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Optimal Transport Based Impulse Response
Interpolation in the Presence of Calibration Errors

David Sundström, Filip Elvander, and Andreas Jakobsson

Abstract—Acoustic impulse responses (IRs) are widely used to
model sound propagation between two points in space. Being a
point-to-point description, IRs are generally estimated based on
input-output pairs for source and sensor positions of interest.
Alternatively, the IR at an arbitrary location in space may be
constructed based on interpolation techniques, thus alleviating
the need of densely sampling the space. The resulting IR
interpolation problem is of general interest, e.g., for imaging of
subsurface structures based on seismic waves, rendering of audio
and radar IRs, as well as for numerous spatial audio applications.
A commonly used model represents the acoustic reflections as
image sources, often being determined using a sparse reconstruc-
tion framework employing spatial dictionaries. However, in the
presence of calibration errors, such spatial dictionaries tend to
inaccurately represent the actual propagation, limiting the use
of these methods in practical applications. Instead of explicitly
assuming an image source model, we here introduce a trade-off
between minimizing the distance to an image source model and
fitting the data by means of a multi-marginal optimal transport
problem. The proposed method is evaluated on the early part
of real acoustic IRs from the MeshRIR data set, illustrating its
preferable performance as compared to state-of-the-art spatial
dictionary-based IR interpolation approaches.

Index Terms—Optimal mass transport, impulse response in-
terpolation, Robust time-delay estimation

I. INTRODUCTION

RECENTLY, several spatial audio applications, such as
auralization [2], virtual reality [3], spatial active noise

control [4]–[7], and the creation of individual sound zones
[8], [9] have emerged, which has stimulated the development
of spatial modelling of IRs. Such applications all rely on
the interpolation of measured IRs from a sensor array to
spatial positions where it might not be possible or desirable
to place a microphone. While the interpolation problem has
attracted substantial attention within the audio community,
its relevance extends to various other applications, such as
imaging of subsurface structures based on seismic waves [10]
and environmental monitoring using synthetic aperture radar
[11].

Acoustic room IRs are commonly divided into an early
and a late part, where the early part generally consists of
clearly distinguishable reflections, whereas the late part models
a more diffuse field [12]. For applications such as spatial
active noise control and the generation of individual sound
zones, the early part of the IR is of main interest as the
spatial information content of the audio signal is marginal
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in the late part [13], [14]. For other applications, also the
late part is of importance, and there is a rich literature on
low frequency interpolation, commonly utilizing a parameter-
ization of the wave equation [15]–[24]. Multiple approaches
for interpolating the early part of IRs have been proposed,
commonly exploiting some spatial representation of the IR. A
further interesting development is the recent machine learning
based IR interpolation approaches (see, e.g., [25]–[28]), which
has been reported to show promising results, although these
methods typically require using a large number of sensors,
in the range of hundreds, to learn the sought parameters. In
[29]–[33], the room geometry of the problem is assumed to be
known and the impedances of the reflections are estimated as
an inverse problem. Regrettaby, the room geometry is rarely
known in practice, making the problem ill posed without
further priors on the parameters. As an alternative, to allow
for an interpolation without assuming prior information of the
room geometry, a plane wave assumption has often been used
[17], [23], [34], [35]. Although it has been shown that plane
waves can represent every solution to the homogeneous wave
equation [36], the spherical propagation of waves requires the
use of large plane wave dictionaries to be able to achieve ac-
curate approximations. Instead, the spatial representation may
be formulated by some variation of the image source1 method
[37], [39], [40]. These methods assume that a reflection can
be represented by an image source, such that the delays of the
contributions in the IRs corresponds to the distance to where
the image source is positioned (see, e.g., [12] for an overview
and historical remarks of the development). The identification
of image sources from measured IRs is a general problem
with applications also within domains such as radar, sonar, and
biomedicine. For example, room geometry reconstruction and
geometry calibration is investigated using both audio [41]–[45]
and radar [46] techniques; for both, the common approach is to
identify locations of image sources, which may then be used to
reveal reflecting surfaces [41], [47]–[50]. Another application
is the localization of objects based on channel estimates, as
done for instance by sonar systems [51], [52]. In such systems,
the interest is typically to accurately determine the position
and shape of an underwater reflector. A similar problem also
occurs in many forms of biomedical applications, such as when
using EEG to localize brain activity [53].

In the context of IR interpolation, solutions based on the

1By the term image source model, we refer to the method introduced in [37],
where each amplitude-delay pair is associated with an image source position
computed based on the positions of the source, receiver, and boundaries. In
contrast, by the equivalent source model, we refer to arbitrary source positions,
not necessarily being related to the geometry of the room [17], [38].
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image source method have also been examined, see e.g.,
[38], [54]–[56], where the IRs are regularized with sparse
priors in the time domain. In practice, estimated IRs are not
sparse in the time domain due to the presence of diffuse
reflections [57]. To allow for non-sparse IRs, whilst still
regularizing the inverse problem, recent attention has shifted to
formulations utilizing group sparsity priors [17], [58]. In [17],
the room IR interpolation problem is considered for both a
time and frequency domain formulation based on equivalent
sources, where different types of regularization, namely ridge
regression, lasso, and group lasso regularization are compared
in the two domains. For the group lasso regularization, a group
is defined by a direction of arrival (DOA) and is formed by
all of its range entries, which promotes a sparse solution in
DOA while still allowing for a linear response of the source
and the reflections. The size of the dictionary does however
grow rapidly when the delays between the source and sensors
are large. In practice, measurements are also corrupted by
calibration errors2, causing a mismatch between the explicit
dictionary of the equivalent source positions and the mea-
surements. The calibration errors are especially significant
for frequencies where the calibration errors is of the same
magnitude as the wavelength, which therefore is a key problem
for practical use of previously mentioned applications.

To alleviate this problem, this work aims at allowing for
such calibration errors by formulating the interpolation prob-
lem using an optimal mass transport formulation. Recently,
the concept of optimal mass transport (OMT) has attracted
increasing attention as a tool for quantifying the distance
between two distributions. Originating from the early work of
Kantorovich, the distance between two discrete distributions
can be defined by their pointwise distance, where not only the
energy of the signal is considered, but also the location of the
energy (see [59], [60] for overviews). While originating from
the economic community, implementations of OMT distances
has recently found applications within the signal processing
community in problems such as spectral estimation [61]–[64],
localization and sensor fusion [65]–[67], and more (see for
example [68]). The growing interest in the area has pushed
the development of computationally efficient solvers and the
development of formulations allowing for aspects such as the
transport between distributions of different total mass [69] and
for defining distances between multiple distributions, which
has led to the development of multi-marginal OMT [70].
The strength of the OMT formulation lies in its flexibility
to design distances based on the location of the mass, making
it natural to exploit in problems where both time and space
are of relevance. The use of OMT in IR interpolation has
recently been proposed in [71], where the problem of inter-
polating the temporally sparse IRs given their image source
representations is studied. The formulation is of relevance for
acoustic rendering with known image source positions, where
the problem is to linearly interpolate the known image source
positions between two impulse responses. In this work, we
instead assume that only the impulse responses and the sensor

2By the term calibration errors, we here refer to (deterministic) model
mismatch affecting the delay structure of the IRs, caused by, e.g., errors in
the assumed sensor positions or the non-isotropic propagation channels.

Fig. 1. Illustration of the cost in (6), where Ci1,...,iM = 0, i.e., the spheres
centered around the sensor positions with radii i1c/fs, . . . , iM c/fs have a
unique intersection point, here marked as the source position.

positions are known, and study the problem of interpolating an
IR in the presence of calibration errors. To do so, we propose a
trade-off between minimizing the distance to an image source
model and fitting the data by introducing a multi-marginal
OMT distance.

The remainder of this paper is organized as follows: in the
next section, the signal model is introduced. In Section III,
we introduce the multi-marginal OMT formulation, which is
extended with unbalanced transportation in Section III-A. An
introduction of the joint estimation of the frequency response
of the sources and reflections is presented in Section III-B,
whereas the selection of the required regularization parameters
is discussed in Section III-C. Section III-D introduces the
interpolation of fractional delays, followed in Section III-E
by practical implementation aspects to reduce the size of the
problem, and by details on how to describe the interpolation
as a forward problem in Section III-F. Then, in Section IV,
the method is evaluated on real audio data, confirming the
advantages of the method in a practical scenario. Finally, the
work is concluded in Section V.

II. SIGNAL MODEL

Consider a source at an unknown position y ∈ R3 emitting
a signal z ∈ RN which is recorded by S sensors with known
positions xs ∈ R3, for s = 1, . . . , S. The recorded signal
ss ∈ RN+Nh−1 may thus be described as

ss = hs ∗ z+ ϵϵϵs, (1)

where hs ∈ RNh denotes the IR between the points y and xs,
∗ the convolution operator, and ϵϵϵs ∈ RN+Nh−1 an additive
Gaussian noise with variance σ2

ϵ . The IR hs can be represented
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as amplitude-delay pairs by the set {(ok,s, τk,s)}k, where ok,s
denotes the amplitude and τk,s the delay of the kth filter tap.
The geometrical interpretation of the IR under the assumption
of perfect specular reflections, h̃s, then indicates the presence
of a source with amplitude ok,s located on a sphere with
radius proportional to τk,s centered around the sensor position
xs. As illustrated in Figure 1, when spheres of the taps of
at least 4 IRs intersect in a single point, this indicates the
presence of a source in the intersection point. An equivalent
way of representing the IRs under ideal conditions is thus as
amplitude-source position pairs, which is also known as the
image source model. However, in the presence of calibration
errors, e.g., due to errors in the assumed sensor position
or sampling, the spheres will not provide a clear point of
intersection, resulting in a mismatch in the amplitude-source
position representation. It is worth stressing that, different from
the interpolation problem considered in [71], which assumes
known image source positions, we here only assume the IRs
hs and the sensor locations to be known.

A commonly used simplified model of the IRs treats the
amplitudes as formed by a sparse representation under the
assumption of perfect specular reflections. Regrettably, this
model does not accurately represent realistic IRs, as these
are generally corrupted by various reflections as well as by
the characteristics of the sound source. Here, we instead
assume a simplified model for these distortions, modelling
these using finite impulse responses. As it is often difficult
to distinguish between the distortions due to the source and
the various reflections, we will here model these jointly,
denoting the joint linear frequency response of an image
source a signature. Due to directivity of the sources and the
corresponding reflections, the signature of each image source
may differ. Figure 2 shows how a measured IR, hs, containing
a direct path and 3 reflections, i.e., 4 components, may be
decomposed into 4 signatures, hk,signature, and a sparse IR,
h̃s, such that hs =

∑
k hk,signature ∗ h̃s. Given the signatures

hk,signature and their image source positions, the IR may then
be interpolated to a position x̂ ∈ R3 as a forward problem. In
the following, we consider the problem of predicting the IR
at an location x̂ ∈ R3 given the IRs hs and the corresponding
sensor positions xs in the presence of calibration errors, i.e.,
allowing for a mismatch between the data and the amplitude-
source position representation.

III. METHOD

We proceed to introduce an OMT formulation for IR
interpolation. In order to allow for the considered calibration
errors, we strive to define a weaker description of the image
source positions. To define this distance to an image source
model, we employ a multi-marginal OMT formulation, such
that mass is transported in a geometrically consistent manner,
encouraging well defined spatial solutions. By doing so, an
explicit dictionary of the spatial source distribution does not
have to be constructed, instead allowing for a formulation
using a dictionary of set of delays.

The classical discrete optimal transport problem is defined
between two distributions Φ1 ∈ RN1 and Φ2 ∈ RN2 , where
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Fig. 2. An illustrative example of how a measured IR can be decomposed into
a sparse IR h̃s, shown in the top figure, and a set of signatures, hk,signature,
shown in the middle figure. The measured IR hs =

∑
k hk,signature ∗ h̃s

is illustrated in the bottom figure.

the problem is to move the mass from Φ1 to Φ2. The cost of
moving the mass from index i1 to index i2 is defined by the
cost Ci1,i2 , where C ∈ RN1×N2 is the cost matrix. With this,
the Kantorovich problem of OMT may be formulated as

minimize
M∈RN1×N2

+

∑
i1,i2

Ci1,i2Mi1,i2

s.t. M1N2
= Φ1 , MT1N1

= Φ2,

(2)

where M ∈ RN1×N2
+ is the transport plan between Φ1

and Φ2, and 1N1 and 1N1 are vectors of ones. Here, M
may be interpreted as a distribution on the product space
RN1 ×RN2 = RN1×N2 having Φ1 and Φ2 as its marginals,
and for which the structure is determined by the cost C.
We will here consider the transport problem between IRs at
two different sensor positions, i.e., Φ1 = h1 and Φ2 = h2,
defining the cost C to establish a geometrically meaningful
association of delays in the transport plan M. Although the
classical transport problem in (2) defines the distance between
two distributions, it can be extended to S distributions via a
multi-marginal optimal transport formulation where M and
C are formed as tensors. Although the intuition in terms
of transportation of mass is more involved for the multi-
marginal setting, the interpretation of the transport tensor
M in terms of joint distributions still holds such that the
multi-marginal transport problem considers computing a joint
distribution between S marginal distributions with the cost
tensor C determining the structure of the joint distribution.
We note that the multi-marginal transport problem allows for
efficiently modeling collections of coupled pair-wise transport
problems (see for example [65]), and its general formulation
does allow for inducing more precise structure than what is
possible in a pair-wise setting. Below, it is shown that the
multi-marginal formulation is necessary to exploit all of the
geometrical structure inherited from the image source method.
In particular, the multi-marginal formulation will allow us to
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model the full joint delay structure of a set of IRs using a
small number of image sources.

To introduce our formulation, consider S sensors measuring
a set of sparse and positive IRs3, hs ∈ RNh

+ . Clearly, this
is a strong assumption. It is introduced here in order to
build the intuition for the proposed method, but is then
relaxed in Section III-B. Forming a multi-marginal version
of Kantorovich’s transport formulation allows the association,
or the transport plan, of the mass between the IRs to be given
as the solution to

minimize
M∈R

NS
h

+

⟨C,M⟩

s.t. Ps(M) = hs, s = 1, . . . , S,

(3)

where

⟨C,M⟩ :=
∑

i1,...,iS

Ci1,...,iSMi1,...,iS , (4)

with M denoting the S-fold transport plan tensor, C the
corresponding cost tensor, and Ps the projection on the sth
marginal, defined as

Ps(M)j =
∑

i1,...,is−1,is+1,...,iS

Mi1,...,is−1,j,is+1,...,iM . (5)

Here, the shorthand

RNS
h :=

S∏
s=1

RNh = RNh × RNh × . . .× RNh

is used for the iterated Cartesian product. As an example, in
an ideal free-field propagation scenario, in which each IR,
hs, has only one non-zero element at index, say, ks, the
transport tensor M has a single non-zero element Mk1,...,kS

.
This element then correspond to the direct path components
with delays k1c/fs, . . . , kSc/fs. It is worth noting that it is
here implicitly assumed that the sensors are close enough in
space such that the amplitude of each image source is the same
in each IR. The effect of this assumption may be quantified
by considering a point source and two sensors located at the
distances r1 and r2 from the source position. Due to spherical
propagation, the pressure p0 by the source decays in amplitude
proportional to the distance, p(r) ∝ p0/r, such that the error
is given by p(r2) − p(r1) ∝ p0(r1 − r2)/r2r1. For example,
with r1 = 3 and r2 = 3.5, which could be a typical setup for
spatial audio applications (see Section IV), the error due to
the assumption of equal amplitudes introduces a relative error
of less than 3%. We note that a propagation model could also
be included in the model, introducing a scaling factor of the
projection in (5), which would be of interest in applications
with non-homogeneous propagation such as sonar or EEG.

The solution of (3) is determined by the cost tensor C.
Here, we seek to define the cost to promote transportation of
mass between taps of the IRs that correspond to positions in
space. As motivated in Section II, the positions are not well
defined in the presence of calibration errors. However, it is
still possible to define a position in terms of the mean squared

3For notational simplicity, but without loss of generality for the discussion
or the derived method, we let all IRs have the same length Nh.

error, i.e., the point y that minimizes the mean squared error
to each sphere defined by the delays τis,s. In this manner,
the cost of transporting mass between the indices i1, . . . , iS
may be defined by the corresponding deviation of the source
position y such that

Ci1,...,iS = min
y∈R3

S∑
s=1

∣∣∣||xs − y||2 − τis,sc
∣∣∣2, (6)

where c is the propagation speed. The problem in (6) is a
so-called trilateration problem; an illustration of the setup is
shown in Figure 1. Assuming Gaussian noise, the resulting
optimization is generally non-linear, non-convex, and multi-
modal. Fortunately, a computationally efficient approximate
solution have been proposed (see, e.g., [72]). Given the defini-
tion in (6), elements of the transport tensor M that correspond
to delays with smaller intersection errors of the spheres will
yield lower costs in (3). It is worth noting that the cost in
(6) is agnostic of the IRs, hs, being solely defined by the
sensor positions. In the following, the geometrical transport
concept is extended with probabilistic measurement models
and implementation considerations to handle identification of
image sources based on realistic estimated IRs.

A. Robustness for noisy impulse responses

The formulation in (3) requires the total transported mass to
remain constant due to the hard marginal constraints. However,
IRs that are estimated under non-ideal conditions implies
that the total mass of the resulting IRs may vary. Here, the
estimated IRs, hs, are assumed to be corrupted by Gaussian
noise. Several methods have been proposed to allow also for
unbalanced optimal transport depending on the error model
of the marginals. To allow for the Gaussian error model, the
marginal constraints may be relaxed, such that

minimize
M∈R

NS
h

+

⟨C,M⟩+ λ

S∑
s=1

||Ps(M)− hs||22. (7)

In this form, mass may both be introduced and discarded from
the estimated IRs. If an image source is observed in all but
one IR, it may then still be possible to identify the source.
However, the relaxed problem in (7) is only of relevance if the
parameter λ, which controls the trade-off between transporting
and discarding mass, can be set appropriately. We further
discuss how this may be solved below in Section III-C.

B. Joint signature estimation

The above formulations are designed to find the transport
plan of idealized sparse IRs. To allow for the unknown
signatures introduced in Section II, we here consider joint
estimation of the signatures and estimation of transport plan.
Without losing the intuition of the optimal transport problem,
the transportation is then instead defined to transport the
energy of the full signatures defined by ||hk,signature||22.

In the interest of notational brevity, we here assume the
sensor array to be small enough, such that each sensor may
be considered to measure approximately the same signature
for each source. It is further worth noting that the typically
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sparse structure of IRs will then translate to similar sparse
priors on the resulting signatures, which are here modelled to
also allow for non-sparse responses of each image source. In
order to do so, each element in (7) is extended with an IR of
length Nsign, such that the mass M ∈ RNS

h constitutes the
energy of the signatures U ∈ RNS

h ×Nsign , here modeled as

M = T2(U), (8)

where Tp : RNS
h ×Nsign → RNS

h and is defined such that p = 1
corresponds to the ℓ2 norm and p = 2 to the squared ℓ2 norm
over the signature dimension of each entry, defined as

Tp(U)i1,...,iS =

Nsign∑
isign

U2
i1,...,iS ,isign

p/2

. (9)

Incorporating the sparse signature in (7) allows the problem
to be extended to

minimize
U∈RNS×Nsign

⟨C, T2(U)⟩+ λ2

∑
i1,...,iS

T1(U)i1,...,iS

+ λ1

S∑
s=1

||Psign
s (U)− hs||22,

(10)

where the projection of the signatures on the marginal s at
index j is defined as

Psign
s (U)j =

∑
a,b∈Aj

∑
Is

Ui1,...,is−1,a,is+1,...,iM ,b, (11)

where

Is = {(i1, . . . , is−1, is+1, . . . , iS); ik ∈ [1, 2, . . . , Nh]}

is the set of all indices in U for a given index a in the sth
dimension and a given index b of the signature. The set Aj =
{(a, b) ∈ [1, 2, . . . , Nh]× [1, 2, . . . , Nsign]; a+ b = j} defines
the set of every index a of an IR and index b of the signature
that corresponds to a delay j, i.e., such that a+b = j. Although
the definition of Psign

s (·)j now appears to be more involved,
the principle is the same as for Ps(·)j in (5), i.e., assigning
the mass of the transport tensor to the corresponding delay in
the IR hs, although now each set of delays is endowed with
a signature.

It may be noted that an important aspect gained from the
use of the operator T2(·) is that it allows for both positive and
negative amplitudes of the estimated IRs. Even though ideal
IRs are positive under the image source model, estimated IRs
are in practice containing both positive and negative terms
due to estimation errors and the frequency response of the
source and the reflections. In order to be applicable to such
measurements, the problem (9) models transport of the energy
of the IRs, thus allowing for negative amplitudes. A similar
geometrical intuition of the transportation term in (10) still
holds, but where the energy of the signature of each image
source is transported instead of each amplitude.

Finally, one may note similarities between the modified
optimal transport formulation in (10) and classical estimation
methods from a signal perspective. Due to linearity of the
observation operator in (11), (10) may be interpreted from
a Bayesian perspective with a Gaussian noise model of the
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Fig. 3. Illustration of a typical IRs from the MeshRIR dataset [73], where
the early part of three IRs are extracted and high-pass filtered with a cut-off
frequency of 1000 Hz.

observed IRs and group sparse as well as weighted Gaussian
priors on the model parameters. Although both the weighting
of the Gaussian prior on the model, i.e., the cost tensor C,
and the linear observation operator in (11), follows naturally
from the optimal transport perspective, we will make use of
the Bayesian estimation perspective in the following section.

C. Selection of regularization parameters

The trade-off between transporting between IRs and dis-
carding mass is controlled by the regularization parameter λ
in (7). This regularization makes the model robust for errors
such as sampling mismatches and uncertainties in the sensor
positions. We here aim to formulate the trade-off in (7) in a
physically meaningful manner, such that λ may be determined
based on approximations of these errors. This allows for the
selection of the regularization parameters λ1 and λ2 in (10)
to be determined based on the sensor positions and the noise
variance of the data.

Consider assumed sensor positions x̂s located within a ball
of radius εx from the true sensor positions xs, and time of
arrival (TOA) measurements τ̂s satisfying |τ̂s − τs| ≤ ετ ,
where τs denotes the true TOA. Transportation of mass is then
only possible if the cost of transportation is not larger than
the worst-case cost under this error model for some source
position y ∈ R3, i.e.,

Jmax(y) = max
x̃s,τ̃ss=1,...,S

S∑
s=1

|||x̃s − y||2 − τ̃sc|p

s.t. ||x̃s − xs||2 ≤ εx

|τ̃s − τs| ≤ ετ s = 1, . . . , S.

(12)

An upper bound of Jmax, independent of the source position
y, is summarized in the following proposition.

Proposition 1. Consider Jmax in (12). For any y ∈ R3, it
holds that

Jmax(y) ≤ S(εx + ετ )
p. (13)
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Proof. See Appendix A.

Selecting the regularization parameter to coincide with this
upper bound, i.e., such that

λ = S(εx + ετ )
p, (14)

all feasible transports under this error model are beneficial
compared to discarding the mass. In practice, when a sensor
array is calibrated using trilateration or multilateration meth-
ods, as for example in [72], an estimate of εx is available from
the mismatch between the measured delays and the estimated
position. Furthermore, we let the uncertainties in the TOAs due
to sampling determine ετ , such that ετ = 1/2fs. Considering
the signature formulation with its group sparse constrains, as
defined in (10), the cost function can be seen to consist of one
term modelling the room geometry and two terms modelling
the IR single-channel data. Similar reasoning as above is
therefore valid considering the trade-off between maintaining a
geometrically feasible transport plan and modelling the data.
The remaining problem of setting the trade-off between the
two latter terms in (10), i.e. between the group-sparsity and fit
of data, may thus be thought of in terms of setting a parameter
ρ to weigh the sum of these two terms, i.e.,

S∑
s=1

||Psign
s (U)− hs||22 + ρ

∑
i1,...,iS

T1(U)i1,...,iS . (15)

It should be noted that this formulation coincides with the
well-studied group-sparse regularized least-squares problem.
Thus, we will here proceed with the heuristic approach of
setting ρ based on the fraction of the largest value that
is shrunk to zero, and validate that this is an appropriate
choice in Section IV. In the following, it is assumed that
the estimated IRs are corrupted by additive Gaussian noise
such that hs = h̄s + ϵϵϵs, where the noise variance, σ2

ϵ ,
may be empirically estimated using the latter part of the IR,
hs, that may be considered to not contain any of the early
reflections. A confidence bound of the noise with confidence
level α may thus be assumed given by σϵβα/2, where βα/2

denotes the corresponding quantile of the standard Gaussian
distribution, such that an estimate of the fraction between
the maximum amplitude in the data and the noise floor is
σϵβα/2/maxs,n(hs), where maxs,n(·) denotes the maximum
value of every sample and sensor. Correcting for the group
length Nsign and the number of sensors S results in

ρ =
σϵβα/2Nsign

maxs,n(hs)S
δ, (16)

where a confidence value of α = 0.05 is used here, and the
scaling parameter δ is introduced to allow for a local cross
validation with the available data, reminiscent to the parameter
selection in [17]. Note that although the formulation in (10)
includes two regularization parameters, the cross validation
only considers a search over a local region for the parameter
δ, which is here performed using 5 values of δ in the range

Fig. 4. Illustration of one realization of the data geometry with 10 interpo-
lation points and 13 sensors.

10−2 to 102. To translate the parameters λ and ρ from (14)
and (16) to the parameters in (10), λ1 and λ2 are defined as

λ1 = λ
1

ρ+ 1
, (17)

and
λ2 = λ

ρ

ρ+ 1
, (18)

respectively.

D. Interpolating off-grid delays

It is worth noting that the formulation in (10) allows for
continuously located sources in space, whereas the estimated
IRs, hs, are sampled on a discrete grid. The delays of the
sources are thus likely to be off-grid delays with respect to
the IRs. To allow for transport of off-grid delays, errors due
to sampling may be mitigated. Also, higher resolution in time
implies accurate localization which constitutes the basis of
this approach. We further note that the formulation in (10)
can be extended to cope with a modified sampling frequency.
The off-grid delays may then be incorporated by introducing
sinc interpolation assuming narrow-band IRs, followed by a
masking procedure, both which can be formulated as linear
filters determined by an upsampling factor Iup (see [74] for
details). Each signature is then initially upsampled by a linear
filter to the sampling frequency fsIup, after which the masking
is introduced as a linear filter to align the upsampled signatures
to the original grid at sampling frequency fs. In this way,
the signatures can be time-delayed with respect to the grid
sampled at fsIup, but where the problem in (10) may still be
solved for IRs in the original sampling frequency fs.

E. Pruning the domain of the problem

It is also worth noting that the problem in (10) is numeri-
cally intractable, since it grows with the length of the IRs, such
that the number of variables in U is NM

h , which for Nh = 500
and M = 15 is roughly 1040. To make the problem tractable
and such that the complexity grows with the complexity of the
geometry of the environment rather than the length of the IRs,
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Fig. 5. The figure shows the estimated NMSEsignal as a function of number
of sensors.

some practical considerations are implemented to propose a
set of candidate delays. In the perfect image source model, an
IR is sparse with positive peaks corresponding to the delays
of the image sources. In the formulation in (10), the image
source method is generalized to allow for calibration errors and
signatures. The signatures model the response of reflections
as well as the response of the sources. It is therefore assumed
that each signature attains a maximum which corresponds to
the delay to the image source. Therefore, the set of candidate
indices may be reduced to the indices that constitute local
maximum of the estimated IRs. The local maximum is here
determined after up-sampling with the factor Iup of the IR,
in order to allow for fractional delays. Furthermore, since an
estimate of the noise floor usually is available for the early
part of the IR, as discussed in Section III-C, only peaks of
amplitudes larger than λ0.025σϵ, i.e., a 95% confidence interval
for the noise, are considered. By considering the set of all
delays corresponding to a local maximum of the estimated
IRs, the number of combination can be further reduced due to
Proposition 1. It is known a priori that, by setting the trade
off between the transport term and the data model terms in
(10) as proposed in (14), the set of delays of a cost above
the bound in Proposition 1 is outside of the allowed error
model. Therefore, these set of delays may also be excluded
from the problem, which, along with the other pruning aspects,
makes the problem presented in Section IV small enough to
be solved using general convex solvers, such as CVX [75].
However, the solution may be even further simplified, by
pruning the dictionary size based on the relative amplitudes
of the local maximum. It is expected that all of the local
maximum should be of about the same magnitude, such that
the variance of the amplitudes corresponding to each index
{i1, . . . , iS} should be small. Therefore, for a fixed is, only
the, say, 100 elements of smallest variance must be kept in
the dictionary. The mentioned pruning aspects is a direct
consequence of the proposed formulation constructed by a
dictionary of delays, rather than a dictionary of image sources.
Although a dictionary of delays generalizes a dictionary of
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Fig. 6. The figure shows NMSEir as a function of number of used sensors.

image sources, a dictionary of delays is in the same domain
as the observed data, which thus allows for the pruning of the
problem. As an example, to produce the results in Figure 5
and 6 takes about two hours using the proposed method on a
modern PC, but about two days for the L1TESM method.

F. Interpolating the impulse response

By construction, each signature obtained as a solution to
(10) may be localized to provide a representation of the
IR similar to the one formed by the image source method.
From the spatial representation, a range of problems may
thus be addressed, such as the reconstruction of the room
geometry, dual-path suppression, or interpolation of the IR (as
considered below). The positions of the signatures, yeq

i1,...,iM
,

are estimated as the argument minimizing the cost in (6), i.e.,

yeq
i1,...,iS

= argmin
y

S∑
s=1

|||xs − y||2 − τik,sc|2. (19)

Note that the position is already computed in the construction
of the cost of the transport problem in (6) and does thus not
need to be recomputed. To reconstruct the interpolated IR,
hinter, at a position yinter in the neighborhood of the sensor
array, the mass may be delayed to represent the propagation
time to the new location. The IR is then estimated as the
sum of the elements in U, where each element Ui1,...,ıS ,isign

contributes to the element

hinter

[
||yeq

i1,...,iS
− yinter||

fs
c

+ isign − 1

]
. (20)

IV. NUMERICAL RESULTS

In order to evaluate the performance of the proposed
method, we use both simulated and measured data from subset
S1-M3969 of MeshRIR [73]. The simulated data is obtained
using the image source method as implemented in [76], with
a sampling frequency of 14 kHz, the reflection coefficients
for the walls set to 0.5, and using 9261 virtual sources. The
source is positioned at [5.5, 3.5, 2.0] in a box-shaped room of
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respectively.

dimensions 11× 7× 4m, with the sensors uniformly sampled
in a cube-shaped region centered at [6.8, 4.2, 1.5] with sides of
length 0.5m. Furthermore, white Gaussian noise with a stan-
dard deviation of 0.005 was added to the simulated IRs. The
real data contains estimated IRs sampled at fs = 48 kHz from
a single source position to 3969 equally spaced microphones
within a measurement region of 1×1×0.4 m. Since the main
contribution of this work is to interpolate the challenging mid
and high frequency components of the early part of an IR
in the presence of calibration errors, the real IRs are high-
pass filtered with a cut-off frequency of 1000 Hz to omit
the low frequency dynamics. For low frequency interpolation,
which includes aspects such resonant frequencies due to room
dimensions, we refer to works with this focus, such as [15]–
[24]. Two metrics are presented, averaged over D validation
points and F reshuffles. For each reshuffle, S sensors and
D validation sensors are randomly chosen from the data set.
Figure 4 illustrates a typical realization. Here, we measure the
performance of the reconstruction of a signal filtered through
the interpolated IR, ĥp,f , using the normalized mean square
error (NMSE), defined as

NMSEsignal =
1

DF

D∑
d=1

F∑
f=1

||ĥd,f ∗ z− hd,f ∗ z||22
||hd,f ∗ z||22

, (21)

where hd,f denotes the measured IR from the data set and
z a band-pass filtered signal. Furthermore, to measure the
performance of the IR interpolation, define

NMSEir =
1

DF

D∑
d=1

F∑
f=1

||ĥd,f ∗w − hd,f ∗w||22
||hd,f ∗w||22

, (22)

where w denotes a low-pass filter. The low-pass filter is
introduced since a small deviation of a peak in time would
cause a significant contribution to the NMSEir without any
smearing.

In the following, we compare the performance of the pro-
posed method with that of L1TESM, TikTESM, L21TESM,
L1PWDM, TikPWDM, and L21PWDM (see [17] for details
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Fig. 8. The figure shows the estimated NMSEir as a function of the standard
deviation for the calibration errors in terms of displacement of the sensor
positions for simulated data.

on these methods, including code for each method), where
TESM indicates a method that uses the time domain equivalent
source model, whereas PWDM indicates a method that uses
the plane wave decomposition model. The used regularization
parameter is set using cross-validation, as described in [17].
It is worth noting that the computational complexity of the
methods in [17] are very high, necessitating limitations in the
numer of used plane wave directions, the assumed lengths of
the IRs, the number of sensors, and the number of used cross-
validations, in order to make the computationally tractable.
This is in particular important for measurements made with
a high sampling frequency. Therefore, 10 logarithmically
decreasing values for the regularization parameter is evaluated
from 1 to 10−6, as described in [17], using 500 equivalent
source positions as well as plane wave directions. Unless
otherwise specified, the OMT method is evaluated using an
up-sampling factor of Iup = 5, as described in Section III-D,
with the signature lengths being Nsign = 40 for the real data
and Nsign = 1 for the simulated data (this may, in practice,
be determined from the first peak where the acoustic IR is
commonly separated from the contributions of the reflections).
The MeshRIR is calibrated with laboratory equipment such
that the sensor position error is assumed to be εx = 0.01 m.
Moreover, the dictionary of candidate delays is pruned as
described in Section III-E.

Initially, simulated data is used to examine the robustness to
calibration errors in the sensor positions. To do so, we perturb
the sensor positions with a normal distributed error for five
different standard deviations, σx, in the range 0 to 10 cm.
A sampling frequency 14 kHz is chosen to be able run the
methods in [17] on the first 50 ms of the IRs, corresponding
to the early part, and with 500 plane wave directions, with
D, S, and F set to 10, 30, and 10, respectively. The resulting
NMSEir with the cut-off frequency of the low-pass filter w
in (22) set to 1000 Hz is illustrated in Figure 8. Note that
the data is simulated using the image source method without
any low frequency considerations, such that a low-pass filter
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Fig. 9. The figure illustrates the proposed method’s selection of the group
sparsity regularization parameter ρ, where ρ is scaled with different values of
δ such that δ = 1 is equivalent to the proposed selection of ρ.

with cut-off frequency 1000 Hz is sufficient for isolating the
properties of the early part. Although L1TESM, L21TESM,
L1PWDM, and L21PWDM have a lower NMSEir than the
proposed method, denoted OMT, for a perfectly calibrated
setting, the OMT can, as expected, be seen to be more robust
when introducing calibration errors.

The methods are then examined on the real dataset. Due
to the high sampling rate of the IRs, the computational
complexity of the methods in [17] is very high. Therefore, the
methods are only evaluated for the first 12.5 ms of the IRs,
containing only the first 2 to 4 reflections, and with S and F set
to 5 and 10, respectively. Below, we also separately evaluate
the proposed method on the first 35 ms of the IRs in order to
confirm that the obtained results generalizes to a longer part
of the early reflections of the IRs. Furthermore, since the real
IRs contain various reflections, each such reflection will have
a low-passed filtered structure. To mimic this, we use a low-
pass filter w in (22) with cutoff frequency 8 kHz, and a broad
band input signal z in (21), which is band-pass filtered in the
range 1 to 5 kHz, to emulate the frequency range of speech.

Initially examining how the number of used sensors affect
the performance, Figures 5 and 6 show the NMSEsignal and
NMSEir when using 9, 13, and 17 sensors, respectively. As
can be seen in the figures, the proposed method consistently
outperforms the benchmark methods throughout the interval.
We note that the reason for the high NMSE of the benchmark
methods could be due to both the calibration errors in the
dataset and to the sampling rate, which is 6 time higher than
what was used in [17] as well as 3.4 times higher than in
the simulation above, making the dictionary immense. The
pruning of the proposed solution, as described in Section III-E,
which follows directly from formulating the dictionary in the
same domain as the data, omits this aspect of the proposed
method. An example of the resulting interpolated IR is illus-
trated in Figure 7, showing the effects of including more sensor
measurements.

Next, in order to evaluate the selection of the regularization
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Fig. 10. The figure shows the estimated NMSE of band limited input
signals using 13 sensors. The gain in performance of the proposed method is
especially prominent for higher frequencies above 2 kHz.

parameter, described in Section III-C, the NMSEsignal is
evaluated for different multiplicative scalings of ρ for an
interpolation using 13 sensors. The grid of scaling values, δ,
is formed over 10 logarithmicly spaced values between 10−2

and 102. As seen in Figure 9, the proposed method of setting
the parameter ρ yields a low NMSEsignal, with all of the
amplitudes in the dictionary being set to zero, yielding an
NMSEsignal of 0 dB, when δ is greater than about 5.

Figure 10 illustrates how the performance is affected by the
frequency content of the signal. Here, the input signal consists
of Gaussian noise bandpass filtered in intervals of 500 Hz
from 1000 to 8000 Hz, using 13 sensors. As can be seen in
the figure, the proposed method offers a clear improvement
as compared to the other approaches, most prominently for
frequencies in the interval 1500 to 3000 Hz. As can be seen
in the figure, for the low frequency signals, the L1TESM and
L21TESM perform similar to the proposed method. However,
we note that the proposed method is not designed to handle
low frequency acoustic components since the signatures are
only long enough to capture the frequency response of a single
reflection. Acoustic low frequency effects such as room modes
have in general longer decay times than the response of a sin-
gle reflection, which the methods in [17] can therefore handle
more efficiently. Finally, Figure 11 illustrates the performance
of the proposed method when instead using the first 35 ms of
the IRs. As expected, the NMSE is higher than in Figure 10,
since the prominent reflections constitutes a smaller fraction
than in the very early part of the IRs. Despite this, the curve
is of similar shape as for the 12.5 ms case, indicating that the
results of the proposed method also generalizes to longer IRs.

V. CONCLUSION

In this work, we have defined an optimal transport distance
between impulse responses and an image source model. The
definition allows for a weaker formulation of the image source
model that is convex and is robust to calibration errors. Using
the introduced formulation, we propose a novel approach to
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Fig. 11. The figure shows the estimated NMSE of band limited input signals
using 13 sensors for IRs of length 35 ms.

interpolate the early part of impulse responses, which is robust
to sensor position errors, incorporates fractional delays, allows
for a linear frequency response in each reflection and the
source, and incorporating sparse priors in the formulation. The
proposed method is evaluated on the MeshRIR data set, clearly
illustrating the method’s preferable performance as compared
to current state of the art room impulse response interpolation
methods.

APPENDIX A
UPPER BOUND OF REGULARIZATION PARAMETER

An upper bound of the cost of a set of delays, as defined in
(6), is here derived under the error model of calibration errors
described in (12). Initially, note that the left hand side of the
constraints on the sensor positions in (12) can, for any source
position y ∈ R3, equivalently be expressed as

||x̃s − y||22 − 2(x̃s − y)T (xs − y) + ||xs − y||22 ≤ ε2x, (23)

following from that

||x̃s − xs||22 = ||(x̃s − y)− (xs − y)||22
= ||x̃s − y||22 − 2(x̃s − y)T (xs − y) + ||xs − y||22.

Since x is the true sensor position, and τs is the delay between
the true sensor position and the source, by definition

||xs − y|| = τsc. (24)

A lower bound of the second term in (23) may thus be derived
by taking the absolute value and using the Cauchy-Schwartz
inequality, such that

−2(x̃s − y)T (xs − y) ≥ −2|(x̃s − y)T (xs − y)|
≥ −2||x̃s − y||2||xs − y||2. (25)

Using (24) and (25), (23) may be expressed in terms of τs and
as = ||x̃s − y||2 such that

a2s − 2asτsc+ τ2s c
2 ≤ ε2x, (26)

which is a quadratic equation in as with the solutions as ∈
[τsc − εx, τsc + εx]. The problem J̃max, with the relaxed
constraints in (26), is thus given by

J̃max = max
as,τ̃s,s=1,...,S

S∑
s=1

|as − τ̃sc|p

s.t. as ∈ [τsc− εx, τsc+ εx]

τ̃s ∈ [τs − ετ , τs + ετ ] s = 1, . . . , S

(27)

and satisfy Jmax(y) ≤ J̃max for any y ∈ R3. Furthermore,
J̃max has the closed form solution J̃max = S(εx + ετ )

p.
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