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Abstract
Use and performance criteria of photonic devices increase in various application areas such as
information and communication, lighting, and photovoltaics. In many current and future
photonic devices, surfaces of a semiconductor crystal are a weak part causing significant
photo-electric losses and malfunctions in applications. These surface challenges, many of which
arise from material defects at semiconductor surfaces, include signal attenuation in waveguides,
light absorption in light emitting diodes, non-radiative recombination of carriers in solar cells,
leakage (dark) current of photodiodes, and light reflection at solar cell interfaces for instance. To
reduce harmful surface effects, the optical and electrical passivation of devices has been
developed for several decades, especially with the methods of semiconductor technology.
Because atomic scale control and knowledge of surface-related phenomena have become
relevant to increase the performance of different devices, it might be useful to enhance the
bridging of surface physics to photonics. Toward that target, we review some evolving research
subjects with open questions and possible solutions, which hopefully provide example
connecting points between photonic device passivation and surface physics. One question is
related to the properties of the wet chemically cleaned semiconductor surfaces which are
typically utilized in device manufacturing processes, but which appear to be different from
crystalline surfaces studied in ultrahigh vacuum by physicists. In devices, a defective
semiconductor surface often lies at an embedded interface formed by a thin metal or insulator
film grown on the semiconductor crystal, which makes the measurements of its atomic and
electronic structures difficult. To understand these interface properties, it is essential to combine
quantum mechanical simulation methods. This review also covers metal-semiconductor
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interfaces which are included in most photonic devices to transmit electric carriers to the
semiconductor structure. Low-resistive and passivated contacts with an ultrathin tunneling
barrier are an emergent solution to control electrical losses in photonic devices.

Keywords: carrier recombination, antireflection coating, interface defect,
atomic and electronic structure, wet chemical treatment, surface oxidation,
metal contact

1. Introduction

Russel Ohl investigated photoconductivity changes in silicon
at Bell Labs in the 1940s [1], which can be considered as a
starting point for the research and development of semicon-
ductor photodetectors. In 1954, Daryl Chapin, Calvin Fuller
and Gerald Pearson demonstrated the first silicon solar cell [2,
3]. They also described three challenges to improve the solar
cell performance: (i) large light reflection from the surface,
(ii) recombination of electric carriers generated by photons
absorbed in the material, and (iii) difficulty to prepare reliable
and low-resistance metal contacts to silicon. Since then, sci-
entists and engineers have developed these device properties
step by step to meet the ever-increasing need for durable high-
efficiency and low-cost Si solar cells. These targets provide
a guideline also for this review which strives to strengthen
connection between surface physics and photonics, providing
a complementary approach to tackle semiconductor surface-
induced challenges.

Alongside of huge development of Si microelectronics dur-
ing the last 80 years [4, 5], various photonic devices based on
Si have been also developed, providing synergy between elec-
tronics and photonics. For example, silicon photonic circuits
are an emergent system studied intensively for different data
transfer applications [6–8]. In addition to Si, III–V compound
semiconductors such as GaAs, GaN, and InP form the second
mature material system of industrial photonic devices. The
III–V crystals are nowadays used, particularly, in the devices
where the photo-electrical performance of Si does not meet
industrial criteria. These devices include for example the light
emitting diodes, laser diodes, and infrared photodiodes [9–13].

There are different criteria for optoelectronic devices
depending on the applications where a device is used. Such
requirements include energy efficiency, high signal sensitiv-
ity and speed, intensive light output, and durable operation
for instance. Furthermore, from the viewpoint of industrial
manufacturing of the devices, available methods should enable
scalable, low-cost, and energy-efficient fabrication with a high
yield of the fabricated devices in sustainable manner. Thus, the
resulting performance of industrial photonic devices is typic-
ally a compromise of various factors.

It has been known for a long time that surface areas of semi-
conductor crystals are a weak part of many photonic devices.
The list of solar-cell challenges, reported by Chapin, Fuller
and Pearson in 1954 [2, 3], included also different Si-surface
induced challenges. Twomain functions of semiconductor sur-
faces are to guide light and electricity in devices. A semicon-
ductor surface in devices is not typically visible or directly in

contact with air. In contrast, a semiconductor surface is often
hidden below a thin film(s) and hermetic packaging mater-
ial; i.e. a semiconductor surface lies at an embedded inter-
face between a semiconductor crystal and insulator or metal
(figure 1). Still semiconductor surface areas have interacted
with various chemical environments during the device manu-
facturing processes before a final encapsulation. These inter-
actions have changed the semiconductor surface properties,
which finally causes different loss mechanisms in the devices.

Thus, the surface passivation, which means decreasing
of surface-related losses in broad sense, has been invest-
igated intensively from the perspectives of both electronic
and photonic devices, in particular, for the industrial semi-
conductors of group-IV (Si, Ge) and III–V’s [e.g. books
14–17]. Indeed this great background knowledge has enabled
also photonic device manufacturers to decrease losses and
malfunctions.

However, the current and also future photonic devices still
suffer from semiconductor surface properties. One reason for
the claim is a strong reactivity of most semiconductor sur-
faces then with environment like with air, chemical solutions,
gases in film growth, or metal elements. It is very difficult or
impossible to avoid interactions in practice during deviceman-
ufacturing, leading to the formation of an embedded interface
layer between a semiconductor crystal and a thin film. A thick-
ness of the reacted layer is readily larger than 1 nm; i.e. thicker
than six atomic layers.

Furthermore, the chemical and structural properties of a
reacted interface zone are different from the relatively well-
known properties of the bulk materials, which causes changes
in the interface electronic structure and finally in devices’
photo-electrical performance. The interface changes include
the formation of point defects and defect-induced electronic
levels or states in the device. To give an example estimation
for defect densities, let us consider that an inherent back-
ground impurity or defect concentration in a high-quality
bulk semiconductor crystal is in the range of 1·1010–1·1014
defects per cm3, which means a planar defect concentration
of 5·106–2·109 defects per cm2. For practical semiconductor
interfaces, a defect density (Dit) is typically much higher than
1·1011 defects per cm2. The meaning of semiconductor inter-
faces can be expected to increase further when size or thick-
ness of the functional semiconductor crystals deceases.

To contribute in this technological area, we would encour-
age the scientists and engineers to consider a complementary
edge for approaching the surface challenges, and to enhance
collaboration between the communities of photonic devices
and surface physics. These two areas have developed rather
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Figure 1. Examples of photonic device structures. (a) Silicon solar cell, so-called passivated emitter and rear cell (PERC) which includes
oxide-silicon and metal-silicon interfaces. Reprinted from Green [45]. Copyright 2015 With permission from Elsevier. (b) Silicon photonic
circuit with Si waveguide and some components: Ge photodiode and Si p–n junction modulator. Reproduced from Silicon photonic circuit
with Si waveguide and some components: Ge photodiode and Si p–n junction modulator. Figure is taken from Siew et al [7]. CC BY 4.0.
(c) III–V compound semiconductor laser diode with two mirrors one of which is coated by Au/Si/SiO2 reflector. Reprinted from Guan et al
[46]. Copyright 2016. With permission from Elsevier. (d) Micro-LED of III–V nitrides with sidewall passivation film of SiO2. Reproduced
from Wong et al [47]. CC BY 4.0.

separately and from different perspectives. Indeed excellent
review articles have been previously published about the both
subjects: e.g. [18–33] for the semiconductor passivation and
[34–44] for the semiconductor surface science.

The surface passivation of devices has been developed
mainly with the methods available in semiconductor techno-
logy while surface physicists have typically used ultrahigh
vacuum (UHV) instruments to refine a well-ordered crystal
surface, so-called model system of vacuum-semiconductor
interface in chemically inert, non-reactive environment of
UHV [e.g. books 48–50]. In contrast, passivated device sur-
faces often form a solid–solid interface at which the chem-
ical and physical properties of a semiconductor surface have
significantly changed due to the surface reactions with other
elements, as compared to the clean and crystalline surface.
This might lead to confusions if expectations in technology
are based on the knowledge obtained from clean and crys-
talline surfaces in UHV. In other words, the translation of
knowledge from surface physics to industry is not necessar-
ily straightforward.

Despite these differences, there are also connecting
research items and questions some of which we attempt to
review here. Before that, in section 2 we summarize com-
mon harmful effects of semiconductor surfaces on optical and
electrical behavior of the photonic devices, and in section 3

some fundamental properties of Si, Ge and III–V surfaces are
presented. Then we review eight selected topics which hope-
fully provide a useful platform to share information and to
foster productive dialogue between the communities.

The first topic is related to properties of a wet chemically
cleaned semiconductor, which can be rather different from
the properties of a well-ordered crystal surface in UHV but
which are very crucial to the device manufacturing where
semiconductor surfaces are cleaned in different chemical solu-
tions several times at various stages of a manufacturing pro-
cess flow. The second subject is related to the question if it
possible to avoid a significant incorporation of oxygen and
carbon impurities at the practical semiconductor surfaces.
Furthermore, it is often possible to conclude that surface areas
cause optical and electrical losses in device operations, which
further implies the presence of defect-induced electron levels
in the semiconductor band gap. However the questions like
which defects cause the gap levels, and from what they ori-
ginate, are typically much more challenging to answer but
are relevant to the efforts to avoid the formation of defect-
induced levels in a controlled way. These issues are behind the
third and fourth subjects reviewed. The fifth one is related to
metal contacts (i.e. metal-semiconductor interfaces) to trans-
mit the electrical current into functional semiconductor parts.
There are two main criteria for the passivated contacts: low
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resistivity and low recombination (or generation) of electric
carriers. Then, the surface passivation of semiconductor nano-
crystals is considered, and surface challenges of an emergent
industrial material, SiC are presented. Finally, surface prop-
erties of novel two-dimensional semiconductors are shortly
summarized.

2. Effects of semiconductor surfaces on photonic
device operations

Semiconductor surfaces, which often lie at the embedded
interfaces beneath a thin insulator or metal film, participate
in the transmission of light and electricity in the photonic
devices. Some general interface challenges, which make the
semiconductor surfaces as a weak part of many devices are
summarized in this section to motivate the review of spe-
cific surface properties and selected subjects in the subsequent
sections.

Before these challenges, we present a summary of Si solar
cell processing steps to give an example of various treatments,
environments, and materials used in practice. The fabrication
process of solar cells involves a series of steps, and their details
can vary significantly depending on the Si wafer doping and
the solar cell structure. The predominant solar cell type in the
current industry is passivated emitter and rear cell (PERC). Its
structure is presented in figure 1(a), and its processing consists
of the following main steps: 1. Substrate preparation: A high-
quality Czochralski grown or float-zone silicon ingot with high
purity (>99.9999) is diced into wafers using a diamond-coated
wire, resulting in surface saw damage and debris. The saw
damage can be chemically removed using etching solutions
such as Piranha. 2. Front surface texturing: To reduce reflec-
tion from the flat surface, as discussed in section 2.1, the
substrate is textured using an acidic solution like HF/HNO3

or an alkaline solution like KOH or NaOH, depending on
the substrate’s crystallinity. Alternative texturing methods
include laser texturing, plasma etching, and metal-assisted
chemical etching. 3. Formation of p–n junction: the p–n junc-
tion is created by introducing the dopants via ion implanta-
tion or diffusion at the front surface. In the more common
technique of diffusion, wafers are exposed to gas precurs-
ors of dopants, either boron or phosphorous. This process is
followed by a drive-in annealing process to activate dopants
and form a highly doped and crystalline region known
as the emitter. 4. Anti-reflection coating (ARC) deposition:
Another technique discussed in section 2.1 is the depos-
ition of ARC to further reduce reflection resulted from the
difference in refractive indexes of substrate and air at the
front surface. The main method for ARC deposition is the
plasma-enhanced chemical vapor deposition (PECVD) tech-
nique. The selection of ARC material and its thickness are
optimized for specific wavelength and substrate material.
The commonly used ARC is a Si3N4 film which, with an
80 nm thickness, results in almost 0% reflection at 550 nm.
5. Rear surface electrical passivation: The rear surface is pas-
sivated using a dielectric material to reduce recombination
losses. The common passivating materials are SiO2 and Al2O3

films. 6. Laser ablation: A laser is employed to create line
openings in the ARC layer on the front surface and local-
ized openings on the rear to allow metal contact deposition
on the emitter and base sides, respectively. 7. Metallization:
The final step is the metallization of front and rear contacts,
which can be done using a wide range of materials and tech-
niques. The common method in the industry is screen printing
of silver on the front surface and aluminum on the rear surface.
This step is followed by a high-temperature firing to form an
ohmic contact. Moreover, there are several chemical cleaning
steps of surfaces between the aforementioned steps, typically
involving so-called standard cleaning 1 and 2 (also known as
RCA 1 and 2), which consist of NH3 and HCl, respectively.

2.1. Reduced light transmission into solar cells and
photodiodes

When light from the ambient environment interacts with the
semiconductor, it may be either reflected or transmitted into
the semiconductor. The refractive index is a crucial factor
that affects the behavior of light at the interface between two
media. For dielectric material with negligible magnetic inter-
actions, the refractive index, n, is related to the dielectric con-
stant (or permittivity), ε, of the material with the relation
n = ε1/2, where ε is a function of wavelength. In the case of a
semiconductor material, such as silicon, the refractive index is
significantly higher than that of air or other ambient environ-
ments due to higher permittivity [51].

The behavior of light at the interface between two media
with different refractive indices is governed by the Fresnel
equations, which describe the amount of light that is reflec-
ted and transmitted as a function of the angle of incidence
and the refractive indices of the two media [51]. The high
refractive index difference between semiconductor and air
causes a considerable amount of light to reflect back from
the surface of the semiconductor, reducing the efficiency of
the device.

To reduce reflection for solar cells and photodiodes, anti-
reflection coatings (ARCs) [52–54] and surface texturing
techniques [55–61] are designed. By carefully engineering
the refractive index of the surface, the reflection can be min-
imized, allowing more light, particularly in the wavelength
range of interest, to pass into the semiconductor material and
be absorbed, resulting in higher device performance and new
applications.

ARCs consist of dielectric thin films with specific thickness
that exploit the interference effects of light [52, 53]. However,
a single-layer ARC can only provide nearly zero reflection
at a single wavelength and incidence angle. As illustrated in
figures 2(a)–(c) [54], increasing the number of layers in the
ARCs can lead to achieving almost complete reflection sup-
pression over a wide range of wavelengths, but this also entails
a rise in the intricacy of both the design and manufacturing
processes (such as figure 2(a)).

Surface texturing is the process of modifying the surface of
materials to create specific structures, which can reduce reflec-
tion across a broad range ofwavelengths. Surface texturing can
be achieved by several methods, the choice of which depends

4



Rep. Prog. Phys. 87 (2024) 044501 Report on Progress

Figure 2. Examples of ARCs and surface texturing techniques. (a) Schematic diagram of the preparatory process of five-layer gradient
refractive index broadband ARCs on a glass substrate and the corresponding (b) transmittance and (c) reflectance spectra with different
layers. Reprinted from Wu et al [54]. Copyright 2022. With permission from Elsevier. (d) Cross-sectional view of silicon nanotips (SiNTs).
(e) Comparison of the specular reflectance from planar Si wafer (solid line) and SiNTs (symbols) for nanotip lengths (L) 1.6 µm (green),
5.5 µm (blue) and 16 µm (red). (f) The reflectance of flat Si wafer and the SiNTs (L = 1.6 µm) as a function of angle of incidence using s-
and p-polarized light of 632.8 nm wavelength. Reproduced from Huang et al [59]. With permission from Springer Nature.

on the type of material, the desired texture, and the production
volume [55–57]. The interaction between the incident light
and the surface texture depends on the size of the surface fea-
tures relative to the incident wavelength. If the size of the sur-
face features is much smaller than the incident wavelength, the
surface appears optically smooth for the incident wavelength.
However, if the size of the surface features is comparable
to the incident wavelength, the surface appears rough, and
the reflection is reduced by graded refractive index originated
from the graded density profile between the air and the sur-
face. As the size of the surface features are larger than the
wavelength, the incident light can be trapped with increased
optical path lengths during the multiple reflections between
surface textures. Surface texturing also increases the accept-
ance angles for the incident light to semiconductors, as illus-
trated in figures 2(d)–(f) [59], which has resulted in a high per-
formance Si-based solar cell [60] and photodiode [61]. In prac-
tical applications, minimizing the reflection is often achieved
by a combination of surface texturing and ARCs that simul-
taneously act as surface passivation layers.

An emerging technique of light trapping is the use of plas-
monic structures [52, 62–65]. These structures can trap and
confine light through the plasmonic resonance effect, which
arises from the interaction between the incident light and the
free electrons in the metallic/non-metallic nanoparticles or
nanoholes. Plasmonic structures can provide broadband and
angle-independent light trapping [62–64], making them an
attractive option for enhancing the performance of solar cells
and photodiodes. Furthermore, plasmonic structures can be
integrated with surface texturing and ARCs to create metama-
terials with unique optical properties that cannot be achieved
with conventional materials [65].

In addition to reducing reflection, spectral converters are
another approach used to enhance light absorption in vari-
ous applications. These converters can absorb light at one
wavelength and emit it at another, allowing for better matching
of the incident light to the absorption properties of the mater-
ial. Luminescent downshifters [66] and upconverters [67] are
examples of spectral converters that have been widely used to
extend the absorption spectrum.

5
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Figure 3. Infrared light absorption in Si waveguide at the SiO2/Si
interfaces via defect-induced electron levels in the Si band gap. The
signal is further absorbed by electric carriers: electrons in the
conduction band and holes in valence band. In figure 1(b), Si
waveguide is presented as a part of circuit. Reproduced from
Grillanda and Morichetti [72]. CC BY 4.0.

2.2. Light scattering in waveguides

Light waveguides (figure 3) consisting of SiO2/Si cladding-
core structure on the silicon-on-insulator (SOI) wafers are
used in low-loss optical transceivers for example [6–8, 68–73].
The SiO2/Si interface have a high refraction-index change
which is beneficial for the waveguides based on the total
internal reflection of light at the interfaces. Furthermore a
clean Si crystal is transparent to the telecom wavelengths of
1.3 and 1.6 µm. Obviously good synergy has been obtained
here via the development of SOI technology in microelectron-
ics because high crystal quality of Si core with a low density
of impurities in the Si/SiO2/Si wafer has decreased the light
transmission losses. Yet, interface areas of the Si waveguide
stripes on SiO2 cause the optical losses via different phenom-
ena. One loss mechanism arises from the Si interface rough-
ness. The signal attenuation coefficient (dB cm−1) is propor-
tional to the square of roughness, specifically to the square
of a standard deviation of the roughness [68, 69]. For low-
loss waveguides, it is required very smooth waveguide side-
walls with the roughness less than 1 nm down to an atom
layer thickness. Indeed, proper Si surface treatments such as
the RCA-based wet chemical cleanining and oxidation of Si
waveguide interfaces have been found to decrease the scatter-
ing loss [69, 70].

In addition, the SiO2/Si interfaces include point defects
(e.g. broken dangling bond and impurities), which cause extra
defect-induced electron levels in the Si band gap. The telecom
infrared photons that are not able to excite the clean Si crys-
tal through the direct electron transfer over the band gap can
be now absorbed via the interface defect levels inside the gap
(figure 3). This is one absorption way for the waveguide light.
Another loss factor is related to the electrical carriers, elec-
trons and holes. So-called free-carrier absorption is described

Figure 4. (a)–(c) In-situ thermographic images from 650 nm GaInP
laser mirror when catastrophic optical mirror damage (COMD) is
occurring (b) in interval of 2.3 ms before (a) and after (c) COMD.
(d) Scanning electron image after COMD shows an extrusion.
Reproduced from Ziegler et al [84]. With permission from Springer
Nature. (e) and (f) Transmission electron microscopy images after
two different cleanings of semiconductor facets in diode mirrors:
hydrogen (e) and cleaving in ultrahigh vacuum (f), combined with
ZnSe passivation film. Reprinted from Boschker et al [86].
CC BY 4.0.

with the Drude model of the electrical resistance where light
is absorbed by the collective oscillation of the electric carriers
along the light electric field, causing the resistive loss [71–74].
It is worth noting that the free carrier absorption, which is dir-
ectly proportional to the density of the carriers, is relevant also
to other photonic device components where high carrier con-
centrations appear, for example, in highly doped to n-type or
p-type regions at metal/semiconductor contacts [73, 74].

2.3. Laser mirror damages

Edge emitting laser diodes include both high and low reflect-
ive mirror structures fabricated on the cleaved semiconductor
(110) sidewalls (figure 1(c)). These lasers suffer from the cata-
strophic optical mirror damages (COMDs) which limit the
device lifetime [75–87]. When the temperature of a diode mir-
ror increases locally (on area of micrometer scale) to a range
of 100 ◦C–200 ◦C, the COMD phenomenon can occur, during
which the mirror temperature increases rapidly even to 600 ◦C
[83, 84]. That causes significant structural degradation leading
to the laser malfunction (figure 4).

Reasons for the initial temperature increase at the laser
mirrors have been investigated for long. It is widely accep-
ted that defect-induced gap levels at the cleaved diode sur-
faces play a key role behind the electron-transfer processes
that finally lead to the local temperature increase. The band
gap defect levels increase carriers’ non-radiative recombina-
tion which increases the semiconductor temperature. On the
other hand, the defect levels increase an opposite electron
transfer via thermal generation of the carriers to the conduc-
tion band. Furthermore, the gap levels and the free carriers
increase the laser light absorption and the resistive heating
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of the device material. These different electron-transfer pro-
cesses are expected to increase and sustain each other in the
presence of light absorption.

Thus, decreasing a density of the band-gap defect levels at
the semiconductor mirror facets is crucial to increase the lasers
lifetime. This requires understanding of different III–V(110)
surfaces (section 3) because the area of a laser waveguide
typically includes a heterostructure of different III–V films
including quantum wells. The mirror structure often includes
a stack of insulator and/or metal films. Recently it has been
shown that cleaving the diode mirror facets in UHV envir-
onment followed by in-situ deposition of ZnSe passivation
layers before air exposure on the facets increases the device
lifetime [86].

2.4. Trade-off between Ohmic and recombination losses at
metal-semiconductor interfaces

Most photonic devices contain metal/semiconductor junctions
to transmit the circuit current through a semiconductor part or
out of it in the case of solar cells and photodiodes (figure 1).
These interfaces have been traditionally categorized Ohmic or
Schottky contact depending on how the semiconductor elec-
tronic bands bend near the interface. The band bending means
the presence of an internal electric field (even without an
external bias) inside the semiconductor, which originates from
the electrons’ transfer between a metal and semiconductor to
align their Fermi levels according to the Volta contact potential
rule. The band bending depends also on the doping type and
is different for n-type and p-type crystals. However, at Ohmic
interfaces, the band bending is such that semiconductor major-
ity carriers accumulate close to the interface while at Schottky
contacts, the majority carriers deplete, are repelled away from
the interface [88–90].

Schottky contacts themselves have been utilized as a rec-
tifier and a simple photodetector (e.g. in thermal imaging
devices) [91–95] while Ohmic contacts are needed for many
devices to transmit the electric current through a device
p–n junction structure with a minimized resistance [88, 89,
96, 97]. Two parameters should be minimized in high-quality
Ohmic contacts: contact resistivity and carrier recombina-
tion (or generation). Toward the first target, the n-type or p-
type doping atom density needs to be maximized [98, 99],
which on the other hand increases the harmful free-carrier
absorption of light (section 2.2). The high doping typically
increases also the density of point defects, which is further
increased by interactions of metal atoms and a semiconductor.
Therefore, the metal contact areas include an increased num-
ber of gap levels, which increase carriers’ recombination. Thus
in many photonic devices, the Ohmic contacts are a comprom-
ise between the efforts to increase the doping concentration
and to decrease the density of defect levels. The third crit-
ical factor is durability of the Ohmic contacts. For example,
degradation of the Ohmic contact of p-GaN decreases opera-
tion time of ultraviolet LED [100].

Furthermore, an additional factor increases the gap levels at
metal contacts: metal-induced gap states (MIGS) which arises
from extension of metal wavefunctions into a semiconductor

Figure 5. Formation of metal-induced gap states (MIGS) in a
semiconductor band gap due to extension of electron wavefunctions
from the metal. The interface includes also defect-induced electron
levels (blue lines), for example, due to metal atom diffusion into the
semiconductor. Reprinted from Robertson and Lin [96] Copyright
2011. With permission from Elsevier.

side as shown in figure 5 [96]. To reduce MIGS effects,
ultrathin insulator barriers are investigated for passivating the
device contacts, which we will return to in section 4.5.

2.5. Carrier recombination and generation at
insulator-semiconductor interfaces

As presented above, insulator/semiconductor interfaces guide
the light propagation in applications. These interfaces also
participate in guiding electric current; blocking the current
transport into wrong places. For example, the light absorp-
tion induced electric carriers should be guided efficiently to
the metal contacts in solar cells and photodetectors (figure 1),
while in the LED the current transport along the mesa side-
walls should be suppressed to increase the radiative recom-
bination in high-quality bulk quantum wells. The defect levels
at insulator/semiconductor interfaces change significantly the
carrier recombination and generation [101–103].

Any defects or impurities at the interface can increase the
recombination of electric carriers and deplete minority car-
riers near the surface. The surface recombination velocity
(Seff) is often used to specify the recombination at a surface
of photonic devices. It can be determined by measuring the
effective minority carrier lifetime. Assuming the front and rear
surfaces have same properties, the Seff can be determined by

1
τeff

=
1

τbulk
+

2Seff
W

, (1)

where τeff is the effective carrier lifetime, τbulk is the carrier
lifetime in the bulk, and W is the wafer thickness. Surface
passivation can substantially reduce surface recombination by
reducing the recombination either by decreasing the defect
level density (chemical passivation) and/or electrostatically
repelling the electric carriers from the interface by an internal
electric field (field-effect passivation). The former passivation
is quantified as the interfacial defect density (Dit) while the
latter as the fixed charge density (Qtot). Recombination can

7



Rep. Prog. Phys. 87 (2024) 044501 Report on Progress

take place either in bulk or at the surface. When surface life-
time limits the effective carrier lifetime compared to the bulk
lifetime (τbulk ≫ τsurf), the bulk lifetime can be assumed to be
infinite (τbulk →∞) and an upper limit for the surface recom-
bination velocity (Seff,max) can be estimated by

Seff,max ≈
W

2τeff
. (2)

Table 1 in appendix shows selected Seff,max values for
different semiconductor interfaces. The surging demand for
photovoltaic devices has spurred significant advancements
in surface passivation technology for Si. Notably, the tun-
nel oxide passivating contact (TOPCon) technology has yiel-
ded remarkable outcomes, achieving an exceptionally high
carrier lifetime reaching 500 ms (table 1), which translates
to Seff,max dropping to less than 0.05 cm s−1. When integ-
rated with industrial processes, these parameters indicate a
significant improvement in the energy conversion efficiency
of solar panels. Similarly, recent breakthroughs of Seff,max as
low as 1.3 cm s−1 on n-type Ge through the optimization of
SiO2/Al2O3 passivation layers (table 1) are promising for Ge
applications.

In addition to the interface defects, insulator/semiconductor
junctions include the band-gap levels also in the insulator side
(figure 6), for example, so-called border traps at distances of
1 nm from the interface [104–111]. Thus, the carriers can be
lost through the non-radiative recombination at various gap
levels. These levels can also cause an additional current chan-
nel. Moreover, the gap level also increase the opposite car-
rier transfer, thermal excitations which cause an increased
dark (leakage) current in photodetectors. In many electronic
devices based on the metal–oxide–semiconductor stack, the
gap levels increase the leakage current through the oxide film
as well, which is another type of the leakage; different from
the diode dark current. Section 4.4 further describes potential
solutions to decrease harmful recombination and generation in
devices.

3. Basics of clean and crystalline Si, Ge, and III–V
surfaces

For many decades, semiconductor device technology has
also stimulated the research of physicochemical properties of
semiconductor surfaces, of which atomic scale understand-
ing becomes more and more vital for industrial processes as
well. Excellent books [e.g. 48–50, 112] and review articles
[e.g. 34–44, 114, 115] are available for the surface science. In
this section, we still summarize some fundamental properties
of clean semiconductor surfaces, which might be helpful to
review the subjects in section 4. For the beginning, we discuss
practical methods to prepare a clean surface.

Because semiconductor surfaces typically react strongly
with elements of environment, UHV conditions have been
widely used to prepare and measure clean semiconductor
surfaces. In other environments, a semiconductor surface
becomes quickly covered by another material like an oxide or

Figure 6. Insulator-semiconductor junctions include various
band-gap levels not only at the interface but also inside an insulator
at different distances from the interface. Reprinted from Ren et al
[110]. Copyright 2018. With permission from Elsevier. (b) Carriers
can transfer to different gap levels. Also transfer to opposite
directions are possible. External field is applied to the presented
junction. @2007 IEEE. Reprinted with permission from Lu
et al [111].

adsorbate layer(s). Based on the kinetic gas theory, the num-
ber of atoms or molecules striking a surface per unit area in
unit time at room temperature is

dN/dt= 1.51 × 1019 ×P
/√

M
[
cm−2s−1

]
(3)

where P is the gas pressure in Pa and M is the molecular of
atomic weight of the incident particles. For example, at a pres-
sure of 1.5 • 10−4 Pa (=1.5 • 10−6 mbar) of molecular oxy-
gen O2, 4 • 1014 molecules are striking to a clean surface per
cm2 per second. If a sticking probability of molecules is unity
and molecular adsorption is dissociative, the time required for
the adsorption of one layer of O atoms (in relation to the sub-
strate atom density) on the surface is about 1 s. The sticking
probability varies between 0 and 1 depending on the elements
and adsorbate coverage. Anyhow, UHV conditions (P < 1 •
10−9 mbar) are needed in practice to obtain the understanding
of clean surface properties by complementary surface sensit-
ive measurements. Without surface cleaning, a semiconductor
surface contains a native oxide filmwhich is typically amorph-
ous and can be several nanometers thick depending on the
environment exposure and semiconductor.

There are various methods for preparing a clean semicon-
ductor surface, of which only a few are mentioned here. We
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return this objective in section 4.1 where it is described effects
of the wet chemical cleaning methods which are widely used
in device manufacturing processes. It is worth noting that a
clean surface does not have a unique definition. In many sur-
face physics studies, a clean surface implies also a crystalline
surface. However, this is not the case in more general, and a
clean surface can consist of a disordered or amorphous layer
on the top of semiconductor crystal.

Thewidely used surface-science technique to clean a Si sur-
face is so-called rapid high-temperature flashing, where a high
direct current (e.g. 10 A) is fed for short time through a small
Si piece (e.g. 5 mm × 10 mm slice of Si wafer). Repeating
an increase of the Si temperature in UHV several times near
1250 ◦C removes surface oxides and other impurities. It is crit-
ical to minimize the heating time at 1100 ◦C–1150 ◦C because
stable silicon carbide (SiC) clusters tend to form at this tem-
perature, which can hardly be removed from the surface after
SiC formation. The flash heating in UHV provides large atom-
ically smooth terraces on Si, as shown below (figure 8(b)).

This method is mainly used for small Si pieces. Many
other semiconductors cannot withstand the high temperatures
required to remove natural surface oxides, without melting.
Thus, an ion (e.g. argon) bombardment is the common clean-
ing method for Ge and III–V surfaces. The post-annealing
at 300 ◦C–700 ◦C in UHV is required to recover a crys-
talline order of the surface layer(s) after the bombardment
that can severely degrade the crystal structure. Because UHV
cleaning methods have been develop to optimize the surface
smoothness and crystalline degree for justified surface stud-
ies, a care is needed to apply the methods for device surfaces.
The high temperatures and bombardments can significantly
degrade bulk crystal quality causing e.g. metal impurity and
doping atom diffusion.

3.1. Some fundamental properties of clean and crystalline Si
and Ge surfaces

Most solid surfaces experience structural changes (i.e. recon-
struction or relaxation) after the surface cut or formation, as
compared to the corresponding bulk plane structure, leading to
changes in the surface electronic structure as well. The recon-
struction means that a two-dimensional phase transition takes
place on the surface, causing atomic rearrangements and a
change in the surface lattice compared to the planar bulk lat-
tice. In the relaxation, the surface lattice does not change but
the atomic positions in the vertical (surface normal) direction
change. The reconstruction trend is especially strong for the
semiconductor crystals since their covalent bond orbitals typ-
ically have a strong angular dependence. This distinguishes
semiconductors from metals, in which the bonds between
metal ions are formed by a delocalized electron sea. If a semi-
conductor surface is produced by cleavage of a crystal in UHV,
the atoms located on the surface lose one or more neighboring
atoms (figure 7). Thus, the outermost atoms have half-filled
dangling bonds, i.e. orbitals occupied with a single electron, in
contrast to the bulk bonding orbitals with a pair of electrons.
The existence of half-filled dangling bonds leads to a signi-
ficant increase in the total energy of the cleaved crystal. It is

Figure 7. (a) Different low Miller index surfaces of the cubic
diamond crystal structure. At the cut (111) and (110) faces, each
surface atom has one broken bond while at (100) each atom has two
broken bonds. Reprinted with permission from Duke [37].
Copyright 1996 American Chemical Society. (b) Left: atomic
structure of bulk-terminated Si(100)(1 × 1); middle: reconstructed
Si(100)(2 × 1) with symmetric dimers; right: with asymmetric tilted
dimers. (c) Atomic model for Si(111)(7 × 7) surface. Reproduced
from Mönch [112]. (d) Atomic model for Si(110)(16x2). With
permission from Springer Nature. Reproduced from Yamasaki et al
[113]. @ IOP Publishing. All Rights Reserved.

therefore energetically favorable for the crystal to rearrange
its atomic structure at the surface to minimize a number of
the dangling bonds. Since rigid restrictions are imposed on
the angles between localized orbitals in semiconductors, sur-
face rearrangements usually lead to drastic changes in sym-
metry and unit cell size. Moreover, the rearrangement of sur-
face atoms can involve also deeper atomic layers in addition
to the uppermost layer. Ultimately, the equilibrium ground-
state (i.e. minimum energy) structure is governed by a delic-
ate balance of the energy gain from the elimination of dangling
bonds and the energy cost caused by introduced lattice strain
in a modified surface layer. Also, the changes in atomic sur-
rounding require typically themodification of electrons’ distri-
bution which can cause an additional Coulombic interactions
between charged structural elements.

The most common building blocks of the reconstruction
on Si and Ge surfaces are dimers and adatoms. The number
of broken dangling bonds varies depending on the crystallo-
graphic direction of a cleavage plane defined by the Miller
indexes (figure 7). On the bulk-plane terminated (111) and
(110) faces, there is one dangling bond per the surface atom,
while on the (100) surface, each atom has two dangling bonds
if no reconstruction occurs.

Thus, it is natural that pairing of the surface atoms and
formation of new bonds occur on the Si(100) surface to reduce
the number of dangling bonds to half, lowering the material
total energy significantly. The paired atoms, dimers, form lin-
ear rows and the (2× 1) unit cell according to the Wood nota-
tion where the unit cell length is doubled along one primitive
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vector direction, as compared to the (1 × 1) bulk plane lat-
tice. If no further structural change occurred, the dimer atoms
would be equivalent and have one partly occupied dangling
bond per atom. Such degeneracy causes Jahn–Teller distor-
tion where the dimers spontaneously deform lowering their
symmetry, as shown in figure 7(b). This leads to an additional
decrease of energy. The Si dimer axis is tilted by 18 degree
to the (100) surface plane leading to so-called buckled dimers
[120]. This means that the Si dimer atoms lie at inequivalent
positions, accompanied by electron charge transfer between
the dimer-up and dimer-down atoms. Two orientations of the
asymmetric dimers are possible, one tilt to the left and the
other to the right. At room temperature or higher, rapid fluctu-
ations between the two configurations (so-called flip motion)
[121, 122] can occur for dimers continuously such that the
dimer tilting does not necessarily appear in themeasurement at
room temperature, for example, when the surface is probed by
scanning tunneling microscopy (STM) or electron diffraction
(figures 8(a)–(c)). However, the asymmetric dimers provide a
signal when the surface is probed by a fast measurement of
the photoelectron spectroscopy that gives a ‘snapshot’ of tilted
dimer configuration [117, 119]. The Si 2p core-level spectrum
of Si(100)(2 × 1) surface shows two components: one related
to the dimer-up (Su) and the other related to dimer-down (Sd)
atoms with the binding-energy separation of 0.5 eV as exem-
plified in figure 8(d).

At low temperatures (<200 K), the flip motion of dimers
slows down, which makes one of two tilted configurations
frozen [122]. Moreover, dimers in adjacent rows are oriented
in opposite directions, leading to c(4 × 2) and (2 × 2) unit
cells (figure 8(h)). Similar structural changes are observed for
the Ge(100) surface, and the (2 × 1), c(4 × 2), and (2 × 2)
reconstructions form due to dimerization in the first layer of
Ge atoms, depending on the temperature [123]. For instance,
the tilting angle of Ge dimers (19 degree) is very similar to that
of Si dimers [124].

Since the tilted dimer on the Si(100) and Ge(100) surfaces
possess one fully occupied dangling bond and one completely
empty dangling bond, a semiconducting electronic structure
with a surface band gap is formed (figure 8(f)). For the Si(100)
surface, a dominant feature in the valence band edge is a sur-
face state Dup associated with the dangling-bond orbital of
the dimer-up Si atoms [125]. Likewise, the dominant feature
above the Fermi level is a surface state Ddown associated with
the dangling-bond orbital of the dimer-down Si atoms. Thus,
the band gap of approximately of 0.5 eV (i.e. half of the bulk
gap) at clean Si(100) is determined by the occupied and empty
dangling-bond levels. At the Ge(100) surface, the electronic
properties are complicated by a bulk contribution which is
interconnected to the surface lattice via a surface resonance
[126–129]. The Ge(100) surface resonance is one probable
reason for that the n-type Ge(100) has strong Fermi level pin-
ning at 0.1 eV above the valence band maximum [129, 130].

The Si(111) and Ge(111) surfaces, of which atom dens-
ities of 7.84 • 1014 and 7.22 • 1014 cm−2, respectively, are
higher than 6.78 • 1014 cm−2 of Si(100) and 6.24 • 1014 cm−2

of Ge(100), exhibit even a greater variety of reconstructions.
The specific atomic structure depends on the method used in

Figure 8. (a) Low energy electron diffraction (LEED) pattern
shows that the Si(100) surface consists of two domains of (2 × 1)
and (1 × 2) where dimer rows are along perpendicular directions in
the neighboring terraces. (b) STM image from the flash-heat cleaned
Si(100) shows large atomically smooth terraces. (c) Zoomed STM
image at room temperature shows dimer rows of one domain
without resolving different dimer atoms. (d) Synchrotron XPS Si2p
spectrum from Si(100)(2 × 1) + (1 × 2) at room temperature shows
two extra components Su and Sd from dimer-up and -down atoms in
addition to the bulk crystal component B. (e) Scanning tunneling
spectroscopy curve shows that a surface band gap (i.e. voltage range
where differentiated intensity is zero) is approximately half of the
bulk gap at Si(100)(2 × 1) + (1 × 2). Reprinted with permission
from Rad et al [116]. Copyright 2020 American Chemical Society.
(f) Calculated band structure shows that the dimer-related bands
decrease the band gap at the surface. Charge density contours show
that electron density is enriched around the top dimer atoms.
Reprinted figure with permission from Pehlke and Scheffler [117].
Copyright 1993 by the American Physical Society. (g) Hydrogen–Si
bonding removes dangling bonds, and the formed H-Si bond levels
lie outside of the band gap. Reprinted from Robertson et al [118].
With the permission of AIP Publishing. (h) Low-temperature STM
image reveals different dimer atoms because their flip motion is
decreased at 40 K. Dimer down atoms are imaged when electrons
tunnel toward the Si surface. Reprinted figure with permission from
Ono et al [119]. Copyright 2003 by the American Physical Society.

the preparation of clean surface. For example, the Si(111) sur-
face cleaved in UHV at liquid nitrogen temperature (∼100 K)
exhibits the (2 × 1) reconstruction. At 500–700 K it changes
to the (7 × 7) reconstruction (figure 7). This phase transition
is irreversible, i.e. the (7 × 7) structure persists even after
lowering the temperature. At a higher temperature (∼1170 K)
the (7 × 7) reconstruction transforms to another phase which
is so-called high-temperature (1 × 1) structure. This phase
transition is of order-disorder type and has a reversible char-
acter, i.e. lowering the temperature leads to the restoration
of energetically stable (7 × 7) below 1170 K. It includes 12
atoms in the adatom layer, 42 atoms in the rest-atom layer,
and 48 atoms in the layer containing the stacking fault [131].
Counting the atoms amount in the adatom and rest-atom lay-
ers, one can find that the (7 × 7) structure needs extra four Si
atoms compared to the non-reconstructed Si(111)(1 × 1) sur-
face with the bulk-like termination. From the energetic view-
point, the benefit of (7× 7) reconstruction is obvious, because
it allows one to reduce the number of dangling bonds by
more than two and half times, and thus, the Si(111)(7 × 7)
is very stable. In contrast, the Ge(111) shows the c(2 × 8)
reconstruction that includes adatoms and rest-atoms. The most
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Figure 9. Atomic models for selected III–V compound semiconductor surfaces. (a) III–V(110) surfaces are used for example in laser diode
mirrors and can be readily obtained by cleaving the cubic crystal. III–V(110) surfaces do not typically reconstruct but relax. Reprinted with
permission from Duke [37]. Copyright 1996 American Chemical Society. (b)–(d) III-As(100) surface reconstructions with decreasing the
As amount at the surface. Reprinted from Laukkanen et al [136]. With the permission of AIP Publishing. (e) Surfaces of hexagonal wurtzite
GaN crystals can contain extra layers of Ga which form a reconstruction. Reprinted from Smith et al [137]. With the permission of AIP
Publishing.

detailed information about the electronic structures of Si(111)
and Ge(111) reconstructions has been obtained for the (7× 7)
structure [132–134]. They include occupied and empty levels
which are localized on the adatoms, the rest-atoms, and the
adatom backbonds. The surface band contributed by the occu-
pied dangling bonds of adatoms crosses the Fermi level (i.e. a
metallic band structure), leading to Fermi level pinning at
0.7 eV above the valence band maximum for the both n-type
and p-type Si(111) samples. Thus the surface work function is
independent of the type and doping level of the Si(111)(7× 7)
surface [135].

The atomic structure on the (110) surfaces of Si and Ge is
rather complicated and less understood still. When the Si(110)
surface is annealed at 1200 ◦C, it exhibits a large (16 × 2)
reconstruction [113, 138, 139]. The building blocks of this
structure (figure 7(d)) are a buckled tetramer, heptagonal rings,
and a tetragonal ring.

3.2. Some fundamental properties of clean III–V surfaces

In contrast to Si(110) and Ge(110), III–V(110) surfaces are
well understood (figure 9), and have provided a well-defined
template for surface investigations during decades because
clean III–V(110) surfaces can be readily obtained by cleav-
ing cubic III–V crystals. It is worth noting that the cleaved
III–V(110) surfaces have been used in the laser diode mir-
rors. III–V(110) surfaces are an exception because they do
not typically reconstruct but have the (1 × 1) bulk-plane lat-
tice according to the Wood definition. However, the surface

relaxation occurs at III–V(110) together with electron transfer
from the group-III dangling bond to group-V one. The result-
ing relaxed III–V(110) surface is semiconducting (or insulat-
ing) with a clear band gap of which size equals to the bulk
band gap (figure 10). In other words, a clean III–V(110) sur-
face does not cause extra electron levels in the middle of the
bulk band gap, in contrast to Si(100)(2× 1) or Si(111)(7× 7).
In fact, the band gap without surface-related electron levels is
a rather common property among clean III–V surfaces where
the group-V dangling bonds become filled by electrons while
group-III dangling bonds are empty [140–144]. In contrast,
intrinsic point defects like As substitutional in Ga site (AsGa)
cause the midgap levels in the clean surfaces [144].

Many clean and crystalline III–V(100) and III–V(111) sur-
faces undergo strong structural rearrangements (figure 9), and
the resulting reconstructions own large unit cells such as
(2 × 4) or (6 × 6) or (4 × 2) [145–150]. The same recon-
struction principles as for Si and Ge determine largely the
structural changes at III–V surfaces also. The III–V recon-
structions often extend to a depth of several atomic layers,
exposing also the second and third atomic layers, as shown
in figure 9. The strongly rearranged III–V(100) surfaces can
be in fact expected to cause atomic scale non-uniformity
at the interfaces grown on the top of the reconstruction.
Thus, a proper adsorbate layer on a clean semiconductor sur-
face might decrease the structural changes at the semicon-
ductor side via the formation of smaller adsorbate-induced unit
cell [151–153], and improve atomic-scale smoothness at the
interfaces.
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Figure 10. Top: Electronic band structure for GaAs(100)(2 × 4)
where solid lines are surface-induced levels. The corresponding
orbitals that contribute to the surface bands are also shown. For
example the V1 band is contributed by the top layer As dimer
dangling bond and C1 arises from the empty second-layer Ga
dangling bonds (figure 9(b)). Reprinted figure with permission from
Schmidt and Bechstedt [143]. Copyright 1996 by the American
Physical Society. Bottom: As and Ga dangling bonds cause electron
levels near valence-band maximum and conduction band minimum
respectively. When hydrogen atoms are bonded to the dangling
bonds, the resulting electron levels move away from the band edges.
Black dots mark surface related bands. Pulci et al [141]. John Wiley
& Sons.

Wurtzite III–V nitride surfaces (figure 9(e)) such as
GaN(0001) and AlGaN(0001) are an exception among semi-
conductor surfaces because their reconstructions are typically
atomically smooth, which can be understood with strong nitro-
gen bonds which have partial ionic nature, which hinders the
atomic rearrangement [137, 154–159]. In contrast, extra Ga
layers have been found to form smooth islands with super-
structures. Another peculiar property of III-N nitrides is that
they exhibit a surface diffraction pattern without any surface
cleaning even after a long air exposure of several months.
Strong nitrogen bonds of course decrease the oxygen incor-
poration into the nitride surfaces but it appears also that the
III–V nitride surfaces can accommodate oxygen atoms keep-
ing crystalline nature in different way as compared to many
other semiconductor surfaces [156–158].

4. Connecting issues between photonic device
interface passivation and surface physics

In this section we present selected research subjects which
are relevant to developing the passivation of photonic devices.
Strong background knowledge has been previously obtained
for the subjects but each of them includes also open issues
whose understanding might be progressed via enhanced col-
laboration between photonics and surface physics people.

4.1. What kind of properties does wet-chemically cleaned
surfaces have?

Properties of wet-chemically treated Si, Ge, and III–V sur-
faces have attracted great interest for several decades because
these surfaces are predominantly utilized in industrial pro-
cesses [e.g. 160–180]. Thus, the semiconductor wet chemistry
can be considered a very established area but on the other hand,
it is also developed continuously toward sustainable solutions,
which for example decrease consumption of chemicals. An
obvious difference between the wet chemistry methods and
UHV methods (section 3) is the environment of atmospheric
pressures during the cleaning and transfer of samples.

Si crystals with the (111) surface orientation appear to
be a surprising exception among the semiconductor surfaces
because a very high-quality Si(111) surface structure has
been observed in STM (figure 11) after a pure wet chem-
ical treatment [169, 171]: Without any additional prepara-
tion, a proper F-containing wet etching provides large-scale
smooth terraces with atomic scale ordering for hydrogen-
terminated Si(111). In the optimized chemical treatment, 1.0%
ammonium sulfite was included in the 40% NH4F etching
solution for removing dissolved oxygen and for preparing
atomically smooth Si(111) [171].

It is still surprising that Si(100) behaves quite differently
from Si(111) concerning the wet chemistry effects. Namely,
wet chemically treated Si(100) surfaces have been more rough
without large atomically smooth terraces (figure 11). In con-
trast, different facets are typically formed on wet chemic-
ally etched Si(100) surfaces [166, 167, 170]. This difference
is consistent with surface-recombination velocity measure-
ments performed in situ during the immersion of Si(100) and
Si(111) pieces in a HF-containing solution: Si(111) causes
lower recombination velocity than Si(100) [161]. The pecu-
liar behavior of Si(111) can be understood with the surface
energetics: energy of the relaxed Si(111)(1 × 1) structure is
smaller than that for Si(100)(1 × 1) [172].

If this energy is a significant factor behind the formation of
atomically smooth etched terraces on Si(111), then a proper
etching of another plane of Si(110) can be expected to pro-
duce large terraces more easily than on Si(100). That has not
been evidenced by STM so far according to our knowledge.
However it can be expected that significance of the wet chem-
ical treatments of Si(110) increases because inmany nanocrys-
tals, the (110) planes are exposed and require the passivation.
Furthermore, on the basis of the surface energy comparison,
it might be speculated that a Si–Si dimer structure during
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Figure 11. Scanning-tunneling microscopy (STM) images reveal
significant differences between Si(111) and Si(100) after wet
chemistry. Reproduced from Kato et al [171]. @ IOP Publishing.
All rights reserved. Reprinted from Endo et al [167]. With the
permission of AIP Publishing.

a wet chemical treatment would enhance the terrace forma-
tion. However, in-situ STMmeasurements of Si(111) in NaOH
solution [164] suggest that no dimer reconstruction occurs on
the surface during the etching.

We would like to emphasize that STMmeasurements [166,
167, 169–171] have been the key to realize the exceptional
properties of Si(111) because the surface diffraction meth-
ods (i.e. LEED and RHEED) and x-ray photoelectron spec-
troscopy (XPS) are not sensitive to local defects. Indeed it is
known that STM measurements often reveal realistic surface
quality.

Measurements of wet chemically treated III–V and Ge
surfaces [174–179] also support that Si(111) is an unusual
case because the post heating in UHV is typically needed to
increase a crystalline order and the formation of atomically
smooth terraces on the etched surfaces. Another difference
between Si and III–V is that Si surfaces have typically hydro-
gen termination after the wet chemistry while III–V surfaces
become enriched by group-V element in chemical treatments.
Extra group-V adsorbates can be removed at relative low tem-
peratures in UHV [174–178]. For example, extra arsenic from
GaAs at around 350 ◦C. However, recently it has been repor-
ted a surprising wet-chemically induced InP(100)c(2× 2) sur-
face which resembles atomically smooth Si(111), and which
is expected to be hydrogen terminated after a proper HCl
immersion [179].

Figure 12. Top: STM image from the p-GaN surface with native
oxide before any surface cleaning shows a terrace-step structure and
clear (1 × 1) LEED. In contrast, no large-scale atomically smooth
terrace is found on Si(100) after the RCA wet chemical treatment
with a final HF dip. LEED pattern from this surface shows (1 × 1)
spots which arise from the bulk crystal planes beneath the topmost
layer(s). Post heating of this surface in UHV around 700 ◦C–800 ◦C
provides large scale terraces. LEED changes as well to the
(2 × 1) + (1 × 2) pattern that appears to arise from local dimer
structures seen in zoomed STM image.

Indeed, HCl-based etching solutions have been found
to provide smoother surfaces for III–V and Ge, as com-
pared to the F-containing wet chemistry [174–180]. For Ge,
both NH4OH- and HCl-based treatments have been used
successfully [180]. However, atomically smooth terraces, sim-
ilar to those of Si(111), have not been reported so far in STM
measurements of purely wet-chemical treated Ge surfaces. As
mentioned above, the post heating in UHV conditions after
a wet chemical treatment has been used particularly for III–
V and Ge to obtain atomically smooth large-scale terraces.
The UHV post heating also enhances smoothness of Si(100)
as shown in figure 12.

After a wet chemical treatment, a semiconductor sur-
face contains carbon contamination, of which amount can be
decreased by low-temperature (<450 ◦C) heating in UHV.
Such incorporation of carbon at the surfaces is expected from
the energetical viewpoint [181]. For example, the molecu-
lar bond strength of Si–C is similar to Si–H bond strength
(360 kJ mol−1). Furthermore, the Si–O bond strength of
450 kJ mol−1 indicates the presence of oxygen incorporation
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although the H-termination of Si surfaces decreases O incor-
poration rate.

Theoretical simulations [182–184] for incorporation of car-
bon, hydrogen, and oxygen atoms into semiconductor surfaces
in different chemical solutions and background gases would be
helpful to understand the surface properties and their changes
during the etching and the sample transfer to a next process
step. Finally, GaN surfaces appear to be an exception among
all semiconductor surfaces because smooth terraces can be
observed even without any treatment (figure 12), which prob-
ably arises from the strong Ga–N bonding. Such untreated
GaN surfaces still contain oxygen and carbon atoms which are
incorporated into GaN without destroying the surface crystal
structure completely.

To recapitulate, understanding of the specific properties of
Si(111) and InP(100) in comparison to the other surfaces like
Ge(111) and GaAs(100) is expected to contribute to develop-
ment of the methods to decrease the surface roughness and
atomic scale disorder. A clean semiconductor surface is not
necessarily crystalline. STM characterization is expected to be
useful in optimizing a wet chemical recipe which provides a
clean and highly crystalline starting surface for the next device
processing step.

4.2. Is it possible to avoid the incorporation of significant
amount of oxygen and carbon impurities into semiconductor
surfaces?

In this section, we do not attempt to make a review on the
semiconductor oxidation phenomenon. Excellent books and
articles have been previously published about this subject [e.g.
14–17, 185–188]. It is accepted that for an oxidized semicon-
ductor layer thicker than 4 nm, the Deal–Grove model where
oxygen diffuses through the oxide film to the oxide/semi-
conductor interface and oxide growth occurs at the inter-
face, describes the semiconductor oxidation, but the initial
states of semiconductor oxidation are expected to be more
complex [185–188].

Understanding of these issues is relevant to develop
photonic devices because it is not possible to avoid the incor-
poration of oxygen atoms at practical semiconductor sur-
faces [e.g. 136, 189, 190]. This subject might be still con-
troversial because sometimes it is described that it is pos-
sible to avoid the incorporation of a significant amount of
oxygen (or carbon) atoms. Then a relevant question is what
is a non-significant density of oxygen atoms because every
defect can increase degradation. Second, which characteriz-
ation method(s) is really sensitive enough to measure a dens-
ity of oxygen atoms of 1•1010 cm−2 or lower, which means
approximately one impurity per 100 000 host surface atoms
or less. Toward that, XPS which is a really element sensit-
ive method has been widely used to determine of a surface
chemical composition in non-destructive manner. However,
the resolution of XPS is around 0.5–1 atomic % (∼1012–1013

atoms cm−2), which is essential to take into account when
making conclusions about non-significant amount of surface
impurities [191–193]. Here STM measurements can be use-
ful to reveal potential defect structures with a low and local

density. It is still worth noting that oxygen-semiconductor
bonds do not necessarily cause the band-gap defect levels dir-
ectly. In contrast, oxygen incorporation often increases a dis-
order and, thus a point-defect density (e.g. broken dangling
bonds) [194, 195].

Electrical measurements belong to the most defect sensit-
ive probes even if they are not element sensitive. The micro-
electronic community has utilized capacitance–voltage (C–
V) measurements of metal–insulator–semiconductor (MOS)
capacitors to understand the interface-defect-induced electron
levels [e.g. 196–198, 105, 106]. With the conventional MOS
C–V methods, a care is needed to compare different device
models in determining exact values of defect densities for
comparison. Alongside conventional MOS C–V, also a non-
invasive contactless technique called corona oxide character-
ization of semiconductors (COCOSs) [199, 200] has been
developed. This method is based on measuring the surface
contact potential via Kelvin probe, and allows to characterize
the interface without the need for metal electrodes. The sens-
itivity of these two C–V techniques is based on a strong effect
of defect-induced levels on carrier transport properties close
to the semiconductor interfaces.

One argument for that why it is impossible to avoid oxy-
gen atom incorporation into photonic device surfaces is the
exothermic nature of oxidation; the formation of oxygen
bonds clearly decreases the total (inner) energy of a semicon-
ductor system [201]. Although the H-termination of Si sur-
faces decreases the oxidation rate, the incorporation of oxygen
atoms into Si is expected to start immediately in O-containing
environment because the Si-O bond is stronger than Si–H.
Furthermore, it is very difficult to avoid the contact of a semi-
conductor with oxygen-containing environment. As presented
in section 3, the vacuum-technology principles describe how
a solid surface becomes covered by one adsorbate layer in
one second, when the environmental pressure around a solid
is as low as 1•10−6 mbar [202]. If the background pressure
is 1•10−9 mbar, it takes 1000 s for one monolayer adsorp-
tion. Thus, a cleaned semiconductor surface becomes read-
ily oxidized unintentionally due to the residual gas condi-
tions which appear for example during the sample transfer
to a film-growth instrument. Moreover, the growth conditions
for insulating films are very oxygen rich, and interdiffusion
of elements across an oxide/semiconductor interface readily
increases oxygen incorporation into the semiconductor.

Incorporation of carbon atoms is also expected to occur
although the bond strength between adsorbed carbon and a
semiconductor element is typically weaker than that of oxygen
bonding. This difference is also reflected in the UHV heating
effect that the carbon XPS signal decreases in contrast to the
oxygen one [116].

The surface reactions after the wet chemistry affect proper-
ties of the resulting interface although a high-quality SiO2 film
will be grown by the thermal oxidation of Si [61, 203–209].
The high-temperature (>700 ◦C) thermal oxidation is not
possible even for all Si device interfaces. Therefore, low-
temperature solution-based wet-chemical oxidation of Si has
been developed to prepare an ultrathin SiO2 passivation layer
[210, 211]. Indeed, this approach allows to control oxygen
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incorporation into the interfaces, which would occur anyway
at some stage(s) after the wet chemical cleaning. This subject
is returned in section 4.4. Furthermore, the oxygen and carbon
incorporation can be affected by other elements. Wet chemical
nitridation, which provides relatively strong N bonds with III–
V surface elements, has been used successfully for the surface
passivation [212–214].

To recapitulate, because it is not possible to avoid oxy-
gen and carbon incorporation into practical device interfaces,
it might be useful to address the question if the structure of
impurity-containing semiconductor surfaces can be modified
such that they cause minimized losses [215]. This idea has
been also supported by theoretical calculations which show,
for example, that a proper oxygen rich GaAs surface provides
the HfO2/GaAs interface without the band gap levels [216].

The properties of a clean starting surface, in particular
the atomic level smoothness is known to affect the struc-
ture of oxide-Si interface and to increase its crystalline
order [217–219]. An increased crystalline degree naturally
decreases the point defect density. However, it is not an easy
task to prepare the atomically smooth starting surface with
wet chemical treatments for semiconductors generally, as dis-
cussed in section 4.1. For Si(100), depositing thin epitaxial Si
layers has been found to be a potential method [217–219].

4.3. Which interface defects do cause extra electron levels in
the band gap?

After decades of research, it is nowadays widely accepted
that the Si dangling bond, caused by missing of neighboring
atom, is the main defect type at SiO2/Si interfaces [e.g. 15,
16, 220–226]. In this defect structure, the Si atom with the
dangling bond does not reach four bonds with neighboring
Si or O atoms. It is also established that the SiO2/Si inter-
face is not atomically sharp typically. In contrast, the interface
layer is extended or diffused at least when the high temperat-
ure thermal oxidation of Si is used to grow SiO2 and when the
oxygen diffusion toward Si is strongly enhanced (figure 13). It
means that the number of oxygen bonds per Si atom increases
from one (i.e. Si1+ oxidation state) to four (i.e. Si4+ oxida-
tion state) toward the topmost SiO2. Also very sharp interface
models have been developed for SiO2/Si interfaces [217–219],
which probably describe low temperature SiO2/Si structures
(e.g. wet chemically grown) better than the diffused interface
model.

The dangling bond structures are often called Pb defect
which has a variation in the bonding structure depending on
the number of oxygen bonds nearby the three-fold bonded
Si atom. Understanding of the positions of different defect-
induced electron levels in relation to the Si band gap has signi-
ficantly improved via development of detailed computational
physics methods because it is very difficult to measure exper-
imentally the defect level position around the band gap with
an atomic identification of the defect structure. Indeed the-
oretical calculations [e.g. 221, 223, 226] have confirmed that
the Pb defects with dangling bond cause extra electron levels
in Si band gap (figure 13). It might be still surprising that
the density of these Pb-induced levels is often higher than

Figure 13. Top: band gap as a function of the distance over the
SiO2/Si interface, showing a transition region where the number of
oxygen bonds per Si atom varies between Si1+ and Si4+ oxidation
states. Middle: atomic models for the SiO2/Si interface with a
missing Si atom (i.e. vacancy) at different distances from SiO2.
Three-fold bonded Si(1) atom has a dangling bond. Bottom:
positions of different dangling-bond induced electron levels in
relation to the Si band gap. Reproduced from Li et al [226].
Copyright 2019, with permission from Elsevier.

1•1012 cm−2 eV−1, if the interface is not specifically pas-
sivated by hydrogen [224], because SiO2/Si has been con-
sidered an unusually high-quality exception among semicon-
ductor interfaces. On the other hand, SiO2/Si is the junction
with an amorphous material, and the Si oxidation increases
the structural disorder which naturally leads to the formation
of point defects.

Structural disorder starts already at initial stages of the Si
oxidation [15, 186, 188, 190, 195] where a part of Si atoms
also detach and diffuse from sub-surface layers toward the top
surface. In other words, Si-vacancy formation in the subsur-
face is an energetically favored process when the oxidation of
Si surface starts [227]. There are also indications that it is pos-
sible to increase a crystalline degree of the oxidized Si surfaces
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[116, 228]. However, in addition to the vacancy-induced point
defects (Pb), it is also relevant to consider the electron level
distribution in the sub-oxide phases of SiOx because a change
in the amount of oxygen can cause an unexpected variation
in the electronic structure of SiOx [194]. A similar variation in
the electronic structure for different oxide phases has been also
found for III–V’s [229]. Significance of these issues can be
expected to increase in the applications where thin or ultrathin
oxide layers are a part of the device structure.

Computational simulations have also improved our under-
standing of the probable defects causing the band-gap levels at
III–V surfaces [e.g. 118, 230–232]. Group-V and -III dangling
bonds as well as group-V dimers are the most likely defect
structures causing extra electron levels around the band gap
(figure 14). Furthermore at InP interfaces, the bonding config-
urations where P atoms have one or two oxygen bonds (i.e. low
oxidation states of P) cause the band gap levels [233]. For
III–N nitride surfaces, also carbon impurities have been con-
sidered as one dominant defect type [234, 235] but the nitride
surfaces are not yet understood as well as other III–V surfaces.
Similarly the SiC surfaces need future studies to establish the
most probable defects, which include C–C bonding [236–238]
even if C–C bond signal is not clear in XPS, but here it is
worth to remind the limited XPS resolution and compare it
to an expected C–C density.

In contrast to Si, the native oxides of III–V and SiC are
not typically high enough quality for the insulator-film pur-
poses. Therefore, the insulator films (e.g. SiO2, SiN, Al2O3

and HfO2) have been grown by other methods such as CVD
and atomic layer deposition (ALD) for insulator/III–V junc-
tions. Still these interfaces include an intermediate layer of
oxidized III–V or SiC, which might be useful to include in
theoretical models to predict the properties of these interfaces.
Recent studies have presented energetically favored structures
for oxidized GaAs(100) and InP(100) surfaces [216, 233],
which provide a realistic platform to simulate the interface
properties and their modifications.

In this section we have focused on the band-gap electron
levels, but it is worth noting that for example the band off-
sets and dielectric constants are also very relevant properties
to the performance of many devices. Indeed, the dielectric
constant, which arises from the external field-induced charge-
density variation in a material, has been shown to differ from
the bulk values at interfaces. Such deviation of the dielec-
tric constant is due to the different interfacial atomic structure
and affects particularly the insulating properties of ultrathin
dielectrics [239, 240].

4.4. Which might be potential approaches to develop
passivation of electronic defect states?

Decreasing densities of the gap levels and their effects have
been investigated for many decades, and we are not able
to review all those seminal studies in this work. Rather we
provide example references to mention some of the most
widely used passivation methods, and to address couple issues
whose consideration might improve further the understand-
ing and control of the defect state formation. For silicon

Figure 14. (a) Two potential defect structures at GaAs interface:
As–As dimer and Ga dangling bond with charge density contours
for electron levels around the band gap. Top film is Al2O3.
Reprinted from Miceli and Pasquarello [232]. Copyright 2014, with
permission from Elsevier. (b) Probable band gap levels for different
III–V’s: group-V or group-III dangling bonds (DB) and V–V
dimers. Reprinted from Robertson et al [118]. With the permission
of AIP Publishing. (c) Two energetically stable atomic models for
HfO2/GaAs interface with an oxidized Ga-rich GaAs surface. These
structures with a Ga2O3 type interface layer provide defect-level
free GaAs band gap. Reproduced from Lahti et al [216]. CC BY 4.0.

device interfaces, the high-temperature thermal oxidation of
Si, hydrogen passivation, wet chemical oxidation of Si, ALD
of dielectrics, and field-effect passivation have been widely
used to decrease the interface defect states and effects [30,
241–249]. For III–V interfaces, sulfur passivation, Si-interface
layer deposition, Ga2O3 film growth, ALD self cleaning have
been particularly utilized in applications [250–260].

Most Si devices include hydrogen, which is intentionally
incorporated, because hydrogen is known to make a bond
with the Si atom with the dangling bond. So-called forming
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gas anneal containing hydrogen is typically performed in the
end of processing by heating the device material containing
already insulator andmetal films at temperatures below 500 ◦C
in H-containing environment. Also many as-grown insulator
films include hydrogen and provide an additional source of H.
For example, solar-cell community has used a phenomenon
called Al neal [261, 262]. It is worth noting that the start-
ing Si surface often contains H bonds after the wet chemical
cleaning, but these bonds are expected to cut during a thin film
growth.

The hydrogen passivation has been essential to decrease the
defect-level density to the level of low 1010 cm−2 eV−1 at Si
interfaces. However, it has been realized that hydrogen incor-
poration into insulator/Si junctions can be also harmful and in
fact degrade devices’ performance [263–267]. The solar cell
community has intensively investigated the phenomenon of
light and elevated temperature induced degradation which is
probably related, at least in part, to hydrogen incorporation
and movement in the device material. Indeed hydrogen atoms
can detach from bonding sites and diffuse at relatively low
temperatures [263–267], while the typical Si cell manufac-
turing process includes a high-temperature heating step, firing
above 800 ◦Cwhere a metal contact channel is created through
SiN insulator.

Thus one open issue is related to the control of H incor-
poration and effects, whether it is possible to place H atoms
in the proper passivating position, avoiding the H-induced
defects. Furthermore, less is known about the H incorpor-
ation effects on other semiconductor interfaces. Promising
results have been obtained for H-containing Al2O3/GaN
interfaces [e.g. 259].

The second point concerns the wet chemical oxidation
of semiconductor surfaces, which has been developed par-
ticularly for Si devices because an ultrathin wet-chemical
SiO2 intermediate layer between Si and dielectric (e.g.
HfO2, Al2O3, SiN) has been found to improve the device
performance [61, 203–211]. This method allows the low-
temperature fabrication of ultrathin oxide layers, in contrast
to the high-temperature thermal oxidation of Si that typically
causes the broadened interface due enhanced oxygen and sil-
icon interdiffusion. Thus some properties of the wet-chemical
SiO2 can be expected to differ from those of the thermally
oxidized SiO2. Understanding the possible differences helps to
post-modify the properties of wet chemically prepared SiO2/Si
which might be partially metastable due to the low temperat-
ure growth. The thermal stability is essential because many
device structures are post heated after the SiO2/Si interface
preparation.

Furthermore the studies of wet chemical oxidation for other
semiconductor surfaces can be expected to advance the passiv-
ation technology because as discussed above, it is not finally
possible to avoid the incorporation of oxygen atoms into semi-
conductor surfaces. For example, it is unclear if wet chem-
ical procedures can provide a Ga-oxide rich GaAs surface
and InPO4 on InP which have been previously shown to be
high-quality GaAs [216, 252, 253] and InP interfaces [233].
Moreover, the wet chemical nitridation [212–215] provides an
interesting alternative to the oxidations because the N bonds

are strong and provide a durable interface layer with a low
defect density [268].

4.5. What kind of properties do passivated and low-resistive
metal contacts have?

MIGS arise from metal wavefunctions extending to the semi-
conductor side. MIGS together with the point-defect induced
gap levels cause significant carriers’ recombination losses in
particular in solar cells and photodetectors. Therefore, so-
called tunnel oxide passivating contact (TOPCon) have been
investigated intensively for Si solar cells [e.g. 269–276]. It
means that an ultrathin insulator barrier is grown between
a semiconductor and a metal film. If a metal film is sep-
arated from the semiconductor surface with the distance of
0.5 nm, the metal wavefunction intensity and MIGS density
decrease significantly (figure 15). Such an insulator barrier
also decreases the interaction of metal elements with a semi-
conductor (i.e. alloying) and the related defect formation.

However, as discussed above, it is not straightforward either
to prepare a high-quality insulator/semiconductor interface
with a low defect-level density. Furthermore, a tunneling bar-
rier causes an additional resistance. Thus a required level of
contact resistivity determines whether the tunneling contact is
a potential solution. It has been estimated that if the contact
resistivity of 1•10−7 Ω cm2 or lower is needed to develop the
overall device performance, then the tunneling contact is not
anymore a viable structure [275].

One option to modify properties of the tunneling barri-
ers is a doping of the barrier material (figure 16). If a con-
trolled incorporation of ionized doping atoms into the bar-
rier is doable, this approach allows development of the car-
rier selectivity of contacts. In other words, a static or fixed
charge inside the tunneling barrier attracts electrons or holes
and repels the minority carrier type. In addition, a proper bar-
rier doping creates the electron levels outside the semicon-
ductor band gap, which enhances the carrier tunneling process
via the barrier levels and thus decreases a tunneling resistance.
Another way for the carrier selectivity is an asymmetric align-
ment of the insulator and semiconductor band gaps such that
either the conduction band electrons or the valence band holes
experience a high energy barrier at the p-type or n-type con-
tacts respectively.

Another issue connecting the photonics device researcher
and surface physicist arises from the question how the semi-
conductor n-type or p-type doping efficiency changes near the
surface areas, and which methods are potential to increase
the surface doping in order to decrease the contact resistivity
[277–287]. A general rule is the higher doping the lower
contact resistivity. However, the high surface doping also
increases carrier recombination losses.

Donor activation energy (i.e. separation from the con-
duction band) has been found to increase at semiconductor
surfaces [277, 278], but the reason(s) for this has remained
unclear. Also it is still unclear how the embedded interface,
for example, with an insulator film affects the doping activa-
tion barrier and thus the doping efficiency. Furthermore, unin-
tentional interface impurities might change the doping atom
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Figure 15. (a) Cross-section atomic structure of a metal film with
(111) plane facing with hydrogen passivated Si(111). (b) Density of
metal-induced gap states distributions around the Fermi level of
0 eV for different distances d between aluminum and
Si(111)(1 × 1)-H. (c) Density of MIGS as a function of distance d.
Reprinted from Sajjad et al [273]. With the permission of AIP
Publishing.

bonding environment. The intentionally added hydrogen for
the dangling bond passivation is expected to have a harmful
effect on the doping efficiency [283].

To control the doping atom density at semiconductor
surfaces, so-called monolayer doping has been developed
[279–281]. To increase further the p-type doping at GaN, Lu
et al [99] have deposited a Mg film on GaN and performed a
proper post heating of Mg/GaN before the metal contact fab-
rication, while an oxidation of GaN surfaces has improved n-
type doping [287].

Last but not least, the cleaning of a semiconductor surface is
a very crucial step to decrease the contact resistivity. The high-
quality starting template for a metal film enhances an epitaxial

Figure 16. (a) and (b) One solution to decrease losses at the rear
metal/n-Si contact by incorporating an ultrathin SiO2 tunneling
layer for interface passivation. (c) Atomic model for the SiO2/Si
interface that is free of the band-gap levels and shows a two times
periodicity along the interface. Yellow isosurfaces present
electron-level distributions for valence- and conduction-band levels.
(d) Gap-levels induced by possible defects in SiO2. Blue lines show
levels which tend to have negative charge while red lines have
positive. Reproduced from Liu et al [274]. With the permission of
AIP Publishing.

nature of the grown interface, which further decreases the
density of point defects. For example, a coherent Ag/Si(111)
interface has been recently found to decrease losses in the solar
cell [288]. Furthermore, quantum mechanical simulations of
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atomic diffusion strengths [e.g. 179] at metal-semiconductor
interface can clarify a tendency to the alloy formation. It can
be expected that dry cleaning or etching methods, which are
under an intense development [e.g. 289–291], become very
useful to optimize also the contact interfaces in particular
if these methods can be integrated with a metal-deposition
instrument in situ manner without breaking a vacuum envir-
onment. It is worth noting that meaning of the dry cleaning
methods is expected to increase in more general when three-
dimensional structuring of device components increases; when
trenches become deeper and more narrow, because the wet
chemical methods do not perform properly for such structures.

4.6. Which might be potential approaches to develop
atomic-scale protection of nanocrystals?

Nanocrystals can be readily linked to surface science because
the surface areas of a nanocrystal are a significant portion
of the whole material. Different semiconductor nanomater-
ials such as quantum dots (QDs) and nanowires have been
investigated from the viewpoint of applications and funda-
mental properties [e.g. 36, 292–318]. Although STM and
scanning tunneling spectroscopy (STS) are in general chal-
lenging for three-dimensionally structured nanomaterial sur-
faces, STM and STS have provided a unique local real-space
probe for elucidating the atomic and electronic structures of
individual nanocrystals [36, 295, 298, 302, 303, 305, 312].
Semiconductor nanocrystals are also potential materials for
future photonic devices such as photodetectors, solar cells, and
LEDs [292, 298, 299, 301, 304, 306–311, 313, 315, 317].

Indeed, InP QD containing LED devices have been recently
commercialized [308, 317]. These non-toxic InP nanocrystals,
called also colloidal QD, have been manufactured in chemical
solutions. There are also other methods to prepare nanocrys-
tals; for example, layer-by-layer deposition on solid templates
(i.e. from bottom to top) or partial removing of the surround-
ing material via dry and/or wet etching methods (from top to
down).

Irrespective of the nanocrystal fabricationmethod, the com-
mon issue is how to protect nanocrystals against environment-
induced degradation of the material as a function of time.
One solution has been to cover nanocrystals by a shell(s)
which protects the core crystal. For instance, ZnS-capped
InP and CdSe colloidal QDs are used in applications [e.g.
308, 310, 317]. However, elegant in-situ photoluminescence
(PL) measurements of CdS + ZnS capped CdSe QDs dur-
ing the exposure to different gases have revealed that shell-
covered QDs are also sensitive to environment [310]. Higher
PL intensity means lower density of defects. Interestingly
water molecules adsorbed on QDs are beneficial to increase
the PL intensity while a plasma exposure of QDs quickly
decrease their PL intensity [310]. Furthermore, for passivating
QDs by ALD, many metal precursors have been found harm-
ful to QD luminescence [310] indicating that a care is needed
to engineer the shell-covered nanocrystal surfaces for starting
the deposition of the next capping film.

Recent study of InP colloidal QDs (figure 17) passivated
with water-free benzoyl fluoride has shown that the used

Figure 17. Top: scheme of colloidal quantum-dot (QD) LED
containing ZnS/ZnSe-capped InP QD. Reproduced from Won et al
[308]. With permission from Springer Nature. Bottom: hydrogen
fluoride (HF) based treatment of InP QD, which improves
luminescence intensity, causes formation of InF3 on QD and
breakage of polychains of POx into separated POx molecules,
marked by red circles in the atomic models Reproduced from
Ubbink et al [314]. CC BY 4.0.

F-based treatment does not remove all oxidized phosphorus
from the InP QD surface but still the luminescence properties
of InP QDs improve [314]. The surface phosphorus with a low
oxidation state has been found to be more harmful than the
highly oxidized P to the luminescence [314], which is a prom-
ising result because it is not possible to avoid the incorporation
of oxygen atoms into QD surfaces in applications. That find-
ing is also consistent with the computational results for the InP
interfaces [233].

Plasma is the common environment for semiconductor sur-
faces in device processes, for example, at the stages of etching
of nanostructures (or mesas) and of film growth stages, but
plasma interactions are also known to cause surface defects
[319–327]. On the other hand, benefits of plasma sources
include enhanced surface reactions at low semiconductor tem-
peratures. The recent study (figure 18) has revealed effects
of the plasma enhanced ALD growth of SiO2 in relation
to an alternative method to grow SiO2 passivation layer for
InGaN/GaN nano-LEDs using tetraethyl orthosilicate (TEOS)
based sol–gel approach [315]. Before the SiO2 growth, dry-
etching induced disorder or amorphization was removed from
the nitride mesa sidewalls by wet chemistry. Recent results
[325] show that a method combining ultraviolet light expos-
ure and ozone for surface oxidation followed by HF-based wet
etching removes effectively the dry etching defects.

Furthermore, the TEOS-based SiO2 passivation film
decreased atomic interactions and amorphization at the mesa
GaN interfaces, which increased the LED output efficiency
and decreased the diode leakage current [315]. Future studies
can clarify what kind of GaN surface termination provides
a durable bonding to the adsorbed TEOS-based SiO2 nano-
crystal material. Also, a well-justified atomic model for these
GaN interfaces is helpful to understand atomic origins of
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Figure 18. (a) Schematic structures and microscopy images for nano LED containing InGaN/GaN quantum wells. After dry etching of
nanowire LED structures, their sidewalls were still etched wet chemically and passivated by TEOS-based spin-coated SiO2 film. (b)
Passivation of sidewalls of nano LED was compared to plasma ALD-grown SiO2-coated nano LED. The new TEOS-based passivation
increased the external quantum efficiency of nano LED and decreased the leakage current at the voltages lower than the diode threshold. (c)
Transmission electron microscopy images of nano-LED sidewalls. After dry etching, the sidewall surface is amorphous. This disordered
surface was removed by wet etching, which also increased a long-range roughness. Plasma ALD-grown SiO2 interface at sidewall included
amorphous areas marked by yellow arrows. Reproduced from Sheen et al [315]. With permission from Springer Nature.

the point defects that decrease radiative recombination and
increase leakage current. The III–V nitride surfaces are an
exception among semiconductors because the GaN-based sur-
faces remain largely crystalline although they often include
significant amounts of oxygen and carbon. Furthermore, the-
oretical simulations for core-level binding-energy changes,
based on the interface atomic models can confirm an intuitive
identification of unusual Ga–Ga bonding structures [315].

Vertical sidewalls of three-dimensional nanostructures are
of course much more challenging to measure by surface phys-
ics methods as compared to planar surfaces. One option to cir-
cumvent this problem is to prepare specific planar samples by
using the same dry-etching and plasma parameters as for the
device structuring [328]. Such planar ‘model samples’ can be
expected to reflect the sidewall properties of devices, and can
be measured efficiently by a large arsenal of standard surface-
science tools. One potential direction to advance the device
surface characterization is in-situ measurements [310, 329]
in realistic chemical environments and pressures during the
semiconductor surface reactions, instead of before and after
the interface formation. Indeed catalysis community has taken
such a step forward in metal surface studies to avoid so-called
pressure gap [330–332].

4.7. Is it possible to avoid high-temperature degradation of
SiC surface properties?

SiC is an emergent semiconductor in industry, which has
been utilized particularly in devices where Si and III–V do
not perform properly for commercial purposes. Such applic-
ations include electronic and photonic devices used in harsh

conditions like at high temperatures or/and under intense radi-
ation. High-power transistors and ultraviolet and particles
detectors are examples of industrial SiC devices [e.g. 333–
341]. 4H-SiC is the common crystal phase with a high indirect
band gap of 3.3 eV which enables a low thermal-generation
dark current even at elevated temperatures and a solar-blind
UV detection (250–280 nm), as compared to the common Si
detectors.

One specific challenge in manufacturing SiC devices is
high temperature treatments up to 1700 ◦C which are mainly
needed to activate the doping after implantation and to fab-
ricate alloyed Ohmic contacts. However, the high temperat-
ures cause the formation of crystal defects both in bulk and at
surface regions. Thus, one relevant question is how SiC sur-
faces can be protected during the high temperature treatments.
Second, an alternative doping method(s) might be considered
to prepare p–n junctions via the re-growth of doped SiC layers
at lowered temperatures. On the other hand, Schottky contact
metal–semiconductor–metal structures provide an opportunity
to develop SiC-based photodetectors via low temperature pro-
cessing because the activation heating for doping implantation
and alloyed Ohmic contacts are not necessarily needed. One
benefit obtained from lowering the processing temperature is
a decreased surface roughness which further has been found to
decrease the dark leakage current of Schottky detectors [334].

Concerning the wet chemical cleaning of SiC, a very strong
background knowledge obtained in the Si technology can be
applied also in SiC processing. Furthermore, SiO2 is a nat-
ural oxide for SiC but the SiC oxidation has been found to
cause higher interface defect density as compared SiO2/Si
[236–238, 342]. However, including nitrogen at SiO2/SiC has
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been found to lead to a highly crystalline SiON/SiC interface
(figure 19), which is also surprisingly stable in air [343–345].
This SiON/SiC with a (sqrt 3 × sqrt 3) structure is perhaps
the only reconstruction so far which remains during prolonged
air exposures. The high temperature exposure of SiC surfaces
to H2 and following N2 gas flow at 1350 ◦C have been used
to prepare this epitaxial SiON/SiC [343–345]. It is worth not-
ing that no plasma source plasma source was used in prepar-
ing epitaxial SiON/SiC, consistent with the harmful plasma
effects found for the crystallinity of GaN interfaces (figure 18).
On the other hand, a plasma sources enables use of lower
temperatures [346]. A thickness of the epitaxial SiON layer is
0.6 nm approximately, which provides a very potential tunnel-
ing barrier, for example, the photodetectors based on Schottky
contacts (section 4.5). Future studies might clarify if it is pos-
sible to find low-temperature parameters to prepare crystalline
SiON layers on SiC.

One relevant question to decrease the processing temperat-
ures of SiC crystals concerns if it is possible to grow a highly
doped layers at lowered temperatures with a reasonable crys-
talline quality and low defect density because the high tem-
perature is particularly needed to activate the doping after
implantation and to enable surface alloying SiC with metal(s)
for Ohmic metal contacts. For such re-growth purposes of
doped layers, the starting SiC surface properties have a signi-
ficant effect. Concerning the SiC interface passivation, a spe-
cific feature of SiC devices is the required high-temperature
operation up to 500 ◦C or even higher. This means that the
SiC interface passivation needs to be unusually stable as well.
Most likely, the hydrogen passivation used widely in the Si
technology does not meet this high temperature stability.

4.8. Do two-dimensional semiconductors include surface
defects?

In this article we have described the connecting subjects using
examples of the traditional semiconductors. However, it is
important to note there are several emergent material systems
which are potential for future photonic devices. Indeed, it can
be expected that use of novel materials increases in photonic
industry as well, for example, via constructing hybrid mater-
ials with several critical interfaces. Two-dimensional (2D)
semiconductors and perovskites are examples which have
attracted great interest [e.g. 347–363]. Perovskite solar cells
have been recently commercialized [347].

Some of the above-described issues such as the develop-
ment of surface passivation and Ohmic contacts are relevant
to the research of emergent materials too. Each system has
still own specific challenges, which on the other hand provide
new connection opportunities. Surface areas form a signific-
ant part of the whole 2D semiconductor materials. However,
their surfaces should be relatively inert without the dangling
bonds, as compared to many traditional semiconductors with
the covalent bonding structure. We are not able to review all
those groundbreaking studies of 2D semiconductors, not to
mention for other emergent photonic materials. In contrast, we
point out here couple interesting properties in relation to the
items introduced in section 4.

Figure 19. Top: crystalline and stable insulator layer of SiON
(0.6 nm) formed at 6H- and 4H-SiC(0001) surfaces when SiC was
heated first in H2 and then in N2 at 1350 ◦C. STM images show a
stepped surface with a well-ordered (sqrt 3) × (sqrt 3) structure.
Reprinted figure with permission from Shirasawa et al [344].
Copyright 2007 by the American Physical Society. Bottom:
potential atomic model for a crystalline SiON/SiC(0001) interface.
Reproduced from Shirasawa et al [345]. Copyright 2011, with
permission from Elsevier.

STM has been an essential tool to reveal a real structure
and quality of practical 2D surfaces [348, 350, 354, 358].
Naturally, every material includes defects, and STM has been
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helpful to understand local defect formation at 2D surfaces
also. Furthermore, the surface defects affect oxidation and
metal contact formation on 2D semiconductors. Although the
inherent inertness of 2D surfaces can be expected to decrease a
rate of surface oxidation, it has been presented that it is not pos-
sible to avoid incorporation of oxygen atoms even into 2D sur-
faces, and how difficult it is to detect oxygen atoms [358]. On
the other hand, it has been found that a proper oxygen incor-
poration does not cause the defect levels in the band gap [352,
358, 363], which supports a benefit of controlling the oxida-
tion. Indeed, if we think the success of Si technology, one key
factor has been a careful control of the Si surface oxidation.
The second key factor has been controlling the electron and
hole doping of semiconductors. Toward that, careful modifica-
tion of the surface chemistry and doping is highly relevant [e.g.
359, 362, 364–366] because the traditional methods for bulk-
like doping of 3D crystals cannot be efficiently employed. We
assume that the whole semiconductor field gets a benefit from
the development of novel surface passivation, doping, and con-
tact methods for 2D materials.

5. Summary

We hope that the presented article is useful to both communit-
ies: photonics and surface science, encouraging two com-
munities to increase bilateral collaboration. Photonic device
researchers and surface physicists have typically approached
the semiconductor surface properties from different perspect-
ives with different methods. Our aim has been to discuss some
semiconductor surface-related issues which might provide
extra synergy between the two disciplines. The common goal
for the reviewed subjects is to decrease the semiconductor
surface-related optoelectronic losses in photonic devices by
adding understanding of semiconductor interfaces.

Wet chemical treatment(s) is the basic procedure in man-
ufacturing any semiconductor device. The literature review
indicates that Si(111) might be an exception among semi-
conductor surfaces because a proper wet chemical treatment
provides almost an ideal, atomically smooth and well crystal-
line H-terminated Si(111)(1 × 1)-H surface, as evidenced by
STM. However, a cleaned semiconductor surface is not neces-
sarily crystalline in general. Future studies will clarify whether
the high-quality starting surface, similar to Si(111)(1 × 1)-H,
is obtained by wet chemical methods for other semiconductors
and crystalline planes, of which understanding is relevant to
the development of three-dimensional device structures such
as mesa sidewalls, nanowires and laser diode mirrors.

The smoothness and ordering of a starting semiconductor
surface affects sharpness and crystallinity of an interface
grown on the semiconductor. In addition to the wet chem-
istry, dry cleaning methods and their effects on surface struc-
tures provide a complementary connecting subject. STM has
been found to be a very useful characterization method to
understand which treatments are most potential to improve the
atomic level smoothness and order on semiconductor surfaces.

It is not possible to avoid the incorporation of oxygen atoms
at semiconductor interfaces of devices. Thus, it is relevant to

develop the methods for controlling the oxygen incorporation
and the properties of semiconductor surface oxides. The sur-
face oxidation typically increases the disorder in the atomic
structure, which further increases the point defect density.
The computational physics methods have provided irreplace-
able atomic-scale information about defect-level formation
and electronic band structures of oxidized semiconductor sur-
faces. Various theoretical models, which provide the semicon-
ductor band gap free of defect levels, have been constructed
for oxide/semiconductor systems giving a guideline to prepare
the interfaces for low-loss devices in practice. Still preparing
an insulator/semiconductor interface with the gap level dens-
ity lower than 1•1010 cm−2 eV−1 is a great challenge for many
devices. Toward that target, it is probably crucial to find for
each semiconductor a proper combination of different tech-
niques available in a large arsenal of the semiconductor pas-
sivation methods.

Metal/semiconductor interfaces are even more challenging
concerning the carriers’ surface recombination because of the
presence of MIGS, in addition to the point-defect induced gap
levels. Because many photonic devices do not require ultra-
low contact resistivity for their high performance, the ultrathin
insulator tunneling barriers are under development to reduce
the effect of MIGS. Creating proper gap levels in the area of
a tunneling barrier is expected to enhance the carriers’ trans-
mission through such a passivated and selective contact.

SiC is an emergent device material of which interfaces are
a challenge. It is expected that low temperature methods to
increase the surface doping and to prepare the Ohmic con-
tacts will reduce the high-temperature induced surface degrad-
ation and energy consumption in SiC device manufacturing.
The device durability criteria in harsh operation conditions
set also unusual requirements for the passivation of SiC device
interfaces.
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Appendix

Table 1 shows selected surface recombination velocities
measured for Si, Ge, IIII–V, and SiC interfaces with some
other properties, in chronological order. Footnotes: τeff and
Seff,max are determined at injection level of a7 × 1014 cm−3,
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Table 1. Comparison of surface recombination velocities for selected semiconductors, which vary depending on a surface structure and its
passivation.

Passivation layer

Substrate

τeff (µs) Seff,max (cm s−1) Dit (cm
−2 eV−1) Qtot (cm−2) References

Type
Si Thickness (µm)

Resistivity
(Ω cm)

Measured during
HF-based
immersion

n-Si 250 150 0.25 (2.5 × 107) No significant
band bending

[161]

SiO2 p-Si Boron doping
by diffusion
3 × 1019

cm−3

1640 [367]

Metal film of Al p-Si Boron
diffused
surface
3 × 1019

cm−3

1 × 105 [367]

PECVD SiN p-Si 1 4 [368]
SiNx

b n-Si 275 90 10 000 1.38 [369]
Al2O3 by plasma
ALD + post
heating in N2 at
425 ◦C

n-Si 275 2 7000 2 ∼1013 [370]

Al2O3
b Textured p-Si 525 17–24 ∼10 000 22 [371]

Al2O3
b Textured n-Si 445 3.37 ± 0.5 3000 7 −9.9 × 1012 [372]

SiO2
b n-Si 195 1 5643 0.4 3 × 1011 1.7 × 1012 [261]

ZnO:Be n-Si 280 3 1530 4.8 [373]
TOPCon (a-SiCx)c n-Si 480 1000 500 000 (0.048) [374]
Al2O3/SiO2

multilayersb
n-Si 200 10 19 000 (0.53) −1 × 1013 [375]

Hot-water induced
SiO2

Sidewalls of
Si(110)

50 [376]

Ge
Wet oxidation n-Ge 300 10 80 [377]
Dry oxidation p-Ge 300 10 80 [377]
Amorphous silicon p-Ge 170 10 530 17 [378]
Amorphous
Si:H/Al2O3

b
n-Ge 325 ± 25 1–3 7 −9 × 1012 [379]

Al2O3
a n-Ge 175 18–25 1400 7 −2.3 × 1012 [380]

a-SiCx/Al2O3
b p-Ge 175 1.2 18 −3.2 × 1012 [381]

SiNx
c n-Ge 175 5–15 150 58 1 × 1012 [382]

SiNx/Al2O3
c n-Ge 175 5–15 500 17 4× 1011 −1.6 × 1011 [382]

SiO2/Al2O3
c n-Ge 189 17–39 1.3 5× 1011 8.5 × 1011 [383]

Al2O3
d Textured

n-Ge
187 18–25 ∼30 [384]

III–V
Ga2O3 n- or p-GaAs 4000 [385]
Without
passivation

Bare n-GaAs
or p-GaAs

1 × 107 [385]

Wet chemical
(NH4)2S

InAs/GaSb
stack

1000 [386]

Without
passivation

InP
nanowires

170 [387]

(NH4)2S + SiO2 InGaAsP 4000 [388]
Al2O3 InAsSb

nanowires
1000 [389]

(Continued.)
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Table 1. (Continued.)

Passivation layer

Substrate

τeff (µs) Seff,max (cm s−1) Dit (cm
−2 eV−1) Qtot (cm−2) References

Type
Si Thickness (µm)

Resistivity
(Ω cm)

SiC
Chemical
mechanical
polished wafer

Silicon
terminated
4H-SiC

1.4 2000 [390]

Chemical
mechanical
polished wafer

Carbon-
terminated
4H-SiC

1.2 5500 [390]

Mesa sidewall 4H-SiC 6 × 105 [391]
Oxidized surface at
1400 ◦C

Epitaxial
4H-SiC

250 n-type
doping
5 × 1013 cm-

600 [392]

Note: The inherent bulk carrier lifetime (equation 1) is smaller for direct band-gap III-V crystals than for indirect band-gap semiconductors due to a high
radiative recombination rate in III-V crystals.

b1 × 1015 cm−3, c1 × 1014 cm−3, d2 × 1014 cm−3 and
e5 × 1015 cm−3. Values in parenthesis are calculated from
reported values.
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