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Modelling Human Decision-making based on Aggregate Observation Data

Antti Kangasrääsiö 1 Samuel Kaski 1

Abstract
Being able to infer the goals, preferences and
limitations of humans is of key importance in
designing interactive systems. Reinforcement
learning (RL) models are a promising direction
of research, as they are able to model how the
behavioural patterns of users emerge from the
task and environment structure. One limitation
with traditional inference methods for RL mod-
els is the strict requirements for observation data;
both the states of the environment and the ac-
tions of the agent need to be observed at each
step of the task. This has prevented RL mod-
els from being used in situations where such
fine-grained observations are not available. In
this extended abstract we present results from
a recent study where we demonstrated how in-
ference can be performed for RL models even
when the observation data is significantly more
coarse-grained. The idea is to solve the inverse
reinforcement learning (IRL) problem using ap-
proximate Bayesian computation sped up with
Bayesian optimization.

1. Introduction
Reinforcement learning (RL) based user models are based
on the following assumptions: (1) there is an environment
where the user is situated, (2) there is a task the user is
trying to perform in this environment, (3) the user has
performed similar tasks before and thus learned an opti-
mal way to perform the task. A Markov decision process
(MDP) is then constructed to match the situation, and a RL
algorithm is used for solving the optimal behaviour policy.
When the parameters of the MDP are unknown, inferring
their values based on observations of the behavior of the
user is known as inverse reinforcement learning (IRL).

Traditional methods for solving the IRL problem have
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been used in multiple real-world modelling situations,
such as driver route modelling (Ziebart et al., 2008), he-
licopter acrobatics (Abbeel et al., 2010), learning to per-
form motor tasks (Boularias et al., 2011), dialogue systems
(Chandramohan et al., 2011), pedestrian activity prediction
(Ziebart et al., 2009; Kitani et al., 2012), and commuting
routines (Banovic et al., 2016).

However, the traditional problem formulation assumes that
we have observed the states of the environment and the ac-
tions of the agent at each step of the decision process. In
many real-world situations it may not be feasible to collect
such fine-grained observations, while other types of obser-
vations may be easily available. For example, (1) we may
be limited by budget from collecting fine-grained observa-
tions, (2) we may be in an adversarial situation, where the
opponent prevents us from making accurate observations,
(3) we may have privacy related reasons that restrict our
access to accurate observations.

To extend the applicability of RL models, we propose a
variant of the IRL problem, called the inverse reinforce-
ment learning from summary data (IRL-SD) problem. We
then propose two methods for solving the problem: one
based on the exact observation likelihood and another
based on an approximate likelihood, inspired by approxi-
mate Bayesian computation (ABC). For inference we pro-
pose a Bayesian optimization (BO) based method.

We demonstrate that use of the surrogate allows us to in-
fer both maximum likelihood estimates and full posteriors
of parameters on moderate-sized models, including a cog-
nitive model for human visual search, based on only ag-
gregate observations. Further details are presented in the
original publication (Kangasrääsiö & Kaski, 2017).

2. IRL from Summary Data
2.1. Problem Definition

Let M be a MDP (S, A, T , R, γ) with parameters θ. Let
the true parameters be θ∗ ∈ Θ and assume agent behav-
ing according to an optimal policy for Mθ∗ . Assume the
agent has taken paths (ξ1, . . . , ξN ) and we observe sum-
maries Ξσ = (ξ1σ, . . . , ξNσ), where ξiσ ∼ σ(ξi) and σ
is a known summary function. The inverse reinforcement
learning problem from summary data (IRL-SD) is then:
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Given (1) set of summaries Ξσ of an agent demonstrating
optimal behavior; (2) summary function σ; (3) MDP M
with θ unknown; (4) bounded space Θ; and optionally (5)
prior P (θ).
Estimate θ̂ ∈ Θ such that simulated behavior from Mθ̂
agrees with Ξσ , or the posterior P (θ|Ξσ).

2.2. Exact Likelihood

Assume both |S| and |A| are finite and that the maximum
number of actions that can be performed within an ob-
served episode is Tmax. Denote the finite set of all plau-
sible trajectories by Ξap ⊆ STmax+1 ×ATmax .

The likelihood for θ given Ξσ = (ξ1σ, . . . , ξNσ) is now

L(θ|Ξσ) =

N∏
i=1

[
P (ξiσ|θ)

]
=

N∏
i=1

[ ∑
ξi∈Ξap

[
P (ξiσ|ξi)P (ξi|θ)

]]
,

where
P (ξiσ|ξi) = P

(
σ(ξi) = ξiσ

)
,

and

P (ξi|θ) = P (si0)

Ti−1∏
t=0

[
π∗θ(sit, a

i
t)P (sit+1|sit, ait)

]
.

2.3. Approximate Likelihood

Assume a function for generating summary datasets Ξsimσ
given MDP M , parameters θ, number of episodes N , and
summary function σ: RLSUM(Mθ, N, σ). Also assume a
discrepancy function δ,

δ(ΞAσ ,Ξ
B
σ )→ [0,∞),

which quantifies the dissimilarity between two observation
datasets. Note that δ needs to be selected based on domain
knowledge, or learned from data (Gutmann et al., 2017).
By combining RLSUM(Mθ, |Ξσ|, σ) with δ, we define

dθ ∼ δ(RLSUM(Mθ, |Ξσ|, σ),Ξσ).

The distribution of dθ corresponds with the ability of θ to
satisfy our requirements for solving the IRL-SD problem.
Finally we define an approximate likelihood function,

L̃ε(θ|Ξσ) = P (dθ ≤ ε|θ),

where the approximation threshold ε ∈ [0,∞). The thresh-
old ε can be chosen adaptively (Lintusaari et al., 2017).

2.4. Inference

As computing the gradients is not feasible, and evaluating
even the surrogate is expensive, we use Bayesian optimiza-
tion (BO) (see Brochu et al., 2010) combined with a Gaus-
sian process (GP) regression model (Rasmussen, 2004) for

finding the maximum likelihood (ML) point estimate. For
a GP fit with data D and hyperparameters H , the mean at θ
is Gµ(θ|D,H) and the standard deviation is Gσ(θ|D,H).
The optimization horizon of BO is Nopt and the acquisi-
tion function value at θ is Acq(θ|D,H) (the maximum of
the acquisition function defines the next sample location in
BO).

Algorithm 1 summarizes exact ML inference and Algo-
rithm 2 the approximate (we use the discrepancy values
instead of approximate likelihood values for convenience).

Algorithm 1 Exact Maximum Likelihood Inference Algo-
rithm for IRL-SD

Input: M , Ξσ , Θ, H , Nopt
Output: θ̂ML

D ← ∅
for i = 1 to Nopt do
θi ← arg maxθ Acq(θ|D,H)
π∗θi ← RL(Mθi)
lθ ← − logL(θi|Ξσ)
D ← {D, (θi, lθ)}

end for
θ̂ML ← arg minθ Gµ(θ|D,H)

Algorithm 2 Approximate Maximum Likelihood Infer-
ence Algorithm for IRL-SD

Input: M , Ξσ , Θ, H , Nopt
Output: θ̂ML

D ← ∅
for i = 1 to Nopt do
θi ← arg maxθ Acq(θ|D,H)
Ξsimσ ← RLSUM(Mθi)
dθ ← δ(Ξsimσ ,Ξσ)
D ← {D, (θi, dθ)}

end for
θ̂ML ← arg minθ Gµ(θ|D,H)

For exact posterior inference, the log-likelihood in Algo-
rithm 1 can be replaced with log-posterior. For approx-
imate inference we take a similar approach as Gutmann
and Corander (Gutmann & Corander, 2016) by returning
P̃ (θ|Ξσ) = P (θ)L̃ε(θ|Ξσ) with the distribution of dθ esti-
mated from the GP.

3. Experiments
3.1. Grid World

As a toy example we used a variation of the grid world
problem. In our version the agent was initially placed at the
edge of a square grid and the task of the agent was to get to
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the center of the grid. Our task was to infer the parameters
of a linear reward function for the features of the states,
R(s) = φ(s)T θ, where φ(s) is the binary feature vector of
state s. Our summary observation function σ extracted the
initial location of the agent and the length of the episode.

We first estimated the runtime of the algorithms as a func-
tion of the grid size (Fig. 1), and noticed that the exact
method is not computationally feasible for large grids. We
estimated the quality of the inference on various sizes of
grids (Fig. 2) using both the prediction error (measured
with the discrepancy function δ) and inference quality (L2

error for ML estimates). We observed that both methods
get results better than random, and that the approximate
method actually performs better than the exact one on this
problem. We suspect that this is because matching the
global features of the behavior is likely more robust than
matching the local state-transition probabilities in the like-
lihood function.

Figure 1. Duration of the first step of the exact and approximate
ML estimation algorithms (mean of 20 experiments).

3.2. Experiment 3: Modelling Computer Users

We also inferred the full posterior of a cognitive science
model with the approximate method based on real observa-
tion data. The MDP models a user performing visual search
from a computer drop-down menu (Chen et al., 2015; Kan-
gasrääsiö et al., 2017). With small computer menus the
accuracy of eye-tracking is often poor, so it is difficult to
get reliable measurements at the state-action level. How-
ever, simple summary statistics, such as the time between
opening a menu and clicking the target item, are simple to
measure accurately.

Our summary observation included the task completion
time (TCT) and whether the target was present or absent
in the menu, and the discrepancy is based on the differ-
ences in TCT distributions. We infer the posteriors of three
parameters: (1) duration of eye fixations fdur (units of 100
ms), (2) duration of moving the mouse to select an item dsel
(units of 1 s), and (3) probability of recalling the full menu
layout from memory prec. To make visualization easier, the
posterior is inferred in two groups: first for fdur and prec
(Figure 3 left), then for fdur and dsel (Figure 3 right).

Figure 2. Quality of ML estimates with the exact and approximate
inference methods. Top: discrepancy to the observation data,
smaller is better. Bottom: L2 distance to ground truth, smaller
is better. Random baseline represents a uniform guess from the
parameter space. The bars show the mean and standard deviation
of 30 independent experiments.

We observe a correlation between fdur and prec, and sim-
ilarly for fdur and dsel. These are understandable, as in-
creasing fdur increases the TCT, as would decreasing prec
or increasing dsel. There is still considerable uncertainly
left in dsel and in prec. The uncertainty in dsel could be ex-
plained by individual variation in selection times, and prec
by the fact that the menus encountered early on in the ex-
periments were completely new to the subjects, but at the
end of the experiment the subjects were more likely to re-
call a previously encountered menu. We note that these in-
sights would not have been possible to infer from just MAP
estimates.

Figure 3. Left: posterior of fdur and dsel. Right: posterior of
fdur and prec.

4. Discussion
We defined the IRL-SD problem, proposed exact and ap-
proximate methods for inference and demonstrated that
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they both are able to solve the inference problem. We
demonstrated that the approximate method is scalable
enough to be used for full posterior estimation for a real-
istic cognitive science model.

Regarding partial observability in IRL, there now exists
formulations for three different situations. (1) If the
agent has partial observability of the environment state, a
POMDP model can be used (Choi & Kim, 2011). (2) If the
external observer has partial observability on environment
state level, traditional IRL methods can be extended (Kitani
et al., 2012). (3) If the external observer has partial observ-
ability on complete path level, then the presented methods
for IRL-SD can be applied.
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