Hafnium Aluminate—Polymer Bilayer Dielectrics for Organic Light-Emitting Transistors (OLETs)

Katherine Gallegos-Rosas,* Pia Myllymäki, Mikael Saarniheimo, Sami Snek, Ramesh Raju, and Caterina Soldano*

ABSTRACT: Organic light-emitting transistors are thin-film transistors capable of generating and sensing light under appropriate bias conditions. Achieving a low-voltage operation while maintaining high efficiency can be obtained by using high-mobility semiconductors, highly efficient emissive layers, and high-capacitance dielectrics. We report on the fabrication, dielectric characterization, and implementation of (organic/inorganic) bilayer dielectric stacks in green organic light-emitting transistors. Our dielectric stack includes a nanoscale hafnium aluminate layer fabricated by atomic layer deposition and a thin layer of a polymer dielectric. We found that the hafnium aluminate layer is amorphous in nature and highly transparent in all the visible range. The bilayer stack showed around 10 times higher capacitance per unit area than our polymer reference dielectric. When used as a dielectric in organic light-emitting transistors, this stack enabled low leakage current and operation below 20 V, with a threshold around 6 V and similar efficiencies. Thus, engineering the dielectric layer can enable the tuning of the device working conditions and performances while keeping robustness and negligible leakage values. Thus, these findings open the way to use nanoscale organic/inorganic bilayer dielectrics to enable low-bias, low-power consumption optoelectronic devices of relevance for next-generation electronics applications.

KEYWORDS: organic light-emitting transistor (OLET), bilayer dielectric, high-k dielectric, organic/inorganic dielectric, atomic layer deposition, hafnium aluminate, poly(methyl methacrylate) (PMMA)

INTRODUCTION

In recent years, organic devices, including solar cells (OPV), organic field-effect transistors (OFETs), memories, and organic light-emitting diodes (OLEDs), have been successfully proposed and demonstrated as a new technology platform for high-performance electronic devices, with enormous potentials for cost reduction and new functionalities with respect to current systems based on inorganic materials. In recent years, organic light-emitting transistors (OLETs) have emerged as a promising device platform for fields such as flexible and wearable electronics. OLETs are electrical switches (with channel conduction modulation) capable at the same time of generating and sensing light under appropriate bias conditions. Differently from the OLED counterpart, light in an organic light-emitting device can be spatially tuned across and within the channel, possibly leading to both top and bottom emissions, without the need of a transparent electrode to extract the light. Characterized by a planar device structure and charge transport, organic light-emitting transistors are potential candidates for integration into flexible displays, where simplification of manufacturing process at the front-plane level can be envisioned; this can lead to lower costs, reduced production time, and increased yield given the reduced complexity.

Multilayer OLET structures, where charge transport and light generation can be decoupled and each allocated to different layers to promote exciton confinement in the emissive layer, show higher current densities and external quantum efficiency (EQE). It has been shown that these devices can
outperform equivalent organic light-emitting diodes, with demonstrated potentials to achieve high luminance (>500 cd/m²) at low voltages (<10 V). Also, device engineering has been proposed to improve overall performances, including for example enhancement of the outcoupling efficiency, dual gate architectures for a more balanced hole and electron charge transport, and nonplanar source and drain electrodes to improve charge injection.

When it comes to materials, achieving high-performance OLETs requires high-mobility organic semiconductors (OSCs), high-efficiency luminescent materials, and high-capacitance gate dielectrics. Further, the interface between the active organic materials and the dielectric layer is key for the overall transistor performance because this is the region where important processes such as charge transport and accumulation occur.

High-capacitance dielectrics can be achieved by reducing the thickness of the gate dielectric layer or by using dielectric materials with a large dielectric constant (k); this has the overall effect of decreasing operating voltages, thus enabling low-power consumption devices. Oxide dielectrics like SiO₂ have been extensively used in the microelectronics industry; however, continuous miniaturization and dielectric film thickness reduction have led SiO₂ to reach its ultimate physical limit (few nm). Similarly, polymer dielectrics have been widely studied for transistor applications, and they have enabled device fabrication on plastic substrates, relevant for innovative fields such as flexible electronics and wearables. However, it is extremely challenging to fabricate thin polymer dielectric films (<100 nm) with high capacitance, while keeping effective screening of electrodes defects (gate) and high smoothness, which at last can affect leakage currents and breakdown voltages as well as interface quality. Poly(methyl methacrylate) (PMMA) is commonly used as a dielectric in organic field-effect transistors because it enables extremely smooth film formation, favorable for semiconductor growth and leading to good device performance, resulting from the limited number of trap sites at the interface. Along with PMMA, various polymeric materials have been implemented in organic transistors including polyimide, SU-8, and polyvinylphenol (PVP). However, these polymers exhibit low dielectric constant, which prevents low-bias operation.

Furthermore, higher permittivity materials allow fabrication of thicker insulator films while preserving high capacitance values. A large part of the studies on gate dielectrics materials in field-effect devices has been dedicated to inorganic materials and only more recently to organic transistors. In addition to their dielectric properties, these gate materials are expected to be processable into thin high-quality and defect-free films because this can enable transistors operating at low-bias, fast switching speed, and large ON/OFF ratio. Additionally, to be compatible with plastic substrates, gate fabrication and manufacturing should be performed at low deposition temperatures.

In our earlier works, we have developed dielectric films based on high-k poly(vinylidene fluoride) (PVDF)-based polymers and demonstrated that by engineering these films (i.e., polymer composition and its content, solvent, film fabrication parameters), an overall improvement of organic light-emitting transistors optoelectronic properties can be achieved (threshold voltages <20 V with enhanced light output). Also, metal oxides such as Al₂O₃, HfO₂, and ZrO₂ have been proposed as high-k dielectrics due to their excellent dielectric properties, large bandgap, and optical transparency in the visible region for high-performance and transparent electronic devices. Hafnia, with dielectric constant k of approximately 7±9, offers several key features, including chemical and thermal stability (amorphous up to 1000 °C), good adhesion to various surfaces, and excellent dielectric properties. Hafnia, with higher dielectric constant (~22–25), is also chemically stable and highly resistant to corrosive species, while exhibiting biocompatibility and barrier properties against moisture; however, it can easily crystallize.

Combining and/or mixing oxides represents a way to tailor the optical and electronic properties of a coating layer for a particular application. This approach can also promote the formation of amorphous structures and lower surface roughness leading to reduction of leakage current density and higher dielectric strength. Park et al. have shown that by adding Al₂O₃ into a HfO₂ film, it is possible to achieve a dielectric constant of about 47. This value is almost double compared to the reported values for a HfO₂-only film, most likely because of the stabilization of the metastable tetragonal phase of HfO₂. For example, mixed oxides based on Al₂O₃ and TiO₂ have been shown as possible candidates as high-performance gate materials, where their large difference in refractive index between the oxides enables optical coatings with large dielectric permittivity and low leakage currents.

Atomic layer deposition (ALD) allows for the deposition (at low temperatures) of highly conformal and defect-free thin films, with high resistivity and good barrier properties—key features for use as gate insulators. ALD is a surface-driven fabrication process compatible with various substrates and irregular shapes, which can ensure uniformity and control of film thickness over large areas as well as films’ composition at the atomic level. ALD-grown oxides have been used as dielectric materials in organic field-effect transistors. For example, Zhang et al. used a thick ALD Al₂O₃ film (200 nm) in pentacene-based OFET and demonstrated improved electrical performance, hole mobility of 0.9 cm²/V·s, reduced threshold voltage, and a higher ON/OFF ratio (approximately 1 order of magnitude, when compared to SiO₂-based devices). Similarly, bilayer dielectric stacks have also been investigated. For instance, a bilayer composed of ALD layers (Al₂O₃ and HfO₂ nanolaminate) and an amorphous fluoropolymer (CYTOP) has shown improved environmental stability and better performance, including reduction of the threshold voltage (<2 V) and hysteresis, and high mobility values in different OFET configurations. Likewise, FETs fabricated with nanolaminates (i.e., dielectric bilayers composed by Al₂O₃ and HfO₂) in combination with inorganic semiconductors like AlGaN/GaN or IGZO (indium gallium zinc oxide) showed lower leakage current, smaller threshold voltage, and a higher ON/OFF ratio when compared to single-oxide layers devices.

Integrating these dielectric materials in organic light-emitting transistors is currently yet not very much studied; however, literature works on organic field-effect transistors suggest that using higher capacitance dielectrics (and in particular high-k dielectrics) can expectedly lead to an overall improvement of the device (opto) electronic properties.

In the present work, we study the potential use as gate dielectrics of hafnium aluminate (HfAlO₃) films grown by atomic layer deposition in organic light-emitting transistors. In
particular, we study the film composition and surface morphology of this oxide mixture, and we implement it in a bilayer dielectric stack composed of nanoscale hafnium aluminate (mixture of alumina and hafnia) and a PMMA film. We also characterize the optical and dielectric responses of this bilayer dielectric. Such a dielectric stack is then used in organic light-emitting transistors, with the overall effect of considerably reducing driving and threshold voltages, when compared to our standard polymeric dielectric (PMMA-only). This holds enormous potential for the future development of low-bias, high-performance light-emitting devices.

EXPERIMENTAL SECTION

Materials and Film Preparation. Glass/ITO substrates were cleaned in an ultrasonic bath in diluted Hellmanex III followed by deionized (DI) water, acetone, and 2-propanol as described in our previous work. Prior to dielectric polymer deposition, substrates were treated with oxygen plasma (100 W for 15 min). HfAlO films were deposited in a TFS 200 reactor (Beneq Oy, Espoo, Finland) at deposition temperature 250 °C. HyALD (HfCp(NMe2))2, >99%, Air Liquide), trimethylaluminum (TMA, >98%, Strem), and deionized water were used as hafnium, aluminum, and oxygen precursors, respectively. HyALD was evaporated from a stainless-steel container heated to 65 °C. TMA and water containers were kept at 20 °C. The metal precursor pulsing ratio was Hf:Al = 2:1. The HfAlO deposition sequence consisted of two consecutive cycles of HfO2 (HyALD + H2O) followed by one cycle of Al2O3 (TMA + H2O). The growth per HfAlO supercycle was 1.57 Å/supercycle, resulting in average growth per cycle (GPC) of 0.52 Å/cycle. Constant nitrogen flow (99.999%, 500 sccm) was used as carrier and purging gas. Silicon pieces were used as additional substrates to monitor film thickness.

Polymer dielectric films were deposited by spin-coating and then annealed for 30 min on a hot plate (110 °C) in ambient conditions. Capacitor-like structures (electrode/dielectric/electrode) were fabricated to evaluate dielectric properties; the dielectric layer is sandwiched between bottom (ITO) and top electrodes (silver, 70 nm).

Film Characterization. The thickness of HfAlO films was measured from monitor silicon samples by ellipsometry (Sentech SE400ad ellipsometer) using a wavelength of 633 nm and measuring the angle 70°. The thickness of the polymer dielectric films was measured using a stylus Dektak/XT profilometer (Bruker) with a scan length ~600 μm and a stylus force of 1 mg. The crystal structure of the oxide film was observed by grazing incidence X-ray diffraction (GIXRD, Rikagu SmartLab XRD, Cu Kα radiation, λ = 0.154178 nm). Surface morphology of the films (dielectric and organic layers) was investigated with an atomic force microscope (AFM, Bruker Dimension Icon), with a 5 μm × 5 μm scan size area and resolution of 512 lines/sample. The transmittance was measured with an integrating sphere and a UV–vis spectrometer (Ocean Optics). A probe station connected to a Agilent U1701B capacitance meter was used to measure the static capacitance, and to a semiconductor parametric device analyzer (B1500A Keysight) was used to study C−V, C−f, and dielectric breakdown in capacitor-like structures.

Device Fabrication and Characterization. Organic and metal thin films were deposited using a Moorfield Nanotechnology MiniLab90 instrument (chamber base pressure of 10−7 mbar). Electro-optical characteristics of organic light-emitting transistors were measured through a homemade system connected to a semiconductor device analyzer (B1500A Keysight). A photodiode (Hamamatsu S1337) in direct contact with the substrate was used to measure the light output (bottom emission). For further details on standard device fabrication and characterization we refer the reader to ref 25.

Figure 1. Characterization of HfAlO film grown by atomic layer deposition. (a) GIXRD diffractograms (top to bottom) of ALD grown HfAlO, Al2O3, and HfO2 films 50 nm thick. (b) Transmittance spectra of HfAlO film grown on glass/ITO substrate in the range 400–800 nm. The spectrum of glass/ITO is also included as a reference. (c) Atomic force microscopy (AFM) image of HfAlO oxide films (thickness 50 nm) on glass/ITO surface. Scale bar is 2 μm. (d) Contact angle measurement of the HfAlO surface (see the text for details).
RESULTS AND DISCUSSION

Film Properties of Hafnia Aluminate (HfAlO\textsubscript{x}) Dielectric Grown by ALD. Several studies in the literature have shown that dielectric properties of high-\(k\) materials are highly dependent on their stoichiometric composition as well as they are affected by their degree of crystallinity, crystallographic orientation, and crystal structure.\(^4\) Amorphous and monoclinic phases generally appear at lower (room) temperature, which are preferred phases for semiconductor process; the crystallized phase can be achieved thermodynamically at higher temperatures.\(^4\) In particular, it has been shown that HfAlO\textsubscript{x} film crystallization depends on composition (Al concentration) and on the structure of the film resulting from the deposition sequence.\(^4\) X-ray diffraction (XRD) is performed to evaluate the structure and growth quality in our films. Figure 1a shows the GIXRD spectra for (top) HfAlO\textsubscript{x} mixture, (middle) HfO\textsubscript{2}, and (bottom) Al\textsubscript{2}O\textsubscript{3}, where all the layers have been grown by atomic layer deposition, and each panel is labeled accordingly. HfO\textsubscript{2} film is polycrystalline, as recognized by XRD studies, and the peak positions clearly indicate the monoclinic and tetragonal phases (ICDD PDF-2 card #01-075-6426 and DD PDF-2 card #01-075-6426).\(^4\) In the Al\textsubscript{2}O\textsubscript{3} film, there are no distinctive diffraction peaks except the one identified for the silicon wafer, supporting the amorphous nature of the film. Such a nearly amorphous structure is maintained in the HfAlO\textsubscript{x} samples. We found the angle 2\(\theta = 32^\circ\) with broad width and low intensity; this indicates the presence of very small grains (i.e., nanosized crystallite) locally embedded in the amorphous structures, suggesting that crystallization in the HfAlO\textsubscript{x} film is more effectively suppressed than in the pure film (HfO\textsubscript{2}).

Figure 1b shows the optical transmittance of the HfAlO\textsubscript{x} ALD-grown film (50 nm) deposited on the glass/ITO substrate. Within the visible range (400–800 nm), we found that the nanoscale layer reduces by approximately 10% the transmission of light over the entire visible range, with the overall value remaining above 80% for all wavelengths (see also Figure S1 of the Supporting Information). The optical properties of the film will be relevant later in the article when these films are used as dielectrics in light-emitting devices.

Further, Figure 1c shows the atomic force microscopy (AFM) micrograph of the HfAlO\textsubscript{x} film on the ITO/glass substrate (scan size of 5 \(\mu\)m \(\times\) 5 \(\mu\)m). As expected, the film grown by atomic layer deposition conformably covers the underlying ITO surface. The surface roughness, root-mean-square (rms), is smaller than 3 nm, like ITO on glass (Figure S2). We also investigated the nature of the surface in terms of hydrophobicity/hydrophilicity, which plays an important role in the OSC arrangement on the surface and, thus, affects the interface between the dielectric and organic semiconductor (OSC) layers.\(^6\) It is well-known that the oxide layers present dangling bonds on the surface, which can affect the deposition of organic molecules on top as well as the charge transport properties. The HfAlO\textsubscript{x} film shows a contact angle of approximately 80\(^\circ\) (Figure 1d), which suggests a more hydrophobic surface nature compared to polymeric dielectric (approximately 65\(^\circ\) for PMMA layer; see Figure S3).

Dielectric Response of Bilayer Dielectrics (HfAlO\textsubscript{x}/PMMA). Previous works\(^5,6\) have shown that pristine high-\(k\) oxide films might present a rougher surface\(^7\) and are prone to higher moisture absorption,\(^6\) which can then lead to higher leakage currents.\(^5\) The interface between the oxide (dielectric) and organic material is strongly dependent on the preparation of the oxide surface; for example, ITO surface treatments can affect the performance of organic light-emitting diodes.\(^5\) In this work, we selected a bilayer dielectric approach to favor interfacial compatibility at such interface;\(^5,6\) this consists in the deposition of a thin layer of PMMA on top of the oxide film. PMMA offers a favorable surface for organic semiconductor deposition and growth, is optically transparent, and presents excellent mechanical, chemical, and dielectric properties.\(^4\) Oxide surfaces were treated with oxygen plasma for 15 min (Tepla 400 system, power of 100 W), before the deposition by spin-coating of the thin PMMA layer (50 nm, MicroChem 950 PMMA). The polymer is then cured on a hot plate at 110 °C for 30 min to remove any residual solvent and water which might affect device performances.

Using a bilayer dielectric reduces the effective permittivity of the overall dielectric stack, resulting from the series capacitor formed by the ALD film and the PMMA layer; however, this is necessary for correct device operation. We found not negligible values of gate leakage currents for transistors fabricated directly on oxide film dielectric (not shown). From now on, we will refer to the device dielectric as the bilayer stack (unless otherwise specified).

Dielectric properties of the bilayer stack were evaluated through capacitor-like structures (electrode/bilayer dielectric/electrode) by sandwiching HfAlO\textsubscript{x}/PMMA between the ITO electrode (bottom electrode) and a silver top electrode (70 nm, electrode area ~0.08 cm\(^2\)), as schematically depicted in Figure 2a.

Eight test capacitors were fabricated, for which we measured average values of the capacitance (per unit area), \(C_i\), of about 63 nF/cm\(^2\). Figure 2b shows the capacitance (per unit area)–voltage (\(C_i\)–\(V\)) response of our bilayer dielectric stack (HfAlO\textsubscript{x} (50 nm)/PMMA (50 nm)) in the bias range 0–20 V. Corresponding characterization for our optimized test dielectric layer (PMMA, Alresist AR-P 669.09, ~440 nm) is also included as reference. For both dielectrics, we observed no significant variation of the capacitance over the range of biases studied (HfAlO\textsubscript{x}/PMMA: 20 V; PMMA: 100 V). Further, we note that this PMMA is different from the PMMA 950 series used in the bilayer stack (solvents are ethyl lactate and anisole, respectively), with the latter one being the polymer of choice because it allows for the deposition of the thinnest layer (50 nm). The capacitance per unit area \(C_i\) is calculated from

\[
C_i = \frac{C}{A} = \frac{k \varepsilon_0}{t}
\]

where \(A\) is the electrode area, \(t\) is the dielectric thickness, and \(\varepsilon_0\) is the vacuum permittivity (8.85 \(\times\) 10\(^{-12}\) F/m). The dielectric constant for the bilayer stack at 1 kHz is estimated to be ~7.1, larger than that of the PMMA-only counterpart (\(k \sim 3.3\)); this value is smaller than the corresponding values for dielectric films made of Al\textsubscript{2}O\textsubscript{3} (\(k \sim 7.5–9\)) and HfO\textsubscript{2} (\(k \sim 17–25\)). From this, we can also estimate the dielectric permittivity of the individual HfAlO\textsubscript{x} layer, which we found to be around 8.5 (see the Supporting Information), consistent with available literature work.\(^5\)

The bilayer stack showed good dielectric strength with no signs of dielectric breakdown up to 120 V; in the literature, breakdown fields for other similar high-\(k\) oxides are mostly in the range of 4–5 MV/cm\(^2\) (in our case we reach vertical fields of approximately 2 MV/cm). Bilayer stack with thinner oxide...
Dielectric characterization for PMMA-only dielectric (440 nm thickness) is also included as reference.

kHz (suggesting the capacitor stability under a continuously layers

Figure 2. Dielectric characterization of HfAlOx/PMMA bilayer stack. (a) Schematic of the capacitor-like structure (electrode/dielectric/electrode) where the dielectric is the bilayer stack HfAlOx (50 nm)/PMMA (50 nm). Capacitance per unit area (b) vs voltage (C−V) and (c) vs frequency (C−f) for the dielectric stack in (a). Corresponding dielectric characterization for PMMA-only dielectric (440 nm thickness) is also included as reference.

pmmm-

permittivity \(e \) \((C \sim Re(e))\) is strongly dependent on the frequency of the alternating electric field. Different polarization mechanisms can occur, including dipole orientation polarization \((\sim 10^2-10^{10} GHz)\), atomic \((10^{12}-10^{15} Hz)\), and electronic polarization \((10^{15}-10^{18} Hz)\). These results are consistent with analogous findings on high-k materials. For low-k materials, as in the case of PMMA-only dielectrics, this change is not significant as the largest contribution to dielectric constant comes presumably from the electronic polarization.

Organic Light-Emitting Transistors with Bilayer Stack (HfAlOx/PMMA) Dielectrics. We used a bottom-gate/top-contacts (BG-TC) transistor configuration, as schematically shown in Figure 3a, with the bilayer dielectric stack as the gate dielectric. The device active region consists of an organic multilayer heterostructure, where all layers are thermally evaporated in a vacuum system (Moorfield Nanotechnology MiniLab90) at a base pressure of 1 \(\times 10^{-7} \) mbar. The heterostructure includes three stacked organic films, where starting from the bottom: (a) a hole-transporting semiconductor \((2,7\text{-diphenyl}[1]benzo thieno[3,2-b][1]benzothiophene, C8-BTBT, 30 nm, Sigma-Aldrich), in direct contact with the dielectric; (b) an emissive layer, where the electron-hole recombination and emission processes take place, is a host–guest matrix system; we used a 10% blend of tris(4-carbazoyl-9-ylphenyl)amine (TCTA) and tris(2-phenylpyridine)iridium(III) \((\text{Ir(ppy)_3})\) (TCTA:Ir(ppy)_3, 60 nm, both from American Dye Source Inc.); (c) an electron-transporting semiconductor \((a,ω\text{-diphenylfluorenychexy}-\text{quarterthiophi ne}, DFH-4T, 45 nm, Sigma-Aldrich).

Drain and source electrodes (silver, 70 nm) were thermally evaporated on top of the n-type semiconductor layer. From an energy point of view, this structure enables the efficient injection of charges and diffusion toward the emissive layer (see Figure 3b); in fact, the HOMO level of the p-type semiconductor and the LUMO level of the n-type semiconductor are aligned with the HOMO and the LUMO of the emitter in the emissive layer, respectively. In addition, controlling the interface morphology is highly desirable to enable an efficient conduction path within the semiconductor transport layers. More general considerations on the energetics of this multilayer OLET and materials therein, as well as on the full optoelectronic characterization of the used emissive blend, can be found in ref 57. Figure 3c shows an optical image of a representative substrate containing multiple (8) organic light-emitting transistors (top view). Electrodes and channel are labeled accordingly.

Figure 4 shows the optoelectronic characterization of organic light-emitting transistors using the HfAlOx/PMMA (50/50 nm) bilayer stack dielectric. Throughout the text, we will refer to these devices as ALD-OLET. These measurements have been performed in a controlled environment (glovebox) to prevent molecular species such as water and oxygen to be adsorbed on the organic layer and on the dielectric surface. Figures 4a and 4c report corresponding curves for a device using PMMA (-only) as the dielectric (440 nm, and referred to as PMMA-OLET), included as reference. PMMA- and ALD-OLET have the same device geometry and structure, with the fabrication process performed at the same time. The electroluminescence (EL) (right y-axis) refers to the light measured through the gate (bottom emission) with a photodiode in direct contact with the substrate. We note that driving bias conditions are different for PMMA- and ALD-
OLET, with maximum applied voltages of 1100 and 1200 V, respectively.

Figures 4a and 4b show the transfer characteristics (p-type) of our organic light-emitting transistors, which presents the typical “V”-shape, suggesting that both devices are operating in an ambipolar regime. We found somehow a balanced device charge transport within the applied bias range, with hole transport being the dominant mechanism and hole currents approximately one (two) order(s) of magnitude larger than the electron contribution in PMMA(ALD)-OLET. Considering the multilayer structure (see Figure 3a), the operation in our ambipolar devices can be seen as the vertical stack of two organic thin-film transistors, connected in parallel with each carrying one type of charge (holes or electrons) toward the intermediate layer for recombination and emission. As V_{GS} is increased (at a constant source−drain bias), light generation
can occur when (only) holes are injected and transported in the device (i.e., right side of I_{DS} curve) or when both single charge transistors are operating (ON-state, around the I_{DS} apex). In the case of relatively balanced charge distributions, when minority charges (n-type semiconductor) are injected toward the recombination area, the drain–source current (in saturation) can be then written as

$$I_{DS,\text{sat}} = \frac{W}{2L} \left[\mu_{\text{sat}} C_i (V_{GS} - V_{th})^2 + \mu_{\text{h, sat}} C_i (V_{DS} - V_{th}) \right]$$

where W (5 mm) and L (100 μm) are the transistor channel width and length, C_i is the capacitance per unit area of the gate dielectric (C_i; HfAlO/PMMA = 63 nF/cm², C_i; ALD-PMMA = 6.6 nF/cm²), and V_{th} and μ_{sat} are the threshold bias and mobility for holes (h) and electrons (e), respectively.

Before discussing in more details our results, we here note the following: (i) we observed no evident difference in morphology or structure of the active region depending on underlying dielectric surface (see Figure S4); (ii) transistors fabricated on HfAlO film-only or bilayer dielectric stack with HfAlO thicknesses <50 nm show a high level of leakage current; and (iii) vertical fields (at the organic interface) in PMMA- and ALD-OLET are very similar ($E_{GS,PMMA} = V_{GS,PMMA}/t_{PMMA} = 2.2$ MV/cm $\sim E_{GS,ALD} = V_{GS,ALD}/t_{ALD} = 2$ MV/cm), while the horizontal field in PMMA-OLET is 5 times larger than ALD-OLET ($E_{PMMA}/E_{ALD} = V_{DS,PMMA}/V_{DS,ALD} = 5$, in the limit of the same channel length).

As expected, using a higher capacitance gate dielectric (HfAlO/PMMA) enables lower driving conditions ($110 \rightarrow 20$ V), along with a reduction in threshold voltage ($136 \rightarrow 6l$ V), with corresponding light emission within similar range. These values are consistent with available literature for transistors using PMMA and high-k materials (oxides).58 Our devices present negligible values of gate leakage currents (~ few nA) within their bias range of operation (at least 3 orders of magnitude smaller than the largest drain–source current) This is a key advantage for applications where reduced power consumption and compatibility with commercial IC unit are required.

Table 1 summarizes the figures of merit of our organic light-emitting transistors. The field-effect mobility and threshold voltage are calculated from the linear fit of $\frac{2L}{W} I_{DS,\text{sat}}$ sweep of the locus curves (I_{DS} vs V_{GS} = V_{DS}) for both holes and electrons (see Figure S5). We found average values for hole and electron mobilities of ~0.2 and ~0.003 cm²/(V s) for the ALD-based OLET and ~1 and ~0.1 cm²/(V s) for the PMMA, respectively. These are smaller (~1 order of magnitude) than values found in single-layer organic field-effect transistor (based on PMMA dielectric); for more details, we refer the reader to ref 25. This difference reflects the difference in the capacitance value and bias conditions, where

$$\frac{\mu_{\text{h,PMMA}}}{\mu_{\text{h,ALD}}} = \frac{\sqrt{2L} I_{DS,\text{sat,PMMA}}}{\sqrt{2L} I_{DS,\text{sat,ALD}}} / \frac{C_i,\text{PMMA}}{C_i,\text{ALD}} \approx 6.9$$

It has been previously reported that when comparing carrier mobilities from different dielectric materials, lower values were obtained with high-k oxides. This is mainly attributed to polar modes affecting scattering and thus mobility at lower and moderate gate fields.59,33 Such mobility variation can partially arise from the larger ionic polarization nature of high-k materials (related to metal-oxide bonds which are associated with energy lattice oscillations), resulting in a larger scattering strength.60,61 In our case, combining a high-k dielectric with a low-k insulator might also reduce energetic disorder (in high-k materials random dipoles affect the energy of localized states leading to higher energetic disorder and thus to a variation in mobility).62

Figures 4c and 4d show the multiple output curves for our devices, both characterized by an initial linear current increase (I_{DS}) as labeled in the panels), followed by saturation, beyond the channel pinch-off point. The measured emitted light corresponding to these curves suggests a limited contribution coming from the electron transport, with the device operating in unipolar regime for $V_{GS} = V_{DS}$ while maximum current, ON/OFF ratio, light output (EL), and EQE are extracted from the transfer curves in Figures 4a and 4b and corresponding to $V_{DS} = V_{GS,\text{sat}} = 20 (100)$ V for ALD- (PMMA-) organic light-emitting transistors.

![Table 1. Optoelectronic Properties of Organic Light-Emitting Transistors with Different Dielectrics](image_url)

<table>
<thead>
<tr>
<th>Gate Dielectric (material)</th>
<th>PMMA-OLET</th>
<th>ALD-OLET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dielectric thickness (nm)</td>
<td>440</td>
<td>50/50</td>
</tr>
<tr>
<td>Capacitance/unit area C_i</td>
<td>6.6</td>
<td>63</td>
</tr>
<tr>
<td>Dielectric permittivity k</td>
<td>3.3</td>
<td>7.1</td>
</tr>
<tr>
<td>Max driving bias V_max</td>
<td>100</td>
<td>20</td>
</tr>
<tr>
<td>Max drain-source current I_{DS,max}</td>
<td>(600)</td>
<td>66</td>
</tr>
<tr>
<td>Max electromobility E_{max}</td>
<td>15.2</td>
<td>0.65</td>
</tr>
<tr>
<td>Hole mobility (\mu_{h,\text{sat}})</td>
<td>1.09 cm²/(V s)</td>
<td>0.19 cm²/(V s)</td>
</tr>
<tr>
<td>Hole threshold V_{th,h}</td>
<td>-35.7 V</td>
<td>-6.2 V</td>
</tr>
<tr>
<td>Electron mobility (\mu_{e,\text{sat}})</td>
<td>0.08 cm²/(V s)</td>
<td>0.003 cm²/(V s)</td>
</tr>
<tr>
<td>Electron threshold V_{th,e}</td>
<td>43.8 V</td>
<td>12.9 V</td>
</tr>
<tr>
<td>ON/OFF ratio</td>
<td>1.4 x 10^10</td>
<td>1.5 x 10^10</td>
</tr>
<tr>
<td>Subthreshold slope, S</td>
<td>22.1 V/dec</td>
<td>2.6</td>
</tr>
<tr>
<td>Max external quantum efficiency</td>
<td>1.1 x 10^{-3%}</td>
<td>0.45</td>
</tr>
</tbody>
</table>

“Summary of the figures of merit of the organic light-emitting transistors using as dielectrics bilayer stack (ALD-OLET) and PMMA (PMMA-OLET), the latter considered as reference. Mobility and threshold values are extracted from locus curve (I_{DS} vs $V_{GS} = V_{DS}$) while maximum current, ON/OFF ratio, light output (EL), and EQE are extracted from the transfer curves in Figures 4a and 4b and corresponding to $V_{DS} = V_{GS,\text{sat}} = 20 (100)$ V for ALD- (PMMA-) organic light-emitting transistors.”

ACS Applied Electronic Materials
underestimated, given that the measured light (bottom emission) is only a part of the total light generated in the device. For a more detailed analysis of these emissive blends in terms of optical and optoelectronic properties in field-effect light-emitting transistors, we refer to one of our recent works.57

Further, we also observed non-negligible hysteresis in our devices. Figure S8 summarizes the difference in drain–source current measured at fixed current between the forward and reverse sweeps for both PMMA- and ALD-OLET. We found a shift (toward higher bias) of approximately 10 V in PMMA-OLET and about 1 V in ALD-OLET, when VDS (or VGS) is smaller than the maximum applied bias Vmax. While a detailed investigation is currently in progress and beyond the scope of the present article, we expect charge trapping localized at the dielectric interface and the different charge transport and injection regimes to be relevant phenomena.54 Generally, in devices with metal oxide and hybrid dielectric, field-effect transistors behavior might be affected by (a) charges injected from the gate into the dielectric, and consequently trapped inside the dielectric,54 (b) residual dipoles in the bulk of the dielectric, which can possibly be reoriented by an external field55 and (c) trapped carriers in the channel–dielectric interface often related to electrons trapped to hydroxyl groups (OH) at such an interface.66 While all three mechanisms can potentially contribute, the most dominant mechanism will determine the magnitude of hysteresis in the transistor with a certain bilayer dielectric. Based on the negligible leakage current in our experimental findings, we can neglect contribution coming from (a); thus, we anticipate that (b) and (c) can contribute in a similar way, with (b) likely plausible in the case of PMMA dielectric fabrication process (i.e., given the larger thickness of PMMA). Further, trapped charges can also affect indirectly the contact properties while limiting the injection by building up a space charge region adjacent to the contacts.67 This can limit the number of available mobile charges, and thus the mobility,68 with the latter one relevant for coplanar device configuration and for multilayer active region with the charge injection occurring at the contact edge (∼tens of nanometers).69 In our multilayer architecture, charge injection occurs at the contact area with the gate (∼tens of micrometers), with the transport through the semiconductor layer can contribute to the contact resistance70 and partial screening of the gate field. Moreover, the dielectric/OSC interface (PMMA/C8BTBT) is similar in both of our devices (minor differences cannot be excluded because PMMA solutions are different and thus might lead to local fields/dipole variation at the interface). Charges move along the semiconductor/insulator interface (thin accumulation layer)3 and the gate dielectric can affect the transport within the channel by modifying the overall morphology of semiconductor layer, trap densities at the interface, or the energetic disorder induced by the dielectric internal dipole in the semiconductor.69

Further, we cannot a priori exclude that the hysteresis and its amplitude depend on measurement parameters (i.e., sweeping rate, applied gate bias range), as is well-known in transistor technology. Further, the Al2O3 film grown by ALD exhibits reduced hysteresis from decrease trapped charge.59 We also calculated the interface trap density as follows:

\[D_h = \frac{C}{q} \left(\frac{gSS \log e}{kT} - 1 \right) \]

(3)

where SS is the subthreshold slope (defined as the bias needed to vary the drain–source current by one decade), q is the electron charge, k is Boltzmann’s constant, and T is the temperature (\(kT \sim 26 \text{ meV at room temperature}\)). The subthreshold slope is obtained by taking the linear fit of the steepest part of the subthreshold region of the plot \(\log I_{DS} vs V_{GS}\), with a lower value for SS for a given change in voltage implying a faster increase in current. With values of 22.06 V/decade for PMMA-OLET and 2.63 V/decade for the ALD-OLET, we estimated the density of interface traps to be \(1.5 \times 10^{13}/\text{eV cm}^2\) and \(1.7 \times 10^{13}/\text{eV cm}^2\), respectively.

These traps will capture charges, preventing them from participating in both the conduction and exciton formation process; these charges can then detract when subjected to an external electric field. While the dynamics of trapping/detrapping of charges is currently under investigation and beyond the scope of this work, we believe there is a close link between mobility and interface traps in high-k materials. In fact, higher interface trap density shows lower values of mobility, indicating that Coulomb scattering is also a mechanism taking place in mobility degradation.54

CONCLUSION

In this work, we have studied and characterized the dielectric properties of a bilayer stack composed of an ALD-based oxide (HfAlOx, mixture of alumina and hafnia) and a polymeric dielectric (PMMA). In addition, we have implemented this bilayer stack as a gate dielectric for the fabrication of organic light-emitting transistors. We demonstrate that such a dielectric can enable device operation in the voltage range below 20 V, a critical characteristic for the development of low-power consumption devices. When compared to the reference device that uses a single-layer polymeric dielectric, this voltage is 6 times smaller. Our work demonstrated that high-k oxides grown by ALD in combination with polymer dielectrics offer a good compromise between high capacitance density and enhanced interfacial compatibility.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsaelm.3c01813.

Optical properties of HfAlOx layers with different thickness (Figure S1); surface morphology of bilayer dielectric films (HfAlOx 50 nm/PMMA 50 nm) (Figure S2); estimate of the dielectric permittivity of HfAlOx layer; contact angle measurement of PMMA dielectric (Figure S3); surface morphology of organic multilayer heterostructure (on different dielectrics) (Figure S4); electronic characterization of OLET with different dielectric films (Figure S5); variability of figures of merit for organic light-emitting transistors (Figure S6); light emission in organic light-emitting transistor (Figure S7); hysteresis in organic light-emitting transistors (Figure S8) (PDF)

AUTHOR INFORMATION

Corresponding Authors

Katherine Gallegos-Rosas — Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto

https://doi.org/10.1021/acsaelm.3c01813

ACS Appl. Electron. Mater. 2024, 6, 1493−1503
University, 02150 Espoo, Finland; orcid.org/0000-0001-8561-5722; Email: katherine.gallegosrosas@aalto.fi

Caterina Soldano — Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland; orcid.org/0000-0001-6345-290X; Email: caterina.soldano@aalto.fi

Authors

Pia Myllymäki — Beneq Oy, 02200 Espoo, Finland
Mikael Saarniheimo — Beneq Oy, 02200 Espoo, Finland
Sami Sneck — Beneq Oy, 02200 Espoo, Finland
Ramesh Raju — Department of Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, 02150 Espoo, Finland; orcid.org/0000-0002-1802-9077

Complete contact information is available at: https://pubs.acs.org/10.1021/acsaelm.3c01813

Author Contributions

C.S. and K.G.-R. contributed equally to this work. The manuscript was written through the contribution of all authors. All authors have given approval to the final version of the manuscript.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors acknowledge the support from the Research Council of Finland Flagship Program PREIN (Grant No. 320167) and Micronova Nanofabrication Centre, Espoo, Finland, within the OtaNano research infrastructure at Aalto University. C.S. and K.G.-R. acknowledge financial support from the Foundation for Aalto University Science and Technology (Aalto-yliopiston tekniikan tukisäätiö sr). R.R. acknowledges financial support from the Council of Finland Flagship Program PREIN (Grant No. 329406) and Micronova Nanofabrication Centre, Espoo, Finland, within the OtaNano research infrastructure at Aalto University, within the OtaNano research infrastructure at Aalto University, within the OtaNano research infrastructure at Aalto University (CarbonSurf: Grant No. 329406)

REFERENCES

(28) Groner, M. D.; Elam, J. W.; Fabreguette, F. H.; George, S. M. Electrical characterization of thin Al2O3 films grown by atomic layer deposition.

