Li, Shouzhuang; Laukkanen, Timo; Jiang, Dingyi; Vuorinen, Ville; Järvinen, Mika

AspenPlus-based techno-economic analysis of solar-assisted sorption-enhanced gasification for hydrogen and chemicals recovery from polyethylene terephthalate waste

Published in:
Energy Conversion and Management

DOI:
10.1016/j.enconman.2024.118318

Published: 15/04/2024

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Research Paper

AspenPlus-based techno-economic analysis of solar-assisted sorption-enhanced gasification for hydrogen and chemicals recovery from polyethylene terephthalate waste

Shouzhuang Li*, Timo Laukkanen, Dingyi Jiang, Ville Vuorinen, Mika Järvinen

Energy Conversion and Systems Research Group, Department of Mechanical Engineering, School of Engineering, Aalto University, Säkkinen 4J, 02150, Espoo, Finland

Keywords: PET Sorption-enhanced gasification Hydrogen Solar heat Process simulation

Abstract

Although the recycling of polyethylene terephthalate (PET) bottles is well-operating in several countries, less than 10% of PET plastic waste was recycled in a closed loop globally, and the rest was discarded as leakage. A process to recover hydrogen and valuable chemicals through solar-assisted PET sorption-enhanced gasification was analyzed. PET steam gasification with CaO and solar-assisted calcium looping processes were already experimentally studied in our previous work to obtain optimized processing conditions. In this paper, the integrated process with product purification, steam power plant, and LiBr-H2O absorption chiller was simulated with Aspen Plus based on previous experimental results to investigate the techno-economic performance. Material flows, energy balance, exergy destruction, and economics were analyzed. Day and night mode operations at different seasons were evaluated based on energy balance and the weather conditions of Naples, Italy. The energy and exergy efficiencies of day and night modes varied between 62%–72%. The annual production yields of hydrogen and benzene were 684 t and 6286 t, respectively. Due to the high production of benzene, its higher price (£1092/t) would make the project feasible with a larger than 12% internal rate of return value and competitive break-even hydrogen price (less than 4 €/kg). The results show that this integrated process could be technically and economically feasible. It has the potential to be implemented for hydrogen and benzene recovery from PET plastic waste with sustainable solar heat source and zero fossil CO2 emissions.

1. Introduction

Plastics provide valuable utility and convenience for many sectors of modern society but cause environmental problems. The natural degradation of petroleum-based plastics can take as long as 250 years [1]. Polyethylene terephthalate (PET) was the 5th most produced plastic type (accounting for 6% European plastic production in 2021), and it was mainly used for bottles (47%) in Europe; the rest included 20% of trays and 33% of fibers [2,3]. PET bottles are easy to sort, and many EU countries have established mature PET recycling systems. Compared to its share of plastic production, PET recycling represented 26% of the total installed plastic capacity in 2021 in EU27+3 countries (EU member states, Norway, Switzerland, and United Kingdom) [4]. Nonetheless, the overall PET recycling rate was 28%, in which PET bottle recycling rate was 50% in 2019 [3]. It means that there is a significant share of PET plastic waste not being recycled due to possible reasons such as colorfulness, contamination, and final products (fibers and trays).

Gasification could be one option to convert this non-recyclable PET plastic waste to high-value gaseous fuels such as hydrogen and methane, together with liquid chemicals like benzene, regardless of the quality of the feedstock. PET steam gasification products have been analyzed in our previous research [5], where also summarized other related PET gasification experimental work. Co-gasification of PET with biomass or other plastics with steam have been studied with Aspen Plus modelling. However, gasification was usually ideally modelled as a non-conventional feedstock decomposed into elements in a RYield reactor and reacting with gasification agents in a RGibbs reactor, which could make the results distinct from experimental results. For example, Tavares et al. [6] simulated the PET-biomass steam gasification in Aspen Plus. They observed that increasing the share of PET in the mixture enhanced the concentration of hydrogen while reduced CO2. These results differed from the conclusion that CO2 was the dominant gas product in PET steam gasification obtained in previous experimental
research in Li et al. [5] and PET supercritical water gasification studied by Guan et al. [7]. The reason could be the higher elemental hydrogen content in PET than biomass. Similar problem was found in the polyethylene (PE) and PET mixture steam gasification modelling by Zallaya et al. [8]. Both models did not consider the major product tars. Thus, PET steam gasification should be modelled in a different method in Aspen Plus.

The problem regarding relatively low product quality of PET steam gasification was solved by adding CaO to improve hydrogen yield and reduce tars in Li et al. [9]. A separate product gas upgrading reactor would be considered to capture CO2 with CaO and produce more H2 by water-gas shift reaction at a lower temperature because most CO2 cannot be captured at optimized H2 production temperature in the gasifier. Then, the CaO regeneration process should also be integrated to circulate the sorbent. This process is called sorption-enhanced gasification (SEG) which integrates the calcium looping process with gasification to capture CO2 and improve gas product quality [10-12]. Both gasification and calcination require heat supplies, which is usually provided by fuel combustion and then the calciner also functions as a combustor. The carbonation reaction is exothermic, so it can also provide heat for other processes such as steam generation. Large-scale experiments of SEG (≥100 kWth) have been successfully tested such as at the University of Stuttgart and TU Wien [12,13].

Regarding the SEG process simulation, Wei et al. [14] performed the techno-economic analysis of coal SEG integrated with the natural gas synthesis process with Aspen Plus simulation. Compared with the conventional plant without integrating the calcium looping process, the SEG process improved the coal-to-natural gas efficiency from 58.3% to 64.2% in terms of higher heating values, reduced 40.0% sour water to be purified, and 10.6% less of the capital investment. AlNouss et al. [15] utilized Aspen Plus to conduct the techno-economic-environmental analysis of biomass SEG integrated with bio-methanol production. They claimed that introducing SEG slightly increased the cost but decreased CO2 emissions significantly in two different biomass waste cases (42.0% for palm kernel shells and 29.0% for empty fruit banches).

Solar energy can be implemented for the calcium looping process to provide heat for the calcination process, which has been studied by many researchers. For example, Tregambi et al. [16] and Ortiz et al. [17] summarized the research about solar-assisted Ca looping process in their reviews. Inspired by the ideas of sorption-enhanced gasification and solar-assisted calcium looping process, a novel solar-assisted sorption-enhanced gasification was proposed, and so far, the process simulation has not been widely investigated. Khosravi et al. [18] simulated the solar-assisted sorption-enhanced gasification of municipal solid waste for the cogeneration of hydrogen and power by TRNSYS and engineering equation solver (EES). In their system, 0.6 kg/s of hydrogen and 14 MW of electricity could be produced, with 95.0% CO2 capture efficiency. The energy and exergy analysis results showed that the total annual energy efficiency was 70.7%, and the highest exergy destruction rate was from gasifier (the second largest energy destruction took place in the carbonator, being half of the gasifier value). Osat et al. [19] conducted 4E analysis (energy, exergy, exergoeconomic and environmental assessments) for a solar-assisted biomass chemical looping and Ca looping gasification process in Aspen Plus and compared the performance of two
feedstocks: rice straw and microalgae. In their system, air acted as the heat transfer media for recovering heat from hot syngas products, regeneration of oxygen carrier (Fe2O3 in the system) and sorbent, absorbing heat from solar and providing heat for the Rankine cycle to produce electricity. This differs from previous cited research wherein bed materials were the heat transfer media. The energy efficiency of the rice straw system was 4.3%, and the most exergy destructions took place in the Rankine cycle and heat recovery. The CO2 emissions from both feedstocks were close, 5.2 t/h and 5.3 t/h for rice straw and microalgae, respectively. The exergoeconomic analysis reflected that the microalgae system had more cost-reduction potential than the rice straw.

A novel solar-assisted sorption-enhanced gasification for PET has been proposed, and this research reported here aims to conduct the techno-economic analysis of H2 and other materials recovery through solar-assisted sorption-enhanced gasification of PET plastic waste process via Aspen Plus modeling. The correlations between gas yields and operating conditions: temperature, steam-to-PET ratio and CaO-to-PET ratio obtained from previous experimental research (Li et al. [9]) were employed to model the PET steam gasification with CaO reaction in this Aspen Plus model. The process investigated by Khosravi et al. [18] would have some similarities to this research, but the energy balance and economic analysis were missing in their work. Moreover, sorption-enhanced gasification of PET plastic waste has not been investigated, and feedstock properties of PET and gasification product compositions are different from biomass. PET contains less moisture and char. According to Ye et al. [20], the activation energy of PET is lower than biomass, meaning that the reaction rate of PET gasification is faster than biomass. Regarding the gasification products, according to our prior research, half of the carbon was converted to tars, which means that tar products are not as negligible as what Khosravi et al. [18] and Osat et al. [19] assumed for biomass gasification. CO2 was the main gas product (similar concentration as hydrogen with adding CaO). Thus, the process design and results must be different from Khosravi et al. [18]. 3E analysis without environmental impact was conducted for the process, but normal economic analysis would be examined instead of exergoeconomic analysis. This work provides a new approach for PET plastic waste upcycling to recover hydrogen and chemicals sustainably, and to capture fossil CO2, with investigating the day and night modes and seasonal operations to provide a holistic techno-economic analysis of the new approach.

2. Methods

2.1. Materials

PET plastic waste was fed as the feedstock and specified as a non-conventional component in Aspen Plus, with the ultimate and proximate analysis being the same as the virgin PET used in the experiment of our previous work [9], shown in Table 1. Sand and CaO used in [9] were employed as the bed material and absorbent, respectively. To simplify the model, the purity of CaO was assumed as 100% since it was 96 wt%, and the rest components were all less than 1 wt%. The sand only consisted of 86.53 wt% SiO2 and 13.47 wt% Al2O3.

2.2. Model description

The whole system consists of three main sub-systems: solar-assisted PET sorption-enhanced gasification (including PET steam gasification with CaO, syngas upgrading, and solar-assisted calcination) with product separation, heat recovery and utilization for power production by LiBr-H2O absorption chiller and steam power plant as the schematic diagram of the process shown in Figure 1. PET plastic waste, steam and the circulated CaO and sand from the solar calciner were introduced into the gasifier (high-temperature zone). The gas, tar, CaO, and sand entered the low-temperature zone to upgrade the syngas product, where CO converted to CO2, and CO2 capture took place. The high and low temperature zones of the reactor were simulated as two separate reactors in this model. The gas and solid products were separated. The upgraded syngas product was cooled to remove water and tar by condensation, followed by H2 purification through a pressure swing adsorption (PSA) unit. The condensation heat was also used for cooling and electrical power production through LiBr-H2O absorption chiller and steam power plant, respectively. The solid mixture (CaO + CaCO3 + sand) from the syngas upgrading was introduced into the calciner to regenerate the absorbent. Concentrated CO2 was stored after heat recovery and compression. The model was solved in Aspen Plus V12.1 with the following general assumptions:

- Steady state and steady flow conditions were considered.
- The property method utilized the Peng-Robinson equation of state with Boston-Mathias modifications [21].
- Ash and N2 were inert components [21].
- Fluid dynamics of fluidization was not considered in the simulation.
- The storage tank was adiabatic [22].
- Hydrogen compression and storage were not considered in the process because the process is continuous, and hydrogen is directly utilized by other plants.
- The isentropic efficiencies of pumps, turbine, and compressor were 80%, 85%, and 85%, respectively, and the mechanical efficiencies were 95% for all the pressure change devices [23].
- The minimum temperature difference between hot and cold streams was 10 °C in all heat exchangers [23].
- The simulations of oxygen production and CO2 purification in night mode were not included, but they were considered in economic analysis with the assumptions of purchasing the external service to avoid too extensive process simulation.

The detailed description of each component in the system and the specified assumptions are explained in the following sections.

2.2.1. PET steam Gasification with CaO

PET steam gasification with CaO was simulated in the RYield reactor by implementing gas product yield correlations fitted based on temperature (T), steam to PET mass ratio (Sp), and CaO to PET mass ratio (Cao) (see Eq (1) - Eq (4)) from our previous research [9] with Fortran code. It is worth noticing that these four equations can be applied to the ranges: 700 °C ≤ T ≤ 800 °C, 2 ≤ Sp ≤ 3, and 0 ≤ Cao ≤ 4. The experimental results of tar and char analysis in [9] showed that benzene was the dominant tar product (80 wt% in detectable tars), and collected char only accounted for 1-2% in carbon from PET. Therefore, benzene was assumed to represent all the tars, and no char was produced. CO2 captured by CaO was also negligible, and CaO mainly acted as a catalyst. Thus, the carbon in PET was converted to gas products CO, CO2, CH4, the tar benzene.

\[
H_{\text{f}} = -4.27 + 0.01093T - 11.19C_{\text{f}} + 1.6945S_p - 0.4215C_{\text{ao}}^2 + 0.01869TC_{\text{ao}}
\]

(1)

\[
CO = -6.58 + 0.01475T + 2.0888C_{\text{f}} + 1.36S_p - 0.2666C_{\text{ao}}^2
\]

(2)

\[
CO_2 = -137.9 + 0.382T - 5.59C_{\text{f}} - 0.000253T^2 + 0.000765TC_{\text{ao}}
\]

(3)

\[
CH_4 = -39.6 + 0.1099T - 7.1 \times 10^{-5}T^2
\]

(4)

| Table 1 Proximate and ultimate analysis of virgin PET (as received basis, wt%) |
|-----------------------------|-----------------------------|
| **Proximate analysis** | **Ultimate analysis** |
| Moisture | 0.00 | C | 61.97|
| Volatiles | 90.54 | H | 4.48 |
| Fix carbon | 8.13 | O | 33.35|
| Ash | 1.33 | N | 0.20 |
As the schematic of the process in Figure 1 depicts, the circulated CaO and sand were not fed into the RYield for two reasons: first, sand and CaO were defined as solid for further separation with gas products, but RYield reactor cannot achieve mass balance when solid materials are involved; second, sand and CaO were from calciner and they provided the required heat for gasification process, so it was easy to investigate and regulate the heat transfer between CaO and sand and the gasification reaction. The feeding rates of PET, steam, and CaO were determined by the optimized product steam to PET mass ratio and the solar-assisted calcium looping process. There was 5% of the syngas product introduced to the RGibbs reactor to initiate the calcination reaction.

The kinetics of water gas shift reaction under CaO catalysis. The calcination reactor was simulated by the RGibbs reactor with minimizing the Gibbs energy for the reaction, and the temperature was at 850 °C according to our previous research about optimized conditions for the solar-assisted calcium looping process. The kinetics equation in Table 2, \(r \) is the reaction rate; \(R \) is the Universal gas constant 8.314 J/(mol·K); \(P \) and \(c \) are the partial pressure and concentration of each component in the gas mixture, respectively; \(\mu_{\text{cat}} \) is the density of the catalyst, and \(m_{\text{CaO}} \) is the mass of CaO.

Table 2
Reaction kinetics implemented in the gas product upgrading reactor.

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Kinetics</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{CO} + \text{H}_2\text{O} \rightleftharpoons \text{CO}_2 + \text{H}_2)</td>
<td>(r = 1.1 \exp\left(- \frac{210000}{RT}\right) \cdot \frac{P_{\text{CO}} P_{\text{H}2\text{O}}}{(P{\text{CO}2} P{\text{H}2})^{0.12}} (1 - a)^{0.12} \cdot \frac{1}{K{\text{eq}}} \cdot \exp\left(5693 T_e^{-1} + 1.077 \ln(T_e) \right) + 5.44 \times 10^{-4} T_e - 1.125 \times 10^{-7} T_e^2 - 49170 T_e^{-2} - 13418 \right)</td>
<td>[24]</td>
</tr>
<tr>
<td>(\text{CH}_4 + \text{H}_2\text{O} \rightleftharpoons \text{CO} + 3 \text{H}_2)</td>
<td>(r = 3.1 \times 10^{3} \exp\left(- \frac{150000}{RT}\right) \cdot \frac{c_{\text{H}2\text{O}} - c{\text{H}_2}}{0.0265})</td>
<td>[25]</td>
</tr>
<tr>
<td>(2\text{CaO} + \text{H}_2\text{O} \rightleftharpoons 3\text{CaO} + \text{CO} + 2\text{H}_2)</td>
<td>(r = 4 \times 10^{10} \exp\left(- \frac{4430000}{RT}\right) \cdot (c_{\text{H}2\text{O}})^{0.4} \cdot (c{\text{CO}})^{0.2})</td>
<td>[26]</td>
</tr>
<tr>
<td>(\text{CaO} + \text{CO}_2 \rightleftharpoons \text{CaCO}_3)</td>
<td>(r = 5.007 \times 10^{-7} \exp\left(- \frac{2030000}{RT}\right) (P_{\text{CO}2} - P{\text{CO}2}) m{\text{CaO}})</td>
<td>[27]</td>
</tr>
</tbody>
</table>
2.2.4. Heat recovery

The generated heat in the syngas upgrading reactor and the heat in the high-temperature product and flue gases were utilized for a steam power Rankine cycle to produce electricity and LiBr-H₂O absorption chiller to produce district cooling (DC). In the steam power Rankine cycle, 1 kg/s pressurized water (40 bar) was heated by part of the heat released from the syngas upgrading step, and then hot product gas from the solar calciner, at 850 °C, to the superheated vapor at 442 °C. Then, the superheated vapor was expanded to 0.06 bar in the turbine, producing electricity in the generator. The expanded steam was condensed in the condenser and pressurized to 40 bars in the pump for the next cycle. Most of the operating condition data of the LiBr-H₂O absorption chiller were obtained from the simulation of the single-stage LiBr-H₂O absorption chiller through Aspen Plus in Somers et al. [29] work where more details can be found. The heat source for desorption was from the condensed heat in the excess steam to be removed from the syngas product. Thus, the desorption temperature would be adjusted according to the saturated water temperature, and the flow rate of LiBr-H₂O would be determined by the condensed heat in the gas product. The water for gasification was split into two streams and heated by the rest of the heat released from syngas upgrading and product gas before condensing for the desorption chiller, respectively.

2.2.5. Product separation

Most of the CO was converted to CO₂, which was captured by CaO in the syngas upgrading reactor. Then, the gas product mainly consisted of steam, H₂, CH₄, and benzene. As previously mentioned, the water in the syngas was separated by cooling and condensation, where the heat was employed for heating the water stream and the desorption of the LiBr-H₂O absorption chiller. Considering the minimum temperature difference between the desorption (59 °C) and condensation with subcooling, the product gas was subcooled to 70 °C. The separation of benzene would require a much lower temperature due to its lower partial pressure (boiling point 78 °C at 1 atm). Thus, part of the cooling produced from the LiBr-H₂O absorption chiller was introduced to cool the water-free gas product to 10 °C. Then, the H₂-rich gas product (60 vol%–75 vol %) can be purified through the pressure swing adsorption (PSA) technology, where H₂ content can be enhanced to over 99 vol% [30,31]. The gas was pressurized to 25 bars in the compressor before entering the PSA system. PSA is a complex system, and it is out of the scope of this research to simulate the whole system in detail. It was simulated by a separator with 99.9% efficiency for H₂ purification.

2.3. Energy analysis

Energy analysis was conducted based on the results from Aspen Plus. In Aspen Plus, higher heating values (HHV) were calculated for energy balance calculation. Thus, all the enthalpy flows and efficiencies were computed based on HHV. The enthalpy flow results in Aspen Plus were calculated based on a different reference state, so the actual enthalpy flows were estimated as the sum of the HHV and sensible heat in Eq (5), where HHV and heat capacity Cᵥ were obtained in Aspen Plus and the reference temperature was 15 °C.

\[
H = m(HHV_{V_{\text{f}},C} + C_v \Delta T)
\]

(5)

The efficiency of the Rankine cycle was calculated as the net power out (Qₚ) divided by the heat input of the Rankine cycle (Qₚ,Rankine) in Eq (6). Part of the electrical power produced by the steam turbine (Wₜurb) and the compressor (W_compr) was utilized to power the pump (W_pump) and the compressor (W_compr) before the PSA unit.

\[
\eta_R = \frac{W_{\text{turb}} - W_{\text{pump}} - W_{\text{compr}}}{Q_{\text{in,Rankine}}} = \frac{P_{\text{el}}}{Q_{\text{in,Rankine}}}
\]

(6)

The coefficient of performance (COP) of the LiBr-H₂O absorption chiller was computed as net district cooling (Q_DC) divided by the heat provided for the desorption step (Q_in,desorber) in Eq (7). Similarly, a small part of cooling (Q_in,desorber) was employed for benzene condensation (Q_{benzene,cooling}).

\[
\text{COP}_{\text{LiBr-H₂O}} = \frac{Q_{\text{chiller}} - Q_{\text{benzene,cooling}}}{Q_{\text{in,desorber}}} = \frac{Q_{\text{DC}}}{Q_{\text{in,desorber}}}
\]

(7)

The overall efficiencies of the whole system with day mode (η_DM) and night mode are shown in Eq (8) and Eq (9), respectively. The steam was heated by the internal reaction heat and product gas. Thus, it is not included in the denominator.

\[
\text{Daymode(DM)}\eta_{DM} = \frac{HHV_{H_2} + HHV_{\text{benzene}} + HHV_{\text{residual gas}} + P_{\text{el}} + Q_{\text{DC}}}{HHV_{PET} + Q_{\text{sun}}}
\]

(8)

where Q_{sun} is calculated by the heat requirement of the solar calciner divided by the overall efficiency of the solar heating system 0.6.
In night mode, the residual gas produced in the day mode HHVResidualGas_DM, and night mode HHVResidualGas_NM was burnt to provide the heat for the calcination and solid heat-up. Part of gas combustion could also be replaced by the heat stored by sand during day mode according to the season. This would not be considered in the efficiency calculation but discussed in the operation of the system.

2.4. Exergy analysis

Exergy analysis is an essential tool to analyze the irreversibility that cannot be avoided in a component/process [32]. The exergy of the solar radiation received by the receiver is calculated as [33]

\[
E_{x,solar} = \dot{Q}_{\text{solar}} \left(1 - \left(\frac{T_{s}}{T} \right)^\beta \right)
\]

(10)

where \(\dot{Q}_{\text{solar}}\) is the heat absorbed by the receiver, \(T_{s}\) is the temperature of the reference state, 298 K, and the pressure is 1 bar, \(T_{s,\text{sun}}\) is the sun’s outer surface temperature, assumed as 5600 K in this research [33].

Exergy of constant heat source \((E_{x,s})\) equals the transferred heat \((\dot{Q})\) multiplied by the Carnot factor:

\[
E_{x,s} = \dot{Q} \left(1 - \frac{T_{s}}{T} \right)
\]

(11)

For each flow, the total exergy is the sum of the physical exergy \((E_{x,ph})\), chemical exergy \((E_{x,ch})\), kinetics exergy, and potential exergy, where kinetics exergy and potential exergy are negligible. Therefore, the total exergy is [33]:

\[
E_x \approx E_{x,ph} + E_{x,ch}
\]

(12)

where the physical exergy is computed as [33]:

\[
E_{x,ph} = \dot{n} \left[(h - h_0) - T_0 (x - x_0) \right]
\]

(13)

and the chemical exergy of the gas mixture [33]:

\[
E_{x,ch} = \dot{h} \left(\sum y_i e_{x,ch,i} + R T_s \sum y_i H_y \right)
\]

(14)

in which, \(h\) and \(s\) are the enthalpy and entropy at the examined state, respectively, and \(h_0\) and \(s_0\) are the reference state. \(e_{x,ch,i}\) is the standard chemical exergy of each component, and \(y_i\) is the molar fraction of each component in the mixture.

The physical exergy rate can be obtained from Aspen Plus. However, the physical exergy of LiBr-H2O absorption chiller calculated in Aspen Plus was not correct due to the electrolytes process simulation; Therefore, the exergy calculation of the LiBr-H2O absorption chiller followed the procedure provided by Palacios-Bereche et al. [34].

For non-conventional solid fuel PET, the chemical exergy is calculated based on the lower heating value (LHV) of the feedstock [35]:

\[
E_{x,PET} = \dot{m}_{PET} \cdot \text{LHV} \cdot \phi
\]

(15)

where \(\phi\) is the ratio based on the ultimate analysis of the fuel in Table 1:

\[
\phi = 1.0437 + 0.1882 \cdot \left(\frac{H}{C} \right) + 0.0610 \cdot \left(\frac{O}{C} \right) + 0.0404 \cdot \left(\frac{N}{C} \right)
\]

(16)

Exergy destruction \((E_{x,des})\) in each unit:

\[
E_{x,des} = \sum E_{x,\text{in}} - \sum E_{x,\text{out}}
\]

(17)

\(E_{x,\text{in}}\) and \(E_{x,\text{out}}\) include all input and output exergy, respectively, for example, the streams, heat/work supply, and production.

The exergy efficiency \((\epsilon)\) of the system

\[
\text{Daymode} \quad \epsilon_{D} = \frac{E_{x,H_2} + E_{x,\text{ResidualGas}} + P_{el} + E_{x,DC}}{E_{x,PET} + E_{x,\text{ResidualGas}} + P_{el} + E_{x,DC}}
\]

(18)

\[
\text{Nightmode} \quad \epsilon_{N} = \frac{E_{x,H_2} + E_{x,\text{ResidualGas}} + E_{x,\text{ResidualGas}} + P_{el} + E_{x,DC}}{E_{x,PET} + E_{x,\text{ResidualGas}} + P_{el} + E_{x,DC}}
\]

(19)

2.5. Economic analysis

The fixed investment cost (FIC), net present value (NPV), internal rate of return (IRR), and break-even H2 price were employed to evaluate the economic performance of the system. The fixed investment cost was calculated as Eq (20) [36].

\[
FIC = \dot{i}_{FAS} \cdot (1 + \dot{i}_{\text{lab}} + \dot{i}_{\text{proj}}) \cdot \sum C_{\text{component}}
\]

(20)

where \(\dot{i}_{FAS}\), \(\dot{i}_{\text{lab}}\) and \(\dot{i}_{\text{proj}}\) are the total as-spent cost multiplier (TASC), the indicators of labor cost and project cost, assuming as 1.13, 0.35, and 0.50, respectively [36]. The calculation equations of each component are listed in Table 3.

LAM: Land area multiplier of the solar field, which is 5.9; \(A_{\text{heliostat}}\): the total area of heliostats; \(Q_{\text{Calc}}\) and \(Q_{\text{Calc}}\): the heat production from the carbonator and heat requirement for the calciner, respectively; \(\eta_{\text{is}}\) is the isentropic efficiency; \(\dot{Q}_{\text{gas}}\) is the required heat transfer area for the heat exchanger; \(\beta\) is the pressure ratio (>1); \(\eta_{\text{gas,PSA}}\) is the inlet gas flow rate (in kmol/h) of the PSA system.

There are no specific equations for absorption chiller, benzene condenser, sand storage, and CO2 purification cost calculation. They were computed based on the reference cost and scale from Ogidiama et al. [40], Bayon et al. [41], Shemfe et al. [42] and Abbas et al. [43] according to Eq (21) [37].

\[
C_{\text{component}} = C_{\text{ref}} \cdot f \cdot \frac{S_i}{S_{\text{ref}}} \cdot \frac{\text{CEPCI}_{\text{ref}}}{\text{CEPCI}_{\text{index}}}
\]

(21)

where \(S_{\text{ref}}\) and \(C_{\text{ref}}\) are the scale and the corresponding cost of the component in the reference, and \(f\) is the scaling factor, and it is assumed as 0.7 in all components. Since the costs vary in different years, the Chemical Engineering Plant Cost Index (CEPCI) of this year and the reference year were considered [44].

The net present value (NPV) is the sum of the net cash flow throughout the life span (\(n\)) of the plant, determined as Eq (22) [36]. Internal rate of return (IRR) is usually employed to evaluate the feasibility of the project, and it is the \(r_{\text{d}}\) value when NPV is 0 in Eq (22) [45]. The break-even H2 price is the price of H2 when NPV equals 0 with fixing other terms.

\[
NPV = \sum_{i=0}^{n} \left(\frac{CF_i}{(1 + r_{\text{d}})^i} \right)
\]

(22)

in which the net cash flow (CF) is computed by subtracting FIC, the tax cost (Ctax), operation and maintenance cost (CO&M), and materials cost (CMaterial) from the income of all products and the salvage value (I\text{sal}) [36]

\[
CF_i = \left(\sum I_{\text{product}} - C_{\text{Materials}} - C_{\text{O&M}} - C_{\text{Iax}} - FIC - I\text{loan} \right) / \text{IRR}
\]

(23)

and the formula for tax cost [36]

\[
C_{\text{tax}} = \left(\sum I_{\text{product}} - C_{\text{Materials}} - C_{\text{O&M}} \right) \cdot \text{tax}
\]

(24)

The prices of materials and products, as well as important basic parameters are shown in Table 4.
The results show that the conversion rate of CO was around 98% in the syngas upgrading step in this research. According to the CaO enhancing water gas shift reaction research conducted by Li et al. [54], the equilibrium CO conversion was 95% at 650 °C and steam/CO molar ratio 3.0, and the conversion rate was 77% in the experiment at the same condition. The steam/CO ratio was much higher than 3.0, which improved the CO conversion and the equilibrium conversion rate.

Although the kinetics equation implemented for water gas shift reaction was obtained between 270–510 °C with a steam/CO ratio of 0.7–1.7 [24], which were both lower than the temperature and steam/CO ratio in this research, the error of total hydrogen yield should be less than 10%. Therefore, these should reflect that the gas upgrading kinetics models gave low errors compared with experimental data, and the model can be further investigated.

The molar flows of different streams are shown in Figure 3. Stream (7) is the product of PET steam gasification with CaO calculated based on the correlations obtained from experimental data fitting. Although the excess steam accounted for 77 vol% of the gas product composition (127.5 mol/s of steam in the total molar flow rate of 165.3 mol/s), the partial pressure provided by the excess steam must be enough for the water gas shift reaction according to the chemical kinetics calculation. Therefore, a steam to PET mass ratio larger than 2.0 is necessary even though the heat requirement of steam production is significant, and a steam to PET mass ratio of 2.5 is a compromise between hydrogen yield and heat requirement. Stream (10) is the gas product after upgrading under CaO, which acted as a catalyst for water gas shift reaction and absorbent for CO2 capture. Hydrogen yield was improved by 54 vol%
after upgrading, increasing from 12.1 mol/s to 18.6 mol/s, and around 92 vol% CO₂ was captured, including the CO₂ produced from PET gasification with CaO and water gas shift reaction. Lower reaction temperatures favored the water gas shift and carbonation reactions since they are both exothermic reactions. However, CH₄ and benzene yields did not change in the gas product grading but increased in the solar calciner at around 850 °C by steam reforming reactions. Thus, CO and H₂ appeared in Stream (14), the gas product of CaCO₃ solar calcination, where 5 vol% of Stream (10) was introduced to initiate the calcination reaction.

After cooling the gas to 70 °C (Stream (25)) and 10 °C (Stream (28)), 91.0 wt% and 99.8 wt% water was removed, respectively, while only nearly 70 wt% benzene was collected after cooling to 10 °C. The hydrogen volumetric concentration in the dry gas products increased from 32.0 vol% in the gasifier to 66.0 vol% after gas upgrading, then 75.0 vol% after water and benzene removal, and the final purity of the hydrogen product was 99.8 vol% after PSA. Other gases, including benzene, CH₄, and CO₂ (Stream (36)), were separated from hydrogen in PSA. Stream (14) and Stream (36) would be mixed and stored temporarily, called residual gas, and they can be burnt with pure oxygen to supply heat for the process during the night. Then, all combustible carbon-based gaseous fuel in the residual gas from day mode operation was then converted to high concentration CO₂, which can be separated from water after cooling and compression for further use as a raw material or stored permanently.

3.2. Energy analysis

The energy balance Sankey diagrams of the system in day mode and night mode were illustrated in Figure 4 (A) and (B), respectively. The night mode was designed to run with half of the day mode capacity to reduce the energy storage requirement. There was ± 0.1 MW error in the energy balance due to the rounding. As the Sankey diagram of the day mode depicts, the mixture of sand and CaO provided 4.06 MW heat for PET steam gasification with CaO and steam to reach desired temperature. The circulation rate of the mixed sand and CaO from the solar calciner was 26.2 kg/s to provide the required heat for PET gasification with CaO in the gasifier [26].

The gasification products, the circulated sand, and CaO entered the syngas upgrading zone at a lower temperature, where the water gas shift reaction, carbonation reaction, and high-temperature inlet mixture can deliver all heat, 7.57 MW. It was employed to heat up the water/steam for gasification (5.01 MW) and the Rankine cycle (2.46 MW). Then, the water and steam in Rankine cycle were heated by the gas after calcination and expanded in the turbine to produce the power. The net electrical power was 0.62 MW. The condensed heat of 4.46 MW during the separation of water from the product gas was utilized to run the LiBr-H₂O absorption chiller to produce 3.52 MW of cooling in which 0.69

![Figure 4. Sankey diagrams of the system with (A) Day mode and (B) Night mode (Unit: MW)
was introduced in spring to avoid too much heat loss due to very long-term storage. With this operation, the volume of the sand storage should be 708 m³ for at least 3-month storage. In the night mode, when the calcination required heat was only produced by sand, the electricity production was half of the night mode because there was only CO₂ flow from calcination. This integrated process can recycle 19 kt PET plastic waste and capture 20 kt fossil CO₂ each year. The annual production of hydrogen, benzene, electrical power, and district cooling are shown in Table 5.

3.3. Exergy analysis

The exergy efficiencies of day and night mode operations were 62.6% and 69.2%, respectively. Exergy is mainly destroyed due to heat transfer and chemical reactions. Figure 6 illustrates the exergy destruction pie charts for the day (A) and night (B) modes. It shows that solar radiation represented more than half of the total 15.51 MW exergy destruction in day mode. This result was similar as the exergy analyses of solar assisted calcium looping process studied by Karasavvas et al. [33] and solar biomass gasification reported by Bai et al. [55]. Zare and Hanazadeh [56] observed that in a solar assisted Brayton system, the exergy losses in heliostat fields and central receiver accounted for about 60% and 30% of the total exergy loss, respectively. The reason is the massive heat loss between the high-temperature solar radiation (5600 K in this research) to a lower temperature (about 1273 K) on the central receiver. This exergy destruction could be reduced by improving the performance of the solar collection system, including the heliostats and central receiver system. For example, if the overall efficiency of the solar collection system increases from the current setting of 0.6 to 0.7, the exergy destruction would decrease to 5.38 MW and 41% of the total exergy destruction. This could be achieved by the optimized design of heliostat (including the optical properties of a single heliostat and the layout of heliostat field) and aperture size of the central receiver to reduce the radiative and convective losses [57,58].

The second most exergy destruction was from the sum of all heat exchangers, in which water evaporation and condensation were dominant. The most considerable exergy destruction appeared in the condensation in the steam power plant, which is not avoidable due to the low condensation temperature and pressure. The exergy destroyed in chemical reactors was as follows: gasifier (7.9%), syngas upgrading (11.2%), and solar calciner (9.7%). The exergy destructions in these reactors also included heat transfer. For example, steam in the gasifier and solid in the calciner were heated to the target temperature by the hot solid and the concentrated solar irradiation, respectively. Moreover, the exergy destruction of heating water to steam with the heat produced in the syngas upgrading process was also included since it is considered as

Table 5

<table>
<thead>
<tr>
<th>Items</th>
<th>Value</th>
<th>Items</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall system efficiency</td>
<td>Day mode</td>
<td>69.4%</td>
<td>H₂ yield</td>
<td>684</td>
</tr>
<tr>
<td></td>
<td>Night mode</td>
<td>71.7%</td>
<td>Benzene yield</td>
<td>6826</td>
</tr>
<tr>
<td>Electrical efficiency of the Rankine cycle</td>
<td>Day mode</td>
<td>19.2%</td>
<td>Net Electricity</td>
<td>4378</td>
</tr>
<tr>
<td></td>
<td>Night mode</td>
<td>23.3%</td>
<td>District cooling</td>
<td>19814</td>
</tr>
<tr>
<td>LiBr-H₂O COP (net)</td>
<td>Day mode</td>
<td>0.63</td>
<td>Number of heliostats</td>
<td>290</td>
</tr>
<tr>
<td></td>
<td>Night mode</td>
<td>0.67</td>
<td>Required land area for the heliostat field</td>
<td>30.11</td>
</tr>
<tr>
<td>Exergy efficiency</td>
<td>Day mode</td>
<td>62.6%</td>
<td>The volume of the sand storage tank</td>
<td>708</td>
</tr>
<tr>
<td></td>
<td>Night mode</td>
<td>69.2%</td>
<td>PET recycled</td>
<td>19.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Captured CO₂</td>
<td>20.21</td>
</tr>
</tbody>
</table>
a reactor with a boiler. Exergy destruction in the absorption chiller accounted for 4.4%, and the rest was from other units, for example, PSA and steam turbine. The exergy destruction in night mode was similar to the day mode in most components due to the half-running capacity, except for the calciner because the heat source was wholly or partially the combustion of the residual gas from the day mode operation. When the calciner heat source was fully provided by gas combustion, the exergy destruction in calciner stood for 40.7% of total exergy destruction, and it was almost double the second-highest exergy destruction in syngas upgrading and steam heaters.

3.4. Economic analysis

The result of the fixed investment cost breakdown is illustrated in Figure 7. It shows that the sorption-enhanced gasifier which includes gasification, syngas upgrading, and calcination accounted for more than 60% of the fixed investment cost, followed by concentrated solar heat production (22.4%). The dual fluidized bed or calcium looping reactor is usually the highest investment [17, 59]. For example, when there was no solar heating, Schweitzer et al. [11] observed that around 70% of capital expenditure cost was from the sorption-enhanced gasifier and Michalski et al. [36] obtained a similar number for the calcium looping process. Due to the size of the plant, the cost of concentrated solar heating (CSH) system was not the dominant investment. This conclusion is similar to the same flow rate solar-assisted coal gasification integrated with methanol production studied by Xin et al. [37], where the investment cost of the gasifier was 10.75 M$, and the sum of the concentrated solar heating system was 3.53 M$. If the gasification temperature is increased to 800 °C to maximize the hydrogen yield, the circulation rate of solid should be more than double the current rate 26.2 kg/s when the calciner temperature is kept at 850 °C. This means the cost of the calciner and CSH system would be significantly increased. Therefore, the gasification temperature should be kept at 750 °C when the calcination temperature is 850 °C. The sand storage and CO₂ purity with storage accounted for 6.30% of the total investment cost. The daily storage of residual gases (the mixture of stream (14) and stream (36)) was not considered since the day production would be combusted during the night operation. The cost of PSA and absorption chiller were close (around 3.6%). The heat exchangers, pumps, turbine, and compressor costs represented less than 1% because of the small size of the plant and electricity production.

The sensitivity analysis of NPV with varying selected parameters ±20% was investigated, and the results are shown in Figure 8. Among 9 selected parameters, NPV was the most sensitive to benzene price: the ±20% change in benzene price would cause ±73% NPV variation.
is because of the vast production of benzene from the plant compared with other products. NPV was significantly affected by the loan rate and inflation rate of this plant (around 40%). In many studies, the NPV variations with loan rate and inflation rate cases were less than 10% with a larger scale [11,36,61]. NPV was also altered by CO2 price by 23% and it was assumed to sell CO2 with the highest price to high-income EU or EEA countries in Palone et al. [49]. However, CO2 price is determined by many factors such as location, markets, policies, etc. [62]. Thus, CO2 price uncertainties would be more critical than 20% and affect NPV more essentially. The CO2 price aims to be higher for the wide implementation of renewable energy, from which this integrated process would benefit. The feedstock PET price was also one of the critical factors for NPV. The gasification process is flexible with PET flake’s color, so the sorting based on color is unnecessary, which could further reduce the cost of PET feedstock. H2 price has a decreasing trend with the development of technology, which would negatively affect on the NPV of this process. The deduction or exemption of tax on renewable energy production would be favorable. Due to their low production, electricity, and district cooling prices did not play important roles in NPV. Therefore, the fluctuation of electricity prices in the market would slightly affect the NPV of this plant. All previous sensitivity analysis results reflect that this small-scale plant was significantly influenced by the economic situation and policies, and the resistance to financial risk was low. A higher capacity plant should be built.

The variation of the internal rate of return (IRR) and H2 break-even price with CO2 and benzene prices are illustrated in Figure 9. IRR is a parameter to evaluate the economic feasibility of the project, and the threshold is 12% [63]. IRR higher than 12% indicates that it is economically feasible. Similar to the sensitivity analysis on NPV, benzene price affected more than CO2 price on IRR. IRR increased 1% and 3% when increasing 20% of CO2 and benzene prices, respectively. IRR was only higher than 12% when the benzene price was 1092 €/t. It means that this project is economically feasible if the benzene price increase around 20% of the current price. However, it would also be feasible at a lower benzene price when the CO2 price is higher than 120 €/t since IRR value at a CO2 price of 120 €/t, benzene price of 911 €/t was slightly lower than 12% (11.9%).

The break-even hydrogen prices at low benzene and CO2 prices were also lower than the initial hydrogen price setting of 4 €/kg. Moreover, H2 break-even prices were zero when the CO2 and benzene prices were at higher levels, meaning that the NPV is positive even when the hydrogen price is 0 €/kg. The reason is that hydrogen is not the dominant product in this plant. The project is profitable with a clear decreasing trend of hydrogen prices in the future and competitive with hydrogen produced from other renewable technologies at certain benzene and CO2 prices. For example, the highest break-even hydrogen price varied between 5.38 €/kg and 6.90 €/kg when hydrogen was produced from wind-powered water electrolysis with electricity storage [64]. However, as previously discussed, the relatively low hydrogen production could not meet the massive demand of the hydrogen market.

4. Conclusion

This work simulated solar-assisted sorption-enhanced gasification of PET plastic waste integrated with a steam power plant and a LiBr-H2O absorption chiller in Aspen Plus. It demonstrated that the process is technically and economically feasible. Syngas upgrading was simulated using carbonation and water-gas shift reaction kinetics, and the results showed that hydrogen yields were improved by more than 50% and that 92% CO2 was captured compared with the PET steam gasification with CaO step. Based on the energy balance analysis and the weather conditions of selected location Naples, Italy, day and night mode operations at different seasons were proposed to solve the intermittency of solar energy during the day and throughout the year. The energy and exergy efficiencies of day mode and night modes were 69.6%, 62.6%, 71.7%, and 69.2%, respectively. Due to the high production and price of benzene (6826 t/year, 911 €/t), the NPV of the whole plant was very low. A higher capacity plant should be built.

The variation of the internal rate of return (IRR) and H2 break-even price with CO2 and benzene prices are illustrated in Figure 9. IRR is a parameter to evaluate the economic feasibility of the project, and the threshold is 12% [63]. IRR higher than 12% indicates that it is economically feasible. Similar to the sensitivity analysis on NPV, benzene price affected more than CO2 price on IRR. IRR increased 1% and 3% when increasing 20% of CO2 and benzene prices, respectively. IRR was only higher than 12% when the benzene price was 1092 €/t. It means that this project is economically feasible if the benzene price increase around 20% of the current price. However, it would also be feasible at a lower benzene price when the CO2 price is higher than 120 €/t since IRR value at a CO2 price of 120 €/t, benzene price of 911 €/t was slightly lower than 12% (11.9%).

The break-even hydrogen prices at low benzene and CO2 prices were also lower than the initial hydrogen price setting of 4 €/kg. Moreover, H2 break-even prices were zero when the CO2 and benzene prices were at higher levels, meaning that the NPV is positive even when the hydrogen price is 0 €/kg. The reason is that hydrogen is not the dominant product in this plant. The project is profitable with a clear decreasing trend of hydrogen prices in the future and competitive with hydrogen produced from other renewable technologies at certain benzene and CO2 prices. For example, the highest break-even hydrogen price varied between 5.38 €/kg and 6.90 €/kg when hydrogen was produced from wind-powered water electrolysis with electricity storage [64]. However, as previously discussed, the relatively low hydrogen production could not meet the massive demand of the hydrogen market.

4. Conclusion
sensitive with benzene price; ±20% benzene variation would cause ±73% of NPV change. A higher benzene price would also make this project feasible in terms of IRR and lower H2 break-even price to compete with hydrogen prices from other processes. This research would contribute to PET waste upcycling and achieve zero plastic waste and carbon neutral goals. This model should be improved by adding fluidization regimes and dynamics study in the future to include the effect of recirculation time and deactivation of CaO in the simulation. Sand storage tank should be studied in detailed to evaluate the heat loss during the long-term storage, and new operating strategies could be proposed. Moreover, the assumption of pure benzene production from tar should be improved by adding other tar species, such as toluene, so that the process is closer to the actual process.

Funding

This work was supported by the School of Engineering, Aalto University, Finland.

CRediT authorship contribution statement

Shouzhuang Li: Writing – original draft, Visualization, Validation, Software, Methodology, Investigation, Formal analysis, Conceptualization.

Timo Laukkanen: Writing – review & editing, Visualization, Methodology, Investigation, Formal analysis.

Dingyi Jiang: Writing – review & editing, Validation, Methodology, Funding acquisition.

Ville Vuorinen: Writing – review & editing, Supervision, Project administration, Methodology, Funding acquisition, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data availability

Data will be made available on request.

References

