' Aalto University

Arellano, Silvia; Otero, Beatriz; Kucner, Tomasz Piotr; Canal, Ramon
A 3D Terrain Generator: Enhancing Robotics Simulations with GANs

Published in:
Machine Learning, Optimization, and Data Science - 9th International Conference, LOD 2023

DOI:
10.1007/978-3-031-53969-5 17

Published: 16/02/2024

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:

Arellano, S., Otero, B., Kucner, T. P., & Canal, R. (2024). A 3D Terrain Generator: Enhancing Robotics
Simulations with GANSs. In G. Nicosia, V. Ojha, E. La Malfa, G. La Malfa, P. M. Pardalos, & R. Umeton (Eds.),
Machine Learning, Optimization, and Data Science - 9th International Conference, LOD 2023 (pp. 212-226).
(Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics); Vol. 14505 LNCS). Springer. https://doi.org/10.1007/978-3-031-53969-5_17

This material is protected by colpyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by ?/ou for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other tuhse: Elgctronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

https://doi.org/10.1007/978-3-031-53969-5_17
https://doi.org/10.1007/978-3-031-53969-5_17

A 3D Terrain Generator: Enhancing Robotics Simulations with GANs S. Arel-
lano et al. Universitat Politecnica de Catalunya, Barcelona, Spain
{silvia.arellano@estudiantat.upc.edu, beatriz.oteroQupc.edu, ramon.canal@upc.edu}

Aalto University, Finland
tomasz.kucner@aalto.fi

A 3D Terrain Generator: Enhancing Robotics
Simulations with GANs

Silvia Arellanol Beatriz Otero 1
Tomasz Piotr Kucner?2 Ramon Canall

March 26, 2024

Abstract

Simulation is essential in robotics to evaluate models and techniques
in a controlled setting before conducting experiments on tangible agents.
However, developing simulation environments can be a challenging and
time-consuming task. To address this issue, a proposed solution involves
building a functional pipeline that generates 3D realistic terrains using
Generative Adversarial Networks (GANs). By using GANs to create ter-
rain, the pipeline can quickly and efficiently generate detailed surfaces,
saving researchers time and effort in developing simulation environments
for their experiments. The proposed model utilizes a Deep Convolutional
Generative Adversarial Network (DCGAN) to generate heightmaps, which
are trained on a custom database consisting of real heightmaps. Fur-
thermore, an Enhanced Super-Resolution Generative Adversarial Network
(ESRGAN) is used to improve the resolution of the resulting heightmaps,
enhancing their visual quality and realism. To generate a texture ac-
cording to the topography of the heightmap, chroma keying is used with
previously selected textures. The heightmap and texture are then ren-
dered and integrated, resulting in a realistic 3D terrain. Together, these
techniques enable the model to generate high-quality, realistic 3D terrains
for use in robotic simulators, allowing for more accurate and effective
evaluations of robotics models and techniques.

GAN Terrain rendering 3D image generation Robotics simulators Sim2Real

1 Introduction

Simulation plays a crucial role in robotics by providing a controlled setting for
testing algorithms and prototypes before conducting experiments on physical
agents. These tools allow researchers to test robots in unusual, inaccessible, or

https://orcid.org/0000-0002-9194-559X
https://orcid.org/0000-0002-9503-0602
https://orcid.org/0000-0003-4542-204X

even impossible scenarios, improving safety and performance. However, devel-
oping 3D virtual environments is a demanding and time-consuming task. These
environments have become increasingly complex and detailed over the years,
making the process even more challenging. To enhance the user’s experience
and generate more realistic environments, researchers have been exploring pro-
cedural modeling as an ongoing line of research in recent years. [19]

Procedural modeling is a well-established technique in the video game indus-
try, used in popular games like Minecraft [12] to generate diverse, never-ending
worlds. Some commercial applications related to animation and video games
provide users with the ability to procedurally generate landscapes and scenes
for games and driving simulations. However, there is a lack of applications for
automatic scenario generation prepared to be applied in robotics or robotics
simulators. The requirements for 3D virtual environments in robotics are of-
ten different from those in video games or other industries. In robotics, the
environments must be physically accurate and realistic to ensure that the re-
sults obtained in simulation can be extrapolated to real-world scenarios. This
level of fine-tuning requires a high degree of control over the environment and
the models used, which is often not possible with traditional terrain modeling
techniques.

This paper proposes a complete pipeline to generate a realistic terrain, in-
cluding both mesh and texture. Besides, the output of this pipeline aims to
make it easy for the user to apply various surface parameters in each zone of
the mesh based on the terrain type. These parameters, such as friction, contact
forces, and other critical factors in robotics, are essential for achieving accurate
simulations.

The pipeline is divided into four primary components, detailed in Figure
The first component involves heightmap generation, which is critical for obtain-
ing a realistic mesh. This will be further explained in section 3. Enhancing
the quality of the heightmap is essential for rendering a terrain precisely. For
that reason, a super resolution algorithm is applied, increasing four times the
original resolution of the image. This procedure is explained in section 4. Once
the heightmap is generated and improved, the third component of the pipeline
focuses on generating a texture that meets the user’s requirements and is consis-
tent with the generated map’s topography. The user is expected to specify how
many textures should be combined and how the combination should be done.
After that, the system generates the texture. This procedure will be further
amplified in section 5. Finally, the output from the previous steps is integrated
by rendering the heightmap to obtain a mesh, which is then combined with the
texture. The resulting mesh is then exported and can be used in any preferred
robotic simulator. The integration step is further explained in Section 6.

The main contributions of this work are the following:

e Creation of an open-source heightmap dataset by extracting data directly
from various online sources, as there was no comprehensive publicly avail-
able dataset at the time.

e Selection of an appropriate combination of neural networks to achieve

Step 1 Step 2 Step 3 Step 4
Heightmap Apply super Texture definition Integration and
generation resolution rendering

User input:
—_ —»p * Howmany
* Material
+ Range of heights
« Position

Figure 1: workflow pipeline of the 3D terrain generator, showing the various
stages involved in generating a terrain from scratch.

diverse and high quality resources.

e A comparative analysis between the proposed pipeline and other existing
techniques for generating 3D terrains for robotics simulations.

e Development of a software capable of generating a wide range of com-
binations of shapes and terrains to provide robots with diverse training
scenarios.

The remainder of this paper is organized as follows. Section 2 provides
a review of related work on procedural terrain generation. Section 3 and 4
illustrate the generation procedure of both meshes and textures, explaining the
techniques and the Neural Network used in the process. Then, Sect. 5 presents
the integration process, and Sect. 6 describes the potential uses and applications
of this software in robotics. We draw the main conclusions in Sect. 7.

2 Background

2.1 Current terrain generation strategies

The aim of procedural modeling is, instead of designing content by hand, to de-
sign a procedure that creates content automatically [I9]. Some of its advantages
include the reduction of cost and time needed for scene generation, a high level
of detail in the output without human intervention and low memory require-
ments. However, the main drawbacks are the difficulty in manipulating and
controlling the generation process and the significant amount of computational
resources required [7], [19].

Our proposal focuses on procedural modeling of outdoor terrain, which can
be approached using three strategies: noise functions, erosion simulation, and
texture synthesis. All of these strategies make use of height maps, which are a
representation of a terrain’s surface as a grid of elevation values.

The first way to generate new height maps is using bandwidth-limited noise
functions like Perlin [I6], which can capture the nature of mountainous struc-
tures. However, due to the randomness of these functions, manipulating the
outcome and customizing it according to the user’s needs becomes a challenging

task. Gasch et al. [6] use noise functions to generate arbitrary heights, and
combine them with previously given artificial features, like figures or letters, in
a way that the final result can be perceived as real.

Another strategy for generating terrains is erosion simulation, which involves
modifying the terrain using physics-based algorithms that aim to resemble nat-
ural phenomena. A renowned study in this field was carried out by Musgrave
et al. [13], where they computed the surface erosion caused by water, by con-
sidering the quantity of water that would accumulate at each vertex of a fractal
height field and the impact of thermal weathering.

The last procedure considered is texture synthesis, which aims to generate
new surfaces by studying and finding patterns in existing terrains. In this way,
it can capture their realism, so that they obtain compelling results. Panagiotou
et al. [I5] used a combination of GAN and Conditional GAN (cGAN) to create
images that resemble satellite images and Digital Elevation Models that can
match the output of the first GAN.

Our approach can be included in the last type of procedure, as we use a
Deep Convolutional Generative Adversarial Network (DCGAN), a type of gen-
erative model that has shown great success in generating high-quality images,
to create heightmaps of terrain that will be rendered as 3D meshes. We com-
bine this method with an Enhanced Super-Resolution Generative Adversarial
Network (ESRGAN) to improve the quality of the generated samples, and a
technique that is based on chroma keying to assign different textures to the
terrain depending on its height.

2.2 Related existing applications

In recent years, we can observe a rapid acceleration in research on data-driven
methods across multiple fields. However, they are heavily dependent on the
amount of available data. As mentioned before, there is a lack of applications
for automatic scenario generation in the context of robotics or robotics simula-
tors. Nevertheless, there are similar approaches in the field of video games and
animation. Some remarkable commercial applications in this fields are Procedu-
ral Worlds [2], which provides Unity [24] users with the ability to procedurally
generate landscapes and scenes for games and driving simulation, and iClone 8
[17], a 3D animation software with a special focus on nature terrain generation.

There are also several design programs available, such as Terragen [21], and
E-on Vue [20], that allow users to create computer-generated environments.
Nevertheless, these programs require expertise in 3D design tools and lack the
automatic generation feature that our tool aims to provide.

3 Heightmap generation

The first step in the pipeline aims to create a terrain mesh. To create varied
surfaces, this approach takes advantage of heightmaps, which are grayscale im-
ages that represent the elevation of a terrain and can be transformed into 3D

surfaces once they are rendered. Although these images are in grayscale, we
chose to represent them in the RGB color space for our dataset. Our objective
for this part of the pipeline is to generate diverse and realistic heightmaps while
avoiding those that resemble flat planes with little height variation, as they
may not be of great interest. For this purpose, we have studied two different
methods: unconditional image generation with diffusion models and Generative
Adversarial Networks (GANSs).

On the one hand, Denoising Diffusion Probabilistic Models (DDPM), also
known as diffusion models, were introduced by Ho et al. [10]. A DDPM is a
generative model used to produce samples that match a given dataset within a
finite time. The diffusion model consists of two processes: a forward diffusion
process that gradually adds Gaussian noise during several timesteps to the in-
put data until the signal has become completely noisy, and a reverse denoising
process that learns to generate data by removing the noise added in the forward
process.

The diffusion process uses small amounts of Gaussian noise, which allows
for a simple neural network parameterization. Diffusion models are known for
their efficiency in training and their ability to capture the full diversity of the
data distribution. However, generating new data samples with a diffusion model
requires the model to be forward-passed through the diffusion process several
times, which can be computationally expensive and result in a slower process
compared to GANs. In contrast, GANs only require one pass through the
generator network to generate new data samples, making them faster and less
computationally expensive for this particular task. However, it is important to
remark that the computational efficiency of both models can vary depending on
factors such as dataset size, model complexity, and implementation details.

On the other hand, GANs, first proposed by Goodfellow et al. in [§], are a
type of neural network architecture that include two models: a generator and
a discriminator. The generator creates fake data that is meant to be similar
to the real data, while the discriminator tries to differentiate between the real
and fake data. The objective of the generator is to create synthetic images so
that the discriminator perceives them as real. In this study, we utilized Deep
Convolutional GANs (DCGANS) to generate heightmaps. The model used in
this study was adapted from the code provided by Tang’s DCGAN256 repository
on GitHub [22]. As one of our goals is to make this tool practical and accessible
to a wide range of users, we have chosen to prioritize the use of GANs over
DDPM for our task. By doing so, we aim to reduce the computational resources
required and increase the speed of the generation process, which will make the
software more efficient and agile.

3.1 Architecture of the GAN

The GAN architecture utilizes a generator that receives a random noise vector
of size 4096 as an input and transforms it into a fake heightmap with a size of
256x256x3. It is composed of eight transposed convolutional layers, as detailed
in Figure [2l The discriminator in this study takes in images of size 256x256x3

and processes them through six convolutional layers, as shown in Figure |3} The
output of the discriminator is a sigmoid activation function that indicates the
probability of the input image being real or fake.

B nput
Il Transposed Convolution + ReLU
| [ion + Batch ization + ReLU
B Transposed Convolution + Sigmoid
7 Upsampling 2d
%'l " . “I‘
N
Nn N~ NG
N
el %, % & e, %
e *o ty o + S % S
+ 5 % e &> %,
NN + +s +
% 6 e <o 4) Yo

Figure 2: Structure of the DCGAN generator

N Addition of Gaussian Noise

N 2D Convolution + Leaky ReLU + Dropout
B Flatten layer

M Dense layer + Leaky ReLU

M Dense layer + Sigmoid

> Average Pooling 2D

— Input

e S |
/ A -
Generated image S e s 5 .
EN 3 > s
4 + + +
G*e@ %, %, %, b, %, T ¢
%, o % % 5

Figure 3: Structure of the DCGAN discriminator

3.2 Obtention of the training data

To ensure accurate results during neural network training, it is crucial to use
a sufficient number of training samples that are diverse enough to avoid over-
fitting. However, as there were no open-source heightmap datasets available,
we had to create our own. Our dataset consists of 1000 real heightmap images
from various terrains worldwide. We obtained the images entirely from the web
Ciities: Skylines online heightmap generator [I] using web scraping techniques.
Each heightmap represents an area of 17.28 km? and has a resolution of 1081 x
1081 px.

To enhance efficiency and facilitate experimentation, we preprocess the sam-
ples before training. The images are initially represented with 16 bits per pixel,

but we represent them with 8 bits in RGB format to achieve a reduced file size
and ensure compatibility with a broader range of tools and software. Further-
more, to improve computer speed and efficiency, we reduce the resolution of
the samples to 256 x 256 px. To avoid a biased dataset with too many plain
terrains, which may be of less interest to users, we filter out images based on
their standard deviation. To determine the threshold for plain terrains, we com-
pute the standard deviation of a noise image and keep those images that have
a standard deviation of 35% or more of that value. This way, we ensure the
presence of plain terrains while maintaining diversity.

3.3 Training

After preprocessing the data, the GAN is trained using a learning rate of 10
and a batch size of 16. The GAN is trained for 75,000 steps, resulting in the
losses and results displayed in Figure] The figure shows the losses from both
the generator and the discriminator, differentiating between the cases when the
discriminator is presented with real or fake images. In addition, the figure
contains an example of each part of the training, which are detailed below.

The graph on Figure [4] illustrates that the discriminator and the generator
play a min-max game, where if one of them decreases its loss, the other one
will increase it. To explain this further, we can divide the training into three
parts, separated by dashed lines on the plot. It’s worth noting that monitoring
the loss values is primarily useful for tracking the GAN’s progress over the
steps and ensuring that the training is not diverging, rather than measuring the
improvement in the quality of the generated images.

In the first part of the training (Part A), corresponding to the early steps
of the training, the discriminator starts guessing randomly (since it hasn’t re-
ceived enough training), causing an increase in its loss and a small value in the
generator’s loss. In the second part (Part B), the rate of change in the losses
becomes smoother, and the generated images start to become more realistic and
clear, although there are still some areas with blurry patterns. Finally, in the
latter part of the training (Part C), the losses become stable, and the generated
images are realistic and visually diverse, which satisfies the requirements for our
application.

3.4 Evaluation

We aimed to evaluate the quality of the generated images using metrics com-
monly used in the image generation field, such as Inception Score (IS) and
Fréchet Inception Distance (FID). However, due to the nature of our images,
neither of these metrics may be the most appropriate for our evaluation.

The Inception Score (IS), defined by Salimans et al. [18] is an algorithm used
to assess the quality of images created by a generative image model such as a
generative adversarial network (GAN). It uses an Inception v3 Network pre-
trained on ImageNet and calculates a statistic of the network’s outputs when
applied to generated images. As stated by Barratt et al. [3], in order to obtain a

g 0.6 —— Discriminator Real
5 o 05
w0
£ g o4
ES o3
2 0.2
o 0.1
0 10000 20000 30000 40000 50000 60000 70000
% 0.6 —— Discriminator Fake
Lo 0.5
5 @
5 9 0.4
£ 8 03
£
E 0.2
a 0.1
0 10000 20000 30000 40000 50000 60000 70000
3 —— Generator Losses
2 4
<]
g
5 3
o
g 2
j°3
O q
0 10000 20000 30000 40000 50000 60000 70000
Step
172 -
. 5 :
<) .
o E K -
£E3 g
S ® :
G e
[}
)
Step: 10000 Step: 40000 Step: 75000
Part A Part B Part C

Figure 4: Evolution of DCGAN losses over training epochs, along with repre-
sentative images from each stage. From top to bottom, the figure displays the
losses of the discriminator when given real data, the losses of the discriminator
when given fake data, and the losses of the generator.

good IS, the images should be sharp. Besides, it is expected that the evaluated
images belong to a great variety of classes in ImageNet. However, our images
don’t belong to any of the ImageNet classes, and our dataset isn’t organized
in classes, like the would IS expect. Therefore, the IS may not be the most
appropriate metric to use for evaluating image quality.

The FID, defined by Heusel et al. [9] is also used to assess the quality of
images generated by a GAN. The FID quantifies the similarities between two
image datasets by comparing their distributions, specifically by calculating the
distance between feature vectors calculated for real and generated images. A
lower FID indicates that the generated images are more similar to the real ones
and hence indicates better image quality and a better model.

We compared a dataset of 1000 real heightmaps with a dataset of 1000
generated heightmaps and obtained an FID score of 274.54, which suggests that
the two datasets are not very similar. However, it’s important to note that
the images in our datasets have a wide range of standard deviations, which can
have an impact on the FID score. This is because FID measures the similarity

1
MSE = S (& — 2.2 (2
PSNR = 20log;, (%) (1 > (i — &) (2)

between two sets of images based on their feature statistics, and the feature
statistics used in FID computation are sensitive to variations in pixel intensities.
Therefore, this would mean that in our case the FID score may not accurately
reflect the visual similarity between the real and generated images.

4 Super resolution

To render the result with the appropriate resolution, we studied two different
methods of increasing the resolution of the heightmap, including ESRGAN pro-
posed by Wang et al. [25] and bicubic interpolation. We evaluated the methods
considering metrics such as the Peak Signal-to-Noise Ratio (PSNR) and the
Structural Similarity Index (SSIM), defined below.

g by + C 20,y + Cs

SSIM(x,y) =
Y= e T2t G

(3)

PSNR measures the ratio of the maximum possible power of a signal to
the power of corrupting noise that affects the fidelity of its representation. In
eq. , the maximum pixel value of the evaluated image is denoted as M AX7,
with the minimum level assumed to be 0. The noise level is modelled as square
root of Mean Squared Error (MSE).

The Mean Squared Error (MSE) is given by equation [2} where x; represents
the value of a pixel in the original image and Z; represents the corresponding
pixel value in the processed image. A higher PSNR value indicates a lower
level of noise in the reconstructed image, which in turn indicates a higher image
quality.

The SSIM compares the luminance, contrast, and structure of the two images
by taking into account their mean values (u, and p,) and variances (02 and
012/)7 as well as their covariance (o4,). It consists of two terms: the first term
computes the similarity of the luminance and contrast between the two images,
while the second term computes the similarity of their structure. The constants
C1 and Cy are used to avoid division by zero errors and are typically small
positive values. A higher SSIM value indicates a higher similarity between the
two images.

We evaluated the algorithms using a real heightmap database consisting of
1000 1024 x 1024 pixel heightmaps that were previously downsized to 256 pixels.
These downsized images represent examples of images that could potentially
have been generated by the GAN model. We intentionally downsized the images
to evaluate the ability of the enhancing techniques and the quality of the results
when working with lower resolution images. Both algorithms were employed to
enhance these downsized images and restore them to their original size.

The evaluation results indicate that, in 54% of cases, bicubic interpolation
outperformed ESRGAN with an average difference of 0.5dB. Even though most
images generated by ESRGAN are acceptable, it occasionally produced small
unexpected artifacts, such as regions with colored pixels, as it can be seen in
the example of Figure (a), which resulted in slight lumps or peaks in the final
mesh and a decrease of up to 9 dB in the PSNR, like in Figure b). Only
a 1.2% of the images had a significant impact. The difference in SSIM values
between the two techniques was found to be on the order of 103. The time
taken to produce results was also considered, with bicubic interpolation taking
2 minutes and ESRGAN taking less than a second.

Despite the artifacts produced by ESRGAN in a subset of images, we decided
to use it to enhance the resolution of the generated heightmaps since most of
the images were acceptable, and ESRGAN was significantly faster. However,
further investigation and refinement may be necessary to address the artifacts
in the subset of images where a significant impact was observed. The code used
followed the original paper. It was obtained from the TensorFlow Hub and was
initially developed by Dey [4].

A 2

(@ (b) ©

Figure 5: Example of a real heightmap (a), the output after enhancing it with
ESRGAN (b) and the rendered result (c). The green bounding boxes indicate
the perceivable artifacts generated by the ESRGAN.

5 Texture generation

As depicted in Figure [I] after the heightmap is generated and its resolution is
improved, the next step is to generate its texture. The ability to customize
textures based on height and position is a key feature of this application, as it
allows users to create terrains that suit their specific needs. Two methods have
been studied to achieve a realistic result that fits the topography of the surface,
which are presented below.

5.1 Pix2Pix

The first approach used is Pix2Pix, a GAN presented by Isola et al. [11] that
is used in image-to-image translation, which involves generating an output im-

10

age that is a modification of a given input image. In this case, image-to-image
translation refers to generating a texture that fits the topography of the envi-
ronment, having the heightmap as an input of the network. This can lead to
realistic results, as it is expected to make good associations between heights and
material.

To implement this technique, we utilized the Pix2Pix network provided by
TensorFlow [23]. The network requires a database consisting of images that
contain both the heightmap and its associated real texture. Following the same
approach as in Section 3.2, we created the necessary database using web-scraping
techniques. However, such dataset is not diverse nor balanced enough. There
are more textures for the low height areas than for the high height areas. This
leads to a bias that favours materials from flat areas over those in rugged areas,
as shown in Figures @(a) and @(b), which show a plain and a rugged texture
generated by the Pix2Pix network, respectively.

The generated plain texture has similar features to the ground truth image,
such as the brownish perturbations in parts A and B of Figure [However, the
generated rugged terrain doesn’t show any of the perturbations of the ground
truth image, as shown in part C, making it an unacceptable result.

Another disadvantage of using Pix2Pix is the difficulty users may face when
attempting to personalize the generated textures. The network can only repli-
cate the textures present in the training database, and there is a limited amount
of textures available. This makes it difficult to customize the map according to
the user’s specific needs, as the network cannot generate new textures that were
not present in the training data. As a result, the user may be limited to using
only the available textures, which may not be suitable for all use cases.

Input image Ground truth Predicted image

(a) Plain terrain

(b) Rugged terrain

Figure 6: Comparison between the ground truth textures of a plain and a rugged
terrain with the predicted textures produced by the pix2pix network, given the
corresponding heightmap as input.

11

5.2 Chroma keying

The second approach studied was the application of chroma keying. This tech-
nique involves using color information to select and isolate pixels that fall within
a range of colors previously defined, known as the "key colors”. In our case,
the application of chroma keying involved dividing the heightmap into differ-
ent ranges of grey levels and assigning a different material to each range. To
allow for user customization, the user selected the range of greys in which each
material should be placed. To create varied combinations of textures, we have
chosen eight materials and found an image from the Internet for each one of
them. The selected materials were rock, grass, snow, clay and moss, grass with
rock, rock with snow and grass with sand. Then, the material images were re-
sized to 1024x1024 so that they could cover the entire heightmap in case needed.
Additionally to this height division, a feature was added to include position as
a parameter to further customize the texture of the heightmap. However, the
application of this technique resulted in evident contours between neighboring
textures, creating an unnatural look, as shown in Figure m(b) To address this
issue, we applied post-processing to the image. Firstly, we added a Gaussian
blur filter from the OpenCV library [14] to a copy of the texture image. The
key parameters, o, and o, were set to 2 to achieve moderate smoothing. Next,
a binary mask was created using the detected contours from the original image,
which was then dilated with a kernel of (5,5) pixels to select the surrounding
areas of the contours. Then, we replaced the pixels in the original image that
were selected by the mask with their corresponding pixels in the blurry image.
These procedures resulted in an image with smoothed contours. However, the
axis changes still appeared unnaturally straight. To remedy this, we added a
swirl effect in both axes using 16 swirls uniformly distributed. The strength of
the swirl was set to 2, and the radius to 100 pixels to avoid over-prominence.
The resulting image is shown in Figure m(c)

(a) (b)

Figure 7: Example of the different phases involved in texture generation: (a)
the original heightmap used as input for generating the texture, (b) the texture
after applying chroma keying, and (c) the texture after post-processing.

12

Table 1: Combination of values that the user needs to input to generate the
textures given the corresponding heightmaps depicted in Figure [§]

Figure Height Value Position (px) Texture
(0, 55) (0, 1023), (0, 1023) clay
(55, 105) (0, 1023), (0, 1023) clay and moss
7(a) (105, 155) (0, 1023), (0, 1023) rock
(135, 255) (511, 1023), (0, 511) snow
(155, 255) (0, 1023), (0, 1023) rock with snow
(0, 75) (0, 511), (0, 511) Tock
(0, 75) (511, 1023), (0, 511) | rock with sand
(0, 75) (0, 511), (511, 1023) clay and moss
(75, 150) (0, 511), (0, 1023) grass and rock
6 and 7(b) (75, 150) (0, 1023), (0, 511) grass
(150, 255) (0, 255), (0, 255) snow
(150, 255) (255, 511), (0,255) | rock with snow
(150, 255) (255, 511), (0, 255) rock with snow
(150, 255) (255, 511), (255, 511) snow
(0, 35) (0, 1023), (0, 1023) clay
(35, 105) (0, 1023), (0, 1023) grass and rock
7(c) (35, 105) (511, 1023), (511, 1023) | clay and moss
(105, 165) (0, 1023), (0, 1023) | rock with snow
(165, 255) (0, 1023), (0, 1023) snow

6 Integration and rendering

To integrate the texture to the mesh, we used the Blender API [5]. However,
instead of integrating the texture as a whole, it is integrated material by ma-
terial. In this way, the map can be exported in pieces to the chosen simulator
and assign different properties to each type of material. The resulting files are
exported with the extension .obj and .mtl. Some results can be seen in Figure

Bl

7 Conclusions

Simulation environments are commonly utilized in robotics, but the process of
creating realistic 3D terrains for robotic simulation purposes can be challenging
and laborious. In this paper, we introduce a system that automatically generates
3D terrains from scratch, generating both heightmaps and textures. The system
is composed of four main parts: heightmap generation, heightmap resolution
enhancement, texture generation, and integration. After comparing Diffusion
Models and DCGANs, we used DCGANs for heightmap generation, as it is
computationally less expensive and faster, making it accessible to a wider range
of users. For heightmap resolution improvement, we employed ESRGAN, which

13

Figure 8: Final rendering of three different terrains, generated by integrating
the corresponding heightmaps shown in the top row of this Figure with the
textures defined in Table [1l

outperformed bicubic interpolation in execution time and most of the outputs
were adequate. For texture generation, we studied two methods: Pix2Pix and
chroma keying. Although Pix2Pix was limited in terms of available textures
and biased towards flat areas, chroma keying allowed for greater customization
by dividing the heightmap into different grey ranges, differentiating between
positions, and assigning a different material chosen by the user to each range.
To achieve a more natural look, we also used post-processing to smooth the
contours and add swirl effects. Finally, we integrated and rendered both the
mesh and texture, resulting in .obj and .mtl files that together, represent the
generated terrain in the chosen robotics simulator engine. In this way, the user
can customize the parameters of each material separately.

As future work, we suggest exploring new techniques for customizing the
terrain, so the result can be more similar to the user’s idea. Additionally, en-
hancing the databases to provide the neural networks with more and better
quality data could result in further improvements. Besides, addressing the arti-
facts observed in the ESRGAN’s outputs may require further investigation and
refinement.

Acknowledgment

This work is partially supported by the Spanish Ministry of Science and Innova-
tion under contracts PID2021-1244630B-100 and PID2019-107255GB, by the
Generalitat de Catalunya under grants 2021-SGR-00326 and 2021-SGR-00478.
Finally, the research leading to these results also has received funding from the
European Union’s Horizon 2020 research and innovation programme under the
HORIZON-EU VITAMIN-V (101093062) project.

14

References

[1]

[10]
[11]

Cities: Skylines online heightmap generator. https://heightmap.
skydark.pl/| accessed on April 5, 2023

Procedural worlds. https://www.procedural-worlds.com/, accessed on
March 13, 2023

Barratt, S., Sharma, R.: A note on the inception score (2018)

Dey, A.: Image enhancing using esrgan. https://github.com-
/tensorflow/hub/blob/master/examples/colab/image_enhancing.
ipynb (2019), accessed on March 31, 2023

Foundation, B.: Blender (Accessed on March 19, 2023), https://www.
blender.org/

Gasch, C., Chover, M., Remolar, I., Rebollo, C.: Procedural modelling of
terrains with constraints. Multimedia Tools and Applications 79, 31125—
31146 (2020)

Gonzalez-Medina, D., Rodriguez-Ruiz, L., Garcia-Varea, I.: Procedural
city generation for robotic simulation. In: Robot 2015: Second Iberian
Robotics Conference: Advances in Robotics, Volume 2. pp. 707-719.
Springer (2016)

Goodfellow, 1.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D.,
Ozair, S., Courville, A., Bengio, Y.: Generative adversarial networks (2014)

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.:
Gans trained by a two time-scale update rule converge to a local nash
equilibrium (2018)

Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models (2020)

Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation
with conditional adversarial networks. In: 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR). pp. 5967-5976 (2017).
https://doi.org/10.1109/CVPR.2017.632

Mojang Studios: Minecraft. https://www.minecraft.net/en-us/, ac-
cessed on March 11, 2023

Musgrave, F.K., Kolb, C.E., Mace, R.S.: The synthesis and rendering of
eroded fractal terrains. ACM Siggraph Computer Graphics 23(3), 41-50
(1989)

OpenCV: Opencv library. https://opencv.org/, accessed on April 6, 2023
Panagiotou, E., Charou, E.: Procedural 3d terrain generation using gener-

ative adversarial networks. arXiv preprint arXiv:2010.06411 (2020)

15

https://heightmap.skydark.pl/
https://heightmap.skydark.pl/
https://www.procedural-worlds.com/
https://github.com-/tensorflow/hub/blob/master/examples/colab/image_enhancing.ipynb
https://github.com-/tensorflow/hub/blob/master/examples/colab/image_enhancing.ipynb
https://github.com-/tensorflow/hub/blob/master/examples/colab/image_enhancing.ipynb
https://www.blender.org/
https://www.blender.org/
https://www.minecraft.net/en-us/
https://opencv.org/

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Perlin, K.: An image synthesizer. ACM Siggraph Computer Graphics
19(3), 287-296 (1985)

Reallusion: iclone8, https://www.reallusion.com/iClone/, accessed on
March 19, 2023

Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen,
X.: Improved techniques for training gans (2016)

Smelik, R.M., Tutenel, T., Bidarra, R., Benes, B.: A survey on procedural
modelling for virtual worlds. In: Computer Graphics Forum. vol. 33, pp.
31-50. Wiley Online Library (2014)

on Software, E.: Vue - overview (Accessed on March 19, 2023), https:
//info.e-onsoftware.com/vue/overview

Software, P.: Terragen (Accessed on March 19, 2023), https://
planetside.co.uk/

Tang, George: Dcgan256. https://github.com/tOnberryking/
DCGAN256, accessed on March 27, 2023
TensorFlow: pix2pix: Image-to-image translation with a condi-

tional gan. https://github.com/tensorflow/docs/blob/master/site/
en/tutorials/generative/pix2pix.ipynb, accessed on April 3, 2023

Unity Technologies: Unity real-time development platform. https://
unity.com/, accessed on March 27, 2023

Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y., Change Loy,
C.: Esrgan: Enhanced super-resolution generative adversarial networks.
In: Proceedings of the European conference on computer vision (ECCV)
workshops. pp. 0-0 (2018)

16

https://www.reallusion.com/iClone/
https://info.e-onsoftware.com/vue/overview
https://info.e-onsoftware.com/vue/overview
https://planetside.co.uk/
https://planetside.co.uk/
https://github.com/t0nberryking/DCGAN256
https://github.com/t0nberryking/DCGAN256
https://github.com/tensorflow/docs/blob/master/site/en/tutorials/generative/pix2pix.ipynb
https://github.com/tensorflow/docs/blob/master/site/en/tutorials/generative/pix2pix.ipynb
https://unity.com/
https://unity.com/

	Introduction
	Background
	Current terrain generation strategies
	Related existing applications

	Heightmap generation
	Architecture of the GAN
	Obtention of the training data
	Training
	Evaluation

	Super resolution
	Texture generation
	Pix2Pix
	Chroma keying

	Integration and rendering
	Conclusions

