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Abstract

Introduction: There has been a growing interest in studying brain activity under

naturalistic conditions. However, the relationship between individual differences in

ongoing brain activity and psychological characteristics is not well understood. We

investigated this connection, focusing on the association between oscillatory activity

in the brain and individually characteristic dispositional traits. Given the variability

of unconstrained resting states among individuals, we devised a paradigm that could

harmonize the state of mind across all participants.

Methods: We constructed task contrasts that included focused attention (FA), self-

centered future planning, and rumination on anxious thoughts triggered by visual

imagery. Magnetoencephalography was recorded from 28 participants under these 3

conditions for a duration of 16 min. The oscillatory power in the alpha and beta bands

was converted into spatial contrast maps, representing the difference in brain oscil-

lation power between the two conditions. We performed permutation cluster tests

on these spatial contrast maps. Additionally, we applied penalized canonical correla-

tion analysis (CCA) to study the relationship between brain oscillation patterns and

behavioral traits.

Results: The data revealed that the FA condition, as compared to the other conditions,

was associatedwith higher alpha andbeta power in the temporal areas of the left hemi-

sphere and lower alpha and beta power in the parietal areas of the right hemisphere.

Interestingly, the penalized CCA indicated that behavioral inhibition was positively

correlated, whereas anxiety was negatively correlated, with a pattern of high oscilla-

tory power in the bilateral precuneus and low power in the bilateral temporal regions.

This unique association was found in the anxious-thoughts condition when contrasted

with the focused-attention condition.

Conclusion: Our findings suggest individual temperament traits significantly affect

brain engagement in naturalistic conditions. This research underscores the importance
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of considering individual traits in neuroscience and offers an effective method for

analyzing brain activity and psychological differences.

KEYWORDS

anxiety, canonical correlation analysis, magnetoencephalography, mindwandering, mindfulness

1 INTRODUCTION

Studies using functional magnetic resonance imaging (fMRI) and,

recently, also magnetoencephalography (MEG) have shown that even

with no specific stimulus, the brain exhibits robust patterns of acti-

vation that are consistent over individuals (Beckmann et al., 2005;

Brookes et al., 2011; Nugent et al., 2015; Ramkumar et al., 2012).

Although it is important to study what is common over individuals,

for better understanding the relevance of naturalistic brain dynamics

in individual experience and behavioral tendencies, we also need to

explore how individual brains consistently differ in these conditions.

Indeed, with an increase in sample size and the use of more sophisti-

cated data analysis methods, it is becoming feasible to extract features

in brain activation patterns that are associatedwith individual trait dif-

ferences in cognition or behavior (Mason et al., 2007). For example,

the frequency distribution of the spectral content of resting state elec-

trophysiological activity in the brain shows stability over individuals

(Näpflin et al., 2007) and reflects the level of cognitive load (Haegens

et al., 2014).

There are very few investigations that would have focused on

the link between oscillatory dynamics in naturalistic conditions and

psychological traits within a typical healthy sample of participants.

Interestingly,MEGwas recentlyused to showthat increasedbeta-band

modulation to anxiety-evoking images differs between participants

who profile at the opposite ends in the dimension of tendency to be

exploratory versus tendency to be cautious (Yamano et al., 2016). In

that study, the differences were shown at the group level by classical

hypothesis-driven t-statistics on activation in response to stimulation.

Yet, the results indicate that there are indeed features in theMEGoscil-

lations that may reflect, in a fundamental way, how we approach the

environment, especially in emotionally loaded contexts.

When seeking to uncover features in brain activation patterns rel-

evant to individual psychological characteristics, dispositional traits

grounded in neurobiology emerge as the primary dimensions for

investigation. For instance, the behavioral approach style (behavioral

inhibition vs. approach) is deeply anchored in neuroanatomy and has

received empirical support from animal studies (Cavigelli et al., 2007).

Specifically, the behavioral approach style is linked to regions like

the left prefrontal cortex (PFC) and the ventral striatum. In contrast,

behavioral inhibition corresponds with the right PFC and the amyg-

dala (Davidsonet al., 2000;Harmon-Jones&Allen, 1997).Onabroader

scale, affective tendencies, including anxiety and depressivemood, can

be associated with various neurobiological mechanisms, such as the

dynamics of certain neurotransmitters (Harmer et al., 2009).

Previous studies conductedwith fMRI have provided valuable infor-

mation about the cortical networks related to different cognitive

states. The moments of mind wandering have been associated with

increased activation in the so-called default mode network (DMN), pri-

marily consisting of posterior cingulate cortex/precuneus, medial PFC,

and bilateral angular gyrus (Fox et al., 2015). In the beginning, this net-

work was mainly considered to be a correlate of not executing any

task but has since been associated also with active processing such as

self-referential thought and social cognition (Mars et al., 2012). On the

other hand, the frontoparietal control network (FPN), which consists

of posterior parietal cortices and dorsolateral PFC, has been associ-

ated with focused attention (FA) (Kajimura et al., 2020; Marzetti et al.,

2014; Taren et al., 2017). FPN is often yet divided into dorsal and

ventral streams, with the dorsal attention network consisting of the

intraparietal sulcus and the frontal eye fields, responsible for the top–

down intentional tasks, and the ventral attention network consisting

of the temporoparietal junction (TPJ) and the inferior-to-middle frontal

gyrus (IFG,MFG), responsiblewith directing attention to salient stimuli

(Mengotti et al., 2020). Moreover, decreases in the activation of DMN

have been witnessed during FA meditation when compared to resting

state condition (Garrison et al., 2015).

Electrophysiological investigations, largely conducted using elec-

troencephalography (EEG), have sought to identify the neural corre-

lates underpinning various mental states, including FA meditation and

the related mind wandering. These studies have generated diverse

results, possibly due to the substantial variation in experimental

designs—contrasting differentmental states or comparing groupswith

differing levels of meditation expertise—and the range of meditation

styles explored (Deolindo et al., 2020). Many have observed enhanced

alpha power in FA meditation, particularly when contrasted with a

resting state. However, the results have not always been consistent,

with some reporting no effect, or even a decrease in alpha power

(DeLosAngeles et al., 2016; Lomas et al., 2015). Some of this discrep-

ancy could potentially be attributed to the lower spatial resolution

of EEG, particularly in older studies, and the variability in the resting

state condition across individuals and studies. Leveraging the improved

spatial accuracy of MEG and the more well-defined contrasts should

facilitate a more robust identification of the differences between FA

andmind-wandering conditions in oscillatory dynamics.

Recent studies utilizing MEG and EEG have clarified the role of

different neural oscillations in supporting different cognitive and psy-

chological functions (Cebolla & Cheron, 2019; Lopes da Silva, 2013).

Alpha oscillations are generally considered to be involved in the rout-

ing of information and in the engagement of task-relevant neuronal
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ensembles. Indeed, in the visual domain, the increase in the power

of alpha oscillations in one cortical area is thought to indicate active

inhibition of that area to allow undisturbed processing in the correct

cortical processing pathway (Zumer et al., 2014). The idea has been fur-

ther established in other sensory domains (Haegens et al., 2011;Weisz

et al., 2011) and has been suggested to apply even more broadly, for

example, in FPN (Misselhorn et al., 2019). The decrease in the power

of alpha oscillations signifies the release of inhibition and can often

be thought to be a correlate of cortical activation (Foxe & Snyder,

2011; Klimesch, 2012). Beta oscillations are traditionally associated

with sensorimotor processing, where the dynamics often resemble

the dynamics of alpha oscillations, that is, they decrease with acti-

vation and increase with inhibition. It has been even suggested that

alpha and betamight be generated by a commonmechanism (Carlqvist

et al., 2005). However, recently, modulation of beta band oscillations

has been reported in many other areas of the brain, and it has been

suggested to have a functional role, for example, in visual perception

(Piantoni et al., 2010), language processing (Weiss & Mueller, 2012),

and working memory (Siegel et al., 2009). Especially the higher range

of beta (20–30 Hz) has been witnessed to increase with mental acti-

vation and decrease with inhibition, thus making it possible that beta

to certain extent may act independently of alpha (Spitzer & Haegens,

2017).

In this study,we aimed to explore how individual temperament char-

acteristics shape the way the brain behaves in naturalistic conditions.

We recorded the brain activity of 28 participants using MEG as they

performed 3 distinct tasks. Apart from the FA task, we introduced two

conditions that were crafted to simulate aspects of mind wandering,

albeit in a structured manner. These conditions required participants

to engage in self-focused, future-oriented thinking and contemplation

on negative, anxiety-inducing content, respectively. Previous research

predominantly identifies mind wandering through probes (e.g., “was

your mind wandering just now?”) or self-detection by the participants

(e.g., “if you notice your mind wandering, press a button”) (Weinstein,

2018). However, tomaximize the duration of themind-wandering data

collected and to create clear emotional contrasts for FA—neutral and

anxious—we adopted a different approach. It is important to note

that the conditions we introduced might be more aptly described as

instances of “busy mind,” characterized by engagement with a range

of thoughts and feelings, unlike the relatively “empty” state pursued

duringmeditation.

Although these conditions necessitate task-oriented attention, they

are designed to induce a state of controlled or deliberate mind

wandering—an effortful, intentional engagement of unguided thoughts

(Arabacı & Parris, 2018), akin to the concept of “focused daydreaming”

(Dorsch, 2015), where individuals actively direct their thoughts around

a particular theme or subject. Although this differs from spontaneous

mind wandering, which is typically characterized by unintentional

drifts of thought, it still embodies central features commonly asso-

ciated with mind wandering, such as autobiographical thinking and

rumination.

Traditionally, the assessment of interindividual differences in nat-

uralistic conditions has primarily relied on unstructured resting state

data, a task that has proven to be notably challenging (see, e.g., Dubois

et al., 2018). In our study, we induce mental states that may align

with specific psychological traits. For instance, our anxious mind state

condition could potentially amplify trait anxiety, thereby rendering it

more discernible in the brain activation patterns. We propose that

this method may enhance the sensitivity of our analysis in detecting

individual differences. Bymanipulating states,we canunderscore trait-

specific characteristics in the brain, thereby offering a more dynamic

and context-dependent perspective on individual differences.

To study the three naturalistic psychologically relevant conditions

and their relationship to the dispositional traits, we investigated the

oscillatory patterns in the alpha (∼10Hz) and the beta (∼20Hz) bands.

These bands were chosen as theymore often show robust peaks in the

spectral density and have previously been shown to be modulated by

trait characteristics. For example, Yamanoet al. (2016) have shown that

betapower responsedependsonexploratory tendencies of individuals,

and Zeev-Wolf et al. (2018) have shown that the powers of alpha and

beta oscillations differ between neurotypical individuals and individ-

uals with schizophrenic symptoms. The analysis was based on spatial

contrast maps, which are band- and participant-specific source space

representations of the difference between two conditions.When using

contrast maps (instead of investigating the activation of one condition

at a time), the other condition works as a baseline, and thus noise is

removed, andparticipants aremore comparable toeachother.Weused

permutation cluster tests to investigate if the contrast maps had any

consistent, significant patterns over participants.

We were specifically interested in exploring the variability in the

oscillatory engagement across different mental conditions in the

between-participant domain and its relation to the behavioral trait

characteristics of the participants. To accomplish this, we utilized a

data-driven approach using canonical correlation analysis (CCA). This

method, especially when penalized with both L1- and L2-norms, pro-

vides a robust framework for investigating the relationship between

differentmental state pairs and behavioral traits and remains effective

evenwith a relatively small sample size.

2 MATERIALS AND METHODS

2.1 Participants and data acquisition

2.1.1 Imagery stimuli

The imagery used in the conditions came from the International

Affective Picture System (IAPS).

We picked 32 anxiety-inducing negative images (such as images of

spiders, accidents, or threatening situations) to be used in the instruc-

tions of the anxious thought (AT) condition and32neutral images (such

as images of hot air balloons, dinner tables, or Christmas trees) to be

used in the instructions of the future planning (FP) condition. However,

to maximize the relatability and the affective experience, the partici-

pants were asked to select 16 out of 32 images that they found they

could plan on or that they felt they would feel anxious about for both

 21579032, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/brb3.3428 by A

alto U
niversity, W

iley O
nline L

ibrary on [20/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



4 of 17 HEINILÄ ET AL.

conditions. The selection was done using a computer before the actual

recording sessions started. Thus, for each of the 16 miniblocks of both

the AT and the FP conditions, there was a unique instruction image,

both to help the participants have relatable and affective experiences

and to not run out of ideas. The same picture of clouds in front of a blue

sky was always shown for the FA condition.

2.1.2 Participant recruitment and MEG recording

A total of 29 people (aged 21–48 years) took part in the initial data-

gathering phase. Participants had no history of neurological disorders,

head trauma, or substance abuse and had normal or corrected-to-

normal vision. None of the participants were under medication affect-

ing the central nervous system or had psychiatric disorders. A few

participants reported that they had experienced depression at some

point in life, but no clinical depression was reported at the time of

the study. Thirteen participants had no previous meditation experi-

ence, whereas other participants had meditation experience ranging

from 0.5 to 10 years (for those who had, the mean was 3.4 years, and

the standard deviation was 2.4 years). The participants gave written

informed consent before any experimental session. The research was

conducted according to the ethical principles stated in the Declaration

of Helsinki, and the studywas accepted by the Ethics Committee of the

University of Jyväskylä.

For each of the participants, we collected two 30-min recordings

of MEG with the Elekta Neuromag TRIUX system (MEGIN Oy). Each

recording session included two2-min resting-state blocks at the begin-

ning and at the end of the sessions. In between, there were three

different 8-min conditions organized in 2-min blocks. Each 2-min block

contained two 1-min miniblocks of the same condition. The 2-min

blocks were organized in a counterbalanced order so that no 2-min

blocks of the same condition were next to each other, and that each

condition was not followed by the same condition twice in a row.

The three conditions included FA on breathing, FP, and AT induced

by reflection on emotional pictures (AT). In all conditions, partici-

pants were instructed to sit still and fix their gaze on a crosshair

displayed on the screen, ensuring a consistent visual focal point across

all tasks. Prior to each 1-min miniblock, an instruction image was

briefly displayed for 7 s, dictating the respective task: “focus on your

breathing” for the FA condition, “make plans related to the picture”

for the FP condition, and “place yourself or someone close to you in

this situation” for the AT condition. Once the brief instruction period

concluded, the image was replaced by the crosshair for the remain-

ing 53 s. After each 2-min block, participants were queried about

their focus and emotional state during the task, responding on scales

labeled “Not focused/Focused” and “Unpleasant/Pleasant,” respec-

tively. These responses are detailed in the Supporting Information

section (Figures A.9 and A.10) but were not incorporated in the main

analysis. Participants were briefed on the session’s structure before-

hand. Refer to Figure 1 for a visual representation of the experimental

design.

2.2 Trait questionnaires

Psychological and behavioral traitswere characterized using standard-

izedquestionnaires. Basedonearlier studies (Lyyra&Parviainen, 2018;

Schneider et al., 2018; Yamanoet al., 2016),wehypothesized that traits

along the dimensions of behavioral inhibition and behavioral approach

as well as anxiety would most likely be captured in the brain dynam-

ics and, therefore, focused on questionnaires in this domain. These

included questionnaires related to anxiety, depression, and behavioral

inhibition or activation.

BIS/BAS is a self-report questionnaire designed to measure two

motivational systems: behavioral inhibition system (BIS) and the

behavioral activation system (BAS) (Carver & White, 1994). BIS and

BAS are proposed as fundamental neurobiologically based motiva-

tional systems that regulate approach or withdrawal behaviors (Gray,

1970) and contribute to behavioral choices, affective states, person-

ality, and even psychopathology (Li et al., 2015). BIS score can take a

value between 7 and 35, with high values indicating high behavioral

inhibition, that is, tendency towithdraw from unfamiliar situations and

avoid aversive outcomes, and BAS score can take a value between 13

and 65 with high values indicating high behavioral approach, that is,

tendency for novelty seeking and approaching rewarding outcomes.

The Beck Depression Inventory (BDI) measures characteristic atti-

tudes and symptoms of depression (Beck et al., 1961), and the score

may take a value between 0 and 63, with high values indicating high

depression levels. The Beck Anxiety Inventory (BAI) is used for mea-

suring the severity of anxiety in children and adults (Beck et al., 1988),

and the score ranges between0and63,with high values indicating high

anxiety levels.

2.3 Preprocessing of MEG data

MEG was used to record magnetic fields from 306 channels arranged

in a helmet around the head of a participant. Recording was done

with 1000 Hz sampling frequency, yielding 306 time series, 1 for each

channel. Before the recording, the shape of the participant’s scalp was

digitized, and the five coils attached to the head were localized with

respect to anatomical landmarks (nasion, preauricular points). During

the MEG measurement, weak current with specified frequency was

applied to the coils so that the location of sensors with respect to the

helmet could be determined.

The recordings were preprocessedwith the signal-space separation

method (MaxFilter 3.0; MEGIN Oy) to suppress magnetic interfer-

ence originating from outside the helmet. As the head location in the

helmet can change during the recording, MaxFilter’s utility for move-

ment compensation was used. Common artifacts such as eye blinks

and heartbeats were extracted and removed using ICA implemented in

MNE-Python (Gramfort et al., 2014). ICA was run separately for each

participant and session (leaving around 30 min of 306-channel data

for a single ICA) and was set up to retain 95% of the original variance.

For each ICA, we analyzed the resulting components and selected for
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F IGURE 1 Experimental design. Conditions of focused attention (FA), future planning (FP), and anxious thoughts (AT) are recorded in 2-min
blocks in counterbalanced order. Each 1-minminiblock contains a brief instruction in the beginning (!). In total, each condition is recorded for 2
sessions× 4 blocks× 2miniblocks× 1min/miniblock= 16min.

removal those that clearly had a topography, spectral signature, and

time course of a stereotypic blink or heartbeat component. One par-

ticipant had to be completely dropped from further analysis because of

visibly large noise levels both in time series and spectral densities (pos-

sibly due to interference of metal), which we were not able to clean up

afterward, leaving 28 participants for the final analysis.

To enhance interpretability, MEG data was transformed to source

space using the noise normalized minimum norm estimate method

and dynamical statistical parametric mapping (Dale et al., 2000). The

noise covariance matrix, used in the procedure, was based on empty

room recordings. The source space was a volumetric source dipole

arrangement consisting of an equidistant grid of 5218 voxels with

7 mm spacing, and it was based on the average head model from the

freesurfer software package. The source space was uniformly scaled

(scaling factors varied between 0.85 and 1.0) for each participant sepa-

rately so that the fit between the digitized head points and the average

head would be as good as possible. Both the scaling and fitting were

done usingMNE-Python’s coregistration utility.

2.4 Data analysis

2.4.1 Overview

The overall MEG dataset consisted of 2 independent 8-min recordings

for each of the conditions (FA, FP, and AT) from 28 participants. In the

analysis of the data, we aimed to extract two kinds of information: the

average brain activation patterns during each condition, and the indi-

vidual differences among the participants. To achieve these goals, we

first transformed the participant-specific time series data into more

manageable spatial contrast maps. The transformation of the data to

spatial contrastmapswasdone separately for bothalphaandbetaband

data and all three different condition pairs: FP–FA, AT–FA, and AT–

FP. To analyze the average patterns, we used permutation cluster tests

on the spatial contrast maps with participants as samples. To analyze

the individual differences, we used CCA for the spatial contrast maps

and the psychological trait data. Given the exploratory nature of our

research, we have not adjusted for multiple comparisons between dif-

ferent contrasts. For each contrast, however, we employed statistical

methods that account for themultiple comparison problemwithin that

contrast, aiming to ensure the robustness and generalizability of our

findings.

2.4.2 Spatial contrast maps

To transform time series into spatial contrast maps, we executed the

following steps. We computed power spectrums in source space with

a 4-s Hanning window and an overlap of 2 s. The spectrums for each

condition were computed for all available time points and were thus

based on 16 min of MEG data. The power data under frequency bins

specific to the band of interest (for alpha 7–14 Hz; for (high) beta 20–

30Hz) were averaged over frequencies, which resulted in a powermap

(one power value for each voxel) for each participant, condition, and

frequency band. For each participant, the spatial contrast maps for all

three condition pairs were computed as a simple subtraction of the

conditions of interest, for example, AT–FA contrast was computed as

“ATminus FA.”

2.4.3 Average patterns over participants

Given the participant-specific spatial contrast maps, we used permuta-

tion cluster tests to test if the contrast maps had clusters of vertices

that were significantly distinct from zero when participants were con-

sidered samples.Weused thepermutation_cluster_test() function

from MNE-python, which is based on the method described by Maris

and Oostenveld (2007). This method allows computing a large number

of (in our case, spatially) correlated univariate statistical tests and then

correcting for the multiple comparisons at a (spatially constrained)

cluster-level. The correlation matrix (with dimensions 5218 × 5218)

was used as the metric for adjacency, and the t-test was the statis-

tical test that was computed at every voxel. The 95th percentile of

the absolute values of the t-values was used as a threshold for a

voxel to be included in a cluster. The final result was based on 1024

permutations.
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2.4.4 Canonical correlation analysis

Tosee if thevariation inparticipant-specific spatial contrastmaps could

be explained by psychological traits, we used CCAwith the spatial con-

trastmapsasone setof variables and thedata fromtrait questionnaires

as the other set of variables. CCA seeks to find such linear combina-

tions of the two sets of variables that the correlation between them

would be as high as possible. In our case, finding such statistically sig-

nificant linear combinations would allow us to interpret that there are

areas in the brain where the activation depends on some combination

of trait characteristics. As the sample is relatively small, we focus only

on the first canonical correlation. Moreover, instead of the most clas-

sic formulation of CCA (Hotelling, 1936), a more recent least squares

formulation is used (Mai & Zhang, 2019). This makes it possible to add

convex penalties for the canonical weights, making the results both

more generalizable andmore interpretable.

For each of the task contrasts (e.g., AT–FA), CCA was run with two

sets of variables. The first set consisted of the task contrast data, that

is, spatial contrast maps for both frequency bands and for each par-

ticipant. The spatial contrast maps of both alpha and beta band data

were used in one model to get more explanatory power. The data was

preprocessed beforehand with the following steps. First, a rank trans-

formation was used for each variable (2 bands × 5218 voxels) with

participants as samples, to make the data more robust against non-

normality and outliers. A rank transformation replaces the values of a

variable by their rank in the between-participants domain. Second, in

each band separately, principal component analysiswas used to reduce

the dimension of the data from 5218 voxels to 4 principal components.

The number of dimensions was chosen to be 4 as an empirical com-

promise of containing enough variance while keeping the number of

variables low (see Figure A.11 for a scree plot). Increasing the dimen-

sionality to5hadanegligible effect on the results. Finally, thebanddata

were combined, and a set of 8 variables for 28 participants resulted.

The second set of variables consisted of the four behavioral variables:

BDI, BAI, BIS, and BAS. Again, we used rank transformation for each

variable, where values were replaced by their rank in the between-

participants domain. This set of variables stayed the same for all three

task contrasts.

Given the two sets of variables, CCA essentially constructs, based

on the original variables (eight variables for contrast data, and four

variables for behavioral data), two new variables, one corresponding

to brain variables and the other corresponding to behavioral vari-

ables, which have the property of producing the highest correlation

coefficient that is possible. It is worth noting that this is different

from, for example, finding the highest variance factor for both sets of

variables with factor analysis and then computing the correlation coef-

ficient. The factor analysis approach identifies transformations that

may or may not be relevant for the association between two sets of

variables.

The optimization procedure in CCA is almost guaranteed to pro-

duce very high correlation coefficients. Thus, effective precautions

need to be taken to avoid false positives in the results. One of the

precautions is the dimensionality reduction used for contrast data, as

it reduces the amount of combinations that the CCA algorithm has

available for use. In fact, the standard CCA does not even work if the

amount of variables in either set is higher than the amount of sam-

ples. It is good to note, however, that except for the first few highest

variance principal components, the variance explained by the compo-

nents diminishes very quickly. Thus, even though we are losing some

datawith the dimensionality reduction, the lost data should be ofmuch

less importance.

As there are eight brain-signal variables included into CCA, there

will also be eight canonical weights corresponding to the brain vari-

ables. Themixingmatrix computed in the principal component analysis

is our link between the latent space, where the CCA is computed, and

the space where the original source space signals are. Thus, the weight

maps (in Figures 3 and 4) in Section 3 are reconstructed from these

eight canonical weights simply bymultiplying theweightswith themix-

ing matrix, which results in weights in the source space. The maps

shouldbe interpretedas they seem: they tell uswhich voxels contribute

to the association foundwith CCA.

2.4.5 Ensuring generalizability

In addition to dimensionality reduction, some other precautions were

taken. Instead of using the standard CCA formulation, we used a new

formulation that allows adding convex penalties for the weights (Mai

& Zhang, 2019). The nature of CCA is such that without penaliza-

tion, a large amount of variables combined with the noise unavoidably

available in the data will almost surely result in very high correlation

coefficients, even without any real correlation of interest. Thus, we

should either reduce the amount of variables or reduce the size of the

solution space.

The brain data was whitened as a preprocessing step, and this

reduced the number of variables to just eight, which is small enough

given the sample size of 28, and high enough to keep almost all of the

variation in the data. However, we can still reduce the solution space

using penalization methods. There are twomain forms of penalization:

penalization that seeks sparse or extreme solutions, and penalization

that seeks soft or non-extreme solutions. The L1-norm, based on abso-

lute value, leads to a sparse solution that has a lot of zero coefficients

with just a few large non-zero coefficients. The L2-norm, based on

square roots, leads to an opposite kind of non-extreme solution with

most of the coefficients being somewhere in between.

One of the novelties of our study is that we can use different kinds

of penalization todifferent kindsof variable sets. For the trait variables,

an L1-penalty makes sense, as we want the algorithm to prefer sparse

solutions. It is easier to interpret the results if we get only one or two

non-zero weights instead of all being non-zero.

There are some arguments for using the L1-penalty also for brain

signals, as often the brain function localizes spatially to only a small

subset of available brain regions. However, as a preprocessing step

for CCA, we transformed the source space signals to a latent princi-

pal component space, where sparsity does not have the samemeaning,

and in this space, favoring sparse solutions does not make sense. Yet,
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HEINILÄ ET AL. 7 of 17

favoring non-extreme solutions in this space might reduce overfit-

ting and allow more generalizable solutions. The utility of the L2

penalization can be tested with cross validation.

We selected the L1-penalty parameter by hand to a value 0.25,

which empirically corresponded with the intuitive goal of leaving only

one or two non-zero variables. Using higher penalty parameter val-

ues forces all but one variable to be non-zero, which is too demanding.

Using smaller penalty parameter values does not gain almost anymore

explanatory power but makes it harder to interpret the model. For the

selection of the L2-penalty parameter, we used stochastic cross valida-

tion.We had an equidistant grid of 300 sensible parameter values, and

for each of them, we randomly split the data into two 14-participant

samples for 2000 times. In each case, we used the first sample (the

training set) to fit theCCAmodel, and then, using the canonicalweights

of the first canonical correlation, computed correlation in the other

sample (the test set). In the end, the correlation coefficients over the

2000 splits were averaged. This procedure results in a score (the aver-

age correlation in the test set) for each L2-penalty. We then fitted

the CCA to the whole sample of 28 participants using the preselected

L1-penalty and the best performing L2-penalty.

To further assess how robust the results were, we used permutation

tests. CCAwithout regularizationwas run 2000 timeswhile permuting

the participant labels for the brain variables and keeping the labels of

the behavioral variables intact.P-valuewas computed as the number of

times the first canonical correlation of a permuted sample was higher

than the first canonical correlation from the non-permuted regularized

sample divided by the number of all runs. Note that using the unregu-

larized CCA for the permuted samples ensures (because unregularized

version will always result in at least as high correlation coefficient as

the regularized one) that the lack of parameter search in the permuted

cases does not bias the p-value tobe erroneously low.After running the

main CCA with eight brain variables, to further elucidate the results

from the CCA analysis, we post hoc ran the analysis again but selec-

tively removed sources of variation, for example, we used only data

from one frequency band.

3 RESULTS

3.1 Trait questionnaires

Means, standard deviations, and Spearman correlations of behavioral

trait results are shown in Table 1. We used Spearman correlations for

robustness, as, for example, BAI was quite skewed due to many low

values.

3.2 Spatial contrast maps

Wecomputed spatial contrastmaps for each participant, for each band

of frequencies, and for each pair of conditions. The appendix (Figures

A.1–A.6) contains the spatial contrast maps for all participants and for

all contrast pairs AT–FA, FP–FA, and AT–FP in the case of alpha power. T
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8 of 17 HEINILÄ ET AL.

F IGURE 2 Spatial contrast maps. Maps averaged over participants are shown in panel A, and cluster maps from permutation tests are shown
in panel B. Each row corresponds to a specific condition pair in a specific frequency band. Coloring in the left panel corresponds to increase (red) or
decrease (blue) of power in the first condition compared to the second condition. In the cluster maps, the green denotes that the area under it
belongs to the cluster. Only clusters with p< .05 are shown. There can be a cluster for negative or positive values independently; thus, each row
can have zero, one, or two significant clusters. Note that the clusters are based on t-values (see Figure A.7) and, for that reason, are not expected to
completely align with themean blobs.

In all the figures of spatial contrast maps, the red means that the aver-

age power of oscillations during the first condition (FP in FP–FA pair) is

higher than the average power of oscillations during the second condi-

tion (FA in FP–FA pair); the blue means the opposite. Thus, if two areas

are under the same color, they are both increasing/decreasing in the

first condition relative to the second condition, and if two areas are

under different colors, the other one is increasing and the other one

is decreasing in the first condition relative to the second condition.

3.3 Average patterns over participants

Results at the group level are depicted in Figure 2. Means over par-

ticipants are shown in panel A, and significant clusters (p < .05,

not corrected for multiple comparisons) resulting from permutation

cluster tests are shown in panel B. The t-values that the cluster per-

mutation tests were based on are shown in Figure A.7. The values

in the mean plots get normalized during the inverse transform but

are comparable to each other within frequency bands. As the thresh-

old for including voxels in a cluster is somewhat arbitrary, the exact

composition and extent of the clusters should be interpreted with

caution. Nonetheless, the clusters provide approximate indications of

consistent differences and their significance.

Overall, the results for alpha (7–14 Hz) and beta (20–30 Hz) bands

are fairly similar to each other in all three condition pairs. Moreover,

on average, the difference between the FA and the AT conditions does

not notably differ from the difference between the FA and the FP con-

ditions (i.e., AT–FA vs. FP–FA). Roughly speaking, in the right parietal

areas, the FP and the AT conditions induced higher alpha and beta

activities compared to the FA condition. In contrast, in the left tempo-

ral areas, the FP and the AT conditions induced lower alpha and beta

activities compared to the FA condition.
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HEINILÄ ET AL. 9 of 17

A closer examination of the clusters derived from the permutation

test shows that for the AT–FA alpha contrast, the difference was local-

izedmainly in the left temporal areas (p= .018). For theFP–FAcontrast,

the parietal areas in the right hemisphere (p = .018) were significant.

This slight difference between the FP–FA and AT–FA contrasts is seen

in the direct comparison of FP and AT, with FP inducing higher alpha

power in temporal areas in both hemispheres compared to the AT con-

dition (p= .036). In the beta band, a similar right parietal–left temporal

pattern emerges with both clusters significant for AT–FA (p = .039 for

right parietal area; p= .033 for left temporal area) and FP–FA (p= .028

for right parietal area andp= .037 for left temporal area) contrasts. The

difference for AT–FP in the beta bandwas not significant.

3.4 Canonical correlation analysis

Using the canonical correlation procedure described in Section 2, we

investigated if the between-participants variability in the spatial con-

trast maps could be correlated with behavioral traits measured with

four different questionnaires. With alpha and beta contrast data com-

bined into a single dataset, we ran the analysis for all three different

condition pairs and found no significant associations for the FP–FA

(p > .7) and AT–FP (p > .1) contrasts. However, results for the AT–FA

contrast were significant (p= .015) and are shown in Figure 3.

A specific spatial pattern in the AT–FA contrast map (Figure 3a)

showed high correlation (r = .75) with a specific combination of trait

variables (Figure 3b). In more detail, a pattern of lower alpha power in

the temporal areas, especially in the left hemisphere, and higher alpha

power in thebilateral precuneusduringAT (compared toFA)was corre-

lated (Figure 3c) with a combination of low trait anxiety (BAI) and high

behavioral inhibition (BIS).

As the canonical weights were visibly stronger in the alpha than in

the beta band, we investigated post hoc whether beta band was nec-

essary for the result by running the analysis again with data only from

the alpha band. The results confirm that the alpha band data alone

was sufficient for a significant correlation (p = .04) with the question-

naire data.When fitting only beta, however, the association diminished

and was clearly nonsignificant (p > .5), indicating that the connection

between the trait variables and brain activity levels was mainly based

in the alpha band. Hereafter, we focus only on the alpha band.

For the alpha-only analysis, the total explained variance of the four

variableswas 0.85 of the original variance of the 5218 variables. Selec-

tion of the L2-penalty is visually depicted in Figure A.8 and resulted in

a non-zero value, indicating that regularization benefits the analysis.

As the anticorrelated pattern of BIS and BAI is somewhat surpris-

ing,we further investigated themodel parameters. InFigure4,we show

the correlation of the brain variable from the last model (fitted with all

behavioral variables, but without beta band) with BAI (Figure 4b) and

BIS (Figure 4c) separately. The results show that both of the variables

seem to be independently, albeit weakly, associated with the above-

described spatial activation pattern (r = −.42 for BAI, r = .37 for BIS),

but in opposite directions as expected based on the original result.

Although themeditation experience (in years) was not incorporated as

F IGURE 3 Canonical correlation analysis. The weights and a
scatter plot of the only significant canonical correlation (for the
condition pair anxious thought–focused attention [AT–FA]) are shown.
Panel A shows the weights of brain variables, drawn separately for
alpha and beta variables. Panel B shows the weights of behavioral
variables. Panel C shows the scatter plot of the two variables
constructed from the original variables using the weights in panels A
and B. For example, the behavioral correlate was constructed as the
linear combination of the scaled behavioral inhibition system (BIS) and
Beck Anxiety Inventory (BAI) scores:
BIS_weight× (BIS−BIS_mean)/BIS_std+BAI_weight× (BAI−BAI_mean)
/BAI_std.

a covariate in the primary model, we conducted supplementary anal-

yses to investigate its potential influence on the results. Preliminary

analyses using a regression approach to control for meditation experi-

ence indicated no significant impact on the primary findings (see Figure

A.12 for details).

As the AT–FA condition pair is part of both the average pattern

results and the CCA results, its main results in the alpha band are

summarized in Table 2.

4 DISCUSSION

In this study, we aimed to clarify the oscillatory patterns in the brain

during naturalistic conditions and their association with behavioral
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10 of 17 HEINILÄ ET AL.

TABLE 2 Summary of results of anxious thought-focused attention (AT–FA) condition pair for both the average patterns and the canonical
correlation analysis (CCA).

Left-temporal Precuneus Right-parietal Right-temporal

Average of ATw.r.t FA Low – – –

BAI and AT (w.r.t FA) Correlated Anticorrelated – Correlated

BIS and AT (w.r.t FA) Anticorrelated Correlated – Anticorrelated

Note: “Low” or “high” means that in that area of the brain, alpha power in the AT condition was significantly lower or higher, respectively, than in the FA

condition. “Anticorrelated” and “correlated” mean that in that area and against that variable (BAI or BIS), the alpha power in the AT condition with respect to

the FA condition is anticorrelated or correlated, respectively, with the variable. For example, in the left-temporal areas, the higher the BAI score, the higher

the (signed) difference between the alpha power of AT and FA conditions.

Abbreviations: BAI, Beck Anxiety Inventory; BIS, behavioral inhibition system.

F IGURE 4 Post hoc analysis. Panel A shows the canonical weights
only using alpha-band data. Panel B shows a scatter plot between Beck
Anxiety Inventory (BAI) scores and the brain variable computedwith
the weights in panel A, whereas panel C shows a scatter plot between
behavioral inhibition system (BIS) scores and the same brain variable.

traits. We analyzed data collected from conditions of FA, self-centered

FP, and AT evoked by visual imagery. Using permutation tests on con-

trast maps, we found that even with the notable variation across

participants, some general patterns emerged. The conditions that

simulated “mind wandering,” that is, the FP and the AT conditions, cor-

responded to higher suppression (higher alpha) of the parietal areas

of the right hemisphere compared to the FA condition. Similarly, the

FP and the AT conditions corresponded to lower suppression (lower

alpha) of the temporal areas of the left hemisphere compared to the

FA condition. Although the two “mind wandering” conditions more

often evidenced similar patterns relative to the FA condition, stronger

suppression of temporal areas in both hemispheres emerged for the

contrast between the FP and theAT conditions. To investigatewhether

the interindividual variability of brain activations across conditions

explained individual differences in dispositional characteristics, CCA

was used. The only significant association was noted for the alpha

power during AT condition relative to FA condition. A pattern of high

alphapower inbilateral temporal areas and lowalphapower inbilateral

precuneuswas correlatedwith BAI scores, representing high tendency

to somatic anxiety symptoms, and anticorrelated with BIS scores,

mainly representing worry and avoidance of unpleasant situations.

4.1 Average patterns over participants

The most apparent difference between the conditions was between

the FA condition and the other two, mind-wandering-like, conditions.

In the mind-wandering conditions, higher alpha power was evident in

the right parietal areas, and lower alpha power was evident in the left

temporal areas, when compared to the FA condition. It is not surpris-

ing that parietal and temporal areas are modulated with these task

demands, as they are considered core areas in the FPN, which is gen-

erally associated with control of attention. Interestingly, the patterns

resulting in the contrast analysis reflect strong lateralization. How-

ever, especially in the ventral stream of FPN, namely, the TPJ and IFG,

MFG, right-dominance has been well established also in earlier studies

(Benedeket al., 2014;Kucyi et al., 2012;Mengotti et al., 2020). Further-

more, visuospatial attention has been associated more with the right

hemisphere, and for language processing and motor attention, some

left-dominance has been suggested (Caeyenberghs & Leemans, 2014;

Mengotti et al., 2020; Ocklenburg & Gunturkun, 2012). It is thus plau-

sible that the oscillatorymodulations are not laterally symmetrical, and

our results may thus reflect differential balance in the engagement of

these functions by the task requirements.

In agreement with our findings, the increased alpha activity in the

right hemisphere has been previously associated with creative think-

ing (Fink & Benedek, 2014; Luft et al., 2018; Mihov et al., 2010), where

increased alpha oscillations were thought to be related to inhibition of

obvious associations. Indeed, creative thinking has been strongly asso-

ciatedwithmindwandering (Fox &Beaty, 2019). Furthermore, parietal

regions have been recently linked with prioritizing the focus of atten-

tion and cognitive control (Bisley & Goldberg, 2010; Sapountzis et al.,
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2018). As our conditions required controlling attention, the activation

of parietal areas could be interpreted from the perspective of activa-

tion of the FPN, which has nodes located in the bilateral parietal areas

(Cole et al., 2014). FPN has been suggested to support flexible switch-

ing betweendefault and the attentional network, and consequently the

focusing of attention to internal, autobiographical information versus

external cognition (Smallwood et al., 2012; Spreng et al., 2010).

The lower alpha in the left hemisphere, on the other hand, has not

been obviously associated with mind wandering. Rather, the results

may reflect increased alpha in these regions during FA.Anearlier study,

where open monitoring meditation was compared with FA meditation

with MEG, reported higher coupling of DMN and parts of FPN in the

left hemisphere in the alpha band during FA (Marzetti et al., 2014).

Alternatively, but speculatively, it is also possible that the decreased

alphaduringmind-wandering conditions reflects language-relatedpro-

cessing. The mind-wandering conditions, at least when compared to

the FA condition, are likely to more strongly engage linguistic associa-

tions and verbal content (Bastian et al., 2017). Therefore, the language

areas in the left temporal cortex are expected to be less inhibited, as

indicated by lower alpha oscillations, when contrasted with FA.

Interestingly, our results also show a bilateral difference in the

temporal areas between the AT condition and the FP condition, with

AT associated with lower alpha, and presumably less suppression

of cortical engagement, in both the left and right hemispheres. The

most obvious task-related difference between these conditions relates

to emotional involvement. Although temporal areas have not been

directly associatedwith emotional information processing as such, one

may speculate that this could reflect the suggested functional coupling

between amygdala and temporal areas (Silverstein & Ingvar, 2015).

Indeed, the white matter connectivity via uncinate fasciculus between

orbitofrontal and middle temporal areas, including amygdala interac-

tions, has been associated especially with emotional memory (Granger

et al., 2021) and anxiety (Lee & Lee, 2020). The increased engage-

ment of these areas during anxious evoking compared to neutral

“rumination” could thus, theoretically, relate to a stronger emphasis

of emotional memory. An alternative interpretation for the increased

activity (decreased alpha power) observed in the parietal regions dur-

ing the AT condition could relate to the strongly visual essence of the

task. Although all the conditions commencedwith an instructive image

supplemented by text, the AT condition may have inherently necessi-

tated more intense visual processing (Vuilleumier, 2005). The parietal

cortices are known, among other functions, for their involvement in

higher order visual processing (Konen &Kastner, 2008).

We did not find regions commonly included in the DMN to be more

activated in the mind-wandering states than in the FA, as might be

expected based on some earlier findings (Fox et al., 2015; Groot et al.,

2021) and based on the general idea of the role of DMN in “task-

free” situations. A potential explanation for this discrepancy could be

that our induced mind-wandering states were not entirely “task-free,”

despite their similarity to natural, unguided thought. Clearly, more

research is warranted to achieve better understanding of the spe-

cific role of DMN and the way “ongoing free thinking mode” can be

defined, both from the brain computational perspective and from the

cognitive–psychological perspective. Oneway forward is tomove from

“group-level” interpretations toward individual differences. Indeed,

the value of individual differences in better understanding brain–

behavior and brain–mind coupling has been recently advocated (Becht

et al., 2020; Haegens et al., 2014; Leppäaho et al., 2019).

4.2 Canonical correlation analysis

In the present study, the contrast maps revealed a lot of variability

across individuals. Some participants showed even the exact opposite

patterns of activation to each other in the way their oscillatory activ-

ity reacted to the contrast between the two conditions (see Figures A.1

andA.2 forAT–FA). This highlights the remarkable individual variability

in the continuous MEG activation underlying these conditions. It may

also be one reason why it has appeared difficult to build group-level

classifiers for the purpose of brain–computer interfaces with this type

of data, as we attempted using these same recordings in two previous

studies (Zhigalov et al., 2019; Zhu et al., 2023). Similar large individ-

ual differences have been witnessed before in the mind-wandering

research (Golchert et al., 2017). Our results demonstrate the strength

of using contrasts among conditions, rather than treating each condi-

tion separately, for achievingbehaviorally (and individually)meaningful

information from ongoing oscillatory activity. From the three differ-

ent condition pairs, we found significant associations to behavioral

trait variables only in the AT–FA contrast. In the AT condition, higher

anxiety scores (BAI) and lower behavioral inhibition scores (BIS) cor-

respond to higher suppression (higher alpha) in the temporal areas

and lower suppression (lower alpha) in the precuneus, when compared

to the FA condition. Thus, the lack of difference in the precuneus on

average when comparing FA to AT might be partly due to differences

between individuals (and the behavioral traits) that make the differ-

ence average out. The opposite direction of associations with BAI and

BIS appears first as somewhat contradictory, as both of these trait

questionnaires have been linked with the level of anxiety. However,

our results, which were confirmed also by separately correlating the

brain measures with each trait measure, give indication that these two

questionnaires actually tap on independent characteristics in human

experience, at least from the perspective of their cortical correlates.

In our data, BIS and BAI were only weakly correlated with a Spear-

man correlation coefficient .38. Similar results have been reported in

an earlier study, where behavioral inhibition and anxious arousal had

a correlation coefficient .26 (Campbell-Sills et al., 2004). Thus, these

questionnaires seem indeed to measure different aspects of behavior,

and therefore, it is plausible, and highly relevant, to consider brain acti-

vation that is simultaneously correlated to one and anticorrelated to

the other.

Our study was exploratory in nature, leaving us with an open field

of potential outcomes. Given the engagement of both trait anxiety

and the AT condition, we could assume, for the purpose of simpli-

fication, that the FA serves as a stable baseline. Consequently, the

contemplation of anxiety-inducing scenarios brings forth a correlation

between high temporal and low parietal midline activation and high

 21579032, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/brb3.3428 by A

alto U
niversity, W

iley O
nline L

ibrary on [20/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 of 17 HEINILÄ ET AL.

trait anxiety (BAI) and lowbehavioral inhibition (BIS). As in Figure 4,we

could further simplify this interpretation and consider trait variables

quasi-independently. Thus, high trait anxiety correlates with increased

temporal activationand reducedparietalmidline activation. Ifwe inter-

pret the parietal midline regions as components of the DMN, our

results suggest that individuals prone to anxiety show less suppression

(lower alpha) in theDMNwhile contemplating negative imagery. Given

the DMN’s negative correlation with external attention and positive

correlation with remembering, future envisioning, and social inference

(Buckner&DiNicola, 2019), this could indicate amore immersive inter-

nal experience for anxiety-prone individuals.However, the roleof alpha

in non-sensory areas lacks consensus, rendering this interpretation

somewhat speculative (Braboszcz & Delorme, 2011). A similar argu-

ment applies to temporoparietal lateral areas. If these areas are related

to the control network (FPN), it would suggest less activation (higher

alpha) and thus “less control” during the contemplation of anxious

imagery for participants with higher trait anxiety.

An intriguing aspect in the results was that the above brain areas

tended to react in the opposite way for a person with a higher behav-

ioral inhibition score. Although it is known that behavioral inhibition

is associated with an increased risk of developing anxiety disorders

(Svihra & Katzman, 2004), it is also argued that high behavioral inhibi-

tion can reduce a person’s level of fear or negative affect by facilitating

the disengagement of attention from negative thoughts (White et al.,

2011). Here, by “disengagement,” we refer to a decreased level of

attention or immersion in a particular stimulus or task. It is thus pos-

sible that the observed pattern of activation reflects a scenario where

a high trait of behavioral inhibition is “protecting” the participant from

deeply engaging in a task of placing oneself or someone close in a neg-

ative situation. Thus, if a person with a tendency to be anxious can on

average have a more immersive experience with the negative imagery

task, a personwith a tendency of inhibition can on average have amore

disengaged experience. This reasoning, building on our neuroimaging

data, would therefore indicate that a person with a high tendency of

anxiety and a low tendency of behavioral inhibition is the most sus-

ceptible to a very immersive experience. Further research, especially

in the field of clinical and personality psychology, is needed to test

this implication, but it highlights the possibilities of cognitive neuro-

science and neuroimaging in evoking novel questions and hypotheses

also about individual differences and factors influencingmental health.

Considering the loose nature of the association, with the state of mind,

behavioral pattern, and brain pattern each serving as moving parts, it

is plausible to find other interesting interpretations. Nonetheless, the

key takeaway is that it is indeed possible to discovermeaningful associ-

ations between dispositional traits and neural activation via innovative

state manipulations.

4.3 Methodological considerations

On the methodological side, the analysis was based on spatial contrast

maps, which are band- and participant-specific source space repre-

sentations of the difference between two conditions. Computing the

difference between conditions removes unnecessary variation and

noise, as the second condition basically acts as baseline. This opens a

window to task-related activations that would otherwise be hidden in

a task-unrelated activity.We think this is onemain reasonwhywewere

able to find a connection between traits and states, which has been

notably hard in resting state analysis (Dubois et al., 2018). Another key

methodological choice was the use of penalized CCA in investigating

the associations between the spatial contrast data and the psycho-

logical trait data. We altered the standard CCA procedure with two

changes: The analysis was made more robust to outliers with rank

transformation. Tomake theanalysismore interpretable and less prone

to overfitting, we regularized the model with two different penalties: a

sparsity imposing L1-penalty for the trait variables and a L2-penalty for

the contrast variables. Fitting most of the data in a single model makes

it possible to find intricate connections in a statistically reliable way.

Even if in this study the number of variables in the second set was rel-

atively small, the same methodology can be applied to larger datasets

with a lot more variables. To our knowledge, this is the first neurosci-

entific study utilizing the recent iterative least squares formulation of

CCA, which allows adding different convex penalties to the two sets of

variables (Mai & Zhang, 2019).

As there exists a body of literature on personality traits studiedwith

EEG (Kuper et al., 2019; Mathersul et al., 2008), we note a few key

differences that our study exhibits. First, we employed MEG, which

emphasizes different neural sources than EEG and is also considered

more spatially accurate as the magnetic field passes through the head

without distortion (Singh, 2014). Second,manyof the studies use group

comparison methods and thus do not explicitly model the individual

differences, which is in contrast with the correlation methods used in

our study. Third, instead of focusing on asymmetry scores as is often

done in earlier studies, we used statistically efficient data-drivenmeth-

ods to locate the areas of interest, which can also capture asymmetry

dynamics if present. Finally, and perhaps most importantly, previous

studies are usually based on resting-state data. In this study, we used

data collected with a novel paradigm actively engaging participants in

states such as FA or anxiety. The idea of using these more active natu-

ralistic conditions as a possibility to tap into personality traits can have

substantial benefits and should be investigated further.

4.4 Limitations

There are some limitations in the conducted study. As the analysis was

more exploratory than hypothesis-based, some of the interpretations

are naturally speculative. For example, we used the interpretation that

increased power of alpha oscillations signifies inhibition in the rele-

vant cortex, even though in the context of internalmentation, power of

alpha oscillations is often positively correlatedwith the intensity of the

task (Ceh et al., 2020; Knyazev, 2013). However, it is possible that this

positive correlation relates either to an inhibition in a nearby area, or

inhibition of an overlapping function in the same area (Klimesch, 2012).

In our case, it was not clear beforehand what to expect as regards the

alpha power. For example, FA has been associated with both increases
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and decreases of alpha oscillations in the previous studies (Lomas et al.,

2015). Some of the discrepancy could be explained with lower spa-

tial localization of EEG, especially in the older studies, and also with

the vague nature of resting state contrast. This study contributes to

the existing literature with better localization of MEG and the more

well-defined contrasts yet natural ongoing brain states. It should also

be noted that the aperiodic component (1/f) of the power spectra was

not removed. Some of the results attributed to alpha or beta oscilla-

tions could thus also reflect differences in the aperiodic component

(Gyurkovics et al., 2022). In our study, we found that the beta oscilla-

tions followed the behavior of alpha oscillations quite closely. Yet, in

some studies, the association between alpha and beta activations has

been found divergent (see, e.g., Groot et al. (2021)). We assume that

reason lies in experimental design (note that also we found divergent

activations in CCA), but the effect of the aperiodic component should

be investigated in a future study.

In this study, we employed three distinct conditions: FA, self-

centered FP, and AT triggered by visual imagery. The latter two were

designed to induce a state of deliberate mind wandering, character-

ized by an “effortful, intentional engagement with unguided thoughts”

(Arabacı & Parris, 2018; Golchert et al., 2017), which overlaps with

the concept of “focused daydreaming” (Dorsch, 2015), where individu-

als actively direct their thoughts around a particular theme or subject.

Although these induced states might not fully mirror spontaneous,

unintentional mind wandering, they offer precise contrasts—neutral

and anxious busy mind states—to FA, providing a richer context than

traditional resting state data and facilitating a more extensive and

nuanced collection of data compared to conventional probe-based

and self-report methods. However, although the anxious state was

specifically constructed as negative, the neutral state was less defined,

potentially leading to greater individual variability (Bø et al., 2022).

An additional consideration involves the role of “self” in the mind-

wandering states. Participants were expressly directed to envision

themselves or a close acquaintance in specific anxiety-inducing scenar-

ios, whereas in the FP condition, they were simply asked to formulate

plans for the future. Consequently, the observed differences between

these states may partly reflect variations in self-related processing,

although the FP condition could feasibly involve self-processing as

well. In light of the significant emphasis on mind wandering inher-

ent in our task contrasts, assessing our participants’ innate tendencies

for mind wandering could have provided additional insight. Utilizing

questionnaires such as the Mind-Wandering Questionnaire (MWQ) or

Daydreaming Frequency Scale (DDFS) could have allowed us to eval-

uate the potential influence of natural mind-wandering propensities

on the neural correlates, trait characteristics, and self-reported focus

levels during the recordings.

One area of uncertainty arises from our observations related to

the bilateral difference in the temporal areas between the AT and

the FP conditions. The nature of the images used in the FP condition,

while intended to be neutral, might introduce emotional variability

among participants based on individual experiences and associations.

This complicatesour interpretations, particularlywhenconsidering the

bilateral differences observed. Although we offered interpretations

based on known neural connections and functions, these suppositions

remain speculative due to the lack of prior literature on the topic.

One important limitation in this methodological approach is that

when we contrast these delicate tasks, it is not easy to untangle them

without domain information. In the AT–FA contrast, what we interpret

as an effect of increase/decrease in mind wandering might as well be

an effect of decrease/increase in FA. However, these task contrasts

may still give superior information when compared to unconstrained

resting state as the contrast, and the difference between the two con-

ditions is informative even without establishing the definite functional

role, especially when connected with individual trait characteristics.

Another limitation is related to the applicability of the methodological

approach. It canonly be applied todatasets that containmultiple condi-

tions and is not applicable, for example, if only resting state recordings

are available. It is also worth noting that activation patterns shared

by both conditions, which are lost in the subtraction, may still be

significant determinants of individual variation.

The accuracy of inverse transform depends on the model of the

brain, which usually is based on individual MRI images. For this study,

however, we did not have MRI images for all participants and, instead,

used a default template head model from freesurfer package, to which

the digitized head was aligned. Because the real shape of individ-

ual heads can vary, the accuracy of the inverse transform is slightly

reduced, which must be kept in mind when interpreting the results.

Moreover, because of the exploratory approach, we did not correct the

p-values for multiple comparisons. This was because of the relatively

low sample and the novelties of the methodology we wanted to show.

We tried to keep the statistical comparisons tominimum, however, and

combined as much as possible in a single model. Both the neuroscien-

tific results and the usability of the methods should be confirmed in

future studies.

5 CONCLUSIONS

In this study, we aimed to clarify the oscillatory patterns in the brain

during naturalistic conditions and their association to behavioral traits.

We utilized three different conditions: FA, self-centered FP, and AT

evoked by visual imagery. Our task design provides brain data dur-

ing extended periods of mind wandering, which is hard with only

self-reports and probes, and well-defined contrasts for the state of

FA, which is usually studied only with respect to unconstrained rest-

ing state. We demonstrate oscillatory power differences between the

three conditions, with the main result being between the FA and the

other (mind-wandering) conditions. The FA condition, when compared

to the other conditions, is likely to show higher alpha and beta power

in the temporal areas of the left hemisphere and lower alpha and

beta power in the parietal areas of the right hemisphere. We also

explored the use of CCA as a way to investigate the link between

individual differences in thebraindata and thebehavioral trait data col-

lectedwith questionnaires.Wedemonstrated the ability of themethod

to extract behaviorally relevant, participant-specific characteristics of

brain activity. In a condition designed to evoke AT relative to FA
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condition, a pattern of high alpha power in bilateral temporal areas and

low alpha power in bilateral precuneuswas correlatedwith BAI scores,

representing high tendency to somatic anxiety symptoms, and anti-

correlated with BIS scores, mainly representing worry and avoidance

of unpleasant situations. Exploration of individual differences through

neuroimaging methods has been an increasing trend in neuroimaging

studies. Our results provide evidence for the relevance of the ongoing

brain activation for behavioral trait characteristics, specifically for the

oscillatory dynamics underlying the dimension between focused ver-

sus wandering mind. We further demonstrate the utility of a specific

methodological approach for approaching individual differences in the

context of continuous and naturalistic task settings.
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