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A B S T R A C T   

In the highly digitalized and electrified modern world, blackouts and power outages cause significant disruptions 
to societies and to the normal daily life of individuals. The ongoing energy transition, climate change and energy 
crisis complicate grid dynamics, generate new forms of instability, and weaken the resilience of the electricity 
transmission grid leading to possible increases in power outages. Electric vehicles (EVs) with bidirectional 
charging points offer a convenient possibility for households to maintain electricity use during power outages 
through vehicle-to-home (V2H) operation. This study introduces a novel hybrid model that combines linear 
programming and deterministic approaches, considering ambient temperatures, to evaluate the efficacy of V2H 
for power outage prevention in subarctic detached households. The methodology includes a power outage 
response model that dynamically adjusts the EV’s SOC based on 5-minute interval household demand during 
sampled outage events. Utilizing real data, we simulate the energy resilience of V2H-equipped households during 
power outages, focusing on how this capability influences main customer objectives such as outage avoidance, 
electricity cost reduction, and EV state-of-charge (SOC). The approach provides insights into the system’s per-
formance across distinct EV-utilization cases and alternative customer preference assumptions. Based on our 
results, an EV could be used to fully prevent up to 98 % of all outages of the year occurring during EV plug-in. 
The average increased electricity costs resulting from outage response are less than 0.2€ if all outage types are 
considered. Overall, it can be stated that EVs can be effectively used to sustain household loads during power 
outages with V2H given EV availability, high SOC-level when the outage begins and if the EV is not needed for its 
primary purpose, mobility, during the outage.   

1. Introduction 

In the ever more connected and electrified world, power outages 
cause significant disruptions to societies and the normal daily lives of 
individuals. Even though societies have been highly reliant on electricity 
for decades, the increased complexity and interconnectedness between 
modern power grids and infrastructure, such as ICT, has resulted in a 
system where power outages cause devastating impacts across the so-
ciety. The ongoing energy transition including i.e., increased integration 
of variable renewable energy generation, electric vehicles (EVs) and the 
phase-out of conventional large power plants radically changes grid 
dynamics and weakens the security and resilience of the transmission 
grid through, for instance, increased variability and decreased 

predictability and controllability of network assets [1–3]. At the same 
time, the increasing frequency of extreme weather events due to climate 
change will strain electricity grids and heightens the risk of power 
outages even more in the future [4]. Additionally, the global energy 
crisis that began in the aftermath of the COVID-19 pandemic and was 
escalated due to the invasion of Ukraine pushed electricity prices to 
record highs and induced considerable new uncertainties to the market 
and power grid operation [5–7]. Particularly in the Nordic countries, 
these high and volatile electricity prices led customers to adopt dynamic 
exchange-priced electricity contracts as a means to minimize electricity 
bills by shifting the time of electricity use [8–10]. Further, all these 
uncertainties led governments and transmission system operators, for 
instance in Finland, to consider planned rolling blackouts, especially 
during cold winter peak times to ensure power grid stability [11,12]. 
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Power outages and blackouts can have devastating impacts on soci-
eties. First, power outages cause significant economic costs, for instance 
though loss of production and equipment damage [1,13]. In addition, 
power outages have severe social impacts. Power outages can for 
instance result to deaths, chaos, material losses and cause severe 
discomfort to households and sectors dependent on electricity 
[1,4,14,15]. However in the modern highly digitalized world, the major 
household inconveniences resulting from power outages concentrate on 
interruptions in ICT use, as ICT cannot easily be substituted by other 
technologies or appliances [16,17]. 

Rural and sparsely populated areas are more vulnerable to power 
outages than cities. Compared to cities, rural areas and communities 
suffer more commonly from poor infrastructure, disruptions and power 
outages, and from more frequent and severe natural disasters [18]. Even 
in otherwise highly developed countries such as in Finland, a major 
portion of long power outages occur outside cities [19] where overhead 
power lines are still in use and exposed to natural phenomena like winds 
and storms, snow, and ice [20,21]. Furthermore, the repair of damage to 
power lines in more rural locations is slowed down by long distances 
[22]. Rural and sparsely populated areas can also experience legislative 
disparities in comparison to urban areas. For instance, in Finland, the 
Electricity Market Act [23] proposes that by 2028, interruptions in 
electricity distribution should not exceed six hours in urban areas, 
however, in rural areas, interruptions up to 36 h are acceptable. Overall, 
the authors of [15] noted that power outages may be considered 
acceptable or even normal in rural areas, while they are not tolerated in 
cities. Nonetheless, the daily lives of rural residents are disrupted by 

outages similarly as their urban counterparts; however, they must cope 
with these outages on a more frequent basis. 

Due to major inconveniences caused by power outages, people are 
willing to pay in order to avoid such events. Some previous studies have 
attempted to determine the willingness to pay (WTP) of households to 
avoid power outages. For instance, according to [4], UK households 
were willing to pay around 6€ to avoid having power outages during 
peak periods and over 35€ to avoid outages in winter, with electric 
heated households having higher WTP. The authors also found that the 
WTP to avoid an outage decreases as outage duration increases [4]. 
These results correspond to the results of the EU-level study [24], that is, 
the average hourly WTP is higher in winter than summer, and higher for 
short outages than longer ones. The mean WTP was generally highest for 
the low power system reliability countries as well as in some of the 
wealthiest countries in the sample (Finland, Denmark, Ireland), these 
countries had an average hourly WTP between 2.5 and 4€ for short 
winter outages and 0.3–1.1€ for medium length summer outages [24]. 

The rising popularity of electric vehicles and the introduction of 
bidirectional EV chargers to the consumer market has brought forth a 
novel possibility for households to avoid power outages through vehicle- 
to-home (V2H) utilization of EVs [25]. In V2H the EV is used as a 
household electricity storage that can be used to power households 
loads, for instance, during high electricity prices or power outages 
[26–28]. Utilization of EVs as a household uninterruptible power supply 
during power outages has been considered and validated experimentally 
in [29]. In some countries it is also possible to sell electricity from the EV 
back to the grid, this is called Vehicle-to-Grid (V2G). EVs, with and 

Nomenclature 

Abbreviations 
AMR Automatic Meter Reading 
BESS Battery Energy Storage System 
CPO Charging Point Operator 
DR Demand Response 
EV Electric Vehicle 
ICT Information and Communications Technology 
LP Linear Programming 
MILP Mixed-Integer Linear Programming 
PHEV Plug-in Hybrid Electric Vehicle 
SOC State of Charge 
TSO Transmission System Operator 
V2G Vehicle-to-Grid, bidirectional power flow 
V2H Vehicle-to-Home, bidirectional power flow 
V2HG Vehicle-to-Home and Vehicle-to-Grid case 
WTP Willingness To Pay 

Indices and index sets 
i Electric vehicle charging event of a household, 1, …, I 
t Time index of the charging event (5-minute intervals), 1, 

…, T 
b Time index of the power outage event (1-minute intervals), 

1, …, B 

Symbols 
Symbol Description (Unit) 
CSpot

t Electricity spot market rate (€/kWh) 
CVAT Value added tax rate (1) 
CMar Margin of the electricity supplier (€/kWh) 
CTra Electricity transmission fees, tax & fee inclusive (€/kWh) 
CDeg Battery degradation cost (€/kWh) 
CRep Battery replacement cost (€) 
Dt ,Db Ambient temperature power decrease factor, at time t or b 

(1) 
EHou

t Household electricity purchased from the grid (kWh) 
EEV

t EV electricity purchased from the grid (kWh) 
EV2G

t Discharged EV electricity for sale to the grid (kWh) 
EV2H

t Discharged EV electricity to the household (kWh) 
EDem

t Household electricity demand (kWh) 
EEvent Original EV charging event electricity consumption (kWh) 
EBat EV battery capacity (kWh) 
ENot−Fulfilled Household demand during outage, not fulfilled by EV 

(kWh) 
EVPlugged−in

b EV availability during outage, at time b (bin) 
LCyc Battery lifetime in cycles (1) 
Pcha

t EV charge power, at timeframe t (kW) 
Pdis

t ,Pdis
b EV discharge power, at timeframe t or b (kW) 

Pmax,cha Maximum EV charge power (kW) 
Pmax,dis Maximum EV discharge power (kW) 
SOC0 Initial SOC level for the LP-model, plug-in/after outage (1) 
SOCB SOC level at the end of a power outage event (1) 
SOCDiscomfort Discomfort SOC level during power outages (1) 
SOCmin Minimum SOC level (1) 
SOCmax Maximum SOC level (1) 
SOCt ,SOCb SOC at time t or b (1) 
SOCT SOC level at the end of optimization, at plug-out time (1) 
TNot−fulfilled Outage duration, not fulfilled by EV (h) 
τt Duration of EV dis-/charge, at charging event period t (h) 
τDur Duration of the charging event at LP-model initialization 

(h) 
τdis

b Duration of outage EV discharge, at period b (h) 
τOutage

b Duration of outage, at period b (h) 
τToPlugout

b Time to EV plug-out, at beginning of period b (h) 
ηcha EV charging efficiency (1) 
ηdis EV discharging efficiency (1)  
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without bidirectional chargers, can also be used in different demand 
response (DR) schemes to minimize electricity costs or create additional 
revenue. EV charging can, for instance, be scheduled to low electricity 
price hours (implicit DR) and EV charging loads can be aggregated and 
offered to different marketplaces like to frequency containment reserves 
(explicit DR) [30,31]. During the 2022 energy crisis, there was a 
considerable shift towards hourly exchange-electricity contracts, 
particularly among Finnish households [9,10]. Such time-based elec-
tricity contracts are a prerequisite for implicit DR [9]. In addition to 
financial aspects, demand response behavior can also decrease CO2 
emissions from electricity use [32,33]. In this study, we concentrate on 
electric vehicles as a means to increase the energy resilience of house-
holds through power outage avoidance, while also considering house-
hold electricity cost minimization through implicit DR, V2H and V2G. 

Contrary to typical household electricity storages, EVs are usually 
parked either outside or to non-heated garages and are thus more prone 
to outdoor temperatures. Ambient temperature has a major impact on 
overall EV utilization and energy efficiency. For instance, lithium-ion 
batteries typically used in EVs have poor low-temperature perfor-
mance with power, efficiency and available capacity degrading in cold 
temperatures [34,35]. At freezing temperatures EV charging and dis-
charging is further impaired as the internal resistances of the battery 
increase and maximum voltage is reached earlier [36,37]. 

In [38], the authors proposed a model that can be used to predict the 
EV SOC over time with different initial SOCs and under different 
ambient charging temperatures based on analysis of EV fast charging 
events of a taxi-fleet. Based on this model, when a 30-minute charging 
event is done in 0 ◦C the end SOC can be 22–36 % smaller than for events 
conducted in 25 ◦C. The authors further state that based on their dataset, 
the average rate of charge has an approximately linear relationship with 
ambient temperature and initial SOC [38]. A more up-to-date study on 
cold climate EV charging was conducted through laboratory measure-
ments in [39]. Here the authors compared the cold climate charging 
performance of four full EVs and one plug-in hybrid vehicle in different 
ambient temperatures (20, 0, −10 & −20 ◦C). Based on the results, cold 
temperatures have a major impact on charging event energy transfer and 
charging power, reaching up to 40 % decrease in loss-inclusive charging 
power in the coldest temperatures [39,40]. 

The aim of this study is to simulate power outage prevention capa-
bilities of rural detached households enabled by EVs and bidirectional 
EV charging points while considering the impact of ambient tempera-
ture in EV charging and discharging. There exist only a very limited 
number of previous studies that have analyzed how well EVs could be 
used to avoid power outages in households. In [41], the authors pro-
posed a home resilient energy management system based on natural 
aggregation algorithm that coordinates different home energy re-
sources, including appliances, a plug-in hybrid electric vehicle (PHEV) 
and photovoltaics (PV), to sustain the household during planned power 
outage periods. The authors conclude that the proposed model can 
significantly reduce the impact of power outages and enhance residen-
tial resilience, however the authors present only one example of the 
simulation results regarding outage avoidance [41]. In [42], the authors 
introduced an optimization model that aims to maximize backup dura-
tion provided by V2H during power outages. In this study, the authors 
considered a system with PV and a PHEV that can generate electricity 
from fuel in addition to battery capacity in outage response. The authors 
state that during off-peak seasons in Austin, Texas, the proposed system 
including a PHEV with a 10.5 kW battery and 18 kg of gasoline could 
support a single home for around 16 to 20 days without need for grid 
electricity [42]. In [43], a computational tool for household energy 
modelling was introduced and used to optimize an off-grid detached 
home energy system comprising of an EV with V2H, solar panels, battery 
storage, gasoline generator and different household appliances. Backup 
duration was calculated for every time step of the model assuming an 
always available EV (no mobility) and repeating load profiles and 
weather. The authors found that the backup durations ranged from one 

day to multiple weeks depending on number of appliances used, home 
size, configuration and season [43]. In [44], the self-sustainment dura-
tion during a blackout was modeled for a single Californian reference 
house with PV, battery energy storage system (BESS) and an EV. This 
resilience duration was found to be more than 3 h without V2H and at 
least 12 h with V2H, assuming an initial EV SOC of 90 %, that the EV can 
be fully discharged during the outage and that the EV is not needed for 
driving purposes [44]. Additionally, for instance battery swapping has 
been consider as a way to further improve outage resilience gained with 
V2H [45]. There also exist studies that consider residential or smart 
communities in outage prevention with V2H [46,47]. 

Most previous research on V2H outage prevention has relied on 
artificial data or limited samples from few case buildings or EVs, often 
focusing on urban environments. These studies have also ignored the 
influence of ambient temperature on V2H efficiency, which can have a 
major impact especially in colder climates during winter. This major 
research gap underscores the absence of comprehensive analysis on 
household outage avoidance through V2H, particularly in the chal-
lenging conditions of northern subarctic climate. Our study represents 
the first comprehensive methodology and assessment of V2H outage 
prevention capabilities under such extreme conditions, leveraging real 
5-minute interval automatic meter reading (AMR), and real EV charging 
event data, thus addressing a significant gap in the existing body of 
research. 

This study bridges the gaps of previous research by introducing a 
novel hybrid model that considers ambient temperatures when assessing 
the power outage prevention capabilities of bidirectional EV charging in 
subarctic detached households. Self-reliant outage prevention increases 
the energy resilience of households especially in rural regions where 
power outages are common. In this study we utilize linear programming 
and deterministic models to simulate how households with EVs and 
bidirectional chargers can survive power outages and what kind of 
impact this outage response has on different main objectives of cus-
tomers (outage avoidance, electricity cost minimization, fully charged 
battery at the end of the charging event) given distinct EV-utilization 
cases and alternative customer preference assumptions. Further, we 
analyze what kind of impact ambient temperature has on customer main 
objectives and conduct a multi-criteria comparison of the considered 
alternatives. To the authors knowledge, no similar studies have been 
conducted previously. 

2. Methodology 

2.1. Model overview 

The aim of this study is to assess the household power outage pre-
vention capabilities enabled by bidirectional EV charging points while 
minimizing the household electricity costs considering the impact of 
cold temperatures. In addition to the reference case (dumb charging) 
where the EV begins charging immediately after plug-in, we consider 
three different EV-utilization cases: Implicit DR, V2H and combined V2H 
& V2G case (V2HG). 

In the implicit DR case, the charging costs of the charging events are 
minimized through “smart charging”, also known as implicit or time- 
based demand response. This means that EV charging is scheduled to 
happen during the least expensive hours of the charging event. 

In the V2H and V2HG cases, we utilize a bidirectional EV charging 
point to minimize the overall costs of electricity purchased from the grid 
for household and EV during the charging events. In the V2H case, the 
EV can only discharge electricity to the household, whereas in the V2HG 
case, the discharged electricity can be used in the household and sold to 
the grid. 

Typical behavior of different EV-utilization cases is exhibited in 
Fig. 1. Here we can see that dumb charging is conducted right after EV 
plug-in, whereas implicit DR charging is shifted to the lowest electricity 
price hours to minimize charging costs. In V2H case, the EV SOC 
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decreases during expensive electricity hours as the EV battery is used to 
power household loads, and the EV charging happens during the 
cheapest hours possible. The V2HG case behaves similarly, but in 
addition to powering the household, electricity from the EV is sold back 
to the grid during the most expensive hour of the event, 17. The SOCs at 
the figure represent the SOC at the start of each hour, and at plug-in and 
plug-out times. It should be noted that in the V2HG case the discharging 
is curtailed due to reaching of the minimum accepted SOC (20 %) in the 
hour 23, with lower min-SOC even more discharge would happen. 

For each of these EV-utilization cases we consider two sub-cases, one 
where the EV is used to power the household during power outages, and 
the other where the EV does not react to the outage. These sub-cases are 
used to compare how outage response impacts the EV SOC and to 
calculate the extra electricity and battery degradation costs resulting 
from outage response. That is, in the first sub-case we assume that even 
in the dumb and implicit cases, which for normal operation would not 
require a bidirectional charging point, the EV could be discharged to 
power the household during outages. 

In addition to the EV-utilization cases, we will compare three 
different customer preference assumptions: high savings (HSavings), high 
outage averse (OAverse) and high SOC discomfort (HSOC). These scenarios 
represent different main objectives of this study: to minimize household 
electricity costs, to minimize suffered power outage time, and to have 
the EV charged as full as possible at the end of the charging event. These 
customer preference assumptions are described further in section 2.5. 

In this study, we employ a hybrid approach that combines both linear 
programming (LP) and deterministic models. This synergistic combi-
nation allows us to leverage the strengths of each type of model, 
enhancing the accuracy and efficiency of our analyses. The impact of 
ambient temperature on EV charging and discharging is calculated 
deterministically based on results of previous studies as described in 
section 2.2. Before and after power outages, in implicit DR, V2H and 
V2HG cases, we utilize an LP-model to optimize the household and EV 
system similarly as in [26,27]. The utilized LP-model is further described 
in section 2.3. The dumb charging case is calculated deterministically as 
no optimization is needed. For the power outage response model (sec-
tion 2.4), we utilize power outage statistics and a deterministic model to 
calculate how well the EV can handle household demand during the 
outage, and how this impacts the EV SOC. Simplified version of the 
methodological workflow used in this study is presented in Fig. 2. All 
elements of the methodology are further described in the following 
subsections. 

Fig. 1. Example behavior of the different EV-utilization cases, SOC as a function of time.  

Fig. 2. Simplified workflow of the methodology.  
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2.2. Impact of ambient temperature on charging and discharging 

Outdoor temperature has a major impact on energy transfer and 
charging powers during EV charging and discharging. In this study we 
utilize a similar approach as in [38], that is, the ambient temperature is 
used as a proxy for battery temperature when assessing the cold tem-
perature impact on EV battery charging and discharging. Additionally 
we utilize the EV laboratory measurement data from [39,40] to quantify 
the diminishing energy transfer in cold temperatures. 

The average charging power decreases in different temperatures, 
calculated based on the laboratory measurement dataset [40] and 
assuming linear decrease between measurements, are presented in 
Fig. 3. It should be noted that these average powers are calculated based 
on total energy transfers of charging events, and thus include charging 
efficiencies as the authors utilized SOC-levels reported by the vehicles. It 
should also be noted that in Volkswagen ID.3 the charging power was 
not heavily impacted by ambient temperature, due to larger preheating 
load before the dynamometer drive sequence, which resulted in higher 
battery temperature during the charging sequence [39]. 

As discussed before, there exist very few studies that investigate the 
dependence of V2G discharge power and ambient temperature. How-
ever, we can assume this dependence is similar to the dependence be-
tween EV charging power and ambient temperature, that is, the average 
discharging power decreases in cold temperatures. Additionally we as-
sume that the available maximum capacity of the battery does not 
significantly diminish in cold temperatures, and that during EV charging 
the battery SOC increases linearly under a constant charging power, as 
for instance in [27,48,49], and vice versa during EV discharging. As the 
aim of the EV selection for the laboratory measurements conducted in 
[39,40] was to represent the car pool of the Nordic countries as close as 
possible, we utilize the results of this study and the average power 
transfer decrease curve presented in Fig. 3 to represent a power decrease 
factor in both EV charging and discharging. 

These assumptions and simplifications were made to minimize 
computational time and complexity, and to enable the LP-model to 
efficiently solve the problem. Especially the impact of cold temperatures 
on battery performance contains multiple non-linear factors that an LP- 
model is unable to consider without similar simplifications. The limi-
tations of this approach are further discussed in the Discussion section. 

2.3. LP-model 

The linear programming (LP) model used in this study is based on a 
mixed-integer linear programming (MILP) model utilized in [26,27]. 
This MILP-model was simplified to an LP-model to minimize computa-
tional time and complexity of the model. In [26,27], the use of the more 
complex MILP-model was justified as to ensure that no simultaneous EV 

charging and discharging occurs due to the binary variables, even during 
negative electricity price hours. In this study, we found that the 
charging/discharging efficiencies and other losses are able to keep 
simultaneous charging/discharging from happening at any time of the 
year. 

The LP model is used for the implicit DR, V2H and V2HG cases, 
whereas the dumb charging case is calculated deterministically as no 
optimization is needed. The LP-model aims to minimize the electricity 
costs of a system comprising of a detached house and an EV during each 
EV charging event. As discussed in 2.1 the LP-model is first used to 
optimize the system without knowledge of the outage events to calculate 
parameters needed for the power outage model (SOC at outage occur-
rence time etc.), this is referred to as the “initial run” of the model. The 
same LP-model is further used to optimize the system after an outage 
event if the EV is still plugged-in after the outage ends, referred to as the 
“second run” of the model. 

The linear programming model is formulated by equations (1) 
through (9). For each charging event, the objective function (1) mini-
mizes the total cost of electricity purchased from the grid during the EV 
plug-in period. In (1), EHou

t and EEV
t denote the house and EV charging 

electricity purchased from the grid, and EV2G
t ηdisDt is the V2G sales to the 

grid, at event period t, where event periods are 5-minute intervals, or 
less, so as to be consistent with household automatic meter reading 
(AMR) data. The ambient temperature power decrease factor, at event 
period t, is denoted with Dt , and differs between ambient temperatures 
as discussed in section 2.2. The addition of this power decrease factor 
improves the MILP models of [26,27] by enabling the model to consider 
the fact that it takes more energy to reach the same resulting energy 
transfer in cold than warm temperatures. The addition of this factor 
significantly reduces the profitability of V2H and V2G operation in cold 
temperatures due to increased losses in both discharging and charging. 

The hourly electricity spot market rate is denoted with CSpot
t , while 

CVAT
t covers the value added taxes (24 %) and CMar the margin of the 

electricity supplier. Differing from [27], value added tax is calculated 
also for negative values to correspond with up-to-date energy company 
billing practices where VAT is added after calculating the cost of 
monthly electricity purchases. Electricity taxes, security of supply pay-
ments and transmission fees are charged by the DSO based on trans-
ferred energy, these, including VAT, and denoted here by CTra. The 
battery degradation costs from additional battery utilization due to V2H 
and V2G are assumed small based on [27] and are not used in the LP- 
model, but are calculated after the optimization based on increased 
battery cycling. The values of the previous parameters are reported in 
Table 3. Depending on the considered EV-utilization case, the decision 
variables of the LP-model can include: EHou

t , EEV
t , EV2H

t and EV2G
t . When 

using the LP-model in V2H-only and implicit DR cases, EV2G
t is dis-

regarded, and in implicit DR case EHou
t is not a variable as all household 

Fig. 3. Average charging power decrease in different ambient temperatures, based on [39,40].  
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electricity is purchased from the grid. 

Min
∑T

t=1

((
EHou

t + EEV
t

)(
CSpot

t + CSpot
t CVAT

+ CMar + CTra
)

− EV2G
t ηdisDtCSpot

t

)
(1) 

subject to 

EV2H
t ηdis ≤ EDem

t (2)  

EEV
t ≤ Pcha

t τtDt (3)  

EV2H
t + EV2G

t ≤ Pdis
t τt (4)  

SOCmin ≤ SOCt ≤ SOCmax (5)  

SOCt = SOCt−1 +
EEV

t−1ηcha − EV2H
t−1 − EV2G

t−1

EBat (6)  

SOCT = SOCPlug−out (7)  

EDem
t = EHou

t + EV2H
t ηdisDt (8)  

EEV
t , EV2H

t , EHou
t , EV2G

t ≥ 0 (9)   

t = 1, …,T  

Here, constraint (2) represents that the discharged energy trans-
ferred to the household EV2H

t ηdis cannot be larger than the household 
demand EDem

t . Constraint (3) ensures that thecharged energy EEV
t cannot 

be larger than the energy transferred in the timeframe τt with charging 
power Pcha

t given temperature decrease factor Dt . Constraint (4) ensures 
that the discharged energies or their sum cannot be larger than the en-
ergy discharged in the timeframe while assuming it is possible to 
simultaneously use discharged energy in the house and sell it to the grid. 

The EV SOC at any given time-period t of the charging event, 
calculated with (6), should also stay between the minimum and 
maximum SOCs as noted in constraint (5). As will be discussed in section 
2.5, we consider three customer preference assumptions cases each with 
different SOCmin to consider different customers priorities. The SOC after 
the optimization SOCT should be equal to plug-out SOC SOCPlug−out as 
indicated by constraint (7). The next constraint (8) represents balance, 
that is the discharged electricity from the EV plus household electricity 
purchased from the grid should equal the original household electricity 
demand in the addressed time-period. 

Equations (10)‒(12) are used to pre-compute the initial SOC level 
SOC0 at the beginning of the optimization, and the plug-out SOC level 
SOCPlug−out used as a target in (7). As noted in (10), for the initial run of 
the LP model, we use the SOC level at EV plug-in time SOCPlug−in as the 
initial SOC of the optimization. If a power outage happens during the 
charging event, and if the outage ends before the EV plug-out, we utilize 
the same LP-model to optimize the system for the rest of the charging 
event period. In this second run of the model, we use the SOC after the 
outage/blackout event, SOCB, as the initial SOC of the optimization. 

However, as the EV charging event dataset lacks explicit SOC in-
formation, we estimate the plug-in SOC with (11). If the potential energy 
that could be charged during the charging event duration τDur with 
maximum charging power Pmax,cha exceeds the actual energy charged 
Eevent, we conclude that the battery reaches a predefined SOCmax during 
the event. Under this condition, the plug-in SOC is calculated with the 
first part of (11), a method consistent with [26,27]. In cases where the 
EV does not reach SOCmax during the charging event, a less common 
scenario, the plug-in SOC is inferred, similarly as in [50], by sampling 
from an empirical EV plug-in SOC distribution documented in [51]. This 
alternate method of plug-in SOC estimation is adopted only when esti-
mation based on Eevent is not possible as reflected by the ’otherwise’ 

clause of equation (11). 
The SOC at the end of the charging event SOCPlug−out should be as 

high as possible to avoid compromising the EV’s driving range unless 
required by outage response. This plug-out SOC is calculated with (12) 
by taking the minimum between SOCmax and the SOC that would be 
reached if the EV would charge with maximum power Pmax,cha for the 
whole event duration (calculated through summation over each 5-min 
period to ensure ambient temperature power decrease factor of each t 
is considered). 

SOC0 =

{
SOCPlug−in if initial run

SOCB if second run (10)  

SOCPlug−in =

⎧
⎪⎨

⎪⎩

SOCmax −
EEventηcha

EBat if Pmax,chaτDur ≥ Eevent

Sampled from distribution otherwise
(11)  

SOCPlug−out = min(SOC0 +
∑T

t=1

τtPmax,chaηchaDt

EBat , SOCmax) (12)  

When considering the implicit DR case, all constraints with EV2H
t , EV2G

t 
are redundant. In V2H-only case EV2G

t can be regarded always zero. In all 
of the aforementioned cases, the total yearly electricity costs are 
calculated by considering the household electricity costs from non-EV 
plug-in times in addition to the costs from charging event timeframes 
calculated with the previous equations. The energy flows of the LP 
model are further showcased in Fig. 4. 

The battery degradation cost CDeg is calculated with (13) based on 
[52,53]. Here CRep is the battery replacement cost and LCyc the battery 
lifetime in cycles. In this study, battery degradation is only considered 
for the extra degradation due to additional battery cycling due to V2H 
and V2HG operation. This cycling degradation cost could also be 
regarded zero if the battery’s lifetime in years is reached before lifetime 
in cycles [53]. 

CDeg =
CRep

LCycEBat (13)  

2.4. Power outage response model 

The power outage model is called for each charging event after 
conducting the initial LP-optimization. Here, we utilize the most up-to- 
date power outage statistics from Finnish Energy [19] to sample power 
outage events to the charging events based on their typical occurrence 
and distribution. To ensure comparability of the results, identical power 
outages are used across all different customer preference assumption 
and EV-utilization cases. The utilized power outage statistics offer the 
best available open information about power outage occurrences in 
Finland. As most long power outages happen outside urban areas in 
regions without underground cabling, we utilize the outage statistics for 
regions outside urban area development plans. Households in these 
areas will benefit the most from increased outage resilience and the 
households of these areas without underground cabling are more 
generalizable to other countries with lower level of underground ca-
bling. A summary of the outage statistics used for power outage sam-
pling is presented in Table 1. Here the “technical, weather & other” and 

Fig. 4. Energy flows of the LP model.  
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“snow and ice load” outages are long outages that typically require some 
repairs to power lines, whereas the short outages (fast and automatic 
reconnection) can be handled automatically off-site. 

The outage statistics are utilized to sample power outages for 
charging events, considering the probabilities of outage occurrences and 
the time of year (for snow and ice load outages). It is assumed that the 
outage has an equal probability to happen at any minute. The durations 
for long outages are estimated with log-normal distribution, as seen best 
for instance in [54]. 

If a power outage is sampled to a charging event, we select the EV 
SOC of the outage occurrence time from the initial run of the LP-model. 
As the LP-model iterates time on 5-minute intervals (household smart 
meter interval), SOCs for outages starting at non-5-minute divisible 
times are interpolated based on 5-minute interval SOCs. The outage 
model iterates the minutes of the outage event and calculates for every 
time-step whether the EV can fulfill the household energy demand and 
reduces the EV SOC accordingly. It should be noted that identical outage 
events sampled to a charging event of a charging point/household 
combination are used across different EV-utilization cases and customer 
preference assumptions to ensure comparability of the results. 

The equations used in the power outage model are presented below. 
Here the first two equations (14 & 15) are used to calculate the power 
outage duration and energy demand not fulfilled by the EV. The equa-
tion (16) is used to estimate the discharge power in cases when the 
whole demand can be filled and otherwise. Equation (17) is used to 
calculate the possible time the EV can discharge during the outage/ 
blackout event period/minute b, given SOC constraint and EV avail-
ability (EVplugged−in). 

ENot−Fulfilled =
∑B

b=1
EDem

b − Pdis
b τdis

b ηdisDb (14)  

TNot−Fulfilled =
∑B

b=1
τOutage

b − τdis
b (15)  

Pdis
b =

⎧
⎪⎨

⎪⎩

EDem
b

τdis
b

if
EDem

b

τdis
b

≤ Pmax,disηdisDb

Pmax,disηdisDb otherwise
(16)     

SOCDiscomfort =

{
SOCmin if τToPlugout

b ≥ 3h
−0.1τToPlugout

b + 0.9 if τToPlugout
b < 3h

(18)  

SOCb = SOCb−1 −
Pdis

b τdis
b

EBat (19)  

In the equation (18), SOCDiscomfort is used to denote the willingness to 
discharge the EV to power the household during power outages. The 
equation (18) is used only in the high plug-out SOC customer preference 
assumption presented in the following section 2.5. In all other customer 
preference assumptions, we utilize a stationary value for SOCDiscomfort as 
will be described in the next section. 

The final equation (19) is used to keep track of the EV SOC during the 
outage event, as the discharge time τdis

b is zero after EV plug-out, SOCB 

represents the EV SOC either at plug-out time (if the outage continues 
after EV plug-out time) or at the end of the outage event (if outage ends 
before plug-out). If the outage ends before EV plug-out, this SOCB is used 
as the initial SOC level for the second run of the model, as noted in Eq. 
(10). 

The presented power outage model outputs information of how well 
the EV can be used to take care of the outage event (fulfilled outage time 
and household energy), whether the EV plug-out happens during the 
outage and about reasons for the EV not being able to handle the whole 
outage (min-SOC reached, unable to meet household power demand). 

2.5. Customer preference assumptions 

In this study we consider three alternative customer preference as-
sumptions that prioritize different main objectives during EV plug-in. 
The high savings (HSavings) assumption represents customers that have 
high motivation towards financial savings and experience only a little 
discomfort from power outages or low SOC at plug-out. This is repre-
sented by SOCmin = 20 % in the LP model, and by a stationary 
SOCDiscomfort = 20 % in the power outage model. 

The high plug-out SOC (HSOC) customer preference assumption rep-
resents customers that prioritize a high SOC at plug-out time. In the LP- 
model this is represented by SOCmin = 60 % and by SOCDiscomfort that 
starts to increase linearly near plug-out time according to Eq. (18) in the 
power outage model. This equation (18) represents the decreasing 
willingness to continue discharging the EV during outages that continue 
near the time when EV is needed for driving purposes. 

The high outage response or “outage averse” (OAverse) assumption 
represents those customers that prioritize good power outage response 
possibilities over monetary savings and high SOC-level at plug-out time. 
This is represented by SOCmin = 60 % in the LP-model and a constant 
SOCDiscomfort = 20 % in the outage model. 

It is possible that the initial SOC0 used in the model is lower than 
SOCmin, making the LP model infeasible, especially in customer as-
sumptions with SOCmin = 60 %. In such cases, we utilize “dumb” 
charging until SOCmin-level is reached and solve the LP-model for the 

remaining part of the charging event. If the power outage ends before 
plug-out, we solve the LP-model again with SOCB , SOC after the outage, 
for the remaining part of the charging event as noted in Eq. (10). 

Table 1 
Summary of the outage statistics, based on Finnish Energy statistics [19].  

Outage category Avg. count Avg. duration 

Technical, weather & other  6.38 0.96 h 
Snow and ice load  4.42 1.03 h 
Fast reconnection  15.95 1.56 min 
Automatic reconnection  8.48 1 s  

τdis
b =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

τOutage
b if SOCb −

Pdis
b τOutage

b

EBat ≥ SOCDiscomfort and EVPlugged−in
b

(
SOCb − SOCDiscomfort

)
EBat

Pdis
b

if SOCb −
Pdis

b τOutage
b

EBat ≥ SOCDiscomfort and EVPlugged−in
b

0 otherwise

(17)   

J. Einolander et al.                                                                                                                                                                                                                             



Energy & Buildings 309 (2024) 114055

8

2.6. Data Description 

In this study we utilized a household an automatic meter reading 
(AMR) dataset that covered all detached households from municipality 
of Orivesi in central Finland. Orivesi is a detached household-centric 
municipality with around 9,000 residents located within commuting 
distance to the third largest city in Finland, Tampere. This municipality 
appropriately represents the share of detached/semi-detached houses of 
Finnish semi-urban and rural municipalities based on Statistics Finland 
[55]. In 2022, half of all Finnish detached/semi-detached houses were 
located in semi-urban or rural municipalities [55], with a significant 
share of these households located outside urban area development plans 
that are more prone to power outages based on outage statistics [19]. 

During AMR data cleaning we removed clearly erroneous measure-
ments, households with yearly consumption less than 2 MWh or more 
than 40 MWh, households with multiple long gaps, missing values or 
errors in the measurements, and households that transferred electricity 
back to the grid. In the end the AMR dataset consisted of the 5-minute 
interval electricity usage data for nearly 400 detached households in 
2022. The average yearly electricity consumption for these households 
was 12.1 MWh, with a median of 11.2 MWh and a standard deviation of 
6.3 MWh indicating a range of different primary heating types. Fig. 5 
depicts the average load curve of the households, highlighting signifi-
cantly higher electricity consumption during the dark, cold winter 
months due to increased need for e.g., heating and lighting. Further-
more, the reduced variability in the load profile during summer months 
can be attributed to warmer temperatures, extended periods of daylight, 
and summer vacations. 

The EV charging event dataset was procured from a Finnish EV 
charging point operator. However, none of the contacted Finnish 
charging point operators (CPOs) had enough detached households from 
Orivesi utilizing their services to offer charging event data from this 
municipality without compromising customer privacy. In Finland, most 
of the EV home charging is conducted from standard household sockets 
or from charging points not connected to any CPO service. Due to these 
restrictions, in this study we utilize a dataset that covers all charging 

events conducted in 2022 on private EV charging points installed to 
household customers in Helsinki. The initial data processing and 
cleaning of the dataset was conducted similarly as, for instance, in 
[26,30,31,56]. That is, during data cleaning, the clearly erroneous 
charging events (events with NULL values, zero energy transfer and 
impossible charged energies), test events, and events lasting either less 
than 5 min or longer than a week were discarded from the dataset. After 
initial data cleaning, charging points not in active use for the whole year, 
points with utilization by multiple EVs and slow charging points were 
also discarded leading to over ten actively used charging points with 
maximum charging powers of 11 kW or more. Based on initial analysis, 
the events from these charging points reflect the typical charging 
behavior of electric vehicle owners of Finnish household customers who 
frequently utilize home charging. On average, these charging points had 
around 220 acceptable charging events in 2022. The main features of the 
charging event data are; plug-in time, plug-out time, duration, and en-
ergy charged during the event. Table 2 presents a statistical overview of 
the key features for an average charging point. The limitations that arise 
from this and the other datasets are discussed further in the Discussions 
section. 

The final pairing of household electricity consumption and EV 
charging events on different charging points was done by generating all 
possible combinations of these customers leading to around 4,000 
unique combinations of detached households with EV charging points. 
When considering the three alternative customer preference assump-
tions and the four different EV-utilization cases, this leads to around 
48,000 different yearly household cases, and to over 10 million different 
charging event and household load combinations without considering 
cases without outage response or various runs with different power 
outage samples. 

Fig. 5. Average hourly household load and ambient temperature.  

Table 2 
Statistical overview of charging event features for an average charging point.  

Feature Mean Std Dev Median 

Charged energy, EEvent [kWh] 20.1 11.5 19.7 
Event duration, τDur [h] 14.6 13.5 12.6 
Plug-in time of the EV [hh:mm] 16:51 4:11 17:55  

Table 3 
Technical specifications and assumptions.  

Specification Value 

Battery capacity, EBat [kWh] 60 
Max. Charging power, Pmax,cha [kWh] 11 
Max. Discharging power, Pmax,dis [kWh] 11 
Charging efficiency, ηcha [%] 85 
Discharging efficiency, ηdis [%] 70 
Battery lifetime cycles,LCyc 1,500 
Battery replacement cost, CRep [€] 10,000 
Electricity supplier margin, CMar [c/kWh] 0.38 
Transfer fees incl. VAT, CTra [c/kWh] 8.00 
Value added tax rate, CVAT [%] 24  

J. Einolander et al.                                                                                                                                                                                                                             



Energy & Buildings 309 (2024) 114055

9

The temperature data used to calculate the ambient temperature 
power decrease factors was downloaded from the open data portal of the 
Finnish Meteorological Institute [57], and the hourly electricity spot 
price data for the Finnish market zone in 2022 was downloaded from the 
ENTSO-E Transparency portal [58]. Hourly ambient temperature and 
the average household hourly load are further presented in Fig. 5. It is 
evident from the figure that lower temperatures are associated with a 
subsequent rise in average hourly electricity usage, and that electricity 
consumption in the summer is considerably lower than during cold 
winter months. 

Technical specifications and other assumptions used in the study are 
compiled to Table 3. In the model we assume a bidirectional EV charging 
point with 11 kW power rating similarly as in [27]. Charging and dis-
charging efficiencies were assumed 85 % and 70 % respectively based on 
[59–61]. The presented battery capacity assumption was adjusted for 
charging points with events non-viable with the initial assumption. The 
battery replacement cost was estimated to be 10,000 € considering 
decreasing battery costs and a modest second life value for the old 
battery similarly as in [27]. 

3. Results 

Power outage handling statistics for all different customer preference 
assumption and EV-utilization cases are presented in Table 4. This table 
contains the average percentages of fully handled power outages in total 
and during the EV plug-in period, separated further for long outages. 
Additionally, percentage of outage events where outage response was 
stopped due to reaching of the preference-specific discomfort-SOC are 
presented. In all cases, EV plug-out happens in the middle of an outage in 
2.3 % of charging events with outages (7.1 % for events with long 
outages). From the table it can be noted that the outage averse (OAverse) 
customer preference assumption leads to best performance with regards 
to fully handled outages regardless of the EV-utilization case, with 97.8 
% of all outages fully handled during plug-in. The outage response of 
OAverse-cases almost never terminates due to the SOCDiscomfort constraint, 
and the main reason for non-perfect outage response during EV plug-in 
results from discharge powers smaller than the household demand. The 
high end-SOC (HSOC) preference assumption leads to worst outage 
handling performance, with on average only around 80 % of long out-
ages fully handled. Overall, it is easier to fully handle short outages than 
long ones, however it might differ between customers which outages 
cause more inconvenience. 

The average suffered power outage times and not-fulfilled household 
demand during EV plug-in are presented in Table 5. The table also 
covers the average total handled outage duration during the year. Here 
again it can be noted that the outage averse customer preference 
assumption leads to best performance with regards to outage handling, 

with on average only seconds of suffered outage during EV plug-in 
regardless of the EV-utilization case. Overall worst performer is the 
high end-SOC preference assumption with V2HG, which on average leads 
to almost 31 min of outage time and cannot cover over 17 % of the 
household outage electricity demand during yearly EV plug-in. 

Table 4 
Power outage handling statistics for the customer preference assumption and 
EV-utilization cases.   

Fully handled 
outages [%] 

Fully handled 
outages during 
plug-in period [%] 

Response stopped; 
Discomfort-SOC 
reached [%] 

Case All Long All Long All Long 

HSOC_Dumb  94.5  87.3  96.7  94.4  1.1  1.5 
OAverse_Dumb  95.5  88.6  97.8  95.7  0.0  0.0 
HSavings_Dumb  95.5  88.6  97.8  95.7  0.0  0.0 
HSOC_Implicit  92.9  82.5  95.2  89.6  2.8  6.8 
OAverse_Implicit  95.5  88.6  97.8  95.7  0.0  0.0 
HSavings_Implicit  95.5  88.6  97.8  95.7  0.0  0.0 
HSOC_V2H  86.4  76.4  88.7  83.5  9.6  13.4 
OAverse_V2H  95.5  88.6  97.8  95.7  0.0  0.0 
HSavings_V2H  94.4  87.2  96.7  94.3  1.2  1.6 
HSOC_V2HG  82.9  73.9  85.2  81.0  13.1  15.9 
OAverse_V2HG  95.5  88.6  97.8  95.7  0.0  0.0 
HSavings_V2HG  93.6  86.5  95.9  93.5  2.0  2.4  

Table 5 
Average suffered outage time, total handled outage time and not-fulfilled 
household demand during EV plug-in.  

Case Suffered 
power 
outage time 
during plug- 
in [min] 

Suffered 
power 
outage time 
during plug- 
in [%] 

Total 
handled 
outage time 
during the 
year [h] 

Not fulfilled 
energy 
demand 
during plug- 
in [%] 

HSOC_Dumb  2.6  1.30  3.15  2.00 
OAverse_Dumb  0.1  0.01  3.19  0.77 
HSavings_Dumb  0.1  0.01  3.19  0.77 
HSOC_Implicit  11.8  6.36  3.00  7.47 
OAverse_Implicit  0.1  0.01  3.19  0.77 
HSavings_Implicit  0.1  0.03  3.19  0.79 
HSOC_V2H  26.0  14.66  2.76  15.86 
OAverse_V2H  0.2  0.01  3.19  0.78 
HSavings_V2H  3.6  1.76  3.13  2.70 
HSOC_V2HG  30.8  16.96  2.68  17.44 
OAverse_V2HG  0.2  0.01  3.19  0.78 
HSavings_V2HG  5.0  2.54  3.11  3.34  

Table 6 
Average and maximum increased electricity costs and differences in end-SOC 
due to outage response per charging events with outages.   

Avg. 
Increased 
cost per 
outage [€] 

Max. Increased cost per 
outage [€] 

Avg. 
Difference in 
end-SOC per 
outage [%] 

Case All Long All Long 

HSOC_Dumb  0.14  0.42  22.68  0.06  0.18 
OAverse_Dumb  0.14  0.43  22.68  0.06  0.19 
HSavings_Dumb  0.14  0.43  22.68  0.06  0.19 
HSOC_Implicit  0.10  0.30  18.37  0.06  0.19 
OAverse_Implicit  0.12  0.36  18.37  0.07  0.23 
HSavings_Implicit  0.11  0.34  18.37  0.07  0.23 
HSOC_V2H  0.09  0.29  18.37  0.06  0.20 
OAverse_V2H  0.13  0.38  23.19  0.07  0.23 
HSavings_V2H  0.11  0.34  18.37  0.08  0.24 
HSOC_V2HG  0.09  0.29  18.37  0.06  0.20 
OAverse_V2HG  0.13  0.39  23.19  0.07  0.23 
HSavings_V2HG  0.11  0.34  18.37  0.08  0.24  

Table 7 
Average yearly total electricity costs with and without outage response and 
average battery degradation costs from increased battery cycling.  

Case Avg. Total 
yearly costs, 
With 
Resilience 
[€] 

Avg. Total 
yearly costs, 
No 
Resilience 
[€] 

W.Avg. 
Increased 
yearly 
costs [€] 

Avg. Yearly 
battery 
degradation 
costs from 
increased 
cycling [€] 

HSOC_Dumb  4203.4  4201.9  1.92  0.49 
OAverse_Dumb  4203.4  4201.9  1.94  0.49 
HSavings_Dumb  4203.4  4201.9  1.94  0.49 
HSOC_Implicit  3959.0  3958.0  1.44  0.45 
OAverse_Implicit  3959.2  3958.0  1.56  0.49 
HSavings_Implicit  3883.0  3881.9  1.52  0.49 
HSOC_V2H  3911.9  3910.8  1.38  0.38 
OAverse_V2H  3919.5  3918.1  1.71  0.46 
HSavings_V2H  3834.0  3832.8  1.54  0.44 
HSOC_V2HG  3880.1  3879.0  1.37  0.37 
OAverse_V2HG  3900.4  3899.0  1.73  0.46 
HSavings_V2HG  3796.0  3794.8  1.54  0.43  
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Average and maximum increased electricity costs and the average 
differences in end-SOC due to outage response are presented in Table 6 
for all preference and EV-utilization case combinations. The average 
increased and average differences in end-SOC are presented for all 
outage events and separately for long outages. Overall, the increased 
electricity costs resulting from additional charging need due to outage 
response are on average very low, less than 0.42€ in all cases. However, 
the maximum increased costs can be over 23€ if the outage response 
leads to “mandatory” extra charging during expensive electricity hours 
to reach as high as possible SOC before plug-out. 

The average total yearly household electricity costs for different 
cases with and without outage response are presented in Table 7. 
Additionally, here we present the weighted average increased yearly 
costs for charging events with outages, and average yearly battery 
degradation costs resulting from increased cycling due to outage 
response. Overall, it can be noted that on average the yearly electricity 
costs of the households do not increase significantly due to outage 
response, with less than 1.5€ increase in every case. Additionally, the 
average degradation costs from increased cycling are very small, less 
than 0.5€ in all cases. The lowest yearly costs are reached with the high 
savings preference assumption and V2HG EV-utilization, with on average 
around 10 % savings compared to dumb charging. It should be noted that 
around 75–81 % of the yearly savings of the V2HG cases, compared to 
dumb charging, result from conventional implicit demand response, i.e., 
from shifting of EV charging during normal/non-outage operation. 

To further analyze the customer preference main objectives (high 
end-SOC, high outage handling, high savings) we present the applicable 
criteria values with confidence levels in the following figures. The 
average end-SOC differences and confidence levels (95 %) for all com-
binations of customer preferences and EV-utilization cases are presented 
in Fig. 6. 

The similar scale of average end-SOC differences is due to the fact 
that most power outages can be fully handled, and the EV usually has 
time to recover from the outage event in all customer preference 
assumption and EV-utilization cases. It’s important to highlight that the 
average differences in end-SOC are computed considering all types of 
power outages. Consequently, the short, automatically reconnected 
outages result in very small average end-SOC differences. If only the 
longer fault outages are considered, the averages are around four times 
higher as presented in Table 6. Even though the average differences in 
end-SOC do not have major disparities, in the worst-case scenarios, 
customer preferences and EV-utilization cases can have a significant 
impact on the EV SOC at plug-out. These maximum end-SOC differences 
due to outage response are presented in Table 8. It should be noted that 
all of these maximums happen due to the same snow load induced power 

outage event, with a duration of 6.3 h, sampled to January. As can be 
seen, under the outage averse and high savings assumptions the plug-out 
SOC is almost 40 % lower than without outage response. However, 
under the high plug-out SOC preference assumption, the SOC difference is 
smaller (around 29 %) as the SOCDiscomfort constraint is reached. It should 
be noted that these maximum SOC differences are highly affected by the 
occurrence time and length of outages, with long and rare system-wide 
blackouts, the maximum differences in end-SOC can be even higher. In 
our case, these large maximum SOC differences result from mobility 
need, as EV plug-out happens before the outage ends and the EV has no 
time to charge after the end of the outage. 

The average yearly suffered power outage times and confidence 
levels (95 %) for all combinations of customer preferences and EV- 
utilization cases are presented in Fig. 7. 

Similarly, to the average difference in end-SOC case, the maximum 
suffered power outage times are considerably larger than the average 
values of Fig. 7. Based on regression analysis to assess the sensitivity of 
suffered outage time, we identified a minor inverse correlation between 
EV plug-in SOC and suffered power outage durations, indicating that 
higher initial SOC levels slightly reduce suffered outage time. However, 
this sensitivity was found to be quite marginal considering all outage 
types. The maximum durations across all households when the house-
hold electricity demand could not be filled with the EV during a power 
outage are presented in Table 9. The maximum suffered outage dura-
tions all result from the same power outage, specifically a snow load- 
induced outage, which lasted nearly 27 h and occurred in February. 
The values of outage averse and high savings scenarios are identical as 
these assumptions share a similar SOCDiscomfort constraint. Overall, in the 
worst-cases the HSOC preference assumption leads to over 24-hour 
outages due to the higher discomfort SOC constraint and V2H/V2G 
operation prior to the outage. Even though similar extreme events are 
rare (as can be seen from the yearly averages in Fig. 7), these very long 
outages can be huge inconveniences for households. 

The average yearly total electricity costs and confidence levels (95 
%) for all combinations of customer preferences and EV-utilization cases 
are presented in Fig. 8. Here it can be noted that with dumb EV- 
utilization, the costs are similar between customer preference assump-
tions, whereas the high savings customer preference leads to lowest 

Fig. 6. Average difference in end-SOC for customer preference/EV-utilization cases.  

Table 8 
Maximum differences in end-SOC due to outage response.   

Dumb Implicit V2H V2HG 

HSOC  29.2 %  29.2 %  29.2 %  29.2 % 
OAverse  39.4 %  39.4 %  39.4 %  39.4 % 
HSavings  39.4 %  39.4 %  39.4 %  39.4 %  
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average total yearly electricity costs in all other EV-utilization cases with 
around 3 % savings compared to the other preference assumptions. 

3.1. Impact of ambient temperature on the results 

As ambient temperature has a major impact on energy transfer of EV 
charging and discharging, we have further analyzed the customer ob-
jectives with charging events conducted in three different average 
ambient temperature intervals (over 0 ◦C, between 0 ◦C and −10 ◦C, and 
below −10 ◦C). Here we only consider the difference in end-SOC and 
suffered power outage time due to outage response, as consideration of 
the total yearly electricity costs is impossible for temperature intervals 
that only contain a portion of all charging events conducted during the 
year. 

In Fig. 9, we present the average end-SOC differences with 95 % 
confidence levels for charging events of the different ambient temper-
ature intervals. It can be seen that the average end-SOC differences are 

largest and have most variance in charging events conducted in very 
cold (below −10 ◦C) temperatures, whereas in positive centigrade 
temperatures the average end-SOC differences are significantly smaller. 
Comparison of this figure with Fig. 6, implies that the large overall 
average end-SOC difference of, for instance, the HSavings_V2HG case 
compared to HSavings_Dumb might result mostly from poor performance 
under cold temperatures. It should however be noted that over 53 % of 
the analyzed charging events were conducted under positive average 
temperatures, whereas only 5.1 % of the charging events had an average 
temperature below −10 ◦C. 

In Fig. 10, we present similar temperature grouping for average 
suffered power outage times during EV plug-in. Here the suffered outage 
time is presented in percentages (not in minutes as in Fig. 7) to consider 
the differing total outage time in different temperature categories. Here 
it can be noted that colder temperatures do not always result to longer 
suffered outage times, as is the case with HSOC_V2HG. This can result 
from differing total outage and EV plug-in times in different temperature 
categories, from differences in hourly electricity prices or demand 
leading to different initial charging/discharging behavior and from the 
probabilistic nature of the power outage sampling. In 2022, the Finnish 
hourly electricity spot-prices were highest and had most variance in 
August [58] (temperature over 0 ◦C) which can explain the differences 
between HSOC V2H and V2HG behavior, as it might have been very 
profitable to sell electricity back to the grid during these peak hours, 
which in turn leads to poorer outage response. Overall, in regard to 

Fig. 7. Average yearly suffered power outage time for customer preference/EV-utilization cases.  

Table 9 
Maximum suffered outage time during a power outage [h].   

Dumb Implicit V2H V2HG 

HSOC  17.4  18.1  24.3  24.3 
OAverse  6.6  7.5  15.0  15.0 
HSavings  6.6  7.5  15.0  15.0  

Fig. 8. Average yearly electricity costs for customer preference/EV-utilization cases.  
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Fig. 9. Average difference in end-SOC for customer preference/EV-utilization cases for charging events conducted under different ambient temperatures.  

Fig. 10. Average suffered power outage time during charging events under different ambient temperatures for customer preference/EV-utilization cases.  

Fig. 11. Normalized customer main objectives under different customer preference/EV-utilization cases.  
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suffered outage time, the outage averse preference assumption dominates 
other preference assumptions in all temperature groups and EV- 
utilization cases with even the upper 95 % confidence level being al-
ways very close to 0 %. 

3.2. Multi-Criteria comparison of the cases 

Comparison of the different customer preference/EV-utilization 
cases in terms of the three main objectives can be seen as a typical 
multi-criteria decision problem, where no alternative is optimal with 
respect to all criteria/objectives. The most preferred alternative is nor-
mally a compromise between different criteria depending on how the 
decision-maker sees the relative importance of the criteria. In any case, 
only Pareto efficient (non-dominated) solutions need to be considered 
[62]. A solution is non-dominated if no other solution is strictly better 
with respect to one objective and at least as good with respect to the 
others. 

Fig. 11 shows the different customer preference/EV-utilization case 
alternatives with average main objective values normalized to the range 
[0,1]. Here the high plug-out SOC objective is represented by the average 
difference in end-SOC, the high outage handling objective by average 
yearly outage time suffered, and high savings by total yearly costs. Thus, 
for all objectives, a smaller value implies better performance with 
regards to the customer objective. The normalized objective values of 
the HSavings_Dumb case are identical to OAverse_Dumb, thus overlapping 
in the figure. 

It should be noted that none of the cases is dominated by the others, 
which means that (subject to suitable preferences) any of the alterna-
tives may be regarded optimal (most preferred). If in the different 
customer preference assumptions only the main objective is of impor-
tance, the V2HG-case would be the best choice for the high savings 
preference assumption, and “dumb charging”-case would be the best 
choice for both high plug-out SOC and outage averse preference 
assumptions. 

4. Discussion and conclusions 

This study introduced a novel hybrid model to assess the power 
outage self-sustainment capabilities of households with bidirectional EV 
charging, while considering different main objectives of the households 
regarding EV-utilization. The main objectives considered were; outage 
prevention, household electricity cost minimization and a high EV state- 
of-charge at the end of the charging event. The optimization was con-
ducted with real AMR and EV charging event data from Finland given 
four distinct EV-utilization cases and three alternative customer pref-
erence assumptions. The study represents the first comprehensive 
methodology and assessment of V2H outage prevention capabilities 
under challenging conditions of the northern subarctic climate. 

Based on our results, bidirectional EV charging provides an excellent 
opportunity for households in mitigation of power outages. On average, 
an EV can be used to handle over 95 % of all outages occurring during EV 
plug-in. With the outage averse preference assumption, almost 98 % of all 
outages can be fully averted during EV plug-in. 

The main reasons for the EV not being able to fully prevent an outage 
were due to a) reaching of the minimum discomfort SOC-level under 
which the EV could not discharge its battery, b) higher household power 
demand than the EV could supply or c) EV plug-out during the outage. 
Of these reasons a) was almost fully mitigated with the outage averse 
customer preference assumption, where the EV retained a SOC-level of 
at least 60 % during normal non-outage operation. The reason b) could 
be mitigated either by lowering the household electricity consumption 
during power outages (e.g., reducing non-essential appliance use) or by 
installing a bidirectional charging unit with a higher discharge-power 
rating. The reason c) could be mitigated by leaving the EV connected 
to the charger until the outage has passed. In our study, we however 
assume that the primary use of an EV is mobility, and that outages 

happening when the EV is not plugged-in do not cause as much 
discomfort to the household, as at least the EV driver is elsewhere during 
this time. 

There exist major differences between the assessed EV-utilization 
and customer preference assumptions cases when considering 
customer main objectives. In outage prevention, the dumb charging cases 
led to lowest suffered outage duration (0.1–2.6 min) during the year, 
with the overall worst performer being V2HG with high plug-out SOC 
preference (30.8 min). The maximum suffered outage time during a 
single event was also highest with high plug-out SOC preference 
assumption, with variation between 17 and 24 h across EV-utilization 
cases. In electricity cost minimization, the dumb charging cases led to 
highest total yearly costs, whereas the V2HG case with high savings as-
sumptions led to highest monetary savings, 10 % reduction in yearly 
electricity bill compared to dumb charging. It should be noted that 
around 75–81 % of these savings result from conventional implicit de-
mand response, i.e., from shifting of EV charging to cheap electricity 
hours during normal/non-outage operation. When considering the 
impact of outage response on the EV SOC at plug-out time, the dumb 
charging cases performed best with smallest deviations in end-SOC, with 
V2HG under high savings assumption leading to the worst average re-
sults. The differences between these yearly averaged differences in end- 
SOC were however quite small. The maximum differences in end-SOC 
due to outage response (~40 %) were noted in outage averse and high 
savings preferences, whereas with the high plug-out SOC preference this 
maximum difference was only around 29 % due to higher discomfort 
SOC constraint. Based on the multi-criteria comparison of different 
customer preference/EV-utilization cases, none of the cases is domi-
nated by the others, thus the optimal way of utilizing bidirectional 
charging is heavily influenced by customer inclinations. 

Average increased electricity costs resulting from outage response 
are less than 0.2€ if all outages are considered, and less than 0.5€ for 
long fault outage events. Based on [24], the average hourly willingness 
to pay (WTP) to avoid shorter and medium outages (1 h & 4 h) in Finland 
were 3.2€ & 0.5€ respectively for winter and summer, and 2.2€ & 1.2€ 
for longer winter and summer outages (24 h & 12 h). Based on these 
values, it seems that customers would be willing to use bidirectional 
charging to avoid outages, as the increased costs are on average smaller 
than the WTP. The maximum increased costs per an outage in our study 
vary between 18.4€ and 23.2€ for different cases and preference as-
sumptions, with all these worst-case events occurring in the winter. The 
costs per outage hour in these cases with outage durations between 5 
and 7 h ranged from 2.7€ to 4.1€ thus being slightly higher than the 
estimated customer WTP. It should be noted that these increased costs 
result from “mandatory” charging during more expensive electricity 
hours to meet as high as possible SOC before plug-out. 

Additionally, the average yearly degradation costs from increased 
cycling due to bidirectional operation are very small, less than 0.5€ in all 
cases. As the bidirectional operation does not lead to significant increase 
in cycling, the EV battery would not reach its estimated lifetime of 1500 
cycles until around 25 years with similar utilization. That is, if the 
battery’s lifetime due to calendar aging would be less than 25 years, the 
cost of cycling degradation could be regarded zero as the lifetime in 
years is reached before lifetime in cycles [53]. 

Overall, based on our results it can be stated that EVs can be effec-
tively used to sustain household loads over power outages with V2H 
given EV availability, high SOC-level when the outage begins and if the 
EV is not needed for its primary purpose, driving, during the outage. 
These findings are consistent with previous research [41,42,44]. Our 
research however showed that V2H (with assumed discharging power of 
11 kW) cannot always supply enough power to cover the whole 
household load during power outages, and that different customer 
preferences and EV-utilization methods have a significant impact on 
overall outage response capability as well as to other important 
customer objectives. In summary, the outage prevention capabilities of 
EVs via bidirectional charging can serve as an important non-monetary 
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incentive for EV and bidirectional charger adoption, especially as based 
on our results, and based on [26,27], V2H/V2HG does not offer 
considerable financial savings compared with conventional implicit DR. 
It should be noted that, for instance, self-generation and explicit DR 
programmes can considerably increase the financial profitability of 
domestic bidirectional EV chargers. 

In analyzing the strengths and weaknesses of our proposed approach, 
it is crucial to acknowledge that while it provides a robust framework for 
assessing the typical efficacy of V2H in power outage prevention, there 
are several factors that could lead to its underperformance. A primary 
limitation lies in the model’s reliance on mainly deterministic inputs, 
which, although grounded in real data, may not fully capture the dy-
namic and unpredictable nature of household energy consumption, EV 
usage patterns and power outage occurrence. The reliance on real data, 
especially of detached household consumer EV charging events and of 5- 
minute interval AMR consumption data might also pose challenges in 
replicating similar analyses in regions where such detailed data is not 
readily available. As the study utilized data from Finland, generalization 
of results to apply to other locations, especially to non-subarctic regions, 
can be difficult. However, as the building stock and climate in other 
Nordic countries is very similar to that of Finland, and as the Nordic 
countries share a common electricity market, the results can be seen as 
the best available reference point for Nordic household V2H operation in 
outage prevention. Nevertheless, bidirectional EV charging can signifi-
cantly bolster power outage prevention capabilities in all areas, irre-
spective of climate conditions, with greatest potential in regions 
characterized by unreliable power grids and frequent outages. Addi-
tionally, as in this study we assumed a single EV per household and 11 
kW bidirectional chargers, the results are applicable only to comparable 
systems. It can be speculated that in households with higher power 
chargers or multiple EVs (or in community scale systems) the outage 
prevention capabilities and other benefits would be even greater. 
Another limitation of this study arises from the utilized ambient tem-
perature model, in future research the methodology could be com-
plemented with a dedicated battery model that considers actual battery 
temperature including possible need for battery heating in the optimi-
zation. Inclusion of an accurate battery model would however signifi-
cantly increase the complexity and computational time needed in the 
simulation. 

As our model employs a primarily deterministic approach due to 
utilization of real data, with stochastic elements introduced mainly 
through outage sampling, it is important to acknowledge the inherent 
uncertainties present in real-life use cases that could influence the pre-
dictive accuracy of the model. Factors such as fluctuating electricity 
prices, variable household demand, changes in ambient temperature, 
and the availability and initial SOC of the EV can significantly influence 
the utility of V2H in outage prevention. Applying the model in real-time 
scenarios would necessitate prediction of household demand, additional 
data of EV use, and for best performance, information about possible 
planned power outages, local distribution grid, and of weather events 
that might cause disruptions in power supply. In future study, integra-
tion of these factors could enhance the model’s practical utility for V2H 
households. 

To sum up, electric vehicles and bidirectional charging offers mul-
tiple benefits to households ranging from financial savings to self- 
sustainment during power outages. Overall, EVs and V2H significantly 
improve the energy resilience of households, which is especially 
important for rural households that are more prone to suffer from 
blackouts and power outages. Further, outage prevention capabilities 
enabled through EVs and bidirectional charging serve as an important 
non-monetary incentive for EV and bidirectional charger adoption. 
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[23] Sähkömarkkinalaki, 588/2013 [Electricity Market Act], Ministry of Trade and 
Industry, Finland, 2013. https://www.finlex.fi/fi/laki/ajantasa/2013/20130588. 

[24] J.J. Cohen, K. Moeltner, J. Reichl, M. Schmidthaler, Linking the value of energy 
reliability to the acceptance of energy infrastructure: evidence from the EU, 
Resour. Energy Econ. 45 (2016) 124–143, https://doi.org/10.1016/j. 
reseneeco.2016.06.003. 

[25] A. Hussain, P. Musilek, Resilience enhancement strategies for and through electric 
vehicles, Sustain. Cities Soc. 80 (2022) 103788, https://doi.org/10.1016/j. 
scs.2022.103788. 

[26] J. Einolander, A. Kiviaho, R. Lahdelma, Household Electricity Cost Optimization 
with Vehicle-to-Home Technology and Mixed-Integer Linear Programming, in: 
2023 Int. Conf. Futur. Energy Solut., IEEE, 2023, https://doi.org/10.1109/ 
FES57669.2023.10182713. 

[27] J. Einolander, A. Kiviaho, R. Lahdelma, Impact of V2G, V2H and FCR to Electricity 
Costs of Households with Varying Primary Heating Sources, in: 26th IEEE Int. 
Intell. Transp. Syst. Conf., IEEE, 2023, https://doi.org/10.1109/ 
ITSC57777.2023.10422255. 

[28] M. Alirezaei, M. Noori, O. Tatari, Getting to net zero energy building: investigating 
the role of vehicle to home technology, Energy Build. 130 (2016) 465–476, 
https://doi.org/10.1016/j.enbuild.2016.08.044. 

[29] V. Monteiro, B. Exposto, J.C. Ferreira, J.L. Afonso, Improved vehicle-to-home 
(iV2H) operation mode: experimental analysis of the electric vehicle as off-line 
UPS, IEEE Trans. Smart Grid. 8 (2017) 2702–2711, https://doi.org/10.1109/ 
TSG.2016.2535337. 

[30] J. Einolander, R. Lahdelma, Explicit demand response potential in electric vehicle 
charging networks: event-based simulation based on the multivariate copula 
procedure, Energy. 256 (2022) 124656, https://doi.org/10.1016/j. 
energy.2022.124656. 

[31] J. Einolander, R. Lahdelma, Multivariate copula procedure for electric vehicle 
charging event simulation, Energy. (2021) 121718, https://doi.org/10.1016/j. 
energy.2021.121718. 
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