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ABSTRACT The high level of autonomy and intelligence that is envisioned in sixth generation (6G)
networks necessitates the development of learning-aided solutions, especially in cases in which conventional
Channel State Information (CSI)-based network processes introduce high signaling overheads. Moreover,
in wireless topologies characterized by fast varying channels, timely and accurate CSI acquisition might
not be possible and the transmitters (CSIT) only have statistical CSI available. This work focuses on
the appropriate selection of relaying mode in a cooperative network, comprising a single information
source, one buffer-aided (BA) relay with full-duplex (FD) capabilities, and a single destination. Here,
prior to each transmission, the relay should select to operate either in FD mode with power control, or,
resort to half-duplex (HD) relaying when excessive self-interference (SI) arises. Targeting the selection
of the best relaying mode, we propose an FD/HD mode selection mechanism, namely multi-armed
bandit-aided mode selection (MABAMS), relying on reinforcement learning and the processing of
acknowledgements/negative-acknowledgements (ACK/NACK) packets for acquiring useful information on
channel statistics. As a result, MABAMS does not require continuous CSI acquisition and exchange and
nullifies the negative effect of outdated CSI. The proposed algorithm’s average throughput performance is
evaluated, highlighting a performance-complexity trade-off over alternative solutions, based on pilot-based
channel estimation that result in spectral and energy costs while obtaining instantaneous CSI.

INDEX TERMS 6G, full-duplex, buffer-aided relays, multi-armed bandits (MAB), relay mode selection,
reinforcement learning.

I. INTRODUCTION

TO SATISFY the targets of sixth generation (6G)
networks, the adoption of novel paradigms for network

coordination are required, relying on machine learning (ML)
to achieve fully autonomous network operation. Moreover,
towards improving wireless connectivity cooperative relays

have been proposed as an efficient solution for increasing
wireless transmissions’ quality. By relying on different
duplex modes, full-duplex (FD) relays are able to simultane-
ously receive/transmit while half-duplex (HD) relays avoid
self-interference (SI), inherent to FD operation, at the cost of
inefficient radio-resource utilisation. As FD relays transmit
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and receive on the same temporal and spectral resources,
resource-efficient network operation is enabled. Nonetheless,
excessive SI might arise from the transmitting antenna to the
receiving antenna of the relay that should be treated with
appropriate interference mitigation measures [1].
Considering the massive amount of nodes that is

expected in future 6G deployments, it is necessary to
integrate ML-aided solutions that can efficiently acquire
the optimal network operation mode, according to the
desired performance target and with low-complexity and
processing requirements. Towards this end, we adopt rein-
forcement learning (RL) and more specifically, multi-armed
bandits (MAB), a subcategory of reward-based learning
algorithms. In the past, the MAB framework has been
employed in the context of wireless communications; see,
for example, [2], [3] in which it was shown that MAB-
based algorithms can support various 5G/6G use cases with
reduced network coordination complexity. Still, to the best
of our knowledge, this is the first work to use MAB for
the problem of FD/HD mode selection in cooperative relay
networks.

A. BACKGROUND
In wireless communications systems, conventional channel
estimation relying on pilot signals allows receivers to
estimate the wireless channel state at the cost of radio-
resource and energy consumption due to overheads. Recently,
Xu et al. [4] studied massive multiple-input multiple-
output (MIMO) FD networks with simultaneous wireless
information and power transfer (SWIPT), using the energy
signals to harvest energy and conduct channel estimation.
Simulation results highlight spectral efficiency gains by
the proposed protocol on SE over conventional massive
MIMO SWIPT protocol. However, the authors do not
provide a solution to reduce the amount of channel state
information (CSI) overheads. In addition, in a number of
cases, wireless networks might be characterized by non-
stationary channels, introducing challenges for the channel
estimation process. In the study by Shi et al. [5] pilots
and interpolation schemes were used to timely acquire
CSI while Abdul Careem and Dutta [6] mitigated the
effect of channel impairments by modifying the modulation
vectors. In settings with non-stationary channels, both works
employ ML for extracting channel statistics. Both schemes
provided improved performance over pilot-based methods
but the amount of coordination and computation overheads
reduction has not been quantified. Furthermore, in industrial
environments, Lu et al. [7] have calculated the non-stationary
parameters of Rician channels, using iterative sub-component
discrimination and the Gaussian mixture model, resulting
in near-optimal channel estimation. Then, for vehicular
topologies, Pan et al. [8] present data pilot-aided (DPA) deep
learning channel estimation, leveraging as pilots, the de-
mapped data symbols. Moreover, to extract time-frequency
correlation, they combine DPA with a long short-term
memory network and a multi-layer perceptron network.

Results for fast time-varying channel, large packets and high
modulation order reveal performance gains over conventional
DPA solutions. Although several works have provided
important contributions to improving the performance of
channel estimation methods, online policies to facilitate the
network to operate with increased autonomy, interacting and
adapting to the wireless environment is missing.
In the context of 6G networks, comprising an increased

number of users and machines, a high level of signaling
and feedback messages is required to ensure efficient
operation [9]. Still, such overheads threaten the network’s
performance, especially when centralized network coordi-
nation is adopted and resource- and energy constrained
devices must participate in data routing processes [10], [11].
In addition, recently, the integration of ML in wireless
communications has shown attractive performance while
offering low-complexity coordination mechanisms (see, for
example, [12], [13] and references therein). By carefully
investigating the different ML families, significant radio-
resource allocation autonomy can be provided by RL-based
approaches [14]. More specifically, under by integrating RL
in network operation procedures, intelligent agents, in the
sense of network nodes, exploit feedback from previously
taken actions, and adapt their behaviour, considering the
state of the wireless environment, their radio-resources,
energy availability and desired Quality-of-Service (QoS)
of the application, among others. A popular reward-based
category of learning algorithms relies on the MAB frame-
work [15], [16]. In MAB, a player (user) picks an action
from a given set of actions, targeting the maximization of her
cumulative expected reward. Since MAB enables the system
to learn unknown environments during network deployment,
it can significantly assist distributed allocation of radio-
resources, such as spectrum, time and power [17].
Achieving resource efficiency is an enabler for 6G

networks, and in this context, the development of novel FD
techniques is vital for maximizing the spectral efficiency
of wireless communications. Power control represents a
popular solution to reduce the level of SI in the network,
facilitating the receiving antenna of the FD node to cor-
rectly decode the signal. Riihonen et al. [18] presented
opportunistic FD/HD relay mode switching by exploiting
instantaneous CSI availability at the relay to perform
transmit power adaptation. This process provided instan-
taneous and average spectral efficiency maximization in
the uplink and downlink. In topologies with multi-antenna
FD relays, Suraweera et al. [19] focused on performance
improvement through power allocation and transmit antenna
selection, considering different cases of CSI availability.
Their solutions managed to surpass the fixed transmit
power’s zero diversity effect by adopting a simple power
allocation mechanism. Next, Tran et al. [20] provided an
optimal power allocation algorithm to increase the diversity
order of FD amplify-and-forward (AF) relay network. More
specifically, the closed-form expression of the pairwise-error
probability was derived and optimal power allocation was
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conducted, based on the bisection method, under statistical
source-relay ({S→ R}) CSI at the relay, instantaneous relay-
destination ({R→ D}) CSI at the destination. Recently,
ML-aided approaches for FD communications have been
introduced, aiming to combat the impact of SI, mainly
using ML data-driven algorithms digital SI cancellation to
reduce the complexity of traditional methods in terms of CSI
overheads [21]. Still, most of the existing ML-aided solutions
rely on offline-trained ML algorithms for SI estimation
over static SI channels. In practice, user mobility and/or
environmental changes can affect the SI characteristics over
time, and the ML algorithms should be retrained to adapt to
time-varying SI channels.
Another viable option for SI mitigation is to allow

for hybrid FD/HD operation, activating most appropriate
duplexing method in each transmission period. When buffers
are not available at the relays, hybrid FD/HD switching
was proposed in [18], offering improved performance over
standalone FD or HD relaying. For buffer-aided (BA)
increased flexibility in network scheduling can be provided,
resulting in improved performance; see, e.g., [22] and
references therein. For HD cooperative networks, the max-
link policy was given in [23], activating a BA relay for
reception or transmission, providing a diversity order equal to
times the number of relays, when large buffers are available.
In single-relay topologies, Zlatanov et al. [24] showed that
the throughput of BA relaying can improve the throughput
of FD networks. The study in [25] studied a single-relay
topology where the source is not saturated while statistical
CSIT was obtained. Still, that scheme only relied on FD
relaying to achieve end-to-end capacity maximization. In
multi-relay networks with buffers, successive opportunistic
relaying (SOR) is possible to recover radio-resource losses,
related to HD relay operation. In [26], Nomikos et al. assume
a saturated source, transmitting with fixed-rate, multiple
FD relays with buffering capabilities, and availability of
instantaneous CSI at the reception while the transmitter
only have statistical CSIT knowledge. In this setting, a
hybrid FD/SOR/HD policy was developed to maximize the
throughput per energy unit of the transmission. Another
study by Della Penda et al. presented joint relay mode
selection and power allocation, assuming Rician fading
channels [27]. The proposed algorithm, activated a set
of wireless links for power consumption minimizing, and
provided success probability guarantees. Unfortunately, at
the moment, there exists a gap in the literature, as ML-
aided approaches for FD/HD relay mode selection are
missing.
In dense mobile network deployments relying on small

cells, e.g., in Industry 4.0 settings, it is expected that
mobile users and machines will coexist and strain wireless
resources. In such complex wireless settings, a large amount
of overheads for signaling and feedback messages is intro-
duced to ensure robust network operation. However, these
overheads may severely affect network performance and as a
remedy, ML integration in wireless networks has introduced

promising gains towards low-complexity network operation
(see, for example, [12], [28]). Furthermore, reward-based
learning, as it is the case of MAB, has already been adopted
in various 5G/6G cases; see, e.g., [3], [29], [30], where
power control in a single FD relay network was studied, and
modelled as a MAB game.

B. CONTRIBUTIONS
This work presents a reinforcement-based online policy
to choose the relay’s operation mode and in the case of
FD transmission/reception, to appropriately set the relay
transmit power. Thus, FD/HD relay modes and power control
are integrated in a MAB framework where during each
time frame, the destination sends ACKs/NACKs that are
exploited by the relay, resulting in autonomous network
operation. Moreover, this work extends the study in [31]
by providing further details on the operation of MABAMS
and considers the practical cases of outdated CSI and
non-stationary wireless channels, also presenting relevant
performance evaluation results. Our contributions are the
following.
1) Contrary to [29], [30], here, we aim to tackle a more

complex and practical problem, by equipping the relay
with a buffer to overcome cases when FD operation
is infeasible due to excessive SI, thus efficiently
switching to HD mode. Under this mode, the relay
receives and stores packets in its buffer or extracts
packets from its buffer and forwards them towards the
destination.

2) We propose bandit-based mode selection (MABAMS)

by the relay, using only local observations of source’s
signal, and ACKs/NACKs from the destination. Thus,
feedback of CSI from the destination to the relay is
avoided which overcomes the issue of outdated CSI
and significantly reduces feedback overhead.

3) Different cases of channel stationarity are evaluated
and MABAMS is compared against other CSI- and
learning-based policies, in terms of average through-
put, showing that our learning-based hybrid FD/HD
provides significant performance gains.

The proposed online and bandit-based solution for FD/HD
relay mode selection avoids pilot transmissions and process-
ing and introduces the following gains: 1) The impact of
outdated CSI is nullified, as network operation only relies on
one-bit ACK/NACK feedback, enabling the relay to timely
decide which duplexing mode should be adopted and which
transmit power level must be used; and 2) coordination
overheads are avoided, compared to CSI-based FD/HD mode
selection, introducing energy and computations gains, being
especially important in networks with resource-constrained
devices, as it is the case in industrial Internet-of-
Things settings. Overall, MABAMS learning-based approach
supports the vision for fully autonomous network oper-
ation which is of utmost importance in the forthcoming
6G era.
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TABLE 1. List of acronyms.

C. STRUCTURE
This paper is structured as follows. Section II provides
details on the system model while Section III formulates the
problem that we aim to tackle. Next, Section IV includes
the MAB modeling of FD/HD mode selection. Bandit-based
learning-aided mode selection is given in Section V, while
Section VI presents the performance evaluation. Finally,
Section VII provides the conclusions of our work and various
interesting future directions.

II. SYSTEM MODEL
This section presents the system model that is adopted in our
study. In Table 2, the notation used in this paper is given.
A cooperative network with a single source, S, a single
destination, D, and one FD decode-and-forward (DF) relay
node R is assumed, as shown in Fig. 1. As a consequence of
severe fading, end-to-end communication is only possible in
two-hops and through the relay. To enable further scheduling
flexibility, the relay has a buffer with size L (in packets).
By Q (Q ∈ {0, 1, . . . ,L}), we denote the number of stored
packets in the relay’s buffer.
Network operation is divided into “frames” that are equal

to the duration of one packet and at any arbitrary frame K,
the channel coefficient hij of link {i→ j}, is modeled as an
independent complex normal random variable, having zero
mean, and variance σ 2

ij , i.e., hij ∼ CN (0, σ 2
ij ). The channel

TABLE 2. Summary of notation.

FIGURE 1. The buffer-aided cooperative relay network with hybrid
half-duplex/full-duplex capabilities.

coefficient envelope follows the Rayleigh distribution, i.e.,
|hij| ∼ Rayleigh(σij). Therefore, the channel gains gij �
|hij|2 are exponentially distributed, i.e., gij ∼ Exp(σ−2

ij /2).
In addition, the wireless channels’ distribution is considered
to be either strict-sense stationary (SSS) or non-stationary
during network operation.
It is assumed that the source is saturated and always

has packets scheduled for transmissions. Also, the required
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information rate, r0, to successfully receive the packets at
the receivers is fixed and application-dependent. As a result,
the transmission of transmitter i towards receiver j will be
successful, when SNR �ij at the reception will be greater
than or equal to the capture ratio γj, i.e., the capture model
is adopted in this work. Regarding the variance of thermal
noise at the relay node and the destination, it is denoted
by σ 2

R and σ 2
D, respectively, being modelled as additive

white Gaussian noise (AWGN). As hybrid relay operation
is considered in our network, at each frame, two duplexing
modes are possible, i.e., FD and HD max-link [23] for
enhanced reliability.
In FD, simultaneous transmissions by the source and

the relay are performed, adopting transmit power levels PS
and PR, respectively. In this case, SI arises and by hRR,
we denote the instantaneous residual SI from the output
to the input antenna of the relay. Residual SI follows a
complex Gaussian distribution, with values within (0, σ 2

RR).
The {S→ R} transmission will be successful when the
signal-to-interference-and-noise ratio (SINR) satisfies

�R(PS) = gSRPS
gRRPR + σ 2

R

≥ γR. (1a)

Next, the {R→ D} transmission will be successful if the
signal-to-noise ratio (SNR) at the destination is such that

�D(PR) = gRDPR
σ 2
D

≥ γD. (1b)

In our network, we consider a fixed source power of (PS)
while on the contrary, the relay power (PR) is adjustable for
mitigating the impact of SI and enhancing the end-to-end
throughput performance.
In max-link, in frame, the source or the relay is activated

for packet transmission. This operation leads the network to
schedule only one node each time, and SI is avoided. Thus,
towards increasing the {R→ D} SNR, the relay will adopt
its maximum power level, i.e., PR = PR,max. Furthermore,
in the {S→ R} link SI does not exist and hence, (1a) will
be equal to

�R(PS) = gSRPS
σ 2
R

≥ γR. (1c)

Packet retransmission relies on ACK/NACK packet by the
receives that broadcast error-free and short-length packets
via a separate narrow-band link. A link is assumed to be
feasible when it does not experience an outage and also,
the queue conditions are satisfied, i.e., non-full buffers for
{S→ R} transmissions and non-empty buffers for {R→ D}
transmissions.

A. MAX-LINK: ADAPTIVE LINK AND RELAY SELECTION
For convenience, in this subsection, details on the HD
max-link policy are provided. Initially, BA opportunistic
relaying policies, relied on two-slots protocols and fixed
scheduling, where odd time-slot were reserved for the
source’s transmission and even time-slot for the relay’s

transmission. This inefficient approach was surpassed in [23],
where each slot was flexibly allocated to the source or the
relay, according to the instantaneous CSI and the relays’
buffer status. In multi-relay setups, max-link exploited the
buffering flexibility and compared the channel gains of the
feasible links to activate the strongest one, as follows
1. When an {S→ R} link is the strongest one prevails, the

source will transmit to the respective relay. An {S→ R}
link is available for selection, as long as the relay’s
buffer has space to store another packet from the source.

2. On the contrary, if an {R→ D} link prevails during the
selection process, the respective relay transmit towards
the destination. An {R→ D} link is available when the
relay has stored at least one packet in its buffer.

Max-link operation for selecting the best relay to
receive/transmit is expressed as

R∗ = arg max
Rk∈C

{ ⋃
Rk∈C:�(Qk) �=L

{gSRk},
⋃

Rk∈C:�(Qk) �=0

{gRkD}
}
,

(2)

where R∗ is the activated relay while the function 0 ≤
�(Qk) ≤ L denotes the number of stored packets in k-th
relay’s buffer Qk.

B. ESTIMATION AND FEEDBACK ERRORS
In wireless communication systems, having reliable con-
trol channels is vital. More specifically, stringent quality
of service demands imposed by the ultra-reliable low-
latency communications (URLLC) service type, setting strict
requirements on hybrid automatic repeat request (HARQ)
procedures. When a NACK is incorrectly decoded as an
ACK, it can lead to delays, while the opposite error event
results in unnecessary retransmissions and waste of radio-
resources. It should be noted that the impact of these two
error types can be adjusted by fine-tuning the rate of false
alarms and the respective detection threshold value towards
optimizing the network’s performance.
The 3GPP TS 38.212 specification on multiplexing and

channel coding offers various methods for encoding HARQ
feedback with uplink control information. These methods
include repetition coding, Polar coding, simplex coding, or
Reed-Muller coding, each with varying coding rates and
overheads [32]. This diversity in encoding methods provides
different options to adjust false alarm rates or detection
error in fading channels, satisfying service requirements and
adapting to different radio propagation conditions.
The negative impact of control channel errors on wireless

system performance is a complex problem that is out of
scope for the current study. So, for simplicity, in this work,
we assume that errors related to decoding ACKs/NACKs can
be considered negligible and are ignored in the results.

C. OUTDATED CSI
In practice, the obtained CSIT for transmit power level
selection does not match perfectly to the wireless link,

VOLUME 5, 2024 1419



NOMIKOS et al.: BANDIT-BASED LEARNING-AIDED FD/HD MODE SELECTION

as a consequence of the feedback mechanism’s delays.
More specifically, outdated CSI might be attributed to
channel variations, occurring between the beginning of
the channel estimation process and the actual start of the
transmission [33]. Another case, involves low-complexity
approaches, avoiding continuous feedback to reduce network
coordination overheads [34].
To enhance the practical aspects of our study, outdated CSI

is considered and its impact on the power control process is
investigate. In settings characterized by CSI feedback delays,
the actual channel response hij conditioned on the estimated
channel response ĥij of {i→ j} link, prior to power control
is expressed by [33]

hij|ĥij ∼ CN
(
ρiĥij, 1− ρ2

i

)
, (3)

where ρi ∈ [0, 1) is the hij and ĥij correlation coefficient.

D. CSI-BASED POWER CONTROL
In case the source and relay power levels can be jointly set, as
it is the case with full CSI availability, it suffices to calculate
the minimum PS and PR values, so that inequalities (1b)
and (1c) can be satisfied with equality. Here, the optimal
transmit power levels (P∗S,P∗R) are as follows

(
P∗S,P∗R

) =
(

γR
(|hRR|2P∗R + σ 2

R

)
|hSR|2 ,

γDσ 2
D

|hRD|2
)

. (4)

Towards obtaining the optimal transmit power levels, the
source must acquire the {S→ R} and {R→ R} channel
gains, the optimal transmit power of the relay, the relay’s
thermal noise value, and finally, the relay’s decoding
threshold. Meanwhile, relay only needs to know the {R→ D}
channel gain, as well as the destination’s thermal noise and
decoding threshold.
If fixed relay transmit power is considered and only the

source transmit power level is optimized, then the source
should have obtained all necessary information, apart from
the relay transmit power level, that is known to the source.
If, still, the fixed source transmit power is considered, as in
our setup, the minimum transmit power level PR, denoted
by P†

R, is expressed as

P†
R =

γDσ 2
D

|hRD|2 , (5a)

provided

P†
R ≤
|hSR|2PS − γRσ

2
R

γR|hRR|2 . (5b)

From eqs. (5a)–(5b) it can be deduced that to use the optimal
power level (eq. (5a)) and ensuring that the solution is
feasible (eq. (5b)), the relay should obtain information of all
three involved channels, the thermal noise values at the relay
and destination, the transmit power level of the source, and
γR and γD values. Considering that the thermal noise values,
the power level of the source, and the decoding thresholds
are known, still, the relay must estimate |hSR|2, |hRR|2, and

|hRD|2. However, in case the relay chooses the optimal power
P†
R without examining if it is feasible (when eq. (5b) does

not hold, then, there no relay transmit power level PR exists
that can support the desired transmission rate), it only has
to acquire the values of |hRD|2, γD, and σ 2

D.

III. PROBLEM STATEMENT
It might be the case that, at each frame, only statistical
CSIT is available, and the wireless network will aim to
achieve a success transmission probability over a link that
will be greater than or equal to an application- or condition-
dependent threshold qth, i.e., P{�i(Pj) ≥ γi} ≥ qth. If this
condition cannot be simultaneously fulfilled by both {S→ R}
and {R→ D} links during FD operation, some works develop
policies that switch to adaptive link selection; see, e.g., [26].
Here, as we assume that channel distribution is SSS, the
statistical CSIT is not available prior to transmission. Thus,
the network does not know a priori which relay mode, among
FD and HD max-link, should be chosen and how to set
relay’s power level. As a remedy, we deploy a reinforcement
learning algorithm that enables the relay, being the decision
maker in this network, to decide which operation mode is
the best one and, in case FD is activated, to adjust its power
level for maximizing the end-to-end throughput.
In order to highlight the problem’s complexity, below, we

provide the success probabilities for each link and the various
transmission options at each time frame. First, inequality (1a)
can be written as

gSRPS − gRRγRPR ≥ γRσ
2
R . (6)

In (6) the exponentially distributed variables gSR ∼ Exp(μ)

and gRR ∼ Exp(λ), λ,μ > 0, are linearly combined and as
a result, the formed distribution becomes [26]

fX(x) = λμ

λPS + μγRPR

⎧⎨
⎩

exp
(
− μ
PS
x
)
, if x ≥ 0,

exp
(

λ
γRPR

x
)
, if x < 0.

The probability that inequality (1b) holds, P((1b)), since gRD
is exponentially distributed (i.e., gRD ∼ Exp(ν), ν > 0), is
expressed as

P
(
(1b)

) = 1− FgRD
(

γDσ 2
D

PR

)
= exp

(
−ν

γDσ 2
D

PR

)
, (7)

where FW(w) is the cumulative distribution function (cdf)
of a random variable W; specifically, for the exponential
distribution, the cdf is given by FW(w) = 1− exp(−λWw).
Likewise, the probability for inequality (1a) to hold, P((1a)),
is given by

P
(
(1a)

) = 1− FgSRPS−γRgRRPR

(
γRσ

2
R

)

= PSλ

PSλ+ γRPRμ
exp

(
−μ

γRσ
2
R

PS

)
. (8)
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When the {S→ R} link is not affected by interference, the
distribution reverts to an exponential distribution, i.e.,

P
(
(1c)

) = exp

(
−μ

γRσ
2
R

PS

)
. (9)

At each time frame k, the relay must select among the
following three options:

O1 Activate FD operation, enabling concurrent transmis-
sions by the source and the relay. The source transmit
with fixed power PS, while the relay chooses a power
level PR[k]. PR[k] is set with the target of end-to-end
throughput maximization (as it will be explained in
Section V). Here, at least one packet must be stored
in the relay’s buffer (Q > 0) and less than L packets
(Q < L), as a packet will stay in its queue, in case the
transmission is not successful).

O2 Employ a fixed power level (PS) transmission by the on
the {S→ R} link. For this case to occur, the relay should
have maximum L− 1 packets in its buffer (Q < L).

O2 Prompt a fixed power level relay transmission with
PR = PR,max, where PR,max is the maximum power level
of the relay, on the {R→ D} link. Here, at least one
packet must be stored in the relay’s buffer (Q > 0).

IV. THE MAB MODEL
A. THE SETUP
A player has a set of possible actions to choose from, usually
referred to as arms, over T rounds. In each round, the player
chooses an arm and collects a reward for this arm. Note that
the player observes only the reward for the selected action
and not the rewards for other actions that could have been
selected; this is called bandit feedback. For each action taken,
the reward is sampled independently by the associated reward
distribution. The reward distributions are initially unknown
to the player. The player’s goal is to maximize its expected
accumulated reward over the T rounds.

For known reward distributions, this goal can be achieved
through the selection of the arm with the highest average
reward. In order to identify the optimal arm, various arms
must be played by the player, for learning their reward
distributions (exploration) while ensuring that the obtained
knowledge on reward distributions is leveraged in the
sense of preferring arms with higher expected rewards
(exploitation). To measure the performance of the player
in conducting such an exploration-exploitation trade-off
the notion of regret is adopted, in which, the learner’s
cumulative reward is compared against that achieved by
always choosing the optimal arm. The regret is defined as
the difference between the acquired reward by pulling the
best arm and the learner’s choice. In our network, the target
is the identification of a policy over a finite time horizon
T maximizing the expected number of packets that are
successfully transmitted (throughput). Thus, we are targeting
the design of a relay mode selection and power control policy
that will minimize the regret. The regret for a policy π ∈ 


(
 being the set of all feasible policies) is measured by
the performance loss and it can be calculated through the
comparison of the performance provided by policy π to that
of the best static policy, i.e.,

Rπ (T) = max
�∈L

E

{
T∑
t=1

U�,t

}
− E

{
T∑
t=1

UIπt ,t

}
, (10)

where U�,t represents the instantaneous utility obtained
from selecting link � at time-slot t, assuming a feasible
configuration � ∈ L. Additionally, UIπt ,t is the instantaneous
utility acquired from link Iπt , selected through policy π at
time-slot t. In this cooperative network, the relay node will
either receive, transmit with PR,max, or operate in FD mode
and transmit, using a power level from a finite set of discrete
power levels, PR. This set depends on the radio specifications
and configuration. As a result, in MAB problems, each arm
corresponds to O1,i with i, denoting one of the |PR| power
levels in FD mode, or to HD modes O2 and O3 (hence, there
will be |PR| + 2 arms in total).

In the seminal paper by Lai and Robbins [15] the
characterization of a problem-dependent lower bound on the
regret of any adaptive policy is presented, showing that the
lower bound grows logarithmically over the time horizon T .
More specifically, they prove that for any uniformly good
adaptive learning algorithm π ,1

lim inf
T→∞

Rπ (T)

log(T)
≥ c(μ), (11)

where μ represents the vector of mean rewards of different
arms, and c : [0, 1]|L| → R denotes a deterministic and
explicit function.

B. UPPER CONFIDENCE BOUND (UCB) POLICIES
UCB policies is an approach for adaptive exploration,
which relies on the principle of optimism under uncertainty
(optimistic principle) proposed by Lai and Robbins [15]. The
intuition is that by assuming that each arm is as good as
it can possibly be given the observations so far, it is the
best option to choose the best arm based on these optimistic
estimates.
To describe the generic form of such policies, we introduce

some notation. We let It denote the arm selected at time
t. Also, we let nj,t represent the number of plays of arm
j until round t, i.e., nj,t := ∑t

s=1 1{Is=j}, where 1A is the
indicator function of the event A. We let q̂j,t denote the
empirical average reward of arm j accumulated though the
observations from j up to t:

q̂j,t = 1

nj,t

t∑
s=1

rj,s1{Is=j}, (12)

where rj,t represents the reward of arm j at round t.

1An algorithm π is uniformly good if for any sub-optimal arm i, the
number of times arm i is selected up to round t, ni(t), fulfils : E[ni(t)] =
o(tα), for all α > 0.

VOLUME 5, 2024 1421



NOMIKOS et al.: BANDIT-BASED LEARNING-AIDED FD/HD MODE SELECTION

A UCB policy π maintains an index function q̄j for each
action (arm) j, depending on previous observations of j only
(e.g., q̂j,t, nj,t, etc.), and that q̄j,t ≥ qj with high probability
for all t ≥ 1. Then, π will simply consist in choosing the
arm with the largest index q̄j,t at each round t:

It = arg max
j∈L

q̄j,t. (13)

Below, we outline UCB1 [35], a simple policy designed
based on Hoeffding’s inequality for bounded random vari-
ables. The UCB1 index (or for short, UCB) is defined as

q̄UCBj,t = q̂j,t +
√

3 log(t)

2nj,t
. (14)

From (14), it can be deduce that an arm which has not
been explored as often as other arms will have a bigger
UCB1 index, thus enabling that arm to be picked.

V. MAB-AIDED AND FULL-DUPLEX/MAX-LINK RELAY
MODE SELECTION
A. PRELIMINARIES
The relay aims at minimizing the long term regret (10) of
the overall system; this is equivalent to maximizing the end-
to-end throughput of the system. Towards that direction, at
each time frame k, the relay has to decide i) in which mode
to operate: HD (either O2 or O3) or FD (O1,i) and ii) its
power level PR. In standard MAB communication problems
the actions are decoupled. However, in this setup, the options
are coupled in several ways. For example, option O1 includes
the {R→ D} link of option O3.

The optimization problem of maximizing the end-to-end
throughput can be expressed as follows:

P1: max
PR

{
min

{
P
(
(1b)

)
,P
(
(1a)

)}}
(15a)

s.t 0 ≤ PR ≤ PR,max. (15b)

The epigraph form of optimization problem P1 is given
below:

P2: max
PR

e (16a)

s.t P
(
(1b)

) ≥ e, (16b)

P
(
(1a)

) ≥ e, (16c)

0 ≤ PR ≤ PR,max, (16d)

0 < e ≤ 1. (16e)

where e serves as the epigraph of the function

g(PR) � min
{
P
(
(1b)

)
,P
(
(1a)

)}
.

Proposition 1: Suppose that the parameters of the distri-
bution of the channels, μ, ν and λ, are already known. Also,
parameters, PS, γR, γD, σ 2

R , and σ 2
D are assumed to be known.

Then, the optimal relay power, P∗R, such that the end-to-end
throughput in the FD mode is maximized is given by:

P∗R =
νγDσ 2

D

ln (1/e∗)
= PSλ(β(μ)− e∗)

γRμ
, (17)

where e∗ is the solution to the optimization problem P2 and

β(μ) = exp
(
− μ

γRσ 2
R

PS

)
.

Proof: Since P((1b)) and P((1a)) are monotonically
increasing and decreasing functions of PR, respectively,
the optimal solution to this problem is achieved with
equality for both (16b) and (16c). Therefore, after algebraic
manipulations, we obtain (17). Note that z∗ can be obtained
by solving the equality in (17) (using simple line search
methods, such as bisection), since all the parameters, PS, γR,
γD, σ 2

R , and σ 2
D are assumed to be known. Note that whether

the boundary conditions of PR are satisfied can be justified
separately.
Hence, with known channel distribution parameters, one

could compute P∗R directly, thus, finding which mode of
operation is the optimal with respect to the overall throughput
of the system.

B. ONLINE LEARNING MODEL
In case the wireless channels’ distributions are SSS, the
success probabilities for each mode of operation will be fixed
but unknown. For computing these success probabilities and
hence the optimal power levels for each mode of operation,
in what follows, we propose an algorithm, herein called
MABAMS, with which the channel distribution parameters
are implicitly estimated and the best available option is
obtained.
Using the MAB framework, we assign each discrete

power level to an arm. Hence, pulling an arm is equivalent
to a packet transmission using the selected power level.
As illustrated in Fig. 2, depending on the relay mode of
operation, i.e., HD or FD, a different reward is obtained.
More specifically, in the considered two-hop cooperative
relay network, if during time frame k FD transmission is
selected with power level j, a reward r(FD)

j,k is obtained, where

r(FD)
j,k =

⎧⎪⎨
⎪⎩

2, if {S→ R} and {R→ D} trans. successful,
1, if one of the trans. successful,

0, otherwise.

(18)

If, instead, HD transmission is selected (either {S→ R} or
{R→ D} link), then a reward r(HD)

j,k is obtained, where

r(HD)
j,k =

{
1, if trans. successful,

0, otherwise.
(19)

Note that the arm selection yields a random reward, which
reveals information about the link/links (i.e., links {S→ R},
{R→ R}, and {R→ D}) under consideration. Despite the
fact that there exist correlations between the (herein assumed
independent) arms and one can infer information from one
outcome about the other, in this paper we do not exploit this
available side information.
We take into consideration the following two scenarios,

depending on whether the probabilities of successful trans-
mission evolve over time or not:
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FIGURE 2. The obtained reward for the different relay modes.

1) Case 1: SSS channels (hence, fixed) success probabilities:
Here, success probabilities of the SR and RD channels are
fixed but unknown. Hence, for each j, (rj,t)t≥1 is a sequence
of i.i.d. Bernoulli random variables with E[rj,t|Ft−1] = qj
for all t, where Ft−1 denotes the history of power levels
chosen by the proposed algorithm up to round t − 1, and
their corresponding rewards.
2) Case 2: non-stationary channels (hence, time-varying)
success probabilities: This case corresponds to a system,
with varying channel statistics may change over time. More
specifically, the environment is time-varying, and as a
consequence, the success probabilities change over time.
Specifically, (rj,t)t≥1 is a sequence of independent Bernoulli
random variables with E[rj,t|Ft−1] = qj,t for all t. Note
that this behaviour implies that the optimal arm (and hence,
power level) may also change over time, so in the definition
of regret in (10), the maximizer in the first term changes over
time. According to the terminology used for non-stationary
MABs, the time instants at which such (abrupt) changes
occur are called breakpoints [36]. In this work, we assume
that breakpoints occur independently of the channel selection
strategy or of the sequence of rewards. Let ϒT denote the
number of breakpoints before time T . For being able to learn
the optimal changing power level, we additionally assume
that ϒT grows sublinearly with T , i.e., ϒT = o(T). This
assumption is necessary for being able to achieve a sublinear
regret.

C. THE MABAMS ALGORITHM
In what follows, we describe MABAMS, developed

for cooperative relay networks. It is expected that after
the initial exploration phase, and under the assumptions
aforementioned, MABAMS will reach the best mode of
relaying operation (FD or HD) along with the power level
(if the best mode is FD) yielding the maximum reward, in
terms of end-to-end throughput.

Algorithm 1 MABAMS at Each Time Frame
1: input Power levels PR, PR,max set, Q, SNR thresholds γR and

γD, thermal noise variance at R (σ 2
R) and D (σ 2

D)
2: set PR[0] = PR,max
3: for k = 0, 1, 2, . . . do
4: if Q = 0 then
5: Select O2 and calculate q̂μ,k (12) and then q̄μ,k
6: else if Q = L then
7: Select O3 and calculate q̂ν,k and q̂λ,k (12) and then q̄ν,k

and, q̄λ,k, respectively
8: else if 0 < Q < L then
9: Calculate q̂j,k (12) and then q̄j,k„ where j ∈

{O1,i,O2,O3}, i = {1, 2, . . . ,M}
10: Choose mode j (with power level i ∈ {1, 2, . . . ,M} if

option O1 is selected) for transmission at time-slot k,
employing (13)

11: nj,k+1 ← nj,k + 1{Ik=j} for all j
12: if j = O2 OR j = O3 then
13: if transmission is successful then
14: r(HD)

j,k = 1
15: end if
16: end if
17: if j = O1,i (i.e., with power level i) then
18: if transmission is successful on both links then
19: r(FD)

j,k = 2

20: else if transmission is successful on one link then
21: r(FD)

j,k = 1

22: end if
23: end if
24: end if
25: end for

The procedure followed in each time frame is summarized
in Algorithm 1. In what follows, the steps taken by the relay
in the algorithm are described.
1) First, it should be noted that the relay is always aware

of its queue size Q, capture ratios γR and γD, thermal
noises σ 2

R and σ 2
D.

2) It sets its initial power to the maximum allowable
power level, i.e., PR[0] = PR,max

3) At each time step k, the relay has to select among
three options, depending on the size of its buffer:

4) If the buffer is empty, then the relay has nothing
to transmit and in the current time slot it can only
receive a packet from the source. Hence, the source
is requested to transmit a packet to the relay. Then,
based on the outcome of the transmission, the relay
computes the empirical average reward of the {S→ R}
link built using the observations of the link from up
to step k.

5) If, however, the buffer is full of packets (and hence
cannot receive any), it is forced to transmit a packet
(with maximum power) to the destination while the
source remains silent. Similarly, based on the outcome
of the transmission (that the relay is informed about
via ACK/NACK feedback from the destination), the
relay computes the empirical average reward of the
{R→ D} link.
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TABLE 3. Required overheads of CSI-based FD/HD mode selection and MABAMS at
each time-slot.

6) If the buffer is neither full nor empty, the relay
may either deploy the FD mode (in which both the
source and the destination transmit simultaneously) or
choose a HD mode aforementioned. If the FD mode
is deployed, the power level of the source is fixed,
but the relay can transmit with a power from a set of
discrete power levels. The power that maximizes the
index in (13).

Remark 1: In conventional CSI-based power control, as
described in Section II-D, at the start of each time-slot,
the source, the relay and the destination must transmit pilot
sequences in order to obtain the instantaneous {S→ R},
{R→ R}, and {R→ D} links, respectively. Having acquired
this information, a pre-specified node, e.g., the source or
the destination can evaluate which power value should be
adopted by each relay and decide which relay node should
be adopted in each transmission period. Optimal power
control and power allocation between pilot and data symbols
in full-duplex relays require numerical optimization and
transmission of pilot symbols within the channel coherence
time [37]. On the contrary, the online and learning-based
framework of MABAMS enables the network to adaptively
and recursively learn the statistics, compared to collecting
enough data for parameter estimation. In this way, the
robustness of the network against the inherent characteristics
of wireless channels is increased by: 1) avoiding issues
related to phase noise that degrade channel estimation
quality [38] and 2) overcoming the impact of outdated CSI
in fast-changing wireless environments [33].
Towards better highlighting the importance of online

learning for FD/HD relay mode selection, Table 3 includes
a comparison in terms of CSI overheads among the con-
ventional CSI-based approach and ML-aided MABAMS.
From this comparison, it is evident that MABAMS can
also guarantee improved scalability when multi-relay deploy-
ments are employed, as the amount of CSI and BSI
overheads is proportional to the number of relays in the
network. Moreover, in fast-changing environments, where
only outdated CSI might be acquired,the performance
gain (in terms of throughput) of MABAMS is illustrated
in Section VI (Performance Evaluation). Note that this
gain becomes even more noticeable when CSI estimation
overheads are also taken into consideration when assessing
the throughput performance. Finally, one should consider that
by completely avoiding pilot transmissions and processing,
ensures energy gains and reduced computation requirements

in relay networks, thus facilitating the operation of resource-
constrained devices in such settings.

VI. PERFORMANCE EVALUATION
Here, performance evaluation, in terms of average throughput
for MABAMS and other CSI- and learning-based policies
are presented. In greater detail, MABAMS is compared to
FD relaying with power control, using outdated CSI (out-
CSI PC) with ρ = 0.5, FD relaying without power control
(no-PC), FD relaying with random power level selection
(rnd) and learning-aided BB-PC where only the FD mode
is employed [29], [30]. As a performance upper-bound for
the FD relay operation, a CSI-based FD relaying policy is
included (opt-PC) where power control at the relay sets the
transmit power according to eq. (17).
We assume that for each wireless link, the transmit SNR

varies between 0 dB to 30 dB. In this work, we consider that
the transmit SNR corresponds to the ratio of the maximum
available transmit power at the transmitter, being equal for
all network nodes, i.e., PS = PR,max = Pmax over the
noise power. Furthermore, in the comparison figures, the
x-axis is the {R→ D} link’s transmit SNR, i.e., Pmax/σ

2
D.

Also, for each transmit SNR value, we conduct 104 packet
transmissions over which, we obtain the average throughput.
Moreover, a transmission rate equal to r0 = 3 bps/Hz is
considered in this single-relay cooperative network where
power control chooses among six different levels, i.e., P1 =
Pmax, P2 = 0.50Pmax, P3 = 0.30Pmax, P4 = 0.20Pmax, P5 =
0.05Pmax, P6 = 0.01Pmax [39]. When the FD relaying mode
is activated, the SI channel at the relay is characterized by
average channel SNR γ̄SI ∈ {−10, 0, 10} dB.

Two cases are examined for the wireless setting. First,
strict-sense stationary channels are assumed with fixed
statistics during the whole transmission process. In addition,
{S→ R} and {R→ D} links are assumed to be i.i.d. and
characterized by average SNR γ̄{S→R} = γ̄{R→D} = 0 dB.
The second case corresponds to a non-stationary wireless
environment with abruptly changing {R→ D} statistics at
one breakpoint (t = 5000). When transmission begins, the
{R→ D} link is a line-of-sight (LoS) one, with Rician factor
KRice = 10 dB. At the same time, {S→ R} communication
is characterized by non-LoS conditions, corresponding to
Rayleigh fading conditions with γ̄{S→R} = 0 dB. Following
the breakpoint, the {R→ D} channel is characterized by
Rayleigh fading with γ̄{R→D} = 0 dB. At the same time,
the fading conditions do not change for the SR link, i.e.,
γ̄{S→R} = 0 dB. Table 4 includes the adopted performance
evaluation parameters.

A. STRICT-SENSE STATIONARY WIRELESS CHANNELS
The first comparison is illustrated in Fig. 3, assuming that
SI has a severe impact on the FD operation of the relay. The
hybrid nature of MABAMS shows its advantage for low to
medium SNR values, as FD operation cannot be performed
due to the very strong SI channel. As a consequence,
network operation relies on HD relay, avoiding outages at
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TABLE 4. Simulation parameters.

FIGURE 3. The average throughput performance comparisons for γ̄SI = 10 dB and
various power control algorithms (strict-sense stationary case).

the cost of lower throughput. The other algorithms suffer
significant throughput losses and only opt-PC manages to
outperform MABAMS after 25 dB where power control is
capable of appropriately setting the relay’s transmit power
to satisfy the required rate and mitigate the impact of
SI. Also, the learning-aided BB-PC which only relies on
FD operation offers higher throughput than the CSI-based
policy with outdated channel estimation, while random PC
and especially, no-PC cannot combat the very strong SI
conditions.
Next, the average throughput performance under an SI

channel with γ̄SI = 0 dB is depicted in Fig. 4. This com-
parison shows that MABAMS has the best performance up
to 20 dB. As reinforcement learning-aided mode switching
is enabled, MABAMS is able to overcome cases where
FD relaying is infeasible, leveraging the HD and BA
relaying capabilities. After 20 dB, opt-PC provides the
best performance due to optimal power control but entails
higher complexity as accurate and timely channel estimation
must be ensured to acquire instantaneous CSI from the
{S→ R}, {R→ R} and {R→ D} channels. It should be

FIGURE 4. The average throughput performance comparisons for γ̄SI = 0 dB and
various power control algorithms (strict-sense stationary case).

FIGURE 5. The average throughput performance comparisons for γ̄SI = −10 dB and
various power control algorithms (strict-sense stationary case).

underlined that in practice, a fraction of each time-slot
is dedicated for channel estimation and thus, the actual
performance of CSI-based PC policies, i.e., opt-PC and out-
CSI will be worse. For high SNR, MABAMS more often
activates the FD mode with power control and surpasses
the performance of the rest of the policies. Most notably,
MABAMS provides higher throughput compared to the
policy with outdated CSI, highlighting the benefits of
learning-aided relay mode switching. For higher transmit
SNR values, the FD-only BB-PC provides similar throughput
with MABAMS while, random power level selection and
no-PC fail to combat the strong SI conditions.
Then, average throughput results for γ̄SI = −10 dB are

provided in Fig. 5. As optimal CSI-based power control is
able to adopt relay transmit power levels that can more
efficiently mitigate the weak SI, after 15 dB, opt-PC exhibits
the best throughput performance. In addition, it can be
seen that power control with outdated CSI falls behind
the two learning-based policies, i.e., MABAMS and BB-
PC throughout the transmit SNR range. Moreover, when the
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FIGURE 6. The average throughput performance of MABAMS for γ̄SI = −10 dB and
varying buffer size L (strict-sense stationary case).

network experiences low transmit SNR, the best performance
is provided by MABAMS, as the relay reverts to HD
transmissions, leveraging its buffer. In addition, until 15 dB
MABAMS has the best performance, without introduc-
ing CSI estimation overheads and the associated energy
costs which are critical, especially in resource-constrained
networks, relying on sensors and other battery-dependent
devices. In this context, it must be emphasized that the
opt-PC and out-CSI PC policies experience additional
performance losses due to channel estimation overheads that
are not considered in the comparisons. Finally, the least
throughput is offered from the algorithm without PC, as SI
cannot be combated, and even the random transmit power
selection algorithm offers higher throughput after 20 dB.
In Fig. 6, the impact of varying buffer size L on the

average throughput performance of MABAMS is depicted.
In greater detail, it can be observed that when buffering is not
possible at the relay, network reliability is threatened as relay
cannot store any packets and only FD relaying is possible.
Then, when buffer-aided relaying is performed, the cases
of L = 5, 10, 20 offer similar performance until 20 dB, as
mainly HD relaying is activated and with increased diversity.
After 20 dB, the case of L = 5 exhibits a small performance
gap, as instances of empty buffers in the network slightly
affect the average throughput performance. The other two
cases, ensure higher packet availability in the network, and
thus, both FD and HD relaying can be activate with enhanced
reliability. It should be noted that when SNR conditions
allow the FD mode to be selected, the value of L does not
play a major role as usually, packets are forwarded right
after their reception at the relay.
Next, the convergence of our algorithm is studied for

different transmit SNR cases. It should be noted that the first
1,000 time-slots are shown in order to ensure visibility, as
MABAMS does not change its action afterwards. In Fig. 7,
a transmit SNR equal to 15 dB is assumed and MABAMS
is shown to activate the HD duplexing mode, apart from a
brief period where FD relaying is activated. For the rest of

FIGURE 7. MABAMS convergence over time for γ̄SI = −10 dB and a transmit SNR
equal to 15 dB (strict-sense stationary case).

FIGURE 8. MABAMS convergence over time for γ̄SI = −10 dB and a transmit SNR
equal to 30 dB (strict-sense stationary case).

the time-slots, HD relaying is activated and that action is
preferred throughout the duration of the experiment.
The second evaluation of convergence is included in Fig. 8

when the transmit SNR is equal to 30 dB. As in this case, the
increased transmit SNR allows FD relaying to be activated,
MABAMS easily identifies the correct action and remains
constant during the whole transmission period. As a result,
for very high transmit SNR, the operation of MABAMS
almost exclusively relies on FD relaying.

B. NON-STATIONARY WIRELESS CHANNELS
The next set of comparisons assumes a non-stationary
wireless environment where the {R→ D} conditions abruptly
change at t = 5000 time-slots. In Fig. 9, a very strong
SI channel with γ̄SI = 10 dB is assumed. Such a setting
emphasizes on the importance of FD/HD relay switching
when power control is not able to mitigate the impact of
SI at the relay. As a result, MABAMS clearly achieves
to support network operation while all the FD policies
experience outages. The opt-PC requires very high SNR
in order to adopt transmit power levels that overcome the
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FIGURE 9. The average throughput performance comparisons for γ̄SI = 10 dB and
various power control algorithms (non-stationary case).

FIGURE 10. The average throughput performance comparisons for γ̄SI = 0 dB and
various power control algorithms (non-stationary case).

SI’s severity while out-CSI only manages to outperform
MABAMS for an SNR value of 30 dB but without includ-
ing the throughput losses due to CSI estimation that do
not exist for the learning-aided policies, i.e., MABAMS
and BB-PC.
Fig. 10 illustrates average throughput results under strong

SI conditions with γ̄SI = 0 dB. The advantage of CSI-based
opt-PC is evident for high SNR while MABAMS exploits the
BA HD relaying mode to avoid outages for low to medium
SNR values. For the first 5,000 time-slots, the {R→ D} link
experiences Rician fading and thus, after 20 dB, efficient
learning-based power control enables the relay to switch to
FD operation with low transmit power to achieve improved
SI mitigation. Still, even when the {R→ D} channel switches
to non-LoS conditions after t = 5000 time-slots, MABAMS
maintains its advantage over the rest of the policies,
excluding opt-PC. However, as discussed for the previous
comparisons, CSI-based policies incur spectral and energy
costs while estimating CSI, rendering them less attractive
for resource-constrained settings.

FIGURE 11. The average throughput performance comparisons for γ̄SI = −10 dB
and various power control algorithms (non-stationary case).

Finally, throughput results for the case of weak SI char-
acterized by γ̄SI = −10 dB and a non-stationary setting are
presented in Fig. 11. Here, all the considered policies offer
improved throughput even for SNR values below 20 dB,
compared to the previous comparison. In greater detail,
opt-PC manages to exceed the throughput performance of
MABAMS after 15 dB. Then, when MABAMS is employed,
increased throughput is provided compared to the rest of the
policies throughout the SNR range. Again, it is clear that
for fast-changing environments where outdated CSI might
be obtained, relying on MABAMS results in significant
performance gains that will be more pronounced when CSI
estimation overheads are taken into consideration in the
throughput performance.
From the performance evaluation, it has been shown

that MABAMS is able to achieve autonomous network
operation by avoiding channel estimation, and efficiently
converging to the best duplexing mode, depending on
wireless conditions. In addition, the performance gap that
is observed in the case where optimal power control is
performed due to full CSI availability will diminish when
the impact of pilot transmissions, processing, and reporting
are taken into consideration. For example, assuming that
this process takes place at the start of each time-slot, it
will lead to throughput losses proportional to the fraction
of the time-slot that is allocated to CSI estimation. In most
comparisons, allocating around 15-20% of each time-slot for
CSI estimation will result in MABAMS outperforming the
throughput performance of opt-PC in most SNR regions.

VII. CONCLUSION AND FUTURE DIRECTIONS
A. CONCLUSION
This paper presented a bandit-based algorithm, namely
MABAMS, for conducting half-duplex/full-duplex relay
mode selection without the need for pilot transmissions and
processing, thus avoiding spectral and energy costs that are
associated with conventional channel estimation procedures.
In greater detail, MABAMS relies on reinforcement learning
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and one-bit ACKs/NACKs to decide the duplexing mode
and the transmit power level of the relay in case, full-
duplex relaying is selected. It is shown that improved
performance is achieved over schemes strictly relying on full-
duplex relaying with channel state information-based power
control. More importantly, apart from nullifying the amount
of network coordination overheads, MABAMS enables
autonomous network operation and its distributed operation
guarantees that timely decisions are made. In this manner,
MABAMS overcomes the issue of outdated channel state
information, inherent to fast-changing wireless environments
and networks with resource-constrained devices that cannot
perform accurate channel estimation, e.g., industrial settings
comprising a plethora of sensors.

B. FUTURE DIRECTIONS
Current research, including the proposed algorithm, is
dedicated to developing efficient methods for acquiring
the network’s parameters while simultaneously maximizing
network throughput, being the primary performance objec-
tive. This work reveals a lot of opportunities to further
enhance performance in full-duplex relaying operating in
fast-changing wireless conditions but also highlights some
limitations of the proposed method. Specifically,

1) MAB-based approaches, such as MABAMS, assume
discrete-valued variables. Hence, it is not possible to
apply such an approach to problems in which the
decision variables are continuous. In such a case, one
has to deploy other methods, such as Bayesian-based
methods.

2) An additional possible direction is to examine the
case in which, the source power level is modeled as
a (discrete) decision variable, although the number
of variables will increase considerably, making the
solution computationally expensive, and in need of a
lot more additional trials.

3) Additionally, there can be a more efficient utilization
of the information extracted from transmissions on the
{S→ R} link in different modes, an aspect that has
not been studied in this work, due to the fact that there
does not exist a straightforward way to extended the
proposed algorithm to account for such coupling.

4) Finally, other performance metrics can be considered,
such as latency, in which the main objective is to
minimize latency subject to some fidelity criteria on
the performance; such metrics are desirable in several
industrial applications, such as flexible automation and
autonomous cars. Our approach, however, does not
provide a systematic way for choosing the reward
function.
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