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A B S T R A C T

Edge computing brings computing and storage resources close to end-users to support new applications and
services that require low network latency. It is currently used in a wide range of industries, from industrial
automation and augmented reality, to smart cities and connected vehicles, where low latency, data privacy,
and real-time processing are critical requirements. The latency of accessing applications in edge computing
must be consistently below a threshold of a few tens of milliseconds to maintain an acceptable experience
for end-users. However, the latency between users and applications can vary considerably depending on the
network load and mode of wireless access. An application provider must be able to guarantee that requests are
served in a timely manner by their application instances hosted in the edge despite such latency variations. This
article focuses on the placement and traffic allocation problem faced by application providers in determining
where to place application instances on edge nodes such that requests are served within a certain deadline. It
proposes novel formulations based on robust optimization to provide optimal plans that protect against latency
variations in a configurable number of network links. The robust formulations are based on two different types
of polyhedral uncertainty sets that offer different levels of protection against variations in latency. Extensive
simulations show that our robust models are able to keep the number of chosen edge nodes low while reducing
the number of latency violations as compared to a deterministic optimization model that only considers the
average latency of network links.

1. Introduction

Cloud computing has revolutionized IT infrastructure and service
delivery, wherein cloud providers provide access to a shared pool
of computing, analytics, storage and networking resources to other
companies [1]. These shared resources are housed in large data centers
typically located far away from users [2]. Application providers –
such as Netflix, Pinterest, Twitter, etc. – rent computing and storage
resources from the cloud provider1 to host their applications [1,3].
Applications hosted in the cloud enjoy many benefits such as high
reliability and rapid provisioning of resources with minimal effort [1].

A cloud-based application can be made accessible to end-users over
the Internet. For example, let us consider a simple video analytics
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1 Applications that rely on large cloud providers are listed on each provider’s page: Amazon Web Services (https://aws.amazon.com/ec2/customers/), Google

Cloud (https://cloud.google.com/customers), and Microsoft Azure (https://azure.microsoft.com/en-us/resources/customer-stories/).

application hosted in the cloud – requests (e.g., to detect an object in a
video stream) are sent to the application instance, where the requests
are served (e.g., video streams are processed using computer vision
algorithms) and responses are sent back to the users (e.g., a bounding
box is added around the identified object). A significant drawback of
having cloud data centers located only in a few geographic regions is
that the latency of accessing their resources is high when end-users are
far away from the data centers [2].

Accordingly, a new transformative paradigm, edge computing
[2,4–7], that complements traditional cloud computing has emerged. In
edge computing, computing and storage resources are brought close to
the end-users in the form of small data centers, called edge nodes, which
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are widely distributed within populated areas. It is similar to cloud
computing in that application providers rent resources from a shared
pool of resources. Although edge nodes (ENs) typically have a smaller
capacity than data centers for cloud computing, ENs have sufficient
capacity to host and run multiple applications. By moving computing
resources closer to the user, a higher communication latency to distant
cloud data centers is avoided. An edge computing platform [5] provides
a software environment that enables application providers to run their
applications on ENs closer to users. Examples of applications that bene-
fit most from the lower latency are video analytics, augmented reality,
gaming, autonomous drones, robotics, and connected cars [8]. In such
applications, the latency between sending a request and receiving a
response must be within a few tens of milliseconds [2,4] in order to
maintain a good user experience [9]. Additionally, processing data at
the edge reduces the amount of data sent to the cloud, which can lead
to cost savings, especially in situations with costly data transmission.

Similar to cloud computing, application providers rent resources
from the shared pool of resources to host their application. Thus,
application providers must make decisions on which edge nodes to
place (i.e., run) their application. Once the application is placed, user
requests must be sent to the appropriate edge node, resulting in a
traffic allocation decision of where user requests are served. However,
this decision-making problem is more challenging in edge computing
than in the cloud. A recent empirical study of a live edge computing
platform shows that placement and traffic allocation decisions made by
application providers are not very efficient, resulting in low utilization
of computing resources on certain edge nodes [5]. This indicates that
the problem of placing edge-based applications and allocating requests
is difficult and requires new policies to be designed as compared to the
cloud [5]. This is mainly due to the strict latency deadlines for requests
served by edge-based applications. The latency between users and
applications can vary considerably depending on network conditions
(e.g., instantaneous load), mode of wireless access (e.g., WiFi, LTE or
5G), processing load and variations in the network paths [5,10–13].
An application provider must be able to guarantee that requests are
served in a timely manner by their application instances hosted in
the edge despite such latency variations. This is especially required
for interactive applications such as gaming (augmented reality and
virtual reality) wherein the user experience is heavily dependent on
the responsiveness of the application [9].

This article focuses on the application placement and traffic allo-
cation problem faced by application providers in determining where to
place application instances on edge nodes such that requests are served
within a certain deadline. This is a fundamental problem that arises
when application providers leverage edge computing platforms to host
their applications [5]. Formulating this decision-making problem from
the perspective of an application provider is an under-studied problem
in the literature. One relevant paper is by Bülbül et al. [1] that
addresses the placement of application instances for cloud computing
taking into account the uncertainties in demand and price of the
rented resources. There are several challenges in choosing appropriate
edge nodes. First, the choice of edge nodes depends on the demand
(i.e., number of incoming requests) expected to be served by the appli-
cation instances as well as the latency between the edge nodes and the
source of requests. Deploying an application on multiple edge nodes can
help ensure that latency deadlines are met as requests can always be
served from the edge node nearest to the originating request. However,
this low latency comes at a high cost to the application provider.
Keeping multiple instances of the application running at all times is
costly and inefficient, as the computing resources are reserved even
when there are not many incoming requests. Second, it is challenging to
consistently serve requests with low latency when the latency between
users and edge nodes can vary considerably. A mechanism that only
optimizes the placement and traffic allocation based on the average
or median latency of network links may result in many missed dead-
lines when the network latency increases. A simple and conservative

approach would be to optimize the placement for the worst (highest)
expected latency between users and edge nodes. However, this would
result in a high cost as many edge nodes are chosen to guarantee
deadlines are met, also resulting in potentially underutilized resources.
Thus, an efficient placement and allocation mechanism must take the
uncertainty in network latency into account when placing application
instances on the edge nodes. Optimal placement and demand alloca-
tion for applications in edge computing have been studied [14,15];
however, only a few consider solutions that account for uncertainties
in making placement decisions. Among those that do, the focus is on
uncertainty in traffic or user demand [16–18], the number of edge node
(infrastructure) failures [17,19], or the number of malicious flows on
network links [20].

The main contribution of this paper is twofold: to the best of our
knowledge, this work is the first to consider the uncertainty in network
latency when making placement and traffic allocation decisions in edge
computing. We formulate a mathematical optimization model from
the perspective of an edge application provider that reduces its cost
while still meeting strict latency thresholds despite variations in the
network latency. To deal with the latency uncertainty, we propose a
novel solution based on robust optimization to devise placement and
allocation plans for application instances on edge nodes that account
for the variation in the network latencies between users and edge
nodes. Robust optimization is well-suited for including uncertainties
in optimization models [21,22], as it does not require a probability
distribution for the uncertain parameter (latency in our case). Instead,
it only needs an uncertainty set which is the set of possible realiza-
tions of uncertain parameters. Robust optimization takes advantage
of the ease of modeling uncertainties compared to other approaches,
such as stochastic optimization, so it has been studied in many fields
for the past two decades [23–27]. Based on robust optimization, our
solution protects against latency variations in a configurable number
of network links. We present robust formulations based on two dif-
ferent types of polyhedral uncertainty sets that offer different levels
of protection against variations in latency. Additionally, we propose
efficient methods to solve the robust optimization models based on
mixed integer linear programming. Our solutions are designed such that
the placement and traffic allocation decisions are done for the next
time slot, where each time slot is 10 min. We evaluate the obtained
solutions through extensive Monte Carlo simulations. The results show
that our robust models are able to keep the number of chosen edge
nodes low while reducing the number of latency violations (by up
to 99%) as compared to an optimization model that only considers
the average latency of network links. The robust models are able to
keep the latency of requests consistently low, with a low value for the
maximum duration by which the latency of any single request exceeds
the deadline.

The rest of the article is organized as follows. Section 2 describes
the literature on optimal placement of applications in edge comput-
ing. Section 3 describes the system model, introduces the problem
of placing applications and allocating requests in edge computing,
and describes the robust formulation considering uncertainties in the
network latency. Section 4 describes our method for solving the ro-
bust optimization model. Section 5 details the computational results
obtained when evaluating the robust models, and Section 6 provides
concluding remarks.

2. Literature review

The optimal placement of applications and allocation of requests for
applications in edge computing has been studied extensively, with dif-
ferent objectives of minimizing latency [30,31], reducing energy [30,
32,33], or increasing user throughput [34]. However, the proposed so-
lutions do not consider uncertainties in any parameters when choosing
the locations for hosting edge-based applications. Only a few articles
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Table 1
Existing literature on edge computing that include uncertainty.

Work Application Source of uncertainty Structure of uncertainty Methodology

Yu et al. [19] Placing delay-
sensitive applications
in edge computing

Failure of the network
links

A reliability parameter
between 0 and 1

Fully polynomial-time
approximation schemes,
randomized algorithm

Badri et al. [16] Placing applications
in edge computing

Mobility of end-users Proposed scenario
generation model

Multi-stage stochastic
programming approach

Nguyen et al. [18] Placing applications
in edge computing

Application demand Budgeted uncertainty set Two-stage robust
optimization approach

Bülbül et al. [1] Placing applications
in cloud computing

Demand & price of
the rented resources

Proposed scenario tree Multi-stage stochastic
programming approach

Qu et al. [28] Traffic allocation
and placement
in edge computing

Failure of the network
links or edge nodes

Cardinality constraint Set function
optimization approach

Li et al. [29] Application placement
and request routing

Demand & rate of
incoming requests

Zipf distributions Approximated dynamic
optimization approach

Cheng et al. [17] Placing applications
in edge computing

Resource demand
& edge node failures

Budgeted uncertainty set Two-stage robust
optimization approach

This work Placing applications
in edge computing

Network latency Budgeted/variable-
budgeted uncertainty set

Robust MILP

have considered uncertainties when optimizing the placement of ap-
plications and allocation of requests, which we review next. Nguyen
et al. [18] consider the problem of placing applications in edge com-
puting under uncertainties in the demand for the application. They
propose a two-stage robust optimization framework to choose the edge
nodes for hosting application instances and to decide the amount of
computing resources required at each node. The framework proposed
by Nguyen et al. [18] is extended by Cheng et al. [17] by including
uncertainties in the resilience of edge nodes, i.e., edge nodes may
experience failures during which they cannot serve any requests. The
placement decisions are made taking into account uncertainties in
both the incoming demand and resilience of the edge nodes [17].
A two-stage robust optimization framework is proposed to solve this
problem in an iterative manner. Bülbül et al. [1] address the placement
of application instances for cloud computing taking into account the
uncertainties in demand and price of the rented resources. The authors
propose various multi-stage stochastic programming formulations, such
as scenario-based or chance-constrained models, and compare them. Yu
et al. [19] consider the placement of applications for delay-sensitive
applications in edge computing under uncertainties in the failure of
the network links. In particular, the data lost on any network link
due to failures must be limited to a certain ratio. The authors propose
heuristics based on approximation and randomization schemes to solve
this problem efficiently for different scenarios. Qu et al. [28] also
consider the failure of network links or edge nodes in devising a traffic
allocation and placement algorithm for edge computing. The goal is
to minimize the latency of serving requests while being robust to
a certain number of failures. The problem is solved through linear
approximation and submodular approximation approaches, that are
shown to obtain solutions that are close to the optimal in small network
instances. Badri et al. [16] consider the placement of applications
in edge computing under uncertainties in the mobility of end-users.
The goal is to devise a placement scheme that reduces the energy
consumption of edge nodes while still keeping the latency experienced
by users low even if they move to a different location. The authors
propose a solution based on multi-stage stochastic optimization, which
requires the generation of a large number of scenarios to obtain a
good solution. To solve this problem, the authors devise a greedy al-
gorithm based on the sample average approximation method to obtain
solutions. Li et al. [29] consider the placement of applications under
uncertainties in the demand (or rate of incoming requests). The goal is
to minimize the latency of serving requests while satisfying long-term
budget constraints for placing applications across different time slots.
The problem is solved through an approximated dynamic optimization

approach that solves the problem for individual time slots which are
solved efficiently through a rounding-based approach. None of the
articles described above consider the optimal placement of applications
under uncertainties in network latency. However, this is a fundamental
problem that arises when application providers leverage public edge
computing platforms to host applications that require both low latency
and high utilization of rented resources [5]. The end-to-end latency in
accessing services in the edge or cloud varies due to several reasons,
including, variability in the time taken to transfer data both towards the
server and to receive a response (for instance, the wireless network used
to access the network may be congested), queuing delays at different
network hops, and energy management policies of the networking
equipment (for example, certain devices may need to be moved from
an inactive to active state) [9]. While the variability in the demand
for services can be predicted with reasonable accuracy [5], predicting
variations in the latency is more challenging, and thus, it is important
to devise optimization models that account for variations in network
latency between users and edge nodes.

Table 1 summarizes the previous literature considering uncertain-
ties for the placement of applications and allocation of requests. It
compares our paper to the different papers in regard to the source of
uncertainty and the proposed solution approaches. Our paper proposes
a robust optimization model to place applications in edge computing
such that the latency of serving requests is low even when the network
latency varies.

3. Problem formulation

3.1. Problem description

We consider the problem where an application provider must decide
where to place their application instances2 in an edge computing
platform. The edge computing platform provides multiple edge nodes
( = {1, 2,… | |}) that can be used to host application instances.
The demand for applications comprises user requests that must be
processed by the application instance(s). The application provider rents
𝐶𝑗 computing resources from edge nodes to host their application
instances. The goal of the application provider is to choose the min-
imum number of edge nodes such that user requests are satisfied with

2 The application instance could be virtual machines, containers, or func-
tions, depending on the particular edge computing platform. Our model is
agnostic to the specific type of virtualization used.



Omega 126 (2024) 103064

4

J. Jeong et al.

Fig. 1. (a) Example scenario showing region boundaries and locations of edge nodes. (b) Overview of system model indicating application instances, regions and assignment of
demand from regions to edge nodes and the cloud.

Table 2
Summary of notation in the optimization problem.

Sym. Description

 Set of edge nodes
 Set of edge nodes and cloud
 Set of regions from which demand originates
𝑑𝑖 Demand in terms of number of requests for application from region 𝑖
𝑐𝑓𝑖𝑥𝑒𝑑 Fixed cost to set up an application on EN 𝑗
𝑐𝑜𝑝𝑒𝑟 Operational cost (in terms of energy) to run tasks on an EN 𝑗
𝐶𝑗 Capacity (in terms of CPU units) available for application instance on EN 𝑗
𝐿 Threshold or deadline for average latency (in ms)
𝑅 Minimum number of ENs on which application instance must be placed
𝑣 CPU units required to run application
𝜅 Threshold for maximum CPU utilization (in percent)
𝑡𝑖,𝑗 Average latency between region 𝑖 and EN 𝑗
𝑥𝑗 Binary variable for whether application instance is loaded on EN 𝑗
𝑤𝑖,𝑗 Continuous variables indicating the # of requests from region 𝑖 allocated to node 𝑗

a latency below a configured threshold. Users send requests to the
application over wireless networks (typically, mobile or WiFi). The
demand (user requests) for edge computing applications exhibits a
strong geo-sensitive nature [5], and accordingly the demand is modeled
as originating from different geographic regions, . The application
provider does not know the precise locations of the edge nodes, but
only has information about the average latency 𝑡𝑖,𝑗 between the regions
(𝑖 ∈ ) to edge nodes (𝑗 ∈  ). The application provider must decide
which edge nodes are used to host their applications. The application
is assumed to be always hosted in the cloud with sufficient computing
resources to handle user requests. In addition to choosing the edge
nodes, the allocation of traffic from each region to the appropriate edge
node or cloud is also required. Accordingly, the set of compute nodes
 includes all ENs (𝑗 ∈  ) and the cloud (with index 0), i.e.,  =
{0, 1, 2,… , | |}. The number of requests assigned from each region to
the edge node or cloud is indicated by 𝑤𝑖,𝑗 . Table 2 summarizes the
notation used for this problem. Fig. 1(a) shows a sample scenario where
the regions from which the demand originates are marked with dotted
lines, and the edge nodes available for hosting application instances
are indicated with location pins. Note that the figure shows regular
grid-shaped regions for ease of representation but these regions may be
irregularly shaped without impacting the proposed approach. Fig. 1(b)
shows the relationship between regions, edge nodes and the cloud.

3.2. Deterministic optimization problem

The optimization problem aims to find an assignment of application
instances to edge nodes (𝑥𝑗) and an assignment of requests (𝑤𝑖,𝑗) from

each region 𝑖 to node 𝑗. The objective is to reduce the cost of running
the application. Accordingly, there is a fixed cost 𝑐𝑓𝑖𝑥𝑒𝑑 for running
an application instance on an edge node, and operational costs (𝑐𝑜𝑝𝑒𝑟)
depending on the utilization of the application instance ( 𝑣⋅𝑤𝑖,𝑗

𝐶𝑗
). Finally,

the objective function includes a penalty (ℎ) for requests that are sent
to the cloud.

min
𝑥,𝑤

∑

𝑗∈
𝑐𝑓𝑖𝑥𝑒𝑑𝑥𝑗 +

∑

𝑖∈

∑

𝑗∈
𝑐𝑜𝑝𝑒𝑟 ⋅

𝑣 ⋅𝑤𝑖,𝑗

𝐶𝑗
+
∑

𝑖∈
ℎ ⋅𝑤𝑖,0 (1)

The constraints are as follows.

1. Traffic allocation constraints. All the demand must be assigned to
an EN or to the cloud.
∑

𝑗∈
𝑤𝑖,𝑗 = 𝑑𝑖, ∀𝑖 ∈  (2)

2. Capacity constraint. The application provider must specify the
number of CPU units [35,36], 𝐶𝑗 , that are reserved for run-
ning the application instance at each edge node. Accordingly,
𝑣 indicates the number of CPU units required to support a
certain unit of demand (e.g. a target number of requests per
second). This value can be obtained through benchmarking or
profiling tools that evaluate the performance of application code
under different workloads to obtain an estimate of CPU resources
required to meet a target rate of incoming requests [37,38]. 𝐶𝑗
denotes the number of CPU units rented in each edge node.
The maximum utilization is restricted to a certain percent, 𝜅, of
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the total available CPU units to avoid any unpredictable impact
on latency when the application instances are run at very high
utilization [39]. Also, this constraint ensures that the demand for
the application can be assigned to EN 𝑗 only if the application is
loaded.

𝑣
∑

𝑖∈
𝑤𝑖,𝑗 ≤ 𝜅𝐶𝑗𝑥𝑗 , ∀𝑗 ∈  (3)

3. Latency constraint. Next, the average latency for served requests
must be below a certain threshold, 𝐿. Accordingly, we consider
the average latency, 𝑡𝑖,𝑗 , between region 𝑖 and compute node 𝑗
in formulating the latency constraint. The average latency 𝑡𝑖,𝑗
is obtained from historical data. The requests assigned to each
compute node (𝑤𝑖,𝑗) are multiplied by the corresponding average
latency 𝑡𝑖,𝑗 and then divided by the total demand (∑𝑖∈ 𝑑𝑖) to
obtain the average latency.
∑

𝑖∈

∑

𝑗∈
𝑡𝑖,𝑗𝑤𝑖,𝑗 ≤

∑

𝑖∈
𝑑𝑖 ⋅ 𝐿, (4)

4. Resilience constraint. Each application instance must be hosted on
at least 𝑅 edge nodes for resilience. This is required so that the
application provider can reliably serve the demand even if an
edge node fails.
∑

𝑗∈
𝑥𝑗 ≥ 𝑅 (5)

5. Constraints on variables. Finally, the following constraints specify
valid ranges for the variables.

𝑤𝑖,𝑗 ≥ 0, ∀𝑖 ∈ , 𝑗 ∈  (6)

𝑥𝑗 ∈ {0, 1}, ∀𝑗 ∈  (7)

The proposed optimization problem aims to minimize the cost of
running the application while meeting the capacity constraint (Eq. (3))
and a latency threshold for user requests (Eq. (4)). The constraints
depend on two input parameters — the expected demand (𝑑𝑖) and the
average latency between regions and edge nodes (𝑡𝑖,𝑗). As these input
parameters can vary at different times of the day, we anticipate that
the application provider must solve the problem repeatedly for different
time slots. The demand for edge-based applications follows end-users’
daily activity patterns, which exhibit strong seasonality [5]. Accord-
ingly, we consider that the demand can be accurately predicted ahead
of time. Recent studies have shown that the workload (i.e., demand)
characteristics remain stable for tens of minutes [40], and thus the
optimization problem can be solved for time slots of that duration. The
placement decisions from the obtained solution can be implemented
near-instantaneously as the application resources are virtualized; the
traffic allocation decisions can be implemented as routing table up-
dates, which are also typically updated every few minutes (five minutes
in [41]). In [1], the authors deal with demand uncertainty using multi-
stage stochastic programming formulations. On the other hand, the
other input parameter to the optimization problem, the latency of
network links, varies often and with a significant magnitude [11,12,
42]. Optimizing the placement and traffic allocation based on average
latency alone may result in several missed deadlines for user requests
due to variations in the latency. We focus on devising a placement
and allocation plan for edge-based applications that incorporates the
uncertainty in network latency, described next.

3.3. Robust optimization model

Dealing with uncertainty in optimization models has been widely
studied in other research fields. The main approaches to incorporate
uncertainty are stochastic optimization [43], chance-constrained opti-
mization [44], and robust optimization [45]. Stochastic and chance-
constrained optimization models assume that the probability distri-
bution of uncertain parameters is known. A stochastic optimization

model minimizes the expected objective value while satisfying the
given constraints for individual scenarios that can be generated from
the known probability distribution for the uncertain parameter. A
chance-constrained optimization model enforces the constraint in a
probabilistic manner. Each constraint is allowed to be violated with
a predefined probability level. For both approaches, the probability
distribution is critical to the quality of the solution. However, robust
optimization handles the uncertainty using an uncertainty set. It as-
sumes that the realization of uncertain parameters lies in a predefined
set. In our considered problem, the latency is highly variable depending
on the network load, network conditions and the mode of network
access [5,10–12]; thus determining its probability distribution is diffi-
cult. Moreover, if the probability distribution is estimated incorrectly,
a chance-constrained or stochastic optimization model may provide a
sub-optimal solution. Thus, we choose robust optimization to incorpo-
rate uncertainties in network latency in our placement and allocation
problem as it does not require a probability distribution for the network
latency. Even if the latency is highly variable, its realization can be
featured as a range. Thus, we here assume that latencies are realized
in a predefined range. Robust optimization models typically consider
two types of uncertainty sets — ellipsoidal uncertainty sets [22] and
cardinality-constrained uncertainty sets [21]. Since we do not consider
the correlation between latency realization, we adopt the cardinality-
constrained uncertainty set [45]. A robust optimization model with this
uncertainty set is usually tractable. This feature can be an advantage for
the robust placement and allocation problem that has to be frequently
solved at different times of the day.

With this assumption, we propose the robust formulation as follows.
Since latency exists only in the latency constraint (4), we only need
to consider robust constraints of the latency constraint. Let us assume
that latency 𝑡𝑖,𝑗 is uncertain, where the expected value is 𝑡𝑖,𝑗 and its
realization lies within the interval [𝑡𝑖,𝑗 − 𝑡𝑖,𝑗 , 𝑡𝑖,𝑗 + 𝑡𝑖,𝑗 ]. Then, the realized
latency value 𝑡𝑖,𝑗 can be written as 𝑡𝑖,𝑗 = 𝑡𝑖,𝑗 + 𝑡𝑖,𝑗𝜁𝑖,𝑗 , where 𝜁𝑖,𝑗 denotes
the amount of latency variation from the mean value. We define 𝜻 ∶=
(𝜁𝑖,𝑗 , 𝑖 ∈ , 𝑗 ∈  ) as the latency realization scenario for all links (𝑖, 𝑗),
and  to be the set of all possible latency realization scenarios. The
robust constraint of (4) can be written as follows:
∑

𝑖∈

∑

𝑗∈
𝑡𝑖,𝑗𝑤𝑖,𝑗 + 𝛽(𝒘) ≤

∑

𝑖∈
𝑑𝑖𝐿, (8)

where the protection function 𝛽(𝒘) is defined as follows:

𝛽(𝒘) = max
𝜁

∑

𝑖∈

∑

𝑗∈
𝑤𝑖,𝑗 𝑡𝑖,𝑗𝜁𝑖,𝑗 (9a)

s.t. 𝜻 ∈  . (9b)

The protection function (9) represents the maximum latency sum
which exceeds the expected latency for a given 𝒘. Thus, constraint (8)
can be immunized from all possible latency realizations within a given
uncertainty set  .

We note that there could be some trade-off between number of edge
nodes and the risk of exceeding the latency deadline. This trade-off
depends on how the uncertainty set  is constructed. In our work, we
present two uncertainty sets to provide insight to the decision-maker
(i.e., the application provider) on how they define the uncertainty set
for their specific scenario.

First, the most famous polyhedral uncertainty set is the cardinality-
constrained uncertainty set [21]. This uncertainty set considers all
scenarios allowing up to 𝛥 variated uncertain parameters. Here, 𝛥
is called the budget of uncertainty for the set  . In our model, the
robust latency constraint is protected against all scenarios wherein up
to 𝛥 links have a higher realized value than the expected value (at
most 𝑡𝑖,𝑗 + 𝑡𝑖,𝑗). The cardinality-constrained uncertainty set is written
as follows:

 𝛥 ∶=
{

𝜻 ∈ R||×| | ∣ −1 ≤ 𝜁𝑖,𝑗 ≤ 1 ∀𝑖 ∈ , 𝑗 ∈  ,
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∑

𝑖∈

∑

𝑗∈
|𝜁𝑖,𝑗 | ≤ 𝛥

}

. (10)

The parameter 𝛥 controls the robustness of the solution. With a higher
value of 𝛥, the corresponding robust optimal solution will be feasible
against more scenarios. But, it can be over-conservative. Therefore, the
decision-maker must decide the appropriate value of the 𝛥 that balances
cost and robustness. In [21], the authors introduce a probability bound
for the violation of a robust constraint, which is represented as a func-
tion of the uncertainty budget and the number of uncertain parameters.
Therefore, we can use it as a guideline for choosing the value of the
uncertainty budget. Following Bertsimas and Sim [21], we can write
the probability that the robust latency constraint is violated as follows:

𝑃

(

∑

𝑖∈

∑

𝑗∈
𝑡𝑖,𝑗𝑤𝑖,𝑗 >

∑

𝑖∈
𝑑𝑖𝐿

)

≤ 1 −𝛷

(

𝛥 − 1
√

𝑁
∗

)

, (11)

where 𝑡𝑖,𝑗 = 𝑡𝑖,𝑗 + 𝑡𝑖,𝑗𝜁𝑖,𝑗 is the realized latency value of link (𝑖, 𝑗), 𝑁∗ is
the total number of communication arcs between regions and compute
entities (𝑁∗ = || × | |), and

𝛷(𝜃) = 1
√

2𝜋 ∫

𝜃

−∞
exp

(

−
𝑦2

2

)

𝑑𝑦

is the cumulative distribution function of a standard normal distribu-
tion. The following uncertainty budget guarantees a 95% probability
that the robust latency constraint is satisfied against all scenarios in
the uncertainty set:

𝛥 = 1 + 1.645 ×
√

𝑁∗, (12)

where 𝛷(1.645) ≈ 0.95.
We note that the value of 𝛥 in (12) only depends on the probability

bound we want to guarantee, and 𝑁∗ is always the same in the set
 𝛥. However, the uncertain parameters in our model are the latency
between regions and edge nodes chosen to host the application, so the
status of chosen ENs can change the number of uncertain parameters.
If the number of chosen ENs is small, the uncertainty budget (12)
with 𝑁∗ will provide a higher probability bound guarantee than we
want. In other words, the cardinality uncertainty set  𝛥 can sometimes
be over-conservative. Thus, we consider an additional uncertainty set,
called variable budgeted uncertainty set [46], which is still a polyhedral
uncertainty set. The variable budgeted uncertainty set defines the value
of the budget of uncertainty as a function of decision variables and
allows the size of the uncertainty set to vary depending on the decision
variables. Thus, it can provide a less-conservative robust optimal solu-
tion in some cases. The variable budgeted uncertainty set is represented
as follows:

 (𝒘) ∶=
{

𝜻 ∈ R||×| |

| − 1 ≤ 𝜁𝑖,𝑗 ≤ 1 ∀𝑖 ∈ , 𝑗 ∈  ,

∑

𝑖∈

∑

𝑗∈
|𝜁𝑖,𝑗 | ≤ 𝛾0 + 𝛾

∑

𝑖∈

∑

𝑗∈
𝑦𝑖,𝑗

}

, (13)

where 𝑦𝑖,𝑗 is a binary variable which is 1 if 𝑤𝑖,𝑗 is greater than 0, and 0
otherwise. We note that the value of the uncertainty budget is changed
as the value of 𝒘 is changed. Depending on the value of 𝒘, the size
of the set  (𝒘) can be smaller than the set  𝛥 while guaranteeing
the same probability bound. The variable budgeted uncertainty set can
guarantee the probability bound when 𝛾0 and 𝛾 are well defined [46].
Let 𝛥𝑝(�̃�) denote the value of the uncertainty budget, which guarantees
a 𝑝 probability at �̃� . Poss [46] showed that if an affine function 𝛾0+𝛾�̃�
is always larger than 𝛥𝑝(�̃�) for all �̃� ∈ R, the variable budgeted
uncertainty set guarantees the probability bound of 𝑝. For instance, let
assume that ∑𝑖∈

∑

𝑗∈ 𝑦𝑖,𝑘 = �̃� . For a 95% probability that the robust
latency constraint is satisfied, a tangent line to 1 + 1.645 ×

√

𝑁 at �̃�
can be a candidate of an affine function 𝛾0+𝛾

∑

𝑖∈
∑

𝑗∈ 𝑦𝑖,𝑗 . For more
details, we refer the reader to Poss [46].

4. Solving the robust optimization model

The robust latency constraint (8) can be rewritten as follows.
∑

𝑖∈

∑

𝑗∈
𝑡𝑖,𝑗𝑤𝑖,𝑗 + max

𝜻∈

{

∑

𝑖∈

∑

𝑗∈
𝑡𝑖,𝑗𝑤𝑖,𝑗𝜁𝑖,𝑗

}

≤
∑

𝑖∈
𝑑𝑖 ⋅ 𝐿. (14)

The constraint (14) is nonlinear, and we cannot handle this nonlinear
constraint directly. However, it can be reformulated as a linear con-
straint by taking a dual of it. For both uncertainty sets (10) and (13),
we present the reformulation of the robust latency constraint (14).

First, we note that the worst-case realization of latency always
occurs when the realized latency has a higher value than the nominal
value. Thus, we can re-write the bounds of uncertain parameter 𝜁𝑖,𝑗 as
0 ≤ 𝜁𝑖,𝑗 ≤ 1, ∀𝑖 ∈ , 𝑗 ∈  for both uncertainty sets (10) and (13). With
the cardinality-constrained uncertainty set (10), the protection function
𝛽(𝒘) is equivalent to as follows:

𝛽(𝒘) = max
∑

𝑖∈

∑

𝑗∈
𝑤𝑖,𝑗 𝑡𝑖,𝑗𝜁𝑖,𝑗 (15a)

s.t.
∑

𝑖∈

∑

𝑗∈
𝜁𝑖,𝑗 ≤ 𝛥 (15b)

0 ≤ 𝜁𝑖,𝑗 ≤ 1, ∀𝑖 ∈ , 𝑗 ∈  . (15c)

The dual of the problem (15) is written as follows:

min 𝛥𝜂𝐶 +
∑

𝑖∈

∑

𝑗∈
𝜋𝐶
𝑖,𝑗 (16a)

s.t. 𝜂𝐶𝑠 + 𝜋𝐶
𝑖,𝑗 ≥ 𝑡𝑖,𝑗𝑤𝑖,𝑗 , ∀𝑖, 𝑗 ∈  (16b)

𝜂𝐶 ≥ 0 (16c)

𝜋𝐶
𝑖,𝑗 ≥ 0, ∀𝑖, 𝑗 ∈  , (16d)

where 𝜂𝐶 and 𝜋𝐶
𝑖,𝑗 are dual variables associated to constraints (15b) and

(15c), respectively. Therefore, the robust latency constraint with the set
(10) can be reformulated to the following constraints:
∑

𝑖∈

∑

𝑗∈

(

𝑡𝑖,𝑗𝑤𝑖,𝑗 + 𝜋𝐶
𝑖,𝑗

)

+ 𝛥𝜂𝐶 ≤
∑

𝑖∈
𝑑𝑖 ⋅ 𝐿 (17a)

𝜂𝐶 + 𝜋𝐶
𝑖,𝑗 ≥ 𝑡𝑖,𝑗𝑤𝑖,𝑗 , ∀𝑖, 𝑗 ∈  (17b)

𝜂𝐶 ≥ 0 (17c)

𝜋𝐶
𝑖,𝑗 ≥ 0, ∀𝑖, 𝑗 ∈  , (17d)

Similarly, the robust latency constraint with the set (13) can be
reformulated as follows:
∑

𝑖∈

∑

𝑗∈

(

𝑡𝑖,𝑗𝑤𝑖,𝑗 + 𝜋𝑉
𝑖,𝑗

)

+
(

𝛾0 + 𝛾
∑

𝑖∈

∑

𝑗∈
𝑦𝑖,𝑗

)

𝜂𝑉 ≤
∑

𝑖∈
𝑑𝑖 ⋅ 𝐿 (18a)

𝜂𝑉 + 𝜋𝑉
𝑖,𝑗 ≥ 𝑡𝑖,𝑗𝑤𝑖,𝑗 , ∀𝑖, 𝑗 ∈  (18b)

𝑤𝑖,𝑗 ≤ 𝑀3𝑦𝑖,𝑗 , ∀𝑖, 𝑗 ∈  (18c)

𝜂𝑉 ≥ 0 (18d)

𝜋𝑉
𝑖,𝑗 ≥ 0, ∀𝑖, 𝑗 ∈  (18e)

𝑦𝑖,𝑗 ∈ {0, 1}, ∀𝑖, 𝑗 ∈  (18f)

where 𝜂𝑉 and 𝜋𝑉
𝑖,𝑗 are dual variables associated to constraints in the

set (13). The constraint (18c) enforces that 𝑦𝑖,𝑗 takes 1 if 𝑤𝑖,𝑗 is bigger
than 0. Unfortunately, the constraint (18a) is still nonlinear because
there are bilinear terms 𝑦𝑖,𝑗𝜂𝑉 . These bilinear terms can be linearized
using the reformulation linearization technique (RLT) [47]. With the
RLT, the bilinear term 𝑦𝑖,𝑗𝜂𝑉 is substituted for 𝜇𝑖,𝑗 , and the following
constraints are added:

𝜇𝑖,𝑗 − 𝜂𝑉 ≥ −𝑀4(1 − 𝑦𝑖,𝑗 ), ∀𝑖, 𝑗 ∈  (19a)

𝜇𝑖,𝑗 ≤ 𝑀4𝑦𝑖,𝑗 , ∀𝑖, 𝑗 ∈  (19b)

𝜇𝑖,𝑗 ≤ 𝜂𝑉 , ∀𝑖, 𝑗 ∈  (19c)
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𝜇𝑖,𝑗 ≥ 0, ∀𝑖, 𝑗 ∈  (19d)

where 𝑀4 is a big-M.
The dualization of the robust latency constraint introduces ad-

ditional variables and constraints, increasing the size of the model.
For the cardinality-constrained uncertainty set (10), the dualization
requires (|| × | | + 1) additional variables and || × | | additional
constraints. For the variable budgeted uncertainty set (13), || × | |

additional binary variables are needed for 𝑦𝑖,𝑗 . Also, we need dual-
ization and linearization to get a linear reformulation. The number
of additional variables and constraints for the dualization is the same
as the cardinality-constrained uncertainty set. But the linearization
requires || × | | additional variables and 3 × || × | | additional
constraints. We note that the robust model with the variable budgeted
uncertainty set can easily face computational difficulties. We evaluate
different sizes of network instances in the next section to demonstrate
the scalability of the solutions.

5. Evaluation

This section presents the results from evaluating our robust models
in different types of test instances. In edge computing, the demand
for an application can be predicted with high accuracy due to the
stronger seasonality as compared to cloud-based applications [5]. Thus,
our test instances comprise scenarios where the application provider
determines a placement strategy for the next 10 min based on the
known (predicted) demand. Our focus is on the robustness of the
optimization models to variations in latency, and thus, we do not eval-
uate forecasting methods for demand. The goal of the computational
experiments is to evaluate whether our robust models are able to keep
the number of chosen edge nodes low and average latency lower than
a configured threshold, when there is variation in the network latency.
Another important consideration is whether the robust solutions are
obtained within a reasonable time for different types of test instances
so that the placement decisions can be promptly implemented for the
next 10-min time slot.

Generation of test instances. The network parameters are chosen to be
representative of real-world networks, resulting in the following test
instances: small networks (S1–S10) with 10 regions and 5 edge nodes,
medium networks (M1–M10) with 18 regions and 10 edge nodes, and
large networks (L1–L10) with 25 regions and 10 edge nodes. The
number of edge nodes is restricted to 10, following an analysis of
datasets from a real-world public edge computing platform that showed
that the maximum number of edge nodes (or sites) in a city was
11 [5]. In each test instance, the demand from each region is drawn
from a uniform distribution with minimum and maximum values as
indicated in Table 3. This corresponds to the number of user requests
in a time slot of 10 min. The computational capacity 𝐶𝑗 rented from
each edge node is chosen in steps of 1024 CPU units, as is custom
in large cloud computing platforms [35]. In each test instance, the
average latency between network elements is chosen such that a region
is close to at least two ENs (with an average latency drawn from a
uniform distribution of between 10 to 15 ms). The average latency
between regions to remaining (more distant) edge nodes is drawn from
a uniform distribution between 20 to 30 ms. The two closest edge
nodes are randomly chosen with uniform probability from the complete
list of edge nodes. The latency to the cloud is typically over 100
ms [8] and accordingly, the average latency is drawn from a uniform
distribution between 120 to 150 ms. Note that the uniform distribution
is used to draw the average latency values in the test instances, whereas
later in the simulations, we use a different probability distribution to
draw different realizations of the latency values (see Simulation setup
and performance metrics). Finally, the application parameters are set
as follows. The computing requirement, 𝑣, is set to 1024 CPU units
to support a demand of 100 requests per second, and the latency
threshold 𝐿 is set to 20 ms. To understand the impact of the resilience
requirement 𝑅, its value is set to 1 for the first six test instances, and
set to between 2 to 4 for the remaining test instances.

Table 3
Parameters used to generate the test instances.

Instance Min Max Compute Resilience
demand demand capacity (𝐶𝑗 ) (𝑅)

S1 1 000 5 000 1024 1
S2 10 000 15 000 1024 1
S3 10 000 15 000 3072 1
S4 15 000 20 000 1024 1
S5 15 000 20 000 3072 1
S6 15 000 20 000 5120 1
S7 1 000 5 000 1024 2
S8 10 000 15 000 3072 2
S9 15 000 20 000 5120 2
S10 15 000 20 000 3072 3

M1 1 000 5 000 1024 1
M2 10 000 15 000 1024 1
M3 10 000 15 000 3072 1
M4 15 000 20 000 1024 1
M5 15 000 20 000 3072 1
M6 15 000 20 000 5120 1
M7 1 000 5 000 1024 3
M8 1 000 5 000 1024 4
M9 15 000 20 000 5120 3
M10 15 000 20 000 3072 4

L1 1 000 5 000 1024 1
L2 10 000 15 000 1024 1
L3 10 000 15 000 3072 1
L4 15 000 20 000 2048 1
L5 15 000 20 000 3072 1
L6 15 000 20 000 5120 1
L7 1 000 5 000 1024 3
L8 1 000 5 000 1024 4
L9 15 000 20 000 5120 3
L10 15 000 20 000 5120 4

Evaluated models. We evaluate the deterministic model (D), robust
model with the cardinality-constrained uncertainty set (called robust
fixed, RF), and robust model with the variable budgeted uncertainty set
(called robust variable, RV) proposed in Sections 3.2 and 3.3. Addition-
ally, we evaluate the deterministic model (D) with more conservative
estimates of the latency 𝑡𝑖,𝑗 in constraint (4). Specifically, each 𝑡𝑖,𝑗 is set
to 𝑡𝑖,𝑗+

√

0.5𝑡𝑖,𝑗 . The D model with constraint (4) updated with these val-
ues results in conservative solutions that are protected from variations
in latency. This model is denoted as deterministic-conservative model
(DC) and is similar to the robust formulation presented by Soyster [48].

All optimization models are evaluated with the costs in the objective
function set as follows: 𝑐𝑜𝑝𝑒𝑟 as 350, 𝑐𝑓𝑖𝑥𝑒𝑑 as 10 and ℎ as 1. The latency
threshold 𝐿 is set to 20 ms, and 𝜅 is set to 70% [41]. For the value of
the uncertainty budget for RF and RV, we consider a 95% probability
bound for the robust latency constraint. In other words, the robust
latency constraint should be satisfied at least 95% for all scenarios in
the uncertainty set. For RF, 𝛥 is set to 1 + 1.645 ×

√

𝑁∗, where 𝑁∗ =
||×

∑

𝑗∈ 𝑥𝑗 . For RV, 𝛾0 and 𝛾 in the function 𝛾0 + 𝛾
∑

𝑖∈
∑

𝑗∈ 𝑦𝑖,𝑗 are
obtained as the coefficients of the line tangent to 1+ 1.645 ×

√

𝑁 at �̃� ,
which is the expected number of ENs instead of all ENs. This function
reduces the conservatism of the solution of RV as a fewer number of
links are protected against latency variations, dependent on the number
of edge nodes that are expected to be opened; the expected number
of ENs is simply calculated based on the computational requirements
alone as ⌈

𝑣⋅
∑

𝑖 𝑑𝑖
0.7𝐶𝑗

⌉. All optimization problems are solved with CPLEX

(version 22.1.1) with default settings through its Python API on a
MacBook Air with an M1 processor and 16 GB RAM running macOS
Ventura version 13.6.1. The source code for the optimization and
evaluation are available at https://github.com/gpremsan/robust-edge-
placement-latency-uncertainty/.

Simulation setup and performance metrics. The four different models –
D, DC, RF and RV – are first compared in terms of the number of
edge nodes on which the application instances are placed, the value

https://github.com/gpremsan/robust-edge-placement-latency-uncertainty/
https://github.com/gpremsan/robust-edge-placement-latency-uncertainty/
https://github.com/gpremsan/robust-edge-placement-latency-uncertainty/
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Fig. 2. CDF of values sampled from a GEV distribution for latency between a representative region and (a) near and distance edge nodes, and (b) the cloud.

of the objective function (Eq. (1)) and CPU time (in seconds) taken
to obtain a solution. A lower number is better for all evaluated met-
rics. Next, the robustness of the solutions is evaluated through Monte
Carlo simulations, wherein we evaluate each model’s solution under
different realizations of latency. The latency values are drawn from a
generalized extreme value (GEV) distribution that is found to be the
best fit for modeling the long tail of latency values seen in practical
edge computing environments [11]. In our evaluation, we consider a
type I GEV distribution with the location parameter set to the average
latency (𝑡𝑖,𝑗) in the optimization problems, and the scale parameter
(that controls the spread in the sampled values) to half the average
latency for the network links between regions and the cloud, and 0.2
times the location value for the links between ENs and regions. Fig. 2
shows the CDF of the sampled latency values from an example region
to a nearby EN, distant EN and cloud, with the values drawn from the
described GEV distribution. The figure shows that although the median
latency is low, there is a long tail of latency values as is typical in
such networks [11,12]. In each Monte Carlo simulation, we evaluate
the number of latency violations (i.e., the number of times the average
latency exceeds the configured threshold, expressed as a percentage
of the 10,000 Monte Carlo sample runs), the average duration of the
latency violations and the maximum duration of the latency violations.

All reported results are the average of 10 randomly generated
instances. Specifically, for each instance, we generate 10 separate
networks with randomly-generated network layouts (to determine the
edge nodes closest to each region), demand and latency values. We
run Monte Carlo simulations for each network with 10,000 samples
from the GEV distribution, before reporting the average and standard
deviation of the performance metrics for each instance. Note that we
report the weighted average and weighted standard deviation for the
average duration of the latency violations, as the number of violations
varies across the iterations. Specifically, the weighted average latency
duration is calculated by weighting each sample with the number of
latency violations in the particular iteration. The maximum duration
of latency violations is the maximum across all iterations for each
instance.

5.1. Costs comparison and analysis

In this section, we first evaluate the solutions obtained by the four
methods, in terms of the value of the objective function, the time
taken to obtain a solution, and the number of edge nodes on which
the application instances are placed. Table 4 reports the results for the
evaluated metrics. First, we focus on the number of edge nodes chosen
by each method. The table shows that on average the number of chosen
ENs is lowest for D, with up to one or two more ENs chosen by the other

Fig. 3. Box plot of the number of edge nodes chosen by each method for two small,
medium and large test instances.

methods. This is expected as D only considers the average latency 𝑡𝑖,𝑗
between the regions and the compute nodes, and thus, optimistically
assumes that the latency threshold can be met. DC chooses up to one
more edge node in a few test instances (16 out of the 300 networks) as
it has a more conservative estimate of the average latency, resulting in
more conservative solutions. On the other hand, when comparing the
solutions of the robust models, RF tends to choose more edge nodes
than RV. However, across all iterations, RF chooses a maximum of two
more edge nodes than D and a maximum of one more edge node than
DC solution, whereas RV chooses only up to one more edge node than
D. The number of edge nodes chosen by the methods is exactly the same
in 156 out of the 300 tested networks. This includes instance types 7–10
where the resilience (𝑅) is set to a high value, wherein the number of
edge nodes is exactly the same across all iterations, with 𝑅 edge nodes
chosen in each case. Fig. 3 presents a visual summary of the number of
chosen edge nodes for a subset of the test instances from each category.
The figure clearly shows that the number of edge nodes varies between
1–2 for different iterations. However, even when the number of chosen
edge nodes are similar, the robustness of the solutions varies as we will
investigate in the next section.

Next, Fig. 4 shows the utilization of individual ENs across all iter-
ations for small, medium and large instances. The figure shows that D
keeps the median utilization level at a higher level than other methods.
DC is able to keep the utilization levels similar to D in the medium
and large instances, whereas the median utilization for DC is 8% lower
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Table 4
Summary of the number of chosen edge nodes, objective function value and solution time per test instance.

Instance Total cost Number of chosen ENs CPU time (s)

D DC RF RV D DC RF RV D DC RF RV

S1 193.37 ± 19.93 198.37 ± 22.07 204.36 ± 22.00 203.37 ± 19.93 1.00 ± 0.00 1.50 ± 0.50 2.10 ± 0.30 2.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.00
S2 775.63 ± 29.21 775.63 ± 29.21 775.63 ± 29.21 775.63 ± 29.21 3.60 ± 0.49 3.60 ± 0.49 3.60 ± 0.49 3.60 ± 0.49 0.03 ± 0.04 0.03 ± 0.04 0.02 ± 0.03 0.05 ± 0.03
S3 262.54 ± 12.75 265.54 ± 9.80 269.54 ± 11.43 266.54 ± 8.31 1.60 ± 0.49 1.90 ± 0.30 2.30 ± 0.46 2.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 0.02 ± 0.00
S4 1081.30 ± 24.92 1081.30 ± 24.92 1081.30 ± 24.92 1081.30 ± 24.92 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00
S5 363.77 ± 8.31 363.77 ± 8.31 366.77 ± 11.43 363.77 ± 8.31 2.00 ± 0.00 2.00 ± 0.00 2.30 ± 0.46 2.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.00
S6 216.26 ± 4.98 224.26 ± 6.63 229.26 ± 8.38 226.26 ± 4.98 1.00 ± 0.00 1.80 ± 0.40 2.30 ± 0.46 2.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.02 ± 0.01 0.02 ± 0.00
S7 203.37 ± 19.93 203.37 ± 19.93 204.37 ± 22.00 203.37 ± 19.93 2.00 ± 0.00 2.00 ± 0.00 2.10 ± 0.30 2.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00
S8 266.54 ± 8.31 266.54 ± 8.31 269.54 ± 11.43 266.54 ± 8.31 2.00 ± 0.00 2.00 ± 0.00 2.30 ± 0.46 2.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.01 ± 0.00
S9 226.26 ± 4.98 226.26 ± 4.98 229.26 ± 8.38 226.26 ± 4.98 2.00 ± 0.00 2.00 ± 0.00 2.30 ± 0.46 2.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.02 ± 0.01
S10 373.77 ± 8.31 373.77 ± 8.31 373.77 ± 8.31 373.77 ± 8.31 3.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 3.00 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00

M1 335.55 ± 18.96 335.55 ± 18.96 352.55 ± 21.47 343.55 ± 20.83 2.00 ± 0.00 2.00 ± 0.00 3.70 ± 0.46 2.80 ± 0.40 0.01 ± 0.00 0.01 ± 0.00 0.05 ± 0.01 0.24 ± 0.16
M2 1373.20 ± 23.70 1373.20 ± 23.70 1373.20 ± 23.70 1373.20 ± 23.70 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 0.04 ± 0.01 0.04 ± 0.01 0.14 ± 0.01 0.58 ± 0.16
M3 457.73 ± 7.90 457.73 ± 7.90 477.73 ± 7.90 464.73 ± 9.53 2.00 ± 0.00 2.00 ± 0.00 4.00 ± 0.00 2.70 ± 0.46 0.01 ± 0.00 0.01 ± 0.00 0.06 ± 0.01 0.18 ± 0.09
M4 1918.20 ± 23.70 1918.20 ± 23.70 1918.20 ± 23.70 1918.20 ± 23.70 8.00 ± 0.00 8.00 ± 0.00 8.00 ± 0.00 8.00 ± 0.00 0.04 ± 0.01 0.04 ± 0.02 0.07 ± 0.02 0.14 ± 0.07
M5 642.73 ± 7.90 642.73 ± 7.90 652.73 ± 7.90 642.73 ± 7.90 3.00 ± 0.00 3.00 ± 0.00 4.00 ± 0.00 3.00 ± 0.00 0.03 ± 0.01 0.04 ± 0.01 0.06 ± 0.01 0.49 ± 0.17
M6 387.64 ± 4.74 387.64 ± 4.74 407.64 ± 4.74 394.64 ± 6.93 2.00 ± 0.00 2.00 ± 0.00 4.00 ± 0.00 2.70 ± 0.46 0.02 ± 0.01 0.01 ± 0.00 0.06 ± 0.01 0.22 ± 0.07
M7 345.55 ± 18.96 345.55 ± 18.96 352.55 ± 21.47 345.55 ± 18.96 3.00 ± 0.00 3.00 ± 0.00 3.70 ± 0.46 3.00 ± 0.00 0.00 ± 0.00 0.01 ± 0.00 0.04 ± 0.02 0.07 ± 0.03
M8 355.55 ± 18.96 355.55 ± 18.96 355.55 ± 18.96 355.55 ± 18.96 4.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00 0.01 ± 0.00 0.00 ± 0.00 0.02 ± 0.01 0.04 ± 0.01
M9 397.64 ± 4.74 397.64 ± 4.74 407.64 ± 4.74 397.64 ± 4.74 3.00 ± 0.00 3.00 ± 0.00 4.00 ± 0.00 3.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.05 ± 0.01 0.07 ± 0.03
M10 407.64 ± 4.74 407.64 ± 4.74 407.64 ± 4.74 407.64 ± 4.74 4.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.02 ± 0.01 0.04 ± 0.01

L1 478.18 ± 33.68 478.18 ± 33.68 495.18 ± 29.33 484.18 ± 29.82 2.30 ± 0.46 2.30 ± 0.46 4.00 ± 0.00 2.90 ± 0.30 0.03 ± 0.02 0.02 ± 0.01 0.09 ± 0.02 0.59 ± 0.59
L2 1925.04 ± 36.66 1925.04 ± 36.66 1925.04 ± 36.66 1925.04 ± 36.66 8.00 ± 0.00 8.00 ± 0.00 8.00 ± 0.00 8.00 ± 0.00 0.04 ± 0.01 0.04 ± 0.01 0.08 ± 0.02 0.19 ± 0.04
L3 645.01 ± 12.22 645.01 ± 12.22 655.01 ± 12.22 645.01 ± 12.22 3.00 ± 0.00 3.00 ± 0.00 4.00 ± 0.00 3.00 ± 0.00 0.04 ± 0.02 0.04 ± 0.01 0.09 ± 0.01 0.88 ± 0.22
L4 1347.10 ± 18.33 1347.10 ± 18.33 1347.10 ± 18.33 1347.10 ± 18.33 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 0.05 ± 0.00 0.05 ± 0.01 0.22 ± 0.02 0.78 ± 0.13
L5 898.07 ± 12.22 898.07 ± 12.22 898.07 ± 12.22 898.07 ± 12.22 4.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00 0.05 ± 0.01 0.06 ± 0.01 0.17 ± 0.04 1.80 ± 0.79
L6 544.84 ± 7.33 544.84 ± 7.33 554.84 ± 7.33 544.84 ± 7.33 3.00 ± 0.00 3.00 ± 0.00 4.00 ± 0.00 3.00 ± 0.00 0.03 ± 0.00 0.03 ± 0.01 0.10 ± 0.02 0.59 ± 0.25
L7 485.18 ± 29.33 485.18 ± 29.33 495.18 ± 29.33 485.18 ± 29.33 3.00 ± 0.00 3.00 ± 0.00 4.00 ± 0.00 3.00 ± 0.00 0.02 ± 0.01 0.01 ± 0.01 0.11 ± 0.03 0.14 ± 0.12
L8 495.18 ± 29.33 495.18 ± 29.33 495.18 ± 29.33 495.18 ± 29.33 4.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 0.05 ± 0.01
L9 544.84 ± 7.33 544.84 ± 7.33 554.84 ± 7.33 544.84 ± 7.33 3.00 ± 0.00 3.00 ± 0.00 4.00 ± 0.00 3.00 ± 0.00 0.01 ± 0.01 0.01 ± 0.00 0.12 ± 0.03 0.14 ± 0.05
L10 554.84 ± 7.33 554.84 ± 7.33 554.84 ± 7.33 554.84 ± 7.33 4.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00 4.00 ± 0.00 0.01 ± 0.00 0.01 ± 0.00 0.02 ± 0.01 0.08 ± 0.03

Fig. 4. Box plot of utilization of ENs for small, medium and large test instances.

than the median utilization of D in the small instances. The robust
solutions, RF and RV, are able to keep the utilization values reasonably
high despite choosing more ENs to meet the latency deadlines (see
next section). All methods result in sometimes running ENs with a low
utilization; this is mainly due to the additional ENs chosen to meet
the strict latency deadline as well as the high resilience requirement in
instances 7–10 of each category. Note that the utilization is restricted
to 70% of the capacity when solving the optimization models, and thus,
the maximum utilization never exceeds this value.

Finally, all solutions are obtained within a short time (see Table 4),
with a maximum of 15.68 s for RV and a solution time of below 1 s
for the vast majority of the test instances (248 out of 300 networks).
The solution time for other methods (D, DC and RF) is below 1 s for all
tested networks. Thus, the proposed robust models can easily obtain
solutions well in time for the 10-min time slots used in this paper.
Moreover, the short solution time implies that the robust models can
be used to make placement and allocation decisions for shorter time
slots as well.

5.2. Robustness of solutions

We investigate the robustness of the solutions through Monte Carlo
simulations. Table 5 reports the number of latency violations observed
in the simulations, i.e., the number of times the average latency of
requests served is above the latency threshold (𝐿) of 20 ms. The results
show that the robust solutions are consistently able to maintain a low
number of latency violations, with the fewest number of violations for
RF. There are no latency violations with RF for the medium and large
networks. In fact, on average, the number of requests that experience
a latency greater than the set threshold is close to zero with RF and
below 20 with RV. This is much lower than the thousands of requests
that exceed the latency threshold with both D and DC. One reason
for this is that RF tends to choose more edge nodes than the other
methods. However, the number of latency violations is lower for the
robust solutions even in cases where the number of edge nodes chosen
by the deterministic methods is the same. Thus, in addition to the actual
choice of edge nodes, the number of requests assigned to different edge
nodes also plays a crucial role in keeping the average latency low.
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Table 5
Summary of the number of latency violations, average and maximum duration of the latency violations per test instance.

Instance Number of latency violations (%) Average duration of latency violations (ms) Maximum duration of latency violations (ms)

D DC RF RV D DC RF RV D DC RF RV

S1 42.72 ± 19.55 11.03 ± 6.17 0.0 ± 0.00 0.03 ± 0.03 1.55 ± 0.37 1.00 ± 0.09 0.38 ± 0.35 0.55 ± 0.25 10.77 8.76 1.31 2.26
S2 32.63 ± 33.24 16.76 ± 2.32 0.0 ± 0.00 0.00 ± 0.00 1.78 ± 0.51 0.94 ± 0.04 0.37 ± 0.44 0.39 ± 0.54 10.04 7.99 0.68 1.01
S3 36.70 ± 23.61 11.12 ± 8.06 0.0 ± 0.00 0.01 ± 0.02 1.48 ± 0.44 0.93 ± 0.09 0.20 ± 0.18 0.64 ± 0.38 10.47 6.39 0.33 2.86
S4 45.35 ± 31.29 11.47 ± 7.38 0.0 ± 0.00 0.00 ± 0.00 1.70 ± 0.43 0.91 ± 0.07 0.09 ± 0.00 0.16 ± 0.17 9.78 6.89 0.09 0.28
S5 41.10 ± 36.00 14.46 ± 7.20 0.0 ± 0.01 0.03 ± 0.03 1.89 ± 0.44 0.95 ± 0.07 0.31 ± 0.15 0.59 ± 0.30 10.02 7.34 0.63 2.97
S6 42.07 ± 21.67 10.56 ± 7.12 0.0 ± 0.00 0.03 ± 0.03 1.46 ± 0.26 0.92 ± 0.09 0.33 ± 0.35 0.60 ± 0.31 9.87 6.08 0.71 2.06
S7 43.72 ± 33.61 15.74 ± 5.40 0.0 ± 0.00 0.03 ± 0.07 1.91 ± 0.39 1.04 ± 0.09 0.64 ± 0.32 0.63 ± 0.23 13.76 8.74 1.31 3.57
S8 41.98 ± 34.03 9.50 ± 7.12 0.0 ± 0.00 0.02 ± 0.03 1.81 ± 0.38 0.94 ± 0.06 0.74 ± 0.00 0.67 ± 0.22 10.86 8.63 0.74 2.24
S9 47.12 ± 35.87 10.41 ± 7.55 0.0 ± 0.00 0.07 ± 0.10 1.89 ± 0.31 0.95 ± 0.05 0.69 ± 0.00 0.63 ± 0.14 12.42 8.51 0.69 3.74
S10 34.06 ± 30.49 12.45 ± 5.93 0.0 ± 0.00 0.01 ± 0.01 1.65 ± 0.42 0.92 ± 0.05 0.46 ± 0.00 0.80 ± 0.43 9.83 7.83 0.46 2.46

M1 87.90 ± 5.96 10.53 ± 2.82 0.0 ± 0.00 0.04 ± 0.03 1.87 ± 0.19 0.68 ± 0.06 0.00 ± 0.00 0.35 ± 0.18 9.17 4.68 0.00 1.66
M2 51.54 ± 37.08 6.85 ± 5.14 0.0 ± 0.00 0.00 ± 0.00 1.56 ± 0.41 0.60 ± 0.04 0.00 ± 0.00 0.00 ± 0.00 9.97 4.17 0.00 0.00
M3 86.79 ± 11.63 9.32 ± 3.64 0.0 ± 0.00 0.13 ± 0.11 1.81 ± 0.28 0.61 ± 0.03 0.00 ± 0.00 0.33 ± 0.06 8.94 5.26 0.00 2.17
M4 50.40 ± 34.47 7.85 ± 4.30 0.0 ± 0.00 0.00 ± 0.00 1.44 ± 0.40 0.58 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 7.04 4.17 0.00 0.00
M5 80.54 ± 17.04 10.95 ± 0.88 0.0 ± 0.00 0.08 ± 0.10 1.73 ± 0.38 0.63 ± 0.03 0.00 ± 0.00 0.31 ± 0.08 9.65 4.31 0.00 1.68
M6 83.47 ± 17.26 9.92 ± 2.60 0.0 ± 0.00 0.18 ± 0.16 1.81 ± 0.32 0.61 ± 0.04 0.00 ± 0.00 0.33 ± 0.06 7.62 4.66 0.00 1.86
M7 84.70 ± 13.92 12.83 ± 1.30 0.0 ± 0.00 0.02 ± 0.03 1.89 ± 0.29 0.71 ± 0.04 0.00 ± 0.00 0.30 ± 0.13 9.36 6.19 0.00 1.03
M8 82.38 ± 19.83 12.07 ± 2.87 0.0 ± 0.00 0.00 ± 0.01 1.90 ± 0.29 0.69 ± 0.03 0.00 ± 0.00 0.51 ± 0.16 9.85 6.09 0.00 0.89
M9 75.87 ± 20.00 11.82 ± 1.24 0.0 ± 0.00 0.04 ± 0.06 1.65 ± 0.39 0.64 ± 0.02 0.00 ± 0.00 0.42 ± 0.07 8.51 5.10 0.00 1.62
M10 75.89 ± 19.49 11.11 ± 2.96 0.0 ± 0.00 0.01 ± 0.03 1.63 ± 0.37 0.64 ± 0.03 0.00 ± 0.00 0.36 ± 0.09 8.24 4.21 0.00 1.46

L1 87.29 ± 18.65 8.89 ± 3.33 0.0 ± 0.00 0.10 ± 0.09 1.76 ± 0.26 0.54 ± 0.04 0.00 ± 0.00 0.29 ± 0.08 7.89 3.64 0.00 1.6
L2 60.93 ± 25.74 3.37 ± 2.97 0.0 ± 0.00 0.00 ± 0.00 1.20 ± 0.38 0.47 ± 0.04 0.05 ± 0.00 0.00 ± 0.00 6.66 3.31 0.07 0.00
L3 80.90 ± 18.77 7.00 ± 2.71 0.0 ± 0.00 0.08 ± 0.13 1.55 ± 0.39 0.49 ± 0.02 0.00 ± 0.00 0.31 ± 0.05 7.32 3.21 0.00 1.13
L4 71.36 ± 27.29 8.27 ± 2.66 0.0 ± 0.00 0.00 ± 0.00 1.42 ± 0.39 0.51 ± 0.02 0.14 ± 0.00 0.00 ± 0.00 7.06 3.24 0.14 0.00
L5 63.00 ± 31.95 6.53 ± 3.24 0.0 ± 0.00 0.00 ± 0.00 1.43 ± 0.44 0.49 ± 0.03 0.00 ± 0.00 0.23 ± 0.00 6.77 4.15 0.00 0.38
L6 88.33 ± 13.26 4.71 ± 3.82 0.0 ± 0.00 0.24 ± 0.34 1.70 ± 0.34 0.49 ± 0.04 0.00 ± 0.00 0.30 ± 0.06 6.65 4.10 0.00 2.36
L7 81.12 ± 27.45 9.56 ± 2.49 0.0 ± 0.00 0.01 ± 0.02 1.67 ± 0.26 0.54 ± 0.03 0.00 ± 0.00 0.19 ± 0.07 7.00 3.82 0.00 0.53
L8 56.21 ± 25.41 8.51 ± 3.26 0.0 ± 0.00 0.00 ± 0.01 1.17 ± 0.27 0.56 ± 0.02 0.00 ± 0.00 0.16 ± 0.06 5.94 3.94 0.00 0.31
L9 76.34 ± 24.00 8.63 ± 1.03 0.0 ± 0.00 0.01 ± 0.01 1.54 ± 0.41 0.51 ± 0.02 0.00 ± 0.00 0.21 ± 0.12 6.95 3.57 0.00 0.71
L10 58.23 ± 31.42 7.55 ± 2.88 0.0 ± 0.00 0.00 ± 0.01 1.33 ± 0.45 0.50 ± 0.03 0.00 ± 0.00 0.61 ± 0.12 7.01 3.71 0.00 1.90

Fig. 5. Box plot of the number of latency violations (as a percentage of the number of iterations in the simulations) for three small, medium and large test instances.

Fig. 5 shows the number of latency violations for three small, medium
and large instances types across the ten different instances. Here, the
networks in instance type 10 have the same number of edge nodes for
all four methods. The figure clearly shows that the number of latency
violations is higher for both D and DC. We note that RV is able to keep
the number of latency violations lower than D, despite choosing the
same number of edge nodes in the majority of the test instances (248
out of 300 networks). The robust solutions tend to assign the demand
to multiple edge nodes to be able to withstand variations in the latency
on certain network links. On the other hand, D and DC optimistically
assign the demand from regions to a single edge node, and thus, cannot
meet the latency thresholds when the latency on that link varies. This
is despite optimizing with a more conservative estimate of network
latency in DC. The large standard deviation of the results for D and DC
indicates that these solutions can sometimes keep the number of latency
violations low. However, this is instance- and iteration-dependent. In
contrast, the robust models (RF and RV) are able to keep the latency

violations in all iterations and instances low, as indicated by the low
spread in the results.

Next, we examine the duration of the latency violations. Table 5
shows that on average, the latency is violated by 1 to 2 ms for the
deterministic models, whereas the value is below 1 ms for the robust
solutions. Although the average duration seems low for DC and D,
the standard deviation of the results indicates that D exhibits large
variations in the duration of the latency violations, especially for
medium and large instances. This is also indicated by the maximum
duration by which the latency is violated, which are higher for the
deterministic models than the robust models. To examine this more
closely, Fig. 6 shows the duration of latency violations across all Monte
Carlo simulations for a subset of networks (three small, medium and
large test instance types). The figure shows that the robust solutions
are consistently able to keep the number of latency violations low, with
a low median value. In contrast, both DC and D have several cases
where the latency exceeds the threshold by more than 5 ms, with a
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Fig. 6. Box plot of duration of latency violations for three small, medium and large test instances.

Fig. 7. Box plot of (a) number of latency violations (as a percentage of number of iterations in the simulations) and (b) duration of latency violations for M6 test instance under
three different latency thresholds.

maximum of 8.76 ms and 13.76 ms respectively. These violations in
latency are very detrimental to the application provider. In contrast, the
robust solutions are able to keep the duration of the latency violations
consistently low, with a maximum duration of 4.16 ms with RV and
1.31 ms with RF.

5.3. Sensitivity analysis

We present a sensitivity analysis of the deterministic and robust
models’ solutions to the following parameters: (i) the latency threshold
of 𝐿 which restricts the average latency for served requests in Eqs. (4)
and (14), and (ii) the computing capacity threshold in Eq. (3) which
restricts the maximum utilization of edge nodes.
Varying the latency threshold. We increase the latency threshold (𝐿)
from 20 ms to 25 ms and 30 ms, and evaluate all test instances using
the same methodology as before. As expected, increasing the latency
threshold results in fewer latency violations for all methods. Similar
to the previous results, the number of latency violations and duration
of the maximum violation are lower for the robust solutions. The
number of chosen edge nodes are similar to that with the lower latency
threshold in all cases. Due to space constraints, we only report the
results for a single network (M6) with three different latency thresholds
of 20 ms, 25 ms and 30 ms. A similar trend (as discussed next) is
observed in all other test instances. Fig. 7(a) shows that the number
of latency violations drop when the latency threshold increases. When
the latency threshold is 30 ms, all methods show very few latency
violations, with up to 20% with D or DC. RV and RF are able to keep the
number of latency violations lower than the deterministic solutions in
all iterations. Fig. 7(b) shows that the duration of the latency violations
also reduces when the latency threshold is increased. Again, RV and
RF are able to keep the duration of the latency violations very low. In
all simulations, two ENs are chosen by all four methods, and thus, the
objective function values are the same (not presented in the figure).

Varying the computing capacity threshold. So far we restricted the utiliza-
tion of edge nodes (𝜅) to 70%, as is standard practice in data centers for
cloud computing [39,41]. In this section, we experiment with varying
𝜅 between 60% to 80% (in increments of 5%) to understand the impact
of this threshold on the results. In many test instances, the number of
chosen ENs and latency violations are similar to the previous results
with 𝜅 set to 70%. This is due to two reasons. First, in these test
instances, the ENs were not fully utilized (i.e., their utilization was not
close to 70%) and thus, increasing or decreasing this threshold by up to
10% did not impact the results. Second, the resilience constraints also
mandate that a certain number of ENs are chosen, in which case, again
there is not much impact of changing the utilization threshold.

Thus, we focus on large instances as they represent scenarios where
the edge nodes are almost fully utilized in the original results. Due
to space limitations, we present the results for L4 and L6 instances.
Table 6 presents the results from the sensitivity analysis by varying the
utilization threshold 𝜅. We see that the number of chosen ENs increase
as the utilization threshold is reduced; this is because more ENs are
required to satisfy the incoming demand while still meeting latency
and capacity constraints. The number of latency violations and duration
of latency violations are similar across different utilization thresholds,
with RV and RF consistently better than the deterministic solutions. The
latency constraint in optimization problem captures only the network
latency and does not account for the processing time on the EN (which
is a function of the utilization of the EN) – this is left as future work
where we will examine the impact of increasing the utilization of ENs
on the overall latency.

5.4. Summary and discussion

The results presented in this paper show that our robust models, RF
and RV, are able to devise placement and traffic allocation strategies for
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Table 6
Summary of results for L4 and L6 test instances with different thresholds for the maximum computing capacity.
𝜅 % of latency violations Average duration of latency violations (ms) Max. duration of latency violations (ms) Number of chosen ENs

D DC RF RV D DC RF RV D DC RF RV D DC RF RV

L4 test instance

60% 62.36 ± 34.34 6.58 ± 3.48 0.0 ± 0.00 0.0 ± 0.00 1.54 ± 0.47 0.51 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 7.22 3.71 0.00 0.00 7.00 ± 0.00 7.00 ± 0.00 7.00 ± 0.00 7.00 ± 0.00
65% 67.09 ± 30.57 7.75 ± 2.15 0.0 ± 0.00 0.0 ± 0.00 1.36 ± 0.33 0.49 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 6.25 3.65 0.00 0.00 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00
70% 71.36 ± 27.29 8.27 ± 2.66 0.1 ± 0.30 0.0 ± 0.00 1.42 ± 0.39 0.51 ± 0.02 0.14 ± 0.00 0.00 ± 0.00 7.06 3.24 0.14 0.00 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00 6.00 ± 0.00
75% 73.39 ± 32.48 7.74 ± 2.52 0.0 ± 0.00 0.0 ± 0.00 1.52 ± 0.29 0.50 ± 0.03 0.00 ± 0.00 0.00 ± 0.00 6.33 4.36 0.00 0.00 5.20 ± 0.40 5.20 ± 0.40 5.20 ± 0.40 5.20 ± 0.40
80% 76.35 ± 22.87 6.78 ± 2.65 0.0 ± 0.00 0.0 ± 0.00 1.52 ± 0.43 0.50 ± 0.02 0.00 ± 0.00 0.00 ± 0.00 7.16 3.92 0.00 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00 5.00 ± 0.00

L6 test instance

60% 82.86 ± 23.57 7.54 ± 2.83 0.0 ± 0.00 0.06 ± 0.09 1.66 ± 0.33 0.49 ± 0.03 0.00 ± 0.00 0.28 ± 0.09 7.11 3.34 0.00 1.61 3.00 ± 0.00 3.00 ± 0.00 4.00 ± 0.00 3.00 ± 0.00
65% 89.37 ± 10.12 5.75 ± 3.27 0.0 ± 0.00 0.05 ± 0.09 1.67 ± 0.33 0.49 ± 0.03 0.00 ± 0.00 0.22 ± 0.06 6.60 2.86 0.00 0.95 3.00 ± 0.00 3.00 ± 0.00 4.00 ± 0.00 3.00 ± 0.00
70% 88.33 ± 13.26 4.71 ± 3.82 0.0 ± 0.00 0.24 ± 0.34 1.70 ± 0.34 0.49 ± 0.04 0.00 ± 0.00 0.30 ± 0.06 6.65 4.10 0.00 2.36 3.00 ± 0.00 3.00 ± 0.00 4.00 ± 0.00 3.00 ± 0.00
75% 92.59 ± 10.73 7.36 ± 2.66 0.0 ± 0.00 0.07 ± 0.07 1.81 ± 0.24 0.49 ± 0.03 0.00 ± 0.00 0.30 ± 0.10 7.27 3.99 0.00 1.49 2.20 ± 0.40 2.30 ± 0.46 4.00 ± 0.00 3.00 ± 0.00
80% 89.01 ± 14.44 8.27 ± 2.15 0.0 ± 0.00 0.12 ± 0.21 1.76 ± 0.32 0.49 ± 0.03 0.00 ± 0.00 0.28 ± 0.05 7.14 3.52 0.00 1.38 2.00 ± 0.00 2.00 ± 0.00 4.00 ± 0.00 2.90 ± 0.30
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applications such that the latency of individual requests is consistently
below the target latency threshold despite variations in the network
latency. This is possible with a few number of edge nodes, often
comparable with the deterministic models and only up to one or two
edge nodes chosen in certain instances. Among the robust models, RF
chooses up to one more edge node than RV in our evaluated instances.
This allows RF to keep both the number of latency violations and
maximum duration of the latency violation lower than RV. The choice
of a particular robust model depends on the type of application and
the application provider’s tolerance for latency violations. For certain
latency-sensitive applications, such as safety or mission-critical appli-
cations [12], the latency for each request originating from a particular
region must be met with a latency close to the target threshold. For
such applications, the latency for all requests must be served with a
low latency and missing the deadline for even a single request can be
catastrophic [12]. The RF method is a good candidate for determining
edge placement strategies for such latency-sensitive applications. On
the other hand, RV is suitable for less latency-sensitive applications
where the latency may be violated for a few requests without severe
consequences. For such applications, RV offers lower costs by choosing
fewer number of edge nodes, while at the same time reducing the
number of latency violations as compared to the deterministic models.
Finally, the solution time for the robust models is low and thus, the
models can be used to obtain placement and allocation decisions in
an online manner for a 10-min time slot. We also experimented with
a few larger instances to investigate the impact on solution time. For
example, with 50 regions and 15 edge nodes, RF and RV take a CPU
time of 2.10 ± 0.94 and 32.54 ± 19.47 seconds respectively. When the
number of regions (50) and edge nodes (25) are large, the CPU time
increases to 551.94 ± 629.28 and 3198.65 ± 5513.30, which puts it out of
reach in planning allocations for 10-min slots. However, in such cases,
it would be possible to reduce the size of the problem (and solution
time) by dividing the problem into sub-problems with fewer regions
and edge nodes (This is possible because the geographical location of
certain edge nodes may put it out reach of certain regions). Also, we
anticipate that even if the number of edge nodes increases, the number
of regions in a city would be at the most 20 to 25.

6. Conclusion

This article considered a latency-aware placement of applications
and traffic allocation to the applications in edge computing such that
strict latency deadlines can be met even with variations in the net-
work latency. We proposed two robust optimization models that offer
different levels of protection against variations in the network links
between regions and edge nodes. This is achieved through two different
polyhedral uncertainty sets. We presented efficient methods to solve the
robust optimization models based on dualization. Through extensive
simulations, we showed that our proposed solutions are able to keep the
number of chosen edge nodes low while keeping the latency violations
consistently low. Apart from this, the solutions were able to also reduce
the duration by which the latency deadlines are exceeded, consistently
below 4 ms across all tested instances. In future work, we plan to
consider the problem from the perspective of an edge platform provider
that has to place multiple applications and provide guarantees for
meeting different application-specific latency deadlines. We also plan to
incorporate the processing time (on servers) in the latency constraint to
account for the impact of running edge nodes with higher utilization on
overall latency (and thus, user experience). The problem from an edge
computing provider-perspective would include additional constraints
regarding the utilization of memory and computational resources in
the edge nodes. The complexity of the problem would grow quickly as
the number of applications with different latency thresholds increases,
resulting in computational difficulties that require new methods to
efficiently obtain a solution robust to variations in the network latency.
Another promising area for future work is to consider the uncertainty in

demand, as the incoming number of requests can also experience vari-
ations in different time slots. Also, the multistage robust optimization
approach could be another option for future work. Since we assume
a single time slot in this work, the application provider must solve
the problem repeatedly for different time slots. It is an optimization
problem in which decisions are made sequentially. However, in the
context of robust optimization, decisions in a time slot may be affected
by decisions and uncertainty realizations in previous time slots. Thus,
decisions depend on previous time slots but not future time slots. These
relationships between decision variables in the multistage robust opti-
mization approach bring enormous computational difficulty. Another
direction of interest is to consider multi-stage stochastic programming
formulations and chance-constrained models and compare them to the
robust model.
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