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ABSTRACT: Here, we present a study combining Bayesian
optimization structural inference with the machine learning
interatomic potential Neural Equivariant Interatomic Potential
(NequIP) to accelerate and enable the study of the adsorption of
the conformationally flexible lignocellulosic molecules β-D-xylose
and 1,4-β-D-xylotetraose on a copper surface. The number of
structure evaluations needed to map out the relevant potential
energy surfaces are reduced by Bayesian optimization, while
NequIP minimizes the time spent on each evaluation, ultimately
resulting in cost-efficient and reliable sampling of large systems and
configurational spaces. Although the applicability of Bayesian
optimization for the conformational analysis of the more flexible
xylotetraose molecule is restricted by the sample complexity
bottleneck, the latter can be effectively bypassed with external conformer search tools, such as the Conformer-Rotamer Ensemble
Sampling Tool, facilitating the subsequent lower-dimensional global minimum adsorption structure determination. Finally, we
demonstrate the applicability of the described approach to find adsorption structures practically equivalent to the density functional
theory counterparts at a fraction of the computational cost.

1. INTRODUCTION
Determination of the global minimum of a molecular or
atomistic system remains an active area of research, even with
well-established methods such as basin hopping,1 minima
hopping,2 and simulated annealing.3 Semiempirical methods
are often employed in conjuncture with these algorithms, but
these are not necessarily sufficiently accurate�or even
available�for the system of interest. Being more accurate
than semiempirical methods, density functional theory (DFT)
is extensively used to predict the structural properties of
materials and molecules. The main drawback is that its usage
grows prohibitively expensive with system size due to the
explicit dependence on the underlying electronic structure.
Hence, DFT is not used often in global optimization without
prescreening using faster, less accurate methods, or other tools
that limit the number of evaluations, such as genetic
algorithms.4,5

Furthermore, identification of the global minima of a given
system requires a sufficient exploration of the relevant
configurational phase space. This can be expedited with
coarse-grained (CG) methods, but these might not fully
capture the microscopic details and consequently lead to
inaccurate structures and properties due to loss of critical
features during the reduction of the detailed atomistic
configuration to the CG configuration.6

The number of required sampling points can be significantly
reduced when employing Gaussian Process (GP) models, as

described by Packwood and Hitosugi7 and later implemented
in the Global Optimization with First-principles Energy
Expressions (GOFEE)8 and the Bayesian Optimization
Structure Search (BOSS) methods,9,10 with the latter being
considered and applied herein. In this active learning
technique, a surrogate model is constructed and iteratively
refined through evaluation of an expensive objective function,
for instance, the DFT potential energy surface. As a
probabilistic method, it assumes the GP posterior mean as
the most probable model for the input data, with the
corresponding uncertainty described by the posterior variance.
The probabilistic nature of the method enables the
construction of the surrogate model in fewer data points
than that for a corresponding grid search on the full potential
energy surface (PES). The utility of BOSS has already been
demonstrated for relatively small molecules or systems
composed of rigid building blocks with few conformational
degrees of freedom, such as the conformer search for cysteine
and alanine, the adsorption of an isolated 1S-camphor
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molecule on a Cu(111) surface,10 identifying the complex
adsorption configurations of tetracyanoethylene (TCNE) on
mono- and bilayers on Cu(111),11 and the adsorption of
Buckminsterfullerene (C60) on TiO2

9 to mention a few.
Even with these important achievements, the applicability of

BOSS to systems with conformationally highly flexible
molecules remains to be demonstrated. The success of BOSS
depends on a realistic choice of system variables as the search
dimensionality is limited by the sample complexity bottleneck:
the underlying dependence of the GP on data set size and
number of variables. Consequently, BOSS is currently deemed
feasible up to 10−20 variables,12 making the system variable
choice critical due to the large reduction in dimensionality for
the majority of practical organic or biological systems.
Although BOSS has been shown to lessen the computational

cost of structure search, the number of necessary config-
urations to evaluate might still grow too large for DFT, in
particular, for flexible molecules with many close-lying
conformers. Recently, neural networks have been leveraged
to capture the high-dimensional relationship between the
structure of a given collection of atoms and the corresponding
computed properties, such as energies and forces, using large
sets of computed structures. Thus, machine learning
interatomic potentials (MLIPs) represent a possible solution
when the size of the configurational phase space grows too
large for DFT to handle. In principle, MLIPs can be trained at
an arbitrarily sophisticated computational level of theory,
ranging from DFT to the coupled cluster single-double-triple)
level of theory method.13−16 By learning the property−
structure relationship directly, the need for evaluating the
electronic structure is bypassed, significantly accelerating
computations.17 However, the quality of these potentials
depends on the training data, the acquisition of which might be
both time-consuming and challenging without a systematic or
automated way to select relevant data. To this end, a recent

publication demonstrated simultaneous training and explora-
tion of the PES using Gaussian approximation potentials
(GAPs).18 For our study, we consider the Neural Equivariant
Interatomic Potential (NequIP) particularly suitable due to its
demonstrated accuracy and data efficiency.16

A recent advance for the global optimization of molecular
structures is based on metadynamics using the semiempirical
extended tight-binding quantum chemistry method GFN2-
xTB, as implemented in the Conformer-Rotamer Ensemble
Sampling Tool (CREST).19,20 Here, traversal of unexplored
regions of the PES is enforced by the addition of a biasing
potential to already explored regions. The advantage is that
CREST can be applied to realistic, high-dimensional phase
spaces without having to consider which parts of the system to
include as variables in the structure search. This simplifies the
use of the tool as no choices about system evolution have to be
made. Still, metadynamics rely on a number of low-dimen-
sional collective variables (CVs) to traverse the PES from
initial starting configurations, the choice of which is highly
sensitive for the end results. Furthermore, its stochastic nature
might not always provide the same results, and a large number
of data points must be sampled to cover the relevant PES fully.
Additionally, there is no publicly available implementation
similar to CREST for molecule−surface interfaces, to the best
of our knowledge. First and foremost, we will use CREST as a
basis of comparison for the global optimization by BOSS for
the isolated adsorbates. Additionally, it will be used as an
alternative for finding relevant adsorbate conformers should
BOSS fail to do so.
As a suitable test for BOSS in the context of flexible

adsorbates, we have opted to focus on the adsorption
structures of lignocellulosic molecules (LCMs). Lignocellulosic
biomass remains an underutilized feedstock for renewable
materials. As a chemically heterogeneous composite, it consists
of three different kinds of polymers: two carbohydrates,

Scheme 1. General Workflow
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hemicellulose and cellulose, and an aromatic one, lignin.21 The
first and foremost challenge for the utilization of lignocellulosic
biomass is its evolved resistance to degradation, known simply
as recalcitrance, rendering component separation a demanding
process. A second challenge is to identify the molecular
structures of the specific components of the complex
heterogeneous material.22 Detailed atomistic structural in-
formation would not only be useful for the determination of
optimal separation methods but also at the same time allow for
atom-efficient utilization due to improved book-keeping of
present structural moieties. Lignin is a highly cross-linked
polymer that is thought to provide plants with their structural
rigidity, contributing to significant recalcitrance of the polymer.
Cellulose is a polymer made entirely of glucose monomers,
while hemicellulose is composed of branched polysaccharides
covalently linked to lignin. A major component of hemi-
cellulose is xylan, made up of branched β-1,4-linked-xylose
monomers.23,24 Already at the monomer level, xylose is a
flexible molecule that may undergo a variety of conformational
transformations. The most important is ring inversion,
characterized by interchanging the positions of the ring
substituents between the equatorial and axial positions. The
second important transformation is the rotation of the
hydroxyl groups as their relative orientations to large extent
govern the stability of the molecule.25 Traversing the
conformational phase space for the ring flip including all ring
atoms and the full rotation of all hydroxyl groups implies a 10-
dimensional BOSS run for the current internal coordinate-
based approach, indicating that the search grows prohibitively
large relatively fast.
Concisely, the purpose of this study is to accelerate the

investigation of the adsorption structures of hemicellulose
building blocks on a surface using Bayesian optimization in
conjuncture with MLIPs. The first part of the structure search
uses DFT, after which the data used to construct the surrogate
model is reused in the training of an MLIP, NequIP. A key
assumption is that since the data selected by BOSS is used to
find the global minimum structure by rational sampling of the
PES, the same data could also be useful in training an
interatomic potential to cover related structures. In the second
part, we evaluate the suitability of BOSS data as NequIP
training data by repeating and further extending the Bayesian
optimization structure search with the latter.

2. METHODS
2.1. Workflow. The general workflow of the method

described herein is as follows (Scheme 1): (1A) DFT
relaxation of isolated adsorbates and substrate, (2A) DFT-
based BOSS/CREST conformer analysis, (3A) DFT relaxation
of the BOSS/CREST conformers, (4A) DFT-based BOSS
adsorption structure analysis using the relaxed BOSS/CREST
conformers and substrate as building blocks, and (5A) DFT
relaxation of adsorption structures. In the first iteration, BOSS
constructs a surrogate model of the DFT PES, simultaneously
generating training data for NequIP. Following the training of
the interatomic model potentials, the workflow is repeated, but
now, a surrogate model is constructed on the PES of the latter.
The CREST conformer analysis is not repeated as the
conformers are already acquired at this point, but they are
relaxed with NequIP if their inclusion is found necessary.
Subsequently, the workflow is repeated as follows: (1B)
NequIP relaxation of the isolated adsorbates, (2B) NequIP-
based BOSS conformer analysis, (3B) NequIP relaxation of the

BOSS (or CREST) conformers, (4B) NequIP-based BOSS
adsorption structure analysis using the relaxed BOSS (or
CREST) conformers and substrate as building blocks, and
(5B) NequIP relaxation of adsorption structures. Following
each iteration of the workflow, (6A/B) the energies of all local
minima of all conformers included in the analysis are
compared, providing the global minimum structure. More
details on each of the workflow components can be found in
the following paragraphs.

2.2. Bayesian Optimization Structure Search. The
surrogate model of the DFT potential energy surface was
learned on the fly starting from the initial five structures and
their corresponding DFT energies. The conformational search
for β-D-xylose was six-dimensional (6D), including full rotation
of the hydroxyl groups and ring-flipping between the two most
prominent ring-conformers. In the case of the larger subunit
(α-terminated) 1,4-β-D-xylotetraose, the search was 16-dimen-
sional, including rotation of the glycosidic bonds between
xylose units. Following the conformational search, the
surrogate model was traversed to find the local minima in
the model potential energy landscape. Subsequently, the local
minima or BOSS-predicted conformers were relaxed with DFT
since the reduced dimensionality of the search neglects all
degrees of freedom not described by the search variables such
as the overall relaxation of the molecule during conformer
transformation. In the adsorption structure search, the building
block approximation described by Todorovic ́ and co-workers
was employed, where the rigid conformers were used as
building blocks for the adsorption structure, the second one
being the surface slab.9 During the search, conformers were
allowed full translational and rotational freedom (6D) for on-
surface motion. Unit cell dimensions were [a, b] = [2.568 Å,
4.448 Å], defining the bounds for the translational search. For
translation in the z-direction, the bounds were from 3.0 to 12.0
Å above the surface relative to the geometric center of the
adsorbate. The surface symmetry of Cu(111) was leveraged to
duplicate symmetrically equivalent structures (2-fold transla-
tional, 3-fold rotation at high-symmetry points), effectively
growing the data set without any additional computational
cost. However, due to the fact that multiple data points will
end up in the same local minima, both when minimizing on the
BOSS surrogate model PES, as well as during DFT relaxation
of the local minima therein, these duplicate points were
removed with the Kabsch algorithm.26 In addition, we used the
energy transformation method as described by Fang et al. to
deal with unphysical or high energy configurations that would
make the fitting of low energy conformational motion
difficult.27 Here, a cutoff at 0.5 Å between atoms was used,
where the DFT calculation was skipped, and the configuration
was assigned a default energy value of 5.0 eV as this represents
a reasonable placeholder on the Pauli repulsive part of the
approach curve. Furthermore, the high-energy tail of the
surrogate model was modified as 1 + log(E) eV when the
energy was above 1.0 eV. BOSS runs were terminated when
the predicted global minimum structure did not change for 100
iterations. A more complete overview of the software
implementation of BOSS is given in the original paper ref 9.
We also employed BOSS to look for configurations with high
energies and forces to help train a more robust MLIP by
providing a more complete distribution of the relevant PES in
the training data. This was done by running BOSS as usual
while minimizing the negative energy of the highest force
component in place of the potential energy.
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2.3. Density Functional Theory. All DFT computations
were performed with the PBE + vdWsurf method using FHI-
aims with light tier-1 basis set defaults on a Γ-point k-grid.28
Ultimately, the choice of functional was motivated by the
property of interest being adsorption structures as this
particular van der Waals (vdW)-corrected functional has
been shown to provide adsorption energies and heights close
to experimental values.29−32 It should be noted that the PBE
functional might have shortcomings in accurately describing
isolated molecules, and its usage should be evaluated case-by-
case. Despite this, our computations on xylose reproduced
literature results based on a more accurate computational
method (second-order Møller−Plesset theory, MP2),25 and
therefore, we found it acceptable for our application. Both the
building block and prediction geometries were relaxed to a
force threshold below 0.01 eV/Å, with the charge density
convergence threshold (ρ) set to 10−4. An orthogonal 6 × 8 ×
4 Cu slab was used as the substrate building block for the
xylose system, 14 × 16 × 4 for xylotetraose, where the two
lowest layers were kept constrained to mimic the behavior of
the bulk metal. The slab was constructed using the lattice
constant a = 3.632 Å from the literature, subsequently relaxed
on the PBE + vdWsurf level.33 The slabs are separated by 60 Å
of vacuum in the z-direction to avoid interactions. The Atomic
Simulation Environment (ASE)34 was used to manipulate,
create, and visualize both conformer and adsorption structures
for the computations. POV-ray35 was used to create images of
the structures.
2.4. Neural Equivariant Interatomic Potentials. In

addition, we also applied the NequIP framework with high data

efficiency to train interatomic potentials based on the DFT
data we generated, thus enabling faster energy evaluation of
structures. In the original NequIP paper,16 it was demonstrated
that the inclusion of equivariance leads to significant
improvements in the accuracy of an MLIP as seen through
lower force and energy mean average errors. In fact, NequIP
without equivariance performed similarly to other potentials
such as FCHL19, UNiTE, GAP, ANI, and ACE, even being
outclassed by some of these for several of the molecules tested.
However, adding equivariance boosted the performance of
NequIP far beyond the mentioned MLIPs. Furthermore, the
increased data efficiency of NequIP was demonstrated by
highlighting a particular instance, where NequIP trained on a
small set of 100 entries performed on par with a Behler-
Parrinello Neural Network (BPNN) trained on 1303 entries.
The important hyperparameters for the training (more

details in the data set repository: DOI:10.5281/zeno-
do.10202927) used by all models were as follows: interaction
blocks num_layers = 4, the multiplicity of features
num_feature = 32, cutoff radius rmax = 3.5 Å, and the
maximum rotation order lmax = 2. The batch size was 10 for the
training data set. The mean average error (MAE) loss function
was given as the sum of total energy and forces loss terms with
a ratio of 1:1, which was minimized to optimize the neural
network using Adam optimizer with a learning rate of 0.005
and an exponential moving average decay of 0.99. The trained
interatomic potentials for the xylose and Cu(111) system were
further used to predict energies and simulate dynamic
trajectories for adsorbate conformers and adsorption structures
through integration into the ASE using the NequIP calculator

Figure 1. Relative energies of the PBE + vdWsurf relaxed BOSS (500 data points were used to construct the surrogate model) and CREST-predicted
conformers of β-D-xylose. The five most stable conformers from each method are displayed in the order of increasing energy from left to right. The
energy ordering of the predictions equals the shown conformer indices.
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with the Broyden−Fletcher−Goldfarb−Shanno optimiz-
er.36−39 Typically, the force thresholds for relaxation were
kept the same as with DFT, with the exception of the BOSS
run for xylotetraose, where the value was slightly elevated to
0.03 eV/Å to facilitate the complete exploration of structures.
We found a minimal difference in these structures with a
higher value during testing. The training was repeated on a
number of different training sets produced during the BOSS
procedure, containing both isolated and surface-adsorbed
LCMs.
2.5. Conformer-Rotamer Ensemble Sampling Tool.

The use of CREST in this study had two purposes; it was
either used to evaluate the quality of the BOSS conformational
analysis or to replace BOSS were it unable to find the lowest
energy conformers for the system at hand. If both methods
resulted in similar conformational ensembles, we used the
BOSS conformers for the subsequent adsorption structure
search. We used the sampling tool as implemented in the xtb
package. The first step in the CREST algorithm relaxes the
geometries with GFN2-xTB. Subsequently, the length of the
metadynamics simulation required to cover the relevant
conformational phase space was estimated by calculating the
total flexibility measure for the molecules. The total flexibility
measure was calculated to be 0.17 and 0.33 for xylose and
xylotetraose, respectively, resulting in total metadynamics
simulation times of 70 and 336 ps, respectively.

3. RESULTS AND DISCUSSION
3.1. Global Conformer Minimum Search with BOSS

(DFT) and CREST. The main results of the global xylose
conformer minimum search are summarized in Figure 1. Both
BOSS and CREST results follow a similar overall energy
distribution, indicating that they both sample and capture
similar structural features of the xylose conformers. The close
energies of several conformers indicate that the conformational
PES is relatively flat. Furthermore, both methods provide a
similar global minima structure after DFT relaxation, the 1C4

chair configuration (BOSS local minima 3, 294, and 6), only
differing slightly in the rotation of the OH-groups. Qualitative
agreement is obtained between our study and a combined
experimental and computational study by Peña et al.25

Therein, the most stable conformer is the 4C1 chair, equivalent
to BOSS conformer 1 (and CREST 7) in Figure 1, while their
second (1C4 chair) and third (also 1C4 chair) lowest
conformers are identical to BOSS 6 (and CREST 1) and
CREST locmin 3, respectively. The importance of the
intramolecular hydrogen-bonding network was emphasized,
stabilizing the isolated xylose molecule through cooperativity
effects. The latter was used to rationalize why the 4C1 chair was
found to be the most stable, seeing as all four OH-groups of
this conformer are involved in the network. At this point, too
much weight should not be placed on the energy order of the
conformers but rather on the ability of the methods to locate
conformers. The agreement between our analysis and that of
Peña and co-workers demonstrates that both BOSS and
CREST are able to locate the relevant xylose conformers.
However, when BOSS is used, it should be pointed out that
transitioning between the 1C4 and 4C1 chair configurations
does not capture all stable monosaccharide conformers by
default. For instance, glucose and mannose display stable boat
(B) and skewed boat (S) conformers outside the conforma-
tional phase space that is sampled during the specific 1C4 to
4C1 transition, while the conformational phase space of xylose
is more completely mapped out in this reduced phase
space.40−42 Taking this into consideration, we suggest a
more complete traversal of the different ring conformers when
investigating other monosaccharides, for instance, using
Cremer and Pople puckering coordinates.43,44

The energies of all PBE + vdWsurf relaxed BOSS and CREST
predictions are displayed in Figure 2, simultaneously showing
the predicted energetic order of the two methods, where a
lower conformer index corresponds to a lower prediction
energy. Although the DFT energies increase with the predicted
energies, the correlations (R2-values) are low. This can be

Figure 2. Relative PBE + vdWsurf energies of relaxed xylose conformers as predicted by BOSS/CREST according to their predicted energy order,
denoted by the conformer index corresponding to BOSS/CREST predictions. Note that the index is not representative of the final number of
unique DFT-relaxed conformers and that the energies shown are relative to individual BOSS and CREST set minima.
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partly attributed to the conformational relaxation of the
predicted local minima during the DFT relaxation procedure,
highlighting the necessity of the latter when using this method.
We believe that rest of the discrepancy might be attributed to
the effects arising from uncertainty in the surrogate model PES.
Generally, the ability of BOSS to predict the DFT energies of
conformers is connected to how closely the reduced-dimen-
sional representation follows the conformational transforma-
tion on the DFT PES. In other words, the predicted order will
consequently be sensitive to the choice of initial relaxed DFT
structure acting as the starting point since it is this specific
structure that is altered in a reduced-dimensional phase space
during Bayesian inference. For this particular case, the
structure was the 4C1 chair, and therefore, it is not entirely
unexpected that the equivalent BOSS local minimum structure
1 has the lowest predicted energy. To investigate the effects of
the initial structure on the predicted order, we repeated our
analysis with a 1C4 chair as the initial structure (Supporting
Information S2.2). Although the predicted and final conformer
orderings change slightly, similar conformers are found even
when starting with a different initial structure.
In contrast to the xylose conformer search, BOSS and

CREST display more dissimilarities in the energy distributions
for xylotetraose conformers, as shown in Figure 3. The most
striking result is that CREST arrives at a lower energy for the
global minimum than does BOSS with the current choice of
degrees of freedom, including only rotations of the glycosidic
bonds and hydroxyl groups. Inspection of the five lowest
energy structures reveals how the lower energy is attained with
a mixture of 4C1 and 1C4 chair configurations on the
constituent xylose monomers of the xylotetraose chain than

that with only 4C1, as is the case with BOSS. Unfortunately,
including the ring-flip for the search would imply 24 degrees of
freedom, which is intractable for the underlying GP without
first bypassing the sample complexity bottleneck. In this
regard, recent work has demonstrated the feasibility of higher
dimensionality (D > 20), achieved by mapping the high-
dimensional problem to a low-dimensional feature space.12,45

The already implemented Bayesian optimization routine could
be slightly augmented with neural networks for learning a
response surface in low-dimensional feature space (encoder).
This would then be followed by acquisition function
minimization as already implemented but now in feature
space. Finally, the full objective function can be evaluated after
projecting the low-dimensional feature into the high-dimen-
sional original parameter space using a decoder. Successful
implementation would also enable simultaneous conformation
and adsorption structure determination, simplifying the
process by negating the need for two separate steps. In this
light, we consider this to be a promising direction for future
implementation of the methodology described herein.
Although a few xylotetraose conformers have been reported,

no comprehensive studies have been published on the gas-
phase conformers, to the best of our knowledge. For instance, a
study on the enzymatic cleavage of arabinoxylans mentions two
conformers: the first where all the xylose units attain the 4C1
chair configuration, while the second has one unit in a skewed
boat 2S0 configuration.

46 While the relative energies of the two
conformers were not explicitly stated, the highest occupied
molecular orbital−lowest unoccupied molecular orbital gap
was found to be larger for the 4C1 than for the 2S0 conformer,
suggesting at least higher kinetic stability for the former.

Figure 3. Relative energies of the PBE + vdWsurf relaxed BOSS (909 data points were used to construct the surrogate model) and CREST-predicted
conformers of 1,4-β-D-xylotetraose. The five most stable conformers from each method are displayed in order of increasing energy from left to right.
The energy ordering of the predictions equals the shown conformer indices.
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Another study on the same cleavage mechanism reports the
same two conformers as well as an inverted boat conformer
2,5B.47 The computed relative energies of the 4C1 and 2S0
conformers were later reported by the same group, placing the
chair configuration 0.2 eV below the skewed boat.48 The
aforementioned results are in line with experimental studies,
where many carbohydrates indeed show a preference for the
4C1 chair.49 It would therefore be interesting if mixed-ring
xylotetraose conformers were actually more stable than the 4C1
chair counterpart, in particular, on the surface.
To investigate the role of the terminating group on the

preferred ring configurations, we applied CREST on both α-
and β-terminated xylotetraose. Interestingly, the global
minimum conformer for β-terminated xylotetraose is one,
where three out of four xylose units are in 1C4 configurations
and one in 2S0 (Supporting Information S3.1), which is 0.18
eV higher in energy than the corresponding α-terminated
global minimum. The change in ring-conformer preference
suggests that termination does play a role in the overall
distribution of ring conformers in xylotetraose.
Similar to the situation for the xylose conformers, a weak

trend of increasing DFT energies with the BOSS/CREST
predicted counterparts emerges, as shown in Figure 4. We

believe that this is insufficient for the purpose of leveraging any
possible correlations between the energies of isolated
molecules and their adsorption structures to accelerate the
search since DFT relaxation is evidently necessary to
determine the relative energies of the latter.
3.2. Global Adsorption Structure Minimum Search

with BOSS (DFT). To find the global minimum of a molecular
adsorbate−substrate system, one must either sample a
representative conformer ensemble with rotational and trans-
lational freedom on the surface (within the building block
approximation) or conduct the conformational search on-
surface with rotational and variational degrees of freedom
included. Inclusion of all conformers for the full global
minimum search was found to be too computationally

expensive when using DFT, even though this brute-force
approach represents a way to ensure the identification of the
global adsorption structure minimum. Although the BOSS part
alone might have been feasible for this system, the subsequent
relaxation of local minima requires disproportionately many
computational hours. Consequently, a representative set of the
conformational ensemble was selected for the adsorption
structure search with DFT. This set included both of the most
stable chair forms, 4C1 and 1C4, as well as less stable boat
conformers, such as the 1,4B chair. The orientation of the
hydrogen bonds was deemed less important as the rotation of
the hydroxyl groups displays a lower barrier than ring-inversion
on the surrogate model PES (Supporting Information S2.1).
The five lowest energy adsorption structures are all found to

be the 4C1 chair, as shown in Figure 5. The most stable
position on the surface has the C1 hydroxyl and the ring oxygen
atoms in bridging positions, while the surface-oriented axial
hydrogen atoms of the xylose ring are close to a top position
on the Cu(111) surface.
The prediction of global adsorption minima would be

greatly simplified if a general trend emerged when comparing
the energies of isolated conformers to those of their most
stable adsorption structures, as illustrated in Figure 6.
Unfortunately, even though there seems to be a slight upward
trend indicating that more stable conformers also lead to more
stable adsorbate−substrate systems, the data is too sparse to
allow for confident determination. Especially since the lowest-
energy adsorption structure of each individual conformer is
more randomly dispersed than the corresponding conformer
average.
The results of the DFT based global adsorption minimum

search for xylotetraose are summarized in Figure 7, which we
admit includes very few structures to allow a confident
identification of the global minimum. Also, due to the minimal
amount of structures that we found feasible to relax, the
included conformers were chosen based on chemical intuition
rather than systematically within the workflow. The relaxation
of local minima extracted from the BOSS surrogate model was
typically much slower than the xylose adsorption structures.
Furthermore, due to the fact that we wanted to model isolated
on-surface adsorbates, 10 Å of free space in each direction
along the surface was needed, and the substrate slab is
therefore much larger than that for xylose on copper (212 vs
967 total atoms). Hence, using DFT to look for the global
adsorption minimum structure for xylotetraose was found to be
intractable due to the limited number of configurations that
could be possibly visited and relaxed. However, from the data
that we have, we can note that the most stable adsorption
structure has the glycosidic and ring oxygen atoms in or close
to bridging positions, which is characteristic of the xylose
global minimum as well. Thus, the interaction between the two
different LCMs and the copper surface bears some important
similarities, which we might be able to leverage to save
resources on the NequIP training.
The degree of proximity between the BOSS surrogate model

and CREST structures to DFT-relaxed structures is approxi-
mated by the average number of DFT relaxation steps as
depicted in Table 1. We supplement this approximation with
the corresponding RMSD values between relaxed and
unrelaxed (predicted) structures. Typically, BOSS local
minima require almost three times as many relaxation steps
to get to the minima as CREST. Meanwhile, xylotetraose uses
almost twice as many steps as xylose, which is not too

Figure 4. Relative PBE + vdWsurf energies of relaxed xylotetraose
conformers as predicted by BOSS/CREST according to their
predicted energy order, denoted by the conformer index correspond-
ing to BOSS/CREST predictions. Note that the index is not
representative of the final number of unique DFT-relaxed conformers
and that the energies shown are relative to individual BOSS and
CREST set minima.
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surprising considering the size difference. Similar conclusions
can be made by inspecting the corresponding RMSD-values.
An important implication is that the choice of BOSS degrees of
freedom becomes even more critical for relaxation with
growing system size, especially for flexible species. For the
adsorption configurations, we notice that both xylose and
xylotetraose require similar number of relaxation steps. This
could indicate that relaxation on the surface does not scale as
drastically with the size of the adsorbate as does the
conformational dynamics, perhaps due to the surface
interaction becoming more important than conformational
relaxation when the adsorbate approaches a surface.
At this point, it should be noted that CREST is much faster

computationally than BOSS due to the underlying semi-
empirical method for the energies and forces, yet arrives at
conformers closer to the DFT relaxed counterparts than BOSS.
We surmise this to be due to the BOSS conformers being

determined in the reduced-dimensional phase space with
BOSS, while the CREST conformers are relaxed on the GFN2-
xTB level during the sampling process. However, if the
structure of the system of interest is governed by effects not
captured by the semiempirical method, CREST would not
necessarily be able to capture the relevant conformational
dynamics, while in principle, BOSS can be tuned to use a
suitable quantum chemistry method.

3.3. NequIP Validation Tests. To accelerate the structure
search further than by Bayesian optimization alone, we trained
NequIP using data from our BOSS workflow ran with DFT.
We wanted to determine if the training data could affect the
reliability and efficiency of the potential, hence multiple
potentials were trained for this purpose. In the assessment and
validation of the training, we focused on how well the potential
in question reproduced the DFT structures and at the very
least the relative energies since the potential would

Figure 5. Relative energies of the PBE + vdWsurf relaxed adsorption structures of a representative selection of β-D-xylose conformers (76, 110, 111,
118, 131, 182, and 397) on Cu(111), as predicted by BOSS. Typically, around 1000 data points were used to construct the adsorption structure
surrogate models. The five most stable adsorption structures are displayed in order of increasing energy from left to right. The BOSS energy
ordering equals the local minimum index.

Figure 6. Absolute energies of the DFT relaxed β-D-xylose adsorption structures predicted by BOSS with DFT, arranged by conformer stability.
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subsequently be used to run BOSS with NequIP as a faster
substitute for the former. A simple test for how well the
potential would perform in an applied setting was therefore to
use it for the relaxation of adsorbates and adsorption structures
and subsequently compare these with the corresponding DFT
structures. A sample of the validation tests are illustrated in
Figure 8 and closer details on the training data are shown in
Table 2. Models that included high-energy configurations in
the training are denoted by fmax in the name, i.e., potentials 3
and 5. Validation tests for the remainder of the potentials are
shown in the Supporting Information S1.2. Relaxation of a
distorted xylose conformer with elongated and rotated bonds
results in identical conformers for DFT and NequIP. This is
also the case for rotated xylose conformer 397 on the Cu(111)
surface. For xylotetraose, the agreement with the DFT

relaxation is not particularly good, which likely stems from
the fact that the potential did not include any xylotetraose data
in the training. Therefore, we repeated the training with
xylotetraose conformers and the few surface adsorption
configurations we had, and the resulting potential (8) yields
a structure (b) much closer to the DFT counterpart. This
demonstrates how a potential can be improved by including
more data, in particular, data containing more diverse
structures. For xylotetraose on the surface, the difference is
much more distinct, where one end of the chain fails to relax
on the surface. This failure can perhaps be expected due to the
small amount of training data for this particular adsorbate.
When relaxing this structure with potential 8, the whole chain
manages to relax onto the surface (Figure S5, Supporting
Information S1.2) Nonetheless, we surmised that the
xylotetraose surface interaction should be rather similar to
that of xylose, which made up the most of our NequIP training
data. In support of our assumption, we relaxed the DFT-based
global minimum (C1-L13, Figure 7) using potential 3, which
led to minimal rearrangement, as shown in Figure 9. Through
our tests, we also observed complete failure for several of the
potentials, even for the simple case of isolated conformers,
where the system would explode. This was typical for potential
1, which included the whole relaxation data set without any
curated selection of the training data. We selected the potential
to be used with BOSS based on how well the NequIP
relaxations followed DFT overall, taking also into account the
amount and diversity of data needed for training. A nice
balance was found for potential number 3. The training for this
potential included only relaxation data for a selection of xylose
adsorbates on the copper surface, and no conformation data.
Still, acceptable performance was observed even for the latter
type in our tests. Furthermore, the potential in question did
not fail completely in any of our test cases, whereas many had
issues with surface relaxation. We suspect this to be due to the
surface atoms being more or less in identical positions in the
whole training set, which does not provide any information

Figure 7. Relative energies of the PBE + vdWsurf relaxed adsorption structures of two β-D-xylotetraose conformers (1 and 32) on Cu(111) as
predicted by BOSS (1000 data points were used to construct the surrogate model of conformer 1, 477 points for conformer 32). The five most
stable adsorption structures are displayed in order of increasing energy from left to right. The BOSS energy ordering is equal to the locmin index.

Table 1. Average Number of DFT Relaxation Steps (Nsteps)
from BOSS/CREST-Predicted Local Minima, Root-Mean-
Square Deviations (RMSD in Ångstroms), and General
Computational Resource Usage

Xylosea Xylotetraoseb
Xylose on

Cuc
Xylotetraose
on Cud

Nsteps BOSS to DFT 56 106 70 74
Nsteps CREST to
DFT

21 34

RMSD BOSS to
DFT

0.23 0.59 0.28 0.16

RMSD CREST to
DFT

0.08 0.10

DFT CPU usage
(time (s)/step ×
CPU)

0.004 0.028 0.636 3.868

BOSS total wall time
(s)

15571e 388800f 604240g 777600g

CREST total wall
time (s)

140e 11527e

a63 BOSS conformers. b141 BOSS conformers. c7 of 63 conformers.
d2 of 141 conformers. e48 CPUs. f256 CPUs. g512 CPUs.
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about forces and energies when the surface deviates more than
slightly from the training configuration. A quick solution to
avoid issues with the surface was to simply constrain it during

relaxation, found to be a valid approximation since relaxation
with a fixed surface generally provided similar adsorption
heights and geometries as without�when using potentials
having no issues in this regard. Thus, we might surmise that
the interaction of the adsorbate with the surface is generally
well described in the training data. Hence, potential 3 was used
to obtain all NequIP results presented hereafter, unless
specified otherwise.
In an attempt to assess the quality of our trained potentials,

we analyzed their training and validation losses (Supporting
Information S1.1). We were particularly interested in the
occurrence of overfitting, which would limit the applicability of
the potentials for out-of-distribution data. A telltale sign of
overfitting is an increasing validation loss with training,50,51

which is observed in the case of potential 4. However, this is
not a large concern as the deployed model is based on the best
training model, taking validation loss into account. A validation
loss much larger than training loss could also indicate a model
unable to generalize to new data, which is the case for
potentials 1, 2, 3, and 5. Despite this, we note that potential 3
still performs fairly well on unseen data as exemplified by the
relaxation of xylotetraose, both as an isolated molecule and on
the surface. Ultimately, we find that the inclusion of high-
energy configurations makes for a more robust potential, as can

Figure 8. PBE + vdWsurf vs NequIP relaxation of xylose- and xylotetraose adsorbates and adsorption structures. The shown examples were all
relaxed with NequIP potential 3 from Table 2, with the exception of b, which was relaxed using potential 8 from Table 2.

Table 2. NequIP Training Data Details

Name (no.) Ntrain/val Type Epochs Training energy and force errors (eV/Natom, eV/Å)

Cu 11574 (1) 9000/2000 adsorption structures 475 0.0007/0.002
Cu 76 111 (2) 9000/1700 adsorption structures 581 0.0008/0.006
Cu 76 111 fmax (3) 9000/140 adsorption structures 1459 0.0004/0.001
Mix 76 111 118 (4) 7000/2000 adsorption structures + conformers 1006 0.0003/0.001
Mix 76 111 118 fmax (5) 7000/2000 adsorption structures + conformers 1024 0.0004/0.002
Xylo model 1 (6) 2200/292 adsorption structures 918 0.0004/0.001
Xylo model 2 (7) 10500/1500 adsorption structures 3683 0.0007/0.001
Mix xylotetraose CREST (8) 3000/487 adsorption structures + conformers 1173 0.002/0.007

Figure 9. Comparison of DFT (PBE + vdWsurf) and NequIP-relaxed
xylotetraose global minimum structure as determined by BOSS
(DFT).
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be seen from the training metrics and through the validation
tests.
3.4. Global Conformer Minimum Search with BOSS

(NequIP). Following the NequIP training, we used BOSS
again to identify the local minima but with the trained NequIP
PES landscape as the target for the surrogate model. The idea
was that this would allow us to evaluate the adsorption
structures of the full conformational ensemble since energy-

evaluation is much more rapid with NequIP than DFT. From
inspection of the results in Figure 10, fair agreement with
DFT-based BOSS is achieved. However, the predicted most
stable structure (106) has two hydroxyl hydrogens in close
proximity, a configuration that would exhibit significant steric
strain. Other than this obvious error, the other conformers are
in line with DFT. It should be pointed out that the NequIP
potential used here was trained only on surface adsorption

Figure 10. Relative NequIP energies of the relaxed β-D-xylose conformers predicted by BOSS with the NequIP PES as the target for the surrogate
model (based on 377 data points to construct the surrogate model) in comparison to the DFT results. The five most stable adsorption structures
are displayed in order of increasing energy from left to right. The BOSS energy ordering is equal to the locmin index.

Figure 11. Relative NequIP energies of the relaxed β-D-xylose adsorption structures on Cu(111) predicted by BOSS with the NequIP PES as target
for the surrogate model. Based on 1000 < data points to construct the surrogate model. The five most stable adsorption structures are displayed in
order of increasing energy from left to right. The BOSS energy ordering is equal to the locmin index.
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structures, meaning that the training data do not include data
from the conformational analysis. In this respect, the potential
captures the conformational dynamics quite well, even with
sparse data. On the other hand, this might explain the relatively
few conformers found. When this strained structure was
relaxed with another NequIP potential (8), the hydroxyl
groups rotated to a more realistic orientation, pointing away
from the other hydroxyl group. Potential 8 was trained on data
from both the BOSS conformer and adsorption structure
analyses as well as high-energy data.
3.5. Global Adsorption Structure Minimum Search

with BOSS (NequIP). As seen in Figure 11, the lowest energy
adsorption configurations resemble the ones obtained from the
BOSS run with DFT. When comparing NequIP to the DFT
based search, we note that we get about ten times as many
adsorption configurations in a fraction of the time,
demonstrating the acceleration of the structure search. To
test how well the MLIP replicates the DFT geometries, we ran
relaxation using PBE + vdWsurf on the lowest energy NequIP
adsorption structures. The DFT relaxations produced negli-
gible changes in the geometries (20 > relaxation steps, average
RMSD from DFT relaxed structure was 0.05 Å), meaning that,
at least for the five lowest energy configurations, NequIP
reproduces the DFT structures well (Supporting Information
S4.1). Even the energies display a similar trend of the
structures being nearly isoenergetic. Overall, the structure
search with BOSS and NequIP combined is able to find the
same minima as DFT-based BOSS, and the former even finds
an equivalent structure to the DFT global minima in C1-L20.
Still, these structures are mostly within or close to the training
distribution, and the real test for assessing the out-of-
distribution performance of NequIP is the adsorption structure
search for xylotetraose. Success in this area implies that neural
network potentials can be used reliably as predictive tools for
these systems, which is one of the most important character-
istics of DFT.
As already noted in the earlier subsection on xylose

adsorption structures during the discussion on isolated
adsorbate energies and adsorption structure energies, there is
no unambiguous correlation between the two, with the
exception of the highest adsorption energy of each isolated
conformer, as this corresponds to the energy of the adsorbate
in a dissociated state (see Figure 12). This illustrates how the
properties of a molecule that govern its stability are not
innately linked to the way that it interacts with the surface.

However, it could be emphasized that the global adsorption
minima belongs to a conformer in the lower energy range, and
thus it might be possible to discard some of the higher energy
ones before BOSS runs to save time and resources.
Although infeasible with DFT, NequIP enabled us to both

sample and relax a large number (105) of xylotetraose
adsorption structures due to much faster energy evaluation at
16 s/step on 1 CPU compared to 1408 s/step on 512 CPUs
(the latter amounting to 300 years of CPU time for the same
number of structures). The computational resources spent on
the two LCMs investigated in this study are summarized in
Tables 3 and 4. When comparing DFT using 512 CPUs to

NequIP using only one CPU, also accounting for the training
of the MLIP, the latter is about 40 times faster. Meanwhile, the
savings in computational resources are more accurately
illustrated through estimated billing units. Here, we made

Figure 12. Absolute energies of the NequIP relaxed β-D-xylose adsorption structures predicted by BOSS with NequIP, arranged by conformer
stability.

Table 3. β-D-Xylose Total Computational Resource Usage
by Method

BOSS (DFT)a wall time
(days)

BOSS (NequIP) wall time
(days)

conformers 0.20 0.06
adsorption
structures

1119.00b 23.37c

MLIP training 2.95
total 1119.20 26.38 [133.38]d

billing units 10 742 400 495 [1 027 695]d

aEstimated for the same number of structure evaluations as done with
NequIP. b512 CPUs, including training data acquisition. c1 CPU.
dIncluding training data acquisition.

Table 4. β-D-Xylotetraose Total Computational Resource
Usage by Method

BOSS (DFT)a wall time
(days)

BOSS (NequIP) wall time
(days)

conformers 5.12 0.43
adsorption
structures

171 082.00b 4166.67c

MLIP training
total 171 087.12 4167.10
billing units 1 642 387 200 78 133

aEstimated for the same number of structure evaluations as done with
NequIP. b512 CPUs. c1 CPU.
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estimates of the billing units required to sample the same
number of structures using both methods, considering how the
DFT structural ensemble is much smaller than that of NequIP.
Furthermore, the estimate includes the resources spent on
obtaining the training data. The computational resources spent
on acquiring all of the training data for the various potentials
herein−around 12 000 DFT data points−amount to 107 days
of computational time (1 027 200 billing units), including the
DFT relaxations and the BOSS procedure used to find the
initial configurations. Accounting for the training data
acquisition and training, we estimate that BOSS (DFT)
requires ten times as many billing units as that for BOSS
(NequIP) in the xylose case, while the whole analysis with
both LCMs makes the latter method 1500 times cheaper in
terms of billing hours. At this point. it should be mentioned
that a reliable NequIP potential (potential 8) for this particular
system was also acquired using 3000 data points, a third of the
training data for the potential (potential 3) used for the
analysis described here. Even smaller data sets ranging from a
few hundred to a little over a thousand data entries were
described in the original NequIP-paper.16

Since the conformer search indicated that CREST arrived at
the lowest energy conformers, these were used as adsorbates in
the adsorption structure search instead of the BOSS-
determined conformers. The results of this sampling are
displayed in Figure 13. We note how the predicted global
minimum is clearly unphysical with distorted features, and we
discard it in the following discussion. We surmise that NequIP
has predicted this as a more stable structure due to a more
close proximity of the molecule to the surface. Another clear
error is in structure C342-L28, in which two hydroxyl oxygens
are both covalently bonded (0.97 Å) to the same hydrogen.
The rest of the displayed structures are physically more
realistic at first inspection. Putting this to the test, the lowest-
energy structures (except C330-L470) were relaxed with DFT
(Supporting Information 4.2). In general, the xylotetraose
chain elongates slightly on the surface during relaxation,
indicating that the potential falls somewhat short of accurately
capturing the interactions between units. Still, considering the
rather low interaction cutoff distance of 3.5 Å and the fact that
there were no xylotetraose data in the training set, the
agreement between the methods is promising. Moreover, the
adsorption height typically changes by only 0.1 Å during DFT

Figure 13. Relative NequIP energies of the relaxed β-D-xylotetraose adsorption structures on Cu(111) predicted by BOSS with the NequIP PES as
a target for the surrogate model. The five most stable adsorption structures are displayed in order of increasing energy from left to right. The BOSS
energy ordering is equal to the locmin index.

Figure 14. DFT (PBE + vdWsurf) relaxation of the xylotetraose adsorption structure C1-L12 determined by BOSS (NequIP).
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relaxation of the NequIP structures, even with the changes in
the adsorbate structures (average RMSD between NequIP and
DFT for the four lowest structures is 0.18 Å). The
performance of NequIP for adsorption structures is well
illustrated with a side-by-side comparison with DFT, as shown
in Figure 14 with the C1-L12 adsorption structure. Here, the
xylotetraose chain is elongated by 0.6 Å during relaxation, and
the adsorption height of the molecule measured relative to the
closest atom to the surface is reduced by 0.1 Å. The positions
of the adsorbate on the surface change to reflect the
elongation, and the geometric center of atoms moves by
about 1.2 Å. Hence, the overall adsorption structure is
preserved better than the adsorbate position on the surface.
Now, when the relative DFT and NequIP energies of the

lowest structures are compared, the energy order is maintained
even with large variations in absolute differences. This
indicates that the method could be used to identify the global
minimum structure. However, the more stable CREST
conformers do not automatically lead to lower adsorption
structures than those from the DFT-based BOSS run. In fact,
the global adsorption minimum as determined herein is the
C1-L13 structure with BOSS conformer 1, being 0.5 eV lower
in energy than the global minimum derived from CREST
conformers, C1-L12. This means xylotetraose with all rings in
the 4C1 configuration attains the most stable adsorption
structure. The fact that NequIP missed this structure is due to
the assumption that the CREST conformers would be the most
relevant in order to find the global minimum, and these did not
include the same conformers as determined by BOSS.
However, when relaxing the BOSS-derived C1-L13 structure
with the NequIP potential, C1-L12 is slightly lower in energy
than C1-L13, meaning that our NequIP potential would fail to
assign the latter as the global minimum, even if the BOSS-
derived conformers were included. Ultimately, we realize that
while the DFT energy ordering is more accurate, experimental
data on this system would help determine the minimum and
would thus be the best way to assess the methodology herein.
It should also be noted that a more accurate method would
account for vibrational contributions to the energies, and to
that end, we wish to test the applicability of MLIPs in the
computation of vibrational frequencies in the future.

4. CONCLUSIONS
We have demonstrated how the combined use of BOSS and
NequIP accelerates and enables the search for global
adsorption minimum structures of highly flexible lignocellulo-
sic molecules. This is most evident when size becomes a
limiting factor for DFT, yet NequIP provides structures of
similar fidelity to the latter. While BOSS was found to be
somewhat restricted for the conformer analysis, supplementa-
tion of external conformer search tools alleviates this, here
exemplified with CREST. The machine learning interatomic
potential NequIP performs well in replicating the DFT global
minima of the xylose system. Furthermore, the performance of
the out-of-distribution xylotetraose system is at the very least
promising, which is where the savings of the computational
resources put in to train an interatomic potential should be the
largest, considering the cost of DFT for evaluating a
comparable number of structures. Our findings suggest that
to achieve an interatomic potential with some degree of
generalization, the training set should contain enough of the
structural features or interactions important for the systems to
which one is trying to generalize, such as adsorbate−substrate

interactions at varying orientations and distances, as well as a
sufficiently diverse conformational ensemble. An unanswered
question emerges from this study: Could the NequIP-based
structure search be used to find the global minimum of a
system even if the DFT training data do not include it? To
answer this, we might have to expand upon our analysis by
repeating the BOSS conformer analysis with a NequIP
potential trained on a more complete conformer ensemble
for the xylose system and include both BOSS and CREST
conformers in the xylotetraose case. However, in the end, a
more reliable evaluation of the methods would be done
together with suitable experimental structural determination
methods. In future work, we therefore aim to investigate the
suitability of the methodology described herein in aiding the
characterization of three-dimensional lignocellulosic molecules
by atomic force microscopy. Another important aspiration of
ours is to accelerate the search further by restricting the
number of needed data evaluations and structural relaxations
by constraining the phase space based on plausible structures
deduced from experimental images.
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