly lower frequency, which enables crossing the critical speed
at the lower speed. The second critical speed is never reached, as the
natural frequency increases together with the operating speed.

The effectiveness of the vibration attenuation is analyzed with in
the operating speed range in both cases. Table 4 shows the mean
displacement amplitudes calculated as the mean value of the windowed
vibration amplitude in the respective optimization range. The relative
mean improvement is the percentage which the mean value decreases
when the optimal foundation stiffness is applied. As expected, the mean
vibrations decrease in both experiments. Same values calculated from
the simulation results are in alignment with the experiments. The max-
imum peak reduction is calculated as the maximum vibration reduction



International Journal of Mechanical Sciences 270 (2024) 109092

9

S. Laine et al.

Fig. 9. Experimental run-up tests. The total displacement amplitudes calculated from the subcritical measurements are shown in (a), while the amplitude of the bearing force
measured from the bearing is shown in (b). In this lower speed case, the rotating speed is increased every five seconds, which explains the comb-like peaks visible in the force
measurements. Decrease of vibrations is visible in both measurements in the optimization range from 300 rpm to 700 rpm. Panels (c-d) show the spectrograms calculated from
the bearing force signals. The baseline run-up is shown in (c) and the optimized run-up in (d). The subcritical resonances are visible at the natural frequencies in the baseline
case, these resonances are shifted to lower speeds and hardly visible in the optimized run-up.

Fig. 10. The higher speed run-up and coast-down case. The windowed horizontal peak-
to-peak vibration of the centerpoint of the rotor is seen in terms of displacement (a)
and vibration speed (b). The horizontal resonances are effectively eliminated in the
optimization regime during 70 to 170 s.

that is achieved in the optimization range, this value corresponds to the
best case scenario for the optimization, where the baseline vibration is
at the highest resonance point, which is eliminated by the optimization.
In the lower speed case, this most significant vibration peak is the 5x
resonance of fundamental train frequency at approximately 510 rpm.
In the higher speed case, the most significant vibration peak is the
critical speed. The measurements show, that the optimization leads
up to 94 percent decrease in the peak vibration in the supercritical
case. The measured improvements with the vibration control method

are slightly higher than anticipated by the theoretical model. The
differences between the modeled and measured results are minor.

The developed optimal foundation stiffness tuning method’s relia-
bility and robustness, wide operating range, and direct applicability
for large-scale operation make it an interesting option compared to
contemporary active or semi-active vibration control methods. The cho-
sen target function which maximizes the separation margin is a simple
but robust approach for mitigating resonant vibrations. More complex
target functions, such as one minimizing a simulated response would
be sensitive to modeling inaccuracies, since even a small inaccuracy
in the model can compromise the separation margin. Although the
used actuators are not suitable for fast dynamic control, such as active
vibration control, it is still possible to achieve significant vibration
attenuation. The proposed method may have applications, for example,
in the paper industry, where large flexible rotors are commonly used,
and minor rotor vibrations can have a direct influence on the produc-
tion quality. Various requirements and process parameters govern the
optimal rotating speed of rolls, and rotors may end up running at a
speed coinciding with a subcritical resonance frequency. Furthermore,
in some machinery such as winders, the natural frequencies of the sys-
tem change during operation. The proposed method could be especially
suitable for application in this kind of machinery.

6. Conclusions

In this paper, a vibration mitigation method based on optimally
tuned foundation stiffness was presented for resonance avoidance in
rotating systems. The foundation stiffness of the rotor is continuously
adjusted during operation, effectively creating a resonance-free speed
region, where resonances due to the lowest natural frequencies are
eliminated. The proposed control method is compatible with resonance
crossing strategies, where the stiffness is momentarily lowered during
resonance crossings. A theoretical model was used to demonstrate the
principle of the proposed control method, and full-scale experiments
were performed to verify the results and show the effectiveness of the
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control method in laboratory settings on a 720 kg rotor. Measurements
were performed in subcritical and supercritical operating conditions
up to 1400 rpm. The foundation stiffness adjustment was implemented
with research devices, which can be used to adjust the lowest horizontal
natural frequency of the rotor continuously between 10.7Hz to 18.7Hz
independently from the vertical direction.

When the rotor displacement amplitudes were measured against the
baseline in run-up experiments, overall mean vibration amplitude re-
duction of approximately 43% was observed in the optimization range
in the subcritical experiment, and 49% in the supercritical experiment.
In both instances, the theoretical model exhibited a vibration atten-
uation performance comparable to that observed in the experiments.
Bearing excitations were established as the source for the resonances
in the subcritical speeds, while the resonances due to unbalance forces
were dominant in the supercritical experiments. Bearing kinematics
augmented base excitation method was used to model the bearing
excitations at integer harmonics of the rotating frequency. The con-
trol method was effective in suppressing resonant vibrations due to
integer and non-integer multiples of the rotating frequency. It was
confirmed, that the observed non-integer frequencies corresponded to
the harmonics of the fundamental train frequency of the rolling-element
bearings.

Comparison of the theoretical and experimental results revealed
that the established rotor-bearing model was able to reproduce the
dynamic characteristics of the optimized rotor system. In the presented
vibration mitigation method, the energy required for the actuators
is negligible since the servomotors must be re-positioned only when
the rotating speed changes. The used device could benefit from an
additional damping element for even better vibration attenuation, es-
pecially at the low stiffness resonance crossings. Some additional con-
siderations are required when the vibration mitigation method is im-
plemented in industrial applications, namely, the adjustment principle
should be simultaneously applied in vertical and horizontal directions.
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