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We develop flexible local projections to quantify the relative contributions of expected discount rates and cash 
flows to the variation of dividend yields. Local projections enable the incorporation of large information sets, 
the use of monthly data along with annual data, and the consideration of time variation in the dividend yield 
decomposition. By expanding the set of state variables and allowing for time-varying parameters, our results 
show that the variation of expected discount rates remains the primary contributor to market volatility, whereas 
the contribution of expected cash flows is considerably smaller.

1. Introduction

The value of a stock should equal expected discounted cash flows. 
Understanding the relative contribution of expected discount rates (re-
turns) and cash flows (dividends) to the volatility of equity markets is 
one of the central topics in asset pricing research. A voluminous litera-
ture demonstrates that expected dividends contribute only marginally, 
if at all, to the volatility of prices (see, e.g., the early evidence in 
Shiller, 1981; LeRoy and Porter, 1981; Campbell and Shiller, 1988b; 
and Cochrane, 1992, 2008). In response to these findings, the focus of 
asset pricing research in recent decades has primarily been on the anal-
ysis of discount rate variation (see, e.g., Cochrane, 2011, 2017).

To analyze the discount rate vs. cash flow conundrum, a typical 
starting point is the Campbell and Shiller (1988b) log-linear present 
value model, which decomposes the dividend yield into expected dis-
count rates and expected cash flow growth. The empirical implementa-
tion in Campbell and Shiller (1988b), Cochrane (2008) and many other 
studies utilizes a vector autoregressive (VAR) representation describing 
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the dynamics of (log) market returns, dividend yields, dividend growth, 
and possibly additional variables. The estimated VAR coefficients are 
subsequently used to infer long-run expectations of discount rates and 
cash flow growth. Specifically, Cochrane (2008) uses the lagged div-
idend yield as the only state variable to predict future returns and 
dividend growth rates and finds, since the dividend yield is a poor pre-
dictor of future dividend growth, a negligible contribution of expected 
dividend growth to price volatility.

In this study, we also build upon the log-linear present value model 
but introduce an alternative methodology to empirically quantify the 
relative contributions of expected discount rates and cash flows in a 
more general environment than in the past approaches. Our approach 
is in spirit similar to Campbell and Shiller (1988b) and Cochrane (2008)
as we use regression-based techniques to infer cash flow and discount 
rate expectations. However, instead of inferring implied long-run ex-
pectations from a VAR with one state variable, we obtain the required 
predictions for the discounted (cumulative) expected returns and divi-
dend growth rates using (forecast) horizon-specific single-equation re-
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gressions, which we refer to as ‘local projections’ (LPs), following Jordà 
(2005).

Our local projection approach has several advantages over the VAR 
approach. First, LPs are less restrictive than VARs, thereby reducing 
model misspecification concerns. Second, LPs enable the incorporation 
of potentially large sets of economic and financial state variables be-
yond the traditional dividend yield. Third, LPs can be estimated with 
higher-frequency data, such as monthly data, while the seasonality 
of dividend data has restricted prior studies using the VAR-based ap-
proaches to rely solely on annual data (see, e.g., the survey by Koijen 
and Van Nieuwerburgh, 2011). Due to the enlarged sample sizes result-
ing from the use of monthly data, we can estimate the local projections 
recursively, enabling us to uncover time variation in the predictability 
of dividends and returns and ultimately in the dividend yield decompo-
sition. We briefly outline these advantages below.

Jordà (2005) proposes local projections as an alternative to VARs 
for computing impulse response functions in structural macroeconomet-
rics.1 We apply local projections in a different context: to infer long-run 
expectations of discount rates and cash flow growth in order to obtain 
a dividend yield decomposition. Instead of the conventional approach 
of extrapolating an estimated one-period VAR model over multiple peri-
ods, the idea of local projections is to construct predictions at each hori-
zon of interest separately. As argued by Jordà (2005) and Schorfheide 
(2005), this approach is more robust to potential misspecification than 
the VAR approach, which is built upon the strong assumption that the 
underlying VAR representation is correctly specified.2 In practice, the 
estimated VAR is likely to be misspecified, like any econometric model, 
providing at best an approximation to the true correct asset pricing pro-
cess. As Jordà (2005) puts it, misspecification errors are ‘compounded 
with the forecast horizon’ with a VAR, whereas horizon-specific local 
projections are optimized to minimize misspecification error at each 
horizon separately, not requiring an exact specification of the true mul-
tivariate dynamic system.3

An example of a situation where extrapolating short-run predictions 
does not provide optimal long-run predictions is dividend smoothing. 
Short-run dividend smoothing adversely affects the predictability of div-
idends in the short run. As Chen et al. (2012) demonstrate, this lack 
of short-run predictability induces a negative bias to the VAR-implied 
contribution of cash flow news: they show by simulation that even if 
dividends are predictable in the long run, this predictability is for the 
most part not uncovered by a VAR in the presence of short-run divi-
dend smoothing.4 Since cumulative dividend growth rates over longer 

1 See, e.g., Gorodnichenko and Lee (2020), Plagborg-Møller and Wolf (2021)
and Li et al. (2022), and the references therein. Cochrane and Piazzesi (2002)
provide an early example of impulse response functions constructed by direct 
(i.e. LP) regressions.

2 The robustness of local projections in terms of potential misspecification, 
such as in the presence of potential breakpoints (see Chevillon, 2016), is sup-
ported by comparisons between ‘direct’ and ‘iterative’ multiperiod forecasting 
methods (see, e.g., Marcellino et al., 2006; and Chevillon, 2007).

3 Although LPs are less restrictive than VARs, the LP approach is not 
assumption-free. Both approaches are based on the implicit assumption that 
agents know the correct data generating process and form model-consistent, or 
objective, expectations. The LP approach is therefore distinct from, e.g., De la O 
and Myers (2021), who use survey data to proxy for subjective cash flow growth 
and discount rate expectations. In contrast to objective expectation approaches, 
they find a larger share of market variation to be attributed to cash flow expec-
tations. Moreover, our LP-based decomposition, like the VAR approach, relies 
on the Campbell-Shiller (1988b) log-linearization, which is known to generate 
significant approximation errors when the underlying process is highly nonlin-
ear (e.g., Pohl et al., 2018).

4 Consistent with the adverse impact of dividend smoothing on dividend 
growth predictability, recent studies identify a larger cash flow component re-
lying on alternative measures of cash flows, including net payout (Larrain and 
Yogo, 2008), earnings (Chen et al., 2012), and direct cash flow forecasts by 
analysts (Chen et al., 2013).

horizons (say, 10 or 15 years) are less affected by dividend smoothing 
policies, our local projections largely circumvent the concerns raised 
by Chen et al. (2012), by making direct (as opposed to VAR-implied) 
predictions of long-run dividend growth.

Local projections also allow for the inclusion of a potentially large 
set of state variables. We extend the information set beyond lagged div-
idend yields, returns and dividends, by considering a larger set of finan-
cial and macroeconomic predictors of dividends and returns that have 
been identified in the earlier literature.5 Demonstrating the flexibility 
of local projections, we can choose different sets of state variables to 
model expected returns and expected dividend growth separately. Since 
the list of potential state variables is long, we also use LASSO (Least 
Absolute Shrinkage and Selection Operator) to select state variables. 
LASSO is a machine learning method popularized by Tibshirani (1996)
that performs variable selection and parameter estimation simultane-
ously to guard against overfitting, potentially enhances the prediction 
accuracy, and facilitates interpretability of the resulting econometric 
specification. While recent return predictability studies (e.g., Rapach et 
al., 2010; Gu et al., 2020) have used LASSO and other related machine 
learning methods to predict market returns, this is, to the best of our 
knowledge, the first study applying such methods to assess the rela-
tive importance of discount rate and cash flow expectations to market 
volatility.

VAR-based volatility decompositions of the dividend yield are typ-
ically based on annual data due to pervasive seasonal patterns in 
monthly dividends (e.g., Koijen and Van Nieuwerburgh, 2011). On the 
contrary, the aforementioned studies on the predictability of returns 
and dividend growth often analyze monthly data. Local projections 
enable us to establish an approximate volatility decomposition that 
incorporates dividend growth also at monthly frequency, despite the 
seasonality of monthly dividends data, by including monthly updated 
observations of annualized (i.e., 12-month) cumulative dividend growth 
rates. The use of monthly data increases the number of observations 
considerably, which facilitates meaningful examination of possible time 
variation in the discount rate and cash flow contributions over time.

In our empirical analysis, we first apply local projections with the 
lagged dividend yield as a single state variable. Confirming the findings 
of Cochrane (2008, 2011), we find that dividend growth expectations 
conditional on the lagged dividend yield are nearly flat, such that the 
contribution of expected cash flow growth to the dividend yield is small 
compared to the contribution of expected discount rates. When includ-
ing more state variables, we find evidence of increased time variation 
in cash flow growth expectations, consistent with the recent litera-
ture on dividend predictability. Whether this increased predictability 
of dividends translates into a larger component of cash flows to market 
volatility is nevertheless a different question. Cochrane (2008, 2011)
argues that due to the links between returns, dividend growth, and 
dividend yields, any additional dividend predictability beyond the pre-
dictive power of the lagged dividend yield needs to be compensated by 
additional predictability of returns such that the dividend yield decom-
position remains unaffected. Menzly et al. (2004), Lettau and Ludvigson 
(2005) and Golez (2014), however, argue that the positive correlation 
between expected cash flow growth and expected returns has a neg-
ative impact on the dividend yield’s ability to predict expected cash 
flow growth, thereby underestimating the contribution of cash flow ex-
pectations to dividend yield volatility. Given these considerations, we 

5 Return predictors identified in the literature include, i.a., valuation ratios 
(Campbell and Shiller, 1988a; Fama and French, 1988; Lamont, 1998), interest 
rates spreads (Fama and French, 1989; Ang and Bekaert, 2007), stock mar-
ket volatility (Guo, 2006; Martin, 2017), output gap (Cooper and Priestley, 
2009), the consumption-wealth ratio (Lettau and Ludvigson, 2001, 2005) and 
risk appetite (Bekaert et al., 2022). Dividend growth predictors include, i.a., 
consumption ratios (Lettau and Ludvigson, 2005), dividend and earnings yields 
(Ang and Bekaert, 2007; Møller and Sander, 2017) and the long-run relation-
ship between prices, earnings and dividends (Garrett and Priestley, 2012).
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evaluate the predictability of dividends and returns (specifically: the 
variance of expected returns and expected dividend growth) separately 
from the contribution of expected returns to the dividend yield variance 
(specifically: the covariance of expected returns and expected dividend 
growth with the dividend yield).

Our results largely provide support for the ‘offsetting hypothesis’ by 
Cochrane (2008, 2011). Despite the increased volatility of cash flow 
growth expectations, we do not find a dramatic increase in the relative 
contribution of expected dividend growth to the dividend yield decom-
position. Similar to the VAR (e.g., Cochrane, 2008) and recent latent 
variable approaches (van Binsbergen and Koijen, 2010; Zhu, 2015; Choi 
et al., 2017), our LP approach confirms that the discount rate channel 
remains the primary contributor to dividend yield volatility. We em-
phasize that our results are specific to our US sample. When considering 
different time periods (e.g. Chen, 2009; Golez and Koudijs, 2018), or in-
ternational evidence (Rangvid et al., 2014) it is possible that the results 
are different.

The remainder of this paper is organized as follows. Section 2
presents the methodology behind our dividend yield decomposition 
based on local projections. Section 3 describes the data. Section 4
presents empirical results with the dividend yield as the single state 
variable, both from using local projections with time-invariant (con-
stant) and time-varying parameters. The results of using various ex-
tended selections of state variables are presented in Section 5. We 
provide a discussion of our findings in Section 6 and Section 7 con-
cludes. Appendix A provides detailed descriptions of previously used 
methods to consider dividend yield volatility decomposition. Supple-
mentary results are documented in our Internet Appendix.

2. Methodology

2.1. Present-value framework

Our starting point is the log-linearized present value model by 
Campbell and Shiller (1988b), who show that the return on holding 
an asset for one period (𝑅𝑡+1 =

𝑃𝑡+1+𝐷𝑡+1
𝑃𝑡

) can be approximated by a 
linear equation:

𝑟𝑡+1 ≈ 𝜅 − 𝜌𝑑𝑝𝑡+1 + 𝑑𝑝𝑡 +Δ𝑑𝑡+1, (1)

where 𝑟𝑡 ≡ log
(
𝑅𝑡

)
, 𝑑𝑝𝑡 ≡ log

(
𝐷𝑡

𝑃𝑡

)
, and Δ𝑑𝑡 ≡ log

(
𝐷𝑡

𝐷𝑡−1

)
. In (1), all 

variables are typically interpreted as deviations from means, such that 
the constant term 𝜅 can be omitted:

𝑟𝑡+1 ≈ −𝜌𝑑𝑝𝑡+1 + 𝑑𝑝𝑡 +Δ𝑑𝑡+1, (2)

where 𝜌 is required to be below, but close to 1. Empirically, 𝜌 is typi-
cally estimated as

𝜌 = 𝑒𝑑𝑝

1 + 𝑒𝑑𝑝
, (3)

where 𝑑𝑝 is the sample average of the log dividend yield 𝑑𝑝𝑡. Rearrang-
ing (2) and iterating forward results in the dividend yield expressed in 
terms of discounted future returns, dividend growth rates, and dividend 
yields:

𝑑𝑝𝑡 ≈
𝑘∑

𝑗=1
𝜌𝑗−1𝑟𝑡+𝑗 −

𝑘∑
𝑗=1

𝜌𝑗−1Δ𝑑𝑡+𝑗 +𝜌𝑘𝑑𝑝𝑡+𝑘. (4)

The identity (4) should hold ex-post as well as ex-ante conditional 
on any information set Ω𝑡 (see, e.g., Campbell and Shiller, 1988b; 
Campbell, 1991; and Cochrane, 2008). Therefore, taking expectations 
of (4), conditional on the information set Ω𝑡 available at time 𝑡 (i.e., 
𝐸𝑡(⋅) ≡𝐸(⋅|Ω𝑡)), results in

𝑑𝑝𝑡 ≈ 𝐸𝑡

𝑘∑
𝑗=1

𝜌𝑗−1𝑟𝑡+𝑗 − 𝐸𝑡

𝑘∑
𝑗=1

𝜌𝑗−1Δ𝑑𝑡+𝑗 + 𝐸𝑡𝜌
𝑘𝑑𝑝𝑡+𝑘

≡ 𝛿
(𝑟,𝑘)
𝑡 − 𝛿

(𝑑,𝑘)
𝑡 + 𝛿

(𝑑𝑝,𝑘)
𝑡 .

(5)

The finite-horizon expression (5) implies that the dividend yield con-
tains three components: (i) discounted expected returns up to 𝑘 periods 
𝛿
(𝑟,𝑘)
𝑡 , (ii) discounted expected dividend growth rates up to 𝑘 periods 

𝛿
(𝑑,𝑘)
𝑡 , and (iii) the discounted expected dividend yield in 𝑘 periods, 

𝛿
(𝑑𝑝,𝑘)
𝑡 , which in turn implies expectations of both returns and dividends 

over horizons longer than 𝑘 periods.
Multiplying (5) by 𝑑𝑝𝑡 and taking expectations leads to an expres-

sion

Var(𝑑𝑝𝑡) ≈ Cov
(
𝑑𝑝𝑡,𝐸𝑡

𝑘∑
𝑗=1

𝜌𝑗−1𝑟𝑡+𝑗

)
− Cov

(
𝑑𝑝𝑡,𝐸𝑡

𝑘∑
𝑗=1

𝜌𝑗−1Δ𝑑𝑡+𝑗

)
+ Cov

(
𝑑𝑝𝑡, 𝜌

𝑘𝐸𝑡𝑑𝑝𝑡+𝑘

)
≡ Cov

(
𝑑𝑝𝑡, 𝛿

(𝑟,𝑘)
𝑡

)
− Cov

(
𝑑𝑝𝑡, 𝛿

(𝑑,𝑘)
𝑡

)
+ Cov

(
𝑑𝑝𝑡, 𝛿

(𝑑𝑝,𝑘)
𝑡

)
.

(6)

This expression is the basis for the dividend yield decomposition that is 
of main interest in this paper. The key objective is to evaluate the mag-
nitudes of these covariance components at different horizons 𝑘, focus-
ing primarily on the cash flow and return components. In the existing 
literature, researchers often focus on infinite horizons (𝑘 ⟶∞), com-
bined with the assumption that rational bubbles cannot exist (i.e., the 
transversality condition lim𝑘→∞𝐸𝑡

[
𝜌𝑘𝑑𝑝𝑡+𝑘

]
= 0 holds). Under these 

conditions, the identity (5) converges to:

𝑑𝑝𝑡 ≈ 𝐸𝑡

∞∑
𝑗=1

𝜌𝑗−1𝑟𝑡+𝑗 − 𝐸𝑡

∞∑
𝑗=1

𝜌𝑗−1Δ𝑑𝑡+𝑗

≡ 𝛿
(𝑟,∞)
𝑡 − 𝛿

(𝑑,∞)
𝑡 ,

(7)

and the third covariance component in (6) vanishes. The dividend yield 
𝑑𝑝𝑡 thus reflects expected discounted returns and dividend growth rates, 
both up to infinite horizons. This representation yields the important 
insight by Cochrane (2008) that observing variation in the dividend 
yield implies that either future returns or dividends, or both, must be 
predictable.

Prior studies, such as Campbell and Shiller (1988b) and Cochrane 
(2008), apply a vector autoregression (VAR) to evaluate the relative 
contributions of the infinite-horizon components (7) and the covariance 
components in (6). These VAR-based approaches are briefly outlined in 
Appendix A. The essential idea is to obtain long-run discounted expec-
tations on future returns (𝛿(𝑟,∞)

𝑡 ) and dividend growth rates (𝛿(𝑑,∞)
𝑡 ) by 

iterating forward the predictions of a one-period VAR. Assuming that 
one wants to evaluate the expected components only at an infinite hori-
zon (𝑘 ⟶ ∞), the linear structure of the VAR has the advantage of 
allowing for closed-form solutions of the infinite horizon predictions 
(see Campbell and Shiller (1988b), Cochrane (2008) and Appendix A
for details).

The VAR approach also has several disadvantages, as discussed in 
the Introduction. First, it assumes that the estimated VAR is the correct 
data generating process for all three components (5) and at all horizons 
𝑘. Second, VARs have limited capacity to incorporate large sets of state 
variables since the number of parameters increases quadratically in the 
number of variables. Third, VARs are restrictive also in a sense that 
they do not allow the ‘mixed-frequency’ matching between annual and 
monthly data. In this paper, we apply local projections to tackle these 
concerns.

2.2. Local projections-based dividend yield decomposition: general setup

In this section, we introduce a dividend yield decomposition that is 
built upon flexible local projections (LPs) to evaluate the relative mag-
nitudes of the contributions of expected returns (discount rates) and 
expected growth in dividends (cash flows) to the variation of the divi-
dend yield. The use of local projections in structural macroeconometric 
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inference originates from the work of Jordà (2005). At the heart of this 
approach lie forecast horizon-specific predictions for each of the three 
components of interest in the identity (5). These predictions form the 
basis for a flexible dividend yield volatility decomposition (6) where the 
forecast horizon 𝑘 can freely vary between short, intermediate and long-
term horizons. That is, we construct (linear) local projections for the 
𝑘-period ahead cumulative returns, cumulative dividend growth rates, 
and the 𝑘-period ahead dividend yield as dependent variables:

𝑘∑
𝑗=1

𝜌𝑗−1𝑟𝑡+𝑗 = 𝛼(𝑟,𝑘) + 𝒙
(𝑟,𝑘)
𝑡 𝜷(𝑟,𝑘) + 𝜀

(𝑟,𝑘)
𝑡+𝑘

𝑘∑
𝑗=1

𝜌𝑗−1Δ𝑑𝑡+𝑗 = 𝛼(𝑑,𝑘) + 𝒙
(𝑑,𝑘)
𝑡 𝜷(𝑑,𝑘) + 𝜀

(𝑑,𝑘)
𝑡+𝑘

𝜌𝑘𝑑𝑝𝑡+𝑘 = 𝛼(𝑑𝑝,𝑘) + 𝒙
(𝑑𝑝,𝑘)
𝑡 𝜷(𝑑𝑝,𝑘) + 𝜀

(𝑑𝑝,𝑘)
𝑡+𝑘

,

(8)

where 𝒙(𝑎,𝑘)𝑡 and 𝜀(𝑎,𝑘)
𝑡+𝑘

, 𝑎 ∈ {𝑟, 𝑑, 𝑑𝑝}, are the vectors of state variables 
and zero-mean error terms, respectively. The state variables 𝒙(𝑎,𝑘)𝑡 may 
differ across horizons (𝑘) and for each equation of interest ‘(𝑎)’. Due to 
the linear structure of (8), each equation can be consistently estimated 
by ordinary least squares (OLS) under general conditions. For clarity, 
in the case of multiple state variables, 𝒙(𝑎,𝑘)𝑡 and 𝜷(𝑎,𝑘) refer to row and 
column vectors, respectively.

The conditional expectations (or fitted values) of the left-hand-side 
(LHS) variables in (8), conditional on the information set at time 𝑡 and 
the estimated parameters, are the empirical counterparts of 𝛿(𝑟,𝑘)𝑡 , 𝛿(𝑑,𝑘)𝑡 , 
and 𝛿(𝑑𝑝,𝑘)𝑡 in (5):

𝛿
(𝑎,𝑘)
𝑡 = 𝛼(𝑎,𝑘) + 𝒙

(𝑎,𝑘)
𝑡 𝜷

(𝑎,𝑘)
, 𝑎 ∈ {𝑟, 𝑑, 𝑑𝑝}. (9)

Due to the flexible structure of LPs, the resulting estimates 𝛿(𝑎,𝑘)𝑡 are ex-
pected to be more informative and less prone to model misspecification 
than the estimates obtained from the VAR approaches discussed in Sec-
tion 2.1 and Appendix A. Importantly, even if the VAR is in fact the 
correct data generating process, the LPs containing the same state vari-
ables are asymptotically equivalent to the VAR predictions, whereas the 
reverse does not apply (Jordà, 2005). Therefore, in large samples, noth-
ing is lost in terms of estimating 𝛿(𝑎,𝑘)𝑡 when using LPs instead of the 
correctly-specified VAR-based approaches.

In addition to the VAR-based approach, Cochrane (2008, 2011) and 
Maio and Santa-Clara (2015) also consider the dividend yield decompo-
sition using ‘direct regressions’ with the dividend yield as the only state 
variable. This is also our starting point and can be seen as a restricted 
baseline case of (8), where 𝒙(𝑎,𝑘)𝑡 = 𝑑𝑝𝑡 for all 𝑘 and for 𝑎 ∈ {𝑟, 𝑑, 𝑑𝑝}. In 
Section 4, we estimate the components 𝛿(𝑟,𝑘)𝑡 , 𝛿(𝑑,𝑘)𝑡 , and 𝛿(𝑑𝑝,𝑘)𝑡 by fitting 
the regressions (8) using the dividend yield 𝑑𝑝𝑡 as the single state vari-
able. There is, however, no a priori reason to assume that the dividend 
yield is the only state variable of long-run dividends and returns. Let-
tau and Ludvigson (2005) demonstrate that, even if identity (7) holds, 
expected returns and dividends may share a common component that 
is independent of the dividend yield, implying that additional variables 
beyond the dividend yield may be useful predictors of long-run returns 
and dividend growth. In Section 5, we consider multiple state variables 
selected from a larger set of financial and macroeconomic variables.

After estimating the local projections with a given set of state vari-
ables, the empirical counterparts of 𝛿(𝑟,𝑘)𝑡 , 𝛿(𝑑,𝑘)𝑡 , and 𝛿(𝑑𝑝,𝑘)𝑡 for different 
horizons 𝑘, not just 𝑘 ⟶∞ as in the VAR approach, provide the rela-
tive covariance components:

𝛾̂(𝑟, 𝑘) =
Cov

(
𝑑𝑝

(𝑘)
𝑡 , 𝛿

(𝑟,𝑘)
𝑡

)
Var(𝑑𝑝

(𝑘)
𝑡 )

, −𝛾̂(𝑑,𝑘) = −
Cov

(
𝑑𝑝

(𝑘)
𝑡 , 𝛿

(𝑑,𝑘)
𝑡

)
Var(𝑑𝑝

(𝑘)
𝑡 )

,

𝛾̂(𝑑𝑝,𝑘) =
Cov

(
𝑑𝑝

(𝑘)
𝑡 , 𝛿

(𝑑𝑝,𝑘)
𝑡

)
Var(𝑑𝑝

(𝑘)
𝑡 )

,

(10)

where especially the first two components are of main interest. In these 
expressions, we use the ‘implied’ dividend-price ratio 𝑑𝑝

(𝑘)
𝑡 = 𝛿

(𝑟,𝑘)
𝑡 −

𝛿
(𝑑,𝑘)
𝑡 + 𝛿

(𝑑𝑝,𝑘)
𝑡 to ensure that the three components (10) sum up to one. 

Together with (6) the relative contributions in (10) form our dividend 
yield decomposition.

Following prior literature (e.g., Campbell and Shiller, 1988b; van 
Binsbergen and Koijen, 2010), an alternative view to assess the relative 
contributions (10) is obtained by taking variances of the present-value 
identity (5). This leads to a ‘variance decomposition’

Var
(
𝑑𝑝𝑡

)
= Var

(
𝛿
(𝑟,𝑘)
𝑡

)
+Var

(
𝛿
(𝑑,𝑘)
𝑡

)
+Var

(
𝛿
(𝑑𝑝,𝑘)
𝑡

)
−2

[
Cov

(
𝛿
(𝑟,𝑘)
𝑡 , 𝛿

(𝑑,𝑘)
𝑡

)
−Cov

(
𝛿
(𝑟,𝑘)
𝑡 , 𝛿

(𝑑𝑝,𝑘)
𝑡

)
+Cov

(
𝛿
(𝑑,𝑘)
𝑡 , 𝛿

(𝑑𝑝,𝑘)
𝑡

)]
.

(11)

We consider the following volatility components

𝜎(𝑟, 𝑘) = Std
(
𝛿𝑡

(𝑟,𝑘))
, 𝜎(𝑑,𝑘) = Std

(
𝛿𝑡

(𝑑,𝑘))
, 𝜎(𝑑𝑝,𝑘) = Std

(
𝛿𝑡

(𝑑𝑝,𝑘))
,

(12)

which measure the degree of variation in expectations and correspond 
to the (square root of the) first three elements of (11). However, since 
expected returns and dividend growth rates are highly correlated (see 
Lettau and Ludvigson, 2005; and Golez, 2014), the fourth term in (11), 
Cov

(
𝛿
(𝑟,𝑘)
𝑡 , 𝛿

(𝑑,𝑘)
𝑡

)
is non-negligible such that the volatility components 

(12) do not contain the same information as the covariance-based de-
composition (10). Throughout this paper, we therefore measure varia-
tion in the expectations of discount rates, cash flow growth and future 
dividend yields (12), using different state variables, but we are pri-
marily interested in to what extent these expectations covary with the 
dividend yield, implying their contribution to the dividend yield de-
composition (10).

Unlike the volatility decomposition (12), our covariance-based de-
composition (10) incorporates not only the magnitude but also the signs 
of the covariances. Based on (5), it is expected that discounted expected 
returns (dividend growth rates) are positively (negatively) correlated 
with the dividend yield. However, as documented in the empirical Sec-
tions below, in some of our VAR and LP specifications we find, in fact, a 
positive correlation between discounted expected dividend growth rates 
𝛿
(𝑑,𝑘)
𝑡 and the dividend yield, implying a negative impact of cash flow 

expectations on dividend yield volatility.

2.3. Monthly local projections

Prior studies on volatility and dividend yield decompositions are 
implemented with annual data (see, e.g., Campbell and Shiller, 1988b; 
Cochrane, 1992, 2008, 2011; van Binsbergen and Koijen, 2010; Zhu, 
2015; and Choi et al., 2017). Since dividend payments are highly sea-
sonal, dividend growth rates are often considered informative only on 
an annualized basis.6 One of our contributions is that local projections 
allow for the use of monthly (or even higher-frequency) data explicitly 
when modeling the component 𝛿(𝑑,𝑘)𝑡 associated with the expected divi-
dend growth in (5), which is the typical frequency in most predictability 
studies.

The essential challenge at the monthly frequency is the measure-
ment of dividends. Even if dividend data are available at the monthly 

6 Closely related return decomposition studies do use monthly data, but com-
pared to (8), these studies only model expected returns explicitly and treat the 
contribution of expected dividend growth as a residual term (see, e.g., Camp-
bell, 1991; Campbell and Ammer, 1993). Chen and Zhao (2009) criticize the 
residual approach for leading in general to unrobust results. See also the recent 
advancement by Pettenuzzo et al. (2020) on modeling dynamics in aggregate 
cash flows extracted from daily firm-level dividend announcements.
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frequency, these figures have strong seasonalities, resulting in highly er-
ratic behavior of the monthly dividend yield (𝑑𝑝𝑡) and dividend growth 
rate (Δ𝑑𝑡). We are able to tackle this challenge with the local projection 
approach by using monthly updated observations of 12-month cumula-
tive dividends. In the following, we treat the monthly dividend growth 
rates as unobserved, while cumulative 12-month dividend growth rates 
are observable each month. Monthly dividend yields refer, as common 
in the literature, to the cumulative 12-month dividend yield. Finally, 
the return series are simply monthly returns. Section 3 provides further 
details on the variable definitions.

In the absence of reliable observable monthly dividend growth rates, 
instead of accumulating dividend growth rates month by month, we 
accumulate the growth rates in batches of 12 months:

𝑘∑
𝑗=1

𝜌𝑗−1Δ𝑑𝑡+𝑗 ≈
𝑘∑

𝑗=1
𝜌∗𝑗Δ

∗𝑑∗
𝑡+𝑗 = 𝜌∗12Δ

∗𝑑∗
𝑡+12 + 𝜌∗24Δ

∗𝑑∗
𝑡+24 +⋯ , (13)

where 𝜌∗
𝑗
≡ 𝜌𝑗−1 if 𝑗 ∈ {12, 24, 36, ...} and 0 otherwise, 𝑑∗

𝑡 is the cu-

mulative dividend over months 𝑡 − 11 up to month 𝑡 and Δ∗𝑑∗
𝑡+𝑗

≡

𝑑∗
𝑡+𝑗

− 𝑑𝑡+𝑗−12 is the annual growth rate in these 12-month cumulative 
dividends. Thus, to obtain the monthly dividend yield decomposition, 
we replace the (unobserved) monthly dividend growth component in 
identity (5) and the local projections (8) by the right hand side of (13), 
which is based on monthly observations of growth rates in 12-month cu-
mulative dividends. Although the approximation is not exact, we find 
that 

∑𝑘
𝑗=1 𝜌

∗
𝑗
Δ∗𝑑∗

𝑡+𝑗
closely approximates 

∑𝑘
𝑗=1 𝜌

𝑗−1Δ𝑑𝑡+𝑗 , especially at 
longer horizons 𝑘. In the Internet Appendix Section VII, we present a 
simulation exercise to illustrate the approximation and find a corre-

lation Cor
(∑𝑘

𝑗=1 𝜌
𝑗−1Δ𝑑𝑡+𝑗 ,

∑𝑘
𝑗=1 𝜌

∗
𝑗
Δ∗𝑑∗

𝑡+𝑗

)
of 0.98 for a horizon of 

𝑘 = 180 months, which is the main horizon of interest in this paper.
The approximation (13) implies that the (monthly) forecast horizon 

𝑘 needs to be a multiple of 12 (i.e. 𝑘 ∈ {12, 24, 36, ...}). In other words, 
despite basing the analysis on monthly data, we report the monthly 
decompositions for annualized horizons.

From an empirical point of view, the introduction of a monthly 
data dividend yield decomposition, resulting from the development of 
the local projection framework, implies substantially more observations 
and therefore increased statistical power, which provides additional ro-
bustness of our annual decompositions and opens up possible model 
extensions. In particular, the increased number of observations allows 
us to study time variation in our dividend yield decomposition.

2.4. Time-varying parameters

The larger sample size resulting from the use of monthly data, en-
abled by our local projections approach, allows the underlying param-
eters of our dividend yield decomposition to be time-varying. In the 
traditional VAR approach with annual data, this would be infeasible in 
practice because of the inevitably limited sample size.

The motivation for studying time-variation is grounded in recent 
and mounting empirical and theoretical evidence suggesting that re-
turn predictability is time-varying (e.g., Timmermann, 2008; Rapach et 
al., 2010; Henkel et al., 2011; Dangl and Halling, 2012; Zhu, 2015; Zhu 
and Zhu, 2013; Cochrane, 2017; and Farmer et al., 2023), which may 
originate from various economic reasons, including business cycle fluc-
tuations, time-varying risk aversion, and rare disasters. As summarized 
by Timmermann (2008), investors’ search for successful predictive mod-
els is expected to cause the data generating process to change over time, 
which means that time-invariant parameter models can at best hope to 
uncover only some local predictability. Recent findings suggest that pre-
dictive power often concentrates on bad times in financial markets (see 
Henkel et al., 2011; Zhu and Zhu, 2013; Cujean and Hasler, 2017). Zhu 
(2015) also finds that time-varying predictable patterns in returns and 
dividend growth rate is a tug-of-war: when returns are predictable, div-
idend growth is not, and vice versa. Furthermore, Choi et al. (2017)
find that incorporating regime shifts into the present-value framework 

of van Binsbergen and Koijen (2010) strengthens the importance of div-
idend growth variation in explaining both the price-dividend ratio and 
unexpected stock returns in the post-1951 sample period.

As argued in the previous sections, the use of horizon-specific local 
projections may well reduce model misspecification concerns. Allowing 
for time variation in the parameter coefficients may importantly further 
increase the accuracy of the estimated discount rate and cash flow com-
ponents. Therefore, we extend the local projections (8) by allowing for 
time-varying parameters (TVP):

𝑘∑
𝑗=1

𝜌
𝑗−1
𝑡 𝑟𝑡+𝑗 = 𝛼

(𝑟,𝑘)
𝑡 + 𝒙

(𝑟,𝑘)
𝑡 𝜷

(𝑟,𝑘)
𝑡 + 𝜀

(𝑟,𝑘)
𝑡+𝑘

𝑘∑
𝑗=1

𝜌
𝑗−1
𝑡 Δ𝑑𝑡+𝑗 = 𝛼

(𝑑,𝑘)
𝑡 + 𝒙

(𝑑,𝑘)
𝑡 𝜷

(𝑑,𝑘)
𝑡 + 𝜀

(𝑑,𝑘)
𝑡+𝑘

𝜌𝑘𝑡 𝑑𝑝𝑡+𝑘 = 𝛼
(𝑑𝑝,𝑘)
𝑡 + 𝒙

(𝑑𝑝,𝑘)
𝑡 𝜷

(𝑑𝑝,𝑘)
𝑡 + 𝜀

(𝑑𝑝,𝑘)
𝑡+𝑘

,

(14)

where all the parameters 𝛼(𝑎,𝑘)𝑡 and 𝜷(𝑎,𝑘)
𝑡 (𝑎 ∈ {𝑟, 𝑑, 𝑑𝑝}) are now time-

varying. Specifically, we allow for time variation by estimating the coef-
ficients in (14) recursively using Exponentially Weighted Least Squares 
(EWLS), which is a particular case of Weighted Least Squares estima-
tion in which the weight of each observation 𝑖 in a sample of size 𝑡 is 

given by 
( 𝑡∑

𝑖=0
𝜙𝑡−𝑖

)−1

𝜙𝑡−𝑖. The decay parameter 𝜙 is a number between 

zero and one. Following the convention in the literature, we calibrate 
the decay parameter 𝜙 at 0.97, which is suggested by Longerstaey and 
Spencer (1996) in J.P. Morgan’s Riskmetrics report as the optimal expo-
nential decay parameter for modeling volatility using monthly data, but 
also other parameter values can be entertained accordingly. Applying 
an expanding window estimation approach combined with exponen-
tial weighting ensures that most weight is given to recent observations, 
while the weights of distant past observations gradually fade.7

In addition to the regression parameters, we also allow 𝜌 to vary 
over time, by applying a similar expanding window scheme combined 
with exponential weights. That is, instead of estimating 𝜌 over the full 
sample (cf. Eq. (3)):

𝜌𝑡 =
𝑒𝑑𝑝𝑡

1 + 𝑒𝑑𝑝𝑡
, (15)

where 𝑑𝑝𝑡 is the exponentially weighted moving average (EWMA) of 
the dividend yield up to period 𝑡:

𝑑𝑝𝑡 =
( 𝑡∑

𝑖=0
𝜙𝑡−𝑖

)−1 𝑡∑
𝑖=0

𝜙𝑡−𝑖𝑑𝑝𝑖, (16)

where, as in the regressions (14), the decay parameter 𝜙 is set at 0.97.
In addition to allowing for time-varying coefficients in prediction as 

such, Lettau and Van Nieuwerburgh (2008) show that the poor perfor-
mance of financial ratios as predictors of returns can be improved if 
the assumption of a fixed and time-invariant steady state mean of the 
economy is relaxed. That is, adjusting the dividend yield, earnings yield 
and book-to-market ratio for level shifts increases the predictive perfor-
mance substantially. Lettau and Van Nieuwerburgh (2008) correct these 
nonstationarities by estimating the timing of structural break points. 
However, locating the exact timing of breaks or identifying regime 
switching patterns (cf. Zhu, 2015; Choi et al., 2017) is generally dif-
ficult, in particular in small samples. As an alternative approach, we 
handle the time variation of the steady-state levels of variables by de-
trending not only the dividend yield, but also all other variables using 
the same recursive EWMA filtration as in (16). Specifically, in our time-
varying local projections (14), we recursively detrend all variables by 
subtracting the exponentially weighted moving average at each point 

7 See Hallerbach and Menkveld (2004), Kofman and McGlenchy (2005), and 
Taylor (2008), for applications of EWLS.



Journal of Banking and Finance 162 (2024) 107127

6

M. Lof and H. Nyberg

in time, as opposed to demeaning these variables over the full sam-
ple. Thus, we implicitly allow the parameter 𝜅 in the log-linear present 
value model (1) to vary over time.

Given the time-varying patters, in addition to the unconditional (i.e., 
full sample) decompositions (10), our exponentially weighted expand-
ing window approach allows us to compute time-varying variances and 
covariances:

V̂ar𝑡
(
𝑑𝑝

(𝑘)
𝑡

)
=

( 𝑡∑
𝑖=0

𝜙𝑡−𝑖

)−1 𝑡∑
𝑖=0

𝜙𝑡−𝑖
(
𝑑𝑝

(𝑘)
𝑖

)2

Ĉov𝑡
(
𝑑𝑝

(𝑘)
𝑡 , 𝛿

(𝑎,𝑘)
𝑡

)
=

( 𝑡∑
𝑖=0

𝜙𝑡−𝑖

)−1 𝑡∑
𝑖=0

𝜙𝑡−𝑖 𝑑𝑝
(𝑘)
𝑖 𝛿

(𝑎,𝑘)
𝑖

, 𝑎 ∈ (𝑟, 𝑑, 𝑑𝑝),

(17)

where the elements 𝛿(𝑟,𝑘)𝑡 , 𝛿(𝑑,𝑘)𝑡 , 𝛿(𝑑𝑝,𝑘)𝑡 and the implied dividend-yield 
𝑑𝑝

(𝑘)
𝑡 = 𝛿

(𝑟,𝑘)
𝑡 − 𝛿

(𝑑,𝑘)
𝑡 + 𝛿

(𝑑𝑝,𝑘)
𝑡 have a conditional mean of zero, because 

they are obtained after demeaning all underlying state-variables recur-
sively (i.e. all variables are demeaned by subtracting the exponentially 
weighted mean using filter (16)). The ratio of the time-varying covari-
ance to the variance of the dividend yield provides the time-varying 
contributions of expected discount rates, expected cash flow growth 
rates and expected dividend yields to the observed dividend yield: 
𝛾𝑡(𝑎, 𝑘), for 𝑎 in (𝑟, 𝑑, 𝑑𝑝), as the time-varying counterparts of the static 
contributions (10).

3. Data

Our main variables are market-level log returns, dividend growth 
rates, and dividend yields, observed over the period 1928–2020. For 
our monthly analysis, we use the monthly value-weighted market re-
turn reported by the Center for Research in Security Prices (CRSP). 
Following Koijen and Van Nieuwerburgh (2011), among others, we 
compute monthly dividends by 𝐷𝑡 = (𝑅𝑡 − 𝑅𝑥𝑡)𝑃𝑡−1, where 𝑅𝑡 refers 
to the gross CRSP value-weighted market in month 𝑡, and 𝑅𝑥𝑡 refers to 
the gross CRSP value-weighted market return over the same period ex-

cluding dividends. To avoid seasonality concerns, monthly dividends are 
accumulated over 12 months before computing 12-month (log) growth 
rates, as discussed in Section 2.3. The annualized log dividend yield 
in month 𝑡 is computed as the accumulated dividends over the months 
𝑡 − 11 to 𝑡 divided by the price at the end of month 𝑡.

Monthly dividends are accumulated under the assumption that div-
idends paid out during the 12-month periods are at the end of each 
month reinvested in the risk-free rate of return, following Chen (2009), 
van Binsbergen and Koijen (2010), and others. Alternatively, Cochrane 
(2008) assumes that dividends are reinvested in the market portfolio. 
Chen (2009) discusses the implications of these different assumptions 
on the predictability of dividends and argues that it is difficult to dis-
entangle return predictability from dividend predictability when div-
idends are reinvested in the market. For robustness, Section II of the 
Internet Appendix reports our main results computed using market-
reinvested and non-reinvested dividends.

For our analysis of annual data, we use cumulative returns over each 
calendar year (January–December), and use the end of year (December) 
observations of the 12-month dividend growth rate and dividend yield.

In Section 5, we consider various additional state variables. First, 
we focus on a selection of state variables that have been identified 
in the recent literature as strong predictors of the dividend growth 
rate and also of market returns, listed in Panel A of Table 1. Lettau 
and Ludvigson (2005) propose the long-run (cointegration) relationship 
between consumption, asset wealth and labor income (𝑐𝑎𝑦) and an anal-
ogously derived long-run relationship between consumption, dividends 
and labor income (𝑐𝑑𝑦) as (theoretically-motivated) predictors of stock 
returns and dividend growth, respectively. Various studies have gauged 
the joint dynamics of earnings and dividends as an indicator of future 
dividend growth, inspired by Lintner’s (1956) dividend model: Garrett 

Table 1

Additional state variables. Panel A lists selected predictors used in the re-
cent literature to predict dividend growth and market returns (see Campbell 
and Vuolteenaho, 2004; Lettau and Ludvigson, 2005; Ang and Bekaert, 2007; 
Cooper and Priestley, 2009; Garrett and Priestley, 2012; and Møller and Sander, 
2017). Panel B lists additional state variables obtained from the dataset of 
Welch and Goyal (2008). Panel C lists option-implied state variables that are 
available for the 1990–2020 subsample. ‘(A)’ indicates data availability only 
at annual frequency, while ‘(M)’ indicates variables used only at monthly fre-
quency. Section I of the Internet Appendix provides details on the variables.

A: Selected predictors of dividend growth and returns
𝑐𝑎𝑦 Cointegration relationship between consumption, asset wealth and 

labor income
𝑐𝑑𝑦 Cointegration relationship between consumption, dividends and labor 

income
𝑑𝑝𝑒 Cointegration relationship between dividends, prices and earnings
𝑒𝑝 Log earnings-price ratio
𝑑𝑒 Log dividend-earnings ratio
𝑝𝑒10 Log price-10 year earnings ratio
𝑣𝑠 Value spread
𝑡𝑚𝑠 Term spread: 𝑙𝑡𝑦 − 𝑡𝑏𝑙

𝑔𝑎𝑝 Output gap (extracted based on industrial production)

B: Other state variables from the Welch-Goyal dataset
𝑠𝑣𝑎𝑟 Realized volatility (monthly sum of squared daily returns on the S&P 

500)
𝑏𝑚 Book-to-market value ratio for the DJIA (Dow Jones Industrial 

Average).
𝑛𝑡𝑖𝑠 Net equity expansion
𝑡𝑏𝑙 Treasury bill rate (three-month Treasury bill, secondary market)
𝑙𝑡𝑦 Long-term government bond yield
𝑟𝑓𝑟𝑒𝑒 Risk-free rate
𝑙𝑡𝑟 Return on long-term government bonds
𝑐𝑜𝑟𝑝𝑟 Return on long-term corporate bond
𝑑𝑓𝑦 Default yield spread
𝑑𝑓𝑟 Default return spread: 𝑐𝑜𝑟𝑝𝑟 − 𝑙𝑡𝑟

𝑖𝑛𝑓𝑙 Inflation (CPI inflation)
𝑒𝑞𝑖𝑠 (A) Percent equity issuing
𝑖𝑘 (A) Investment-to-capital ratio

C: Option-implied state variables
𝑐𝑣 (M) Conditional variance of stock returns (Bekaert and Hoerova, 2014)
𝑣𝑝 (M) Equity variance premium (Bekaert and Hoerova, 2014)
𝑟𝑎 (M) Risk aversion index (Bekaert et al., 2022)
𝑢𝑛𝑐 (M) Uncertainty index (Bekaert et al., 2022)

and Priestley (2012) propose the estimated long-run (cointegration) re-
lationship between dividends, (market) prices and earnings (𝑑𝑝𝑒) as a 
predictor of dividend growth. Ang and Bekaert (2007) and Møller and 
Sander (2017) find that the dividend yield (𝑑𝑝) and the earnings yield 
(𝑒𝑝) hold jointly predictive power of dividend growth rates. We also in-
clude the dividend to earnings ratio (𝑑𝑒) as a candidate state variable. 
Campbell and Vuolteenaho (2004) and Garrett and Priestley (2012) use 
the price-earnings ratio with earnings smoothed over a 10-year period 
(𝑝𝑒10), as well as the value spread among small stocks (𝑣𝑠) and the 
term spread (𝑡𝑚𝑠) as return predictors. In addition, Cooper and Priest-
ley (2009) have emphasized the importance of the output gap (𝑔𝑎𝑝), 
measuring the difference between realized and potential output, as a 
predictor of stock returns. Detailed descriptions of the data are pro-
vided in Section I of the Internet Appendix.

Panel B of Table 1 lists additional state variables that are based on 
the prior extensive literature on the predictability of market-level eq-
uity returns (see the discussion in the Introduction and in the surveys by 
Welch and Goyal, 2008, and Rapach and Zhou, 2013). These additional 
variables are obtained from the updated dataset of Welch and Goyal 
(2008), who provide detailed descriptions of the data and their sources. 
When considering the state variables in Table 1, we restrict our sample 
period to 1952–2020 (monthly observations start in March 1952). This 
choice of starting point of the sample period (1952) is mainly driven 
by the data availability of 𝑐𝑑𝑦 and 𝑐𝑎𝑦, which the prior literature has 
identified as important predictors of both dividends and returns. This 
starting point coincides with Cochrane (2011) and Campbell and Am-
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Fig. 1. Plots of the components 𝛿(𝑟,𝑘)𝑡 , 𝛿(𝑑,𝑘)𝑡 , and 𝛿(𝑑𝑝,𝑘)𝑡 (see (5)), estimated from the annual local projections (8), using 𝑑𝑝𝑡 as the single state variable, for 𝑘 = 1 year 
(left panel) and 𝑘 = 15 years (middle panel). The right panel shows the observed dividend yield 𝑑𝑝𝑡 and the implied dividend yield 𝑑𝑝(𝑘)

𝑡
= 𝛿

(𝑟,𝑘)
𝑡 − 𝛿

(𝑑,𝑘)
𝑡 + 𝛿

(𝑑𝑝,𝑘)
𝑡 , for 

𝑘 = 1 year and 𝑘 = 15 years.

mer (1993) and is very close to the ones in Cochrane (2008), Lettau and 
Ludvigson (2005) and van Binsbergen and Koijen (2010).

Finally, Panel C of Table 1 lists four recently proposed indicators 
of market risk. Unlike traditional return predictors, such as the divi-
dend yield, these indicators are less persistent and respond more rapidly 
to changing market conditions. These four measures all require option 
prices (among other financial variables), which have been documented 
to contain incremental forward-looking information over historical re-
turns (see also, e.g., Bollerslev et al., 2009; and Martin, 2017). Bekaert 
and Hoerova (2014) decompose the squared VIX index into the condi-
tional variance of stock returns (𝑐𝑣) and the equity variance premium 
(𝑣𝑝): 𝑣𝑝𝑡 = 𝑉 𝐼𝑋2

𝑡 − 𝑐𝑣𝑡, where 𝑐𝑣𝑡 is the predicted realized variance 
of the S&P 500 index over the next month. Bekaert and Hoerova 
(2014) find that 𝑣𝑝 has predictive power for future stock returns, while 
𝑐𝑣 predicts real economic activity and financial turmoil. The two re-
maining state variables are proposed by Bekaert et al. (2022): 𝑟𝑎 is a 
risk-aversion index and 𝑢𝑛𝑐 is an uncertainty index, estimated from a 
structural model with an instrument set including earnings yield, bond 
spreads, equity and bond market realized return variances, and equity 
option-implied risk-neutral variance. Both indices are found to hold pre-
dictive power for equity and bond returns for up to 12 months. Due to 
the dependence on option-market data, these state variables are avail-
able only for a more recent subsample. In Section 5.5, we analyze our 
decomposition based on monthly observations of these state variables 
over the period 1990–2020.

4. Results: one state variable

We start by considering the benchmark case with the dividend 
yield as a single state variable, following Cochrane (2008) and oth-
ers. First, in Section 4.1 we estimate the local projections (LPs), with 
time-invariant (constant) parameters (Eq. (8)), over the full sample pe-
riod (1928–2020). In Section 4.2, we consider the local projections with 
time-varying parameters (Eq. (14)).

4.1. Constant parameters

We start by estimating the LPs (8), with 𝒙(𝑎,𝑘)𝑡 = 𝑑𝑝𝑡 for 𝑎 ∈
{𝑟, 𝑑, 𝑑𝑝}, and for 𝑘 ∈ {1, 2, … , 15} years, using annual data. The maxi-
mum horizon of 15 years is the same as the longest horizon considered 
by Cochrane (2011) in his direct regressions.

Fig. 1 plots the estimated components 𝛿𝑡
(𝑟,𝑘)

, 𝛿𝑡
(𝑑,𝑘)

, and 𝛿𝑡
(𝑑𝑝,𝑘)

(i.e., 
the fitted values of the local projections (8)), for 𝑘 = 1 and 𝑘 = 15 years. 
Due to the maximum horizon of 𝑘 = 15 years, the first 15 years of the 
sample are omitted from the figures. The first panel of Fig. 1 shows 
that, at short horizons, only little dividend yield variation can be ex-
plained by variation in expected discount rates or cash flows: the time 
series 𝛿𝑡

(𝑟,1)
and 𝛿𝑡

(𝑑,1)
are mostly flat, while the expected dividend yield 

𝛿𝑡
(𝑑𝑝,1)

is highly volatile. At longer horizons (𝑘 = 15 years), a substantial 
part of dividend yield variation is captured by expected discount rate 
variation (𝛿(𝑟,15)𝑡 ). The cash flow component 𝛿(𝑑,15)𝑡 remains relatively 
flat, suggesting that cash flow expectations, even at longer horizons, 
can only explain a minor part of observed market volatility.

Following Eq. (5), the final panel of Fig. 1 plots the observed div-

idend yield and the implied dividend yield obtained as 𝑑𝑝
(𝑘)
𝑡 = 𝛿

(𝑟,𝑘)
𝑡 −

𝛿
(𝑑,𝑘)
𝑡 + 𝛿

(𝑑𝑝,𝑘)
𝑡 for 𝑘 = 1 and 𝑘 = 15. The plot provides supporting evi-

dence on the accuracy of the LP-based estimates of the components in 
the present-value relation (5), both at short and long horizons, as the 
implied dividend yields closely trace the observed yield.

Panel A in Table 2 reports the dividend yield decomposition (10) and 
volatility components (12) at the annual frequency for selected horizons 
𝑘 (results at non-reported horizons are available upon request). These 
results reaffirm the pattern in Fig. 1. The contribution of expected re-
turns increases over the horizon 𝑘, up to a maximum of 0.71 at the 
15-year horizon (𝛾̂(𝑟, 15)), implying that about 71% of dividend yield 
volatility can be attributed to variation of long-run expectations of dis-
count rates when considering the covariance with the dividend yield. 
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Table 2

Variance and dividend yield decompositions: One state variable. This table reports the annual 
(Panel A) and monthly (Panel B) volatility components (12) and dividend yield decomposition 
(10), based on the local projections (8), using 𝑑𝑝𝑡 as the single state variable for different 
horizons 𝑘. The first columns report the volatility components of return, dividend growth and 
dividend yield predictions and ratio 𝜎(𝑑,𝑘)

𝜎(𝑟,𝑘)
. The final four columns report the relative covariance 

contributions of expected discount rates ̂𝛾(𝑟, 𝑘), cash flows −𝛾̂(𝑑, 𝑘) and forward dividend yields 
𝛾̂(𝑑𝑝, 𝑘), as well as the ratio −𝛾̂(𝑑,𝑘)

𝛾̂(𝑟,𝑘)
. The sample period is 1928–2020.

𝑘 𝜎(𝑟, 𝑘) 𝜎(𝑑,𝑘) 𝜎(𝑑𝑝, 𝑘) 𝜎(𝑑,𝑘)
𝜎(𝑟, 𝑘)

𝛾̂(𝑟, 𝑘) −𝛾̂(𝑑,𝑘) 𝛾̂(𝑑𝑝, 𝑘) −𝛾̂(𝑑,𝑘)
𝛾̂(𝑟, 𝑘)

(years) Panel A: Annual
1 0.06 0.08 0.86 1.35 0.06 0.08 0.86 1.35
2 0.15 0.11 0.74 0.76 0.15 0.11 0.74 0.76
3 0.20 0.11 0.69 0.56 0.20 0.11 0.69 0.56
5 0.32 0.08 0.58 0.25 0.33 0.08 0.59 0.25
10 0.50 0.08 0.39 0.15 0.52 0.08 0.40 0.15
15 0.65 0.11 0.16 0.16 0.71 0.12 0.18 0.16

(months) Panel B: Monthly
12 0.07 0.10 0.85 1.35 0.07 0.10 0.83 1.35
24 0.15 0.12 0.75 0.82 0.14 0.12 0.74 0.82
36 0.20 0.11 0.70 0.55 0.20 0.11 0.69 0.55
60 0.33 0.09 0.58 0.27 0.33 0.09 0.58 0.27
120 0.50 0.07 0.39 0.13 0.52 0.07 0.41 0.13
180 0.65 0.11 0.18 0.17 0.70 0.12 0.19 0.17

The contribution of dividend growth expectations (−𝛾̂(𝑑, 𝑘)) remains 
low, although not zero: the ratio −𝛾̂(𝑑,𝑘)

𝛾̂(𝑟,𝑘) is 0.16 at the 15-year horizon 
(𝑘 = 15). Interestingly, the relative contribution of the cash flow com-
ponent is diminishing with the horizon 𝑘.

The volatility-based components 𝜎(𝑎, 𝑘) (see Eq. (12)) show a simi-
lar pattern as the covariance-based dividend yield decomposition (10)
on the right. Our results are thus qualitatively consistent with Cochrane 
(2008), in the sense that discount rate expectations are the main driver 
of price volatility. The contribution of dividend growth expectations, 
estimated based on our local projections, is only slightly higher than 
the contribution of dividend growth implied by Cochrane’s (2008) VAR 
approach, especially when the horizon 𝑘 is short. As we show in Ap-
pendix A, our volatility ̂𝜎(𝑎, 𝑘) and covariance components ̂𝛾(𝑎, 𝑘) ratios 
are conceptually equivalent to the long-run coefficients by Cochrane 
when 𝑘 ⟶∞, which can be backed out from our local projections with 
𝑘 = 1 and the lagged dividend yield as the only state variable. Indeed, 
Cochrane (2008, Table 4) reports VAR-implied long-run return and divi-
dend contributions of 1.09 and 0.09, respectively, which is qualitatively 
similar to our decomposition, with the expected discount rate channel 
dominating the cash flow channel.

Panel B of Table 2 presents the results estimated with monthly data 
for the same selected yearly horizons as in Panel A up to 15 years (i.e., 
𝑘 = 12 to 𝑘 = 180 months) and utilizing the approximation (13). The 
relative contributions of discount rates and cash flows are very simi-
lar, although not fully equivalent, to those reported in Panel A. Another 
notable result in Table 2 is that the relative impact of the forward divi-
dend yield is diminishing monotonically with the horizon 𝑘 as discussed 
around Eq. (7). As evident from Eq. (5), the expected (forward) dividend 
yield 𝛿𝑡

(𝑑𝑝,𝑘)
reflects expectations of dividend growth and returns over 

horizons beyond 𝑘 years. Hence, the high volatility of 𝛿𝑡
(𝑑𝑝,1)

implies 
that most of the volatility of the dividend yield is attributed to discount 
rate and cash flow expectations over horizons beyond one year, while 
the relatively low volatility of 𝛿𝑡

(𝑑𝑝,15)
suggests a relatively minor con-

tribution of expectations over horizons beyond 15 years.8

8 Section II of the Internet Appendix provides various robustness checks, by 
reproducing Table 2 using a shorter sample starting in 1952, using market-
reinvested and non-reinvested dividends, and using real returns and dividend 

4.2. Time-varying parameters

Next, we move to local projections obtained with time-varying pa-
rameters (TVP), as described in Section 2.4. At this stage, we still 
consider the dividend yield as the only state variable and hence the 
differences to the results presented above emanate exclusively from 
the time-varying parameters. The local projections are estimated with 
monthly data, by EWLS using an expanding window approach with an 
initial window size of 180 months. Since reliable implementation of the 
recursive estimation requires a reasonable number of observations, we 
only present results based on monthly data (for annualized horizons). 
The possibility to address time-varying parameters is thus a direct con-
sequence of the increased number of observations resulting from the 
ability to use monthly data in the LP framework (as developed in Sec-
tion 2.3).

The volatility and dividend yield decompositions, based on the lo-
cal projections with time-varying parameters, are reported in Table 3
for selected horizons 𝑘. The main pattern is clear: even without extend-
ing the information set beyond the dividend yield, both the volatility 
of expected returns (𝜎(𝑟, 𝑘)) and the volatility of expected dividend 
growth (𝜎(𝑑, 𝑘)) are considerably higher than with the constant (time-
invariant) parameter LPs. The relative increase in expected dividend 
volatility is higher, leading to a long-run (180 months) volatility ratio 
𝜎(𝑑,𝑘)
𝜎(𝑟, 𝑘)

of 0.64. Interestingly, despite the higher volatility of expected 

dividends, the covariance of expected dividends with the dividend yield 
remains low, such that the relative contribution of cash flows to the div-

idend yield decomposition −𝛾̂(𝑑,𝑘)
𝛾̂(𝑟, 𝑘)

is substantially smaller at 0.24, for 

𝑘 = 180 months. At intermediate horizons (36–60 months), the contri-
bution of dividend expectations −𝛾̂(𝑑, 𝑘) is not only small in magni-
tude but even slightly negative. This means that at these horizons, the 
discounted expected dividend growth rates (𝛿(𝑑,𝑘)𝑡 ) correlate positively 
with the dividend yield, implying a small but negative impact of divi-
dend growth expectations on the variance of the dividend yield.

The contrast between the volatility- and covariance-based decom-
positions is illustrated in Fig. 2. Panel (a) plots the components 𝛿(𝑟,𝑘)𝑡 , 
𝛿
(𝑑,𝑘)
𝑡 , and 𝛿(𝑑𝑝,𝑘)𝑡 at the 15-year horizon (𝑘 = 180 months), obtained 

growth. Section IV reports full regression (estimation) results of the annual and 
monthly local projections (8) for all horizons 𝑘.
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Table 3

Variance and dividend yield decompositions: Single state variable and time-varying parame-
ters. This table reports the monthly (unconditional) variance and dividend yield decompositions 
(12), for various (annualized) horizons of 𝑘 months, based on the local projections (14) with 
the last observation of the dividend yield as the single state variable, estimated by Exponentially 
Weighted Least Squares (EWLS) using an expanding window approach. The initial estimation 
sample is 180 months. All variables are demeaned recursively using EWMA filtration. The first 
columns report the volatility components of return, dividend growth and dividend yield pre-
dictions and ratio 𝜎(𝑑,𝑘)

𝜎(𝑟,𝑘)
. The final four columns report the relative covariance contributions of 

expected discount rates ̂𝛾(𝑟, 𝑘), cash flows −𝛾̂(𝑑, 𝑘) and forward dividend yields ̂𝛾(𝑑𝑝, 𝑘), as well 
as the ratio −𝛾̂(𝑑,𝑘)

𝛾̂(𝑟,𝑘)
. Sample period: 1928–2020.

𝑘 (months) 𝜎(𝑟, 𝑘) 𝜎(𝑑,𝑘) 𝜎(𝑑𝑝, 𝑘) 𝜎(𝑑,𝑘)
𝜎(𝑟, 𝑘)

𝛾̂(𝑟, 𝑘) −𝛾̂(𝑑,𝑘) 𝛾̂(𝑑𝑝, 𝑘) −𝛾̂(𝑑,𝑘)
𝛾̂(𝑟, 𝑘)

12 0.55 0.32 0.85 0.57 0.28 0.07 0.65 0.23
24 0.88 0.46 0.81 0.53 0.58 0.05 0.37 0.09
36 0.96 0.52 0.78 0.55 0.59 -0.07 0.49 -0.12
60 1.22 0.52 1.00 0.43 0.61 -0.06 0.44 -0.09
120 0.95 0.47 0.66 0.49 0.70 0.06 0.24 0.08
180 0.80 0.51 0.57 0.64 0.66 0.16 0.18 0.24

Fig. 2. Panel (a) shows plots of the components 𝛿(𝑟,𝑘)𝑡 , 𝛿(𝑑,𝑘)𝑡 , and 𝛿(𝑑𝑝,𝑘)𝑡 (see (5)), estimated from the monthly time-varying parameter (TVP) local projections (14), 
using 𝑑𝑝𝑡 as the single state variable. Panel (b) shows the observed dividend yield 𝑑𝑝𝑡 (detrended by EWMA estimated mean) and the implied dividend yield 
𝑑𝑝

(𝑘)
𝑡

= 𝛿
(𝑟,𝑘)
𝑡 − 𝛿

(𝑑,𝑘)
𝑡 + 𝛿

(𝑑𝑝,𝑘)
𝑡 , for 𝑘 = 12 (1 year) and 𝑘 = 180 (15 years). Panel (c) depicts the time-varying discount rate and cash flow components corresponding 

(10) when using the time-varying components (17). If not otherwise mentioned, the horizon 𝑘 = 180 (15 years) in all the plots.

with the time-varying parameter local projections. The period 1928-
1957 is omitted from the figure, due to the maximum horizon 𝑘 of 180 
months and an initial estimation sample of an additional 180 months. 
The figure clearly shows stronger volatility of the expected dividend 
growth than with the time-invariant local projections (Fig. 1). Panel (b) 
plots the estimated dividend yields implied by the 12-month and 180-
month local projections, as well as the actually observed dividend yield, 
to demonstrate that the implied dividend yields closely track the actual 
dividend yield. The pattern of the observed dividend yield differs from 
Fig. 2, because the dividend yield is now demeaned recursively using 
Eq. (16).

Panel (c) in Fig. 2 shows that allowing for time-varying param-
eters, despite considerable variation over time, does not result in a 
dramatic increase in the relative importance of the long-run dividend 
expectations. Similar to the time-invariant results, the variation in div-
idend expectations clearly contributes less to the dividend yield than 
the variation in return expectations. This is at odds with the volatil-
ity components in Panel (a) and Table 3 where the contribution of 
dividend expectations is substantially higher than as implied by the 
covariance-based volatility decomposition. In other words, while there 

is clear evidence of time-varying volatility of dividend growth expec-
tations, these expectations are not always negatively correlated to the 
dividend yield and therefore do not systematically contribute positively 
to the dividend yield decomposition over time.

While the discount rate channel is dominant over the full sample, 
Panel (c) in Fig. 2 does reveal periods in which cash flow expecta-
tions contribute more significantly, specifically around 1960 and 2008, 
where the cash flow contribution approaches or even exceeds the dis-
count rate contribution. On the other hand, there are some periods 
including the 1990s and the end of the sample, during which the 
time-varying contribution of cash flows is negative, implying a coun-
terintuitive positive correlation between cash flow expectations 𝛿(𝑑,𝑘)𝑡
and the dividend yield. Earlier studies have found evidence of time 
variation in the relative contributions of expected returns and dividend 
growth. Chen (2009) finds a strong reversal in the pattern of return 
and dividend growth predictability over the period 1872–2005: While 
dividend growth rates are strongly predictable in the pre-war period, 
return predictability is more dominant in the post-war period. This re-
sult is consistent with the patterns in Fig. 2, showing a relatively high 
contribution of dividend expectations during the early part of the sam-
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Table 4

Variance and dividend yield decompositions: Three state variables. This table reports the an-
nual (Panel A) and monthly (Panel B) volatility components (12) and variance decomposition 
of the dividend yield (10), based on the local projections (8), using three state variables (18): 

𝒙
(𝑎,𝑘)
𝑡 =

(
𝑘∑

𝑗=1
𝜌𝑗−1𝑟𝑡+𝑗−𝑘,

𝑘∑
𝑗=1

𝜌𝑗−1Δ𝑑𝑡+𝑗−𝑘, 𝑑𝑝𝑡

)
for 𝑎 ∈ {𝑟, 𝑑, 𝑑𝑝}, and different horizons 𝑘. The 

first columns report the volatility components of return, dividend growth and dividend yield 
predictions and ratio 𝜎(𝑑,𝑘)

𝜎(𝑟,𝑘)
. The final four columns report the relative covariance contributions 

of expected discount rates ̂𝛾(𝑟, 𝑘), cash flows −𝛾̂(𝑑, 𝑘) and forward dividend yields ̂𝛾(𝑑𝑝, 𝑘), as 
well as the ratio −𝛾̂(𝑑,𝑘)

𝛾̂(𝑟,𝑘)
Sample period: 1928–2020.

𝑘 𝜎(𝑟, 𝑘) 𝜎(𝑑,𝑘) 𝜎(𝑑𝑝, 𝑘) 𝜎(𝑑,𝑘)
𝜎(𝑟, 𝑘)

𝛾̂(𝑟, 𝑘) −𝛾̂(𝑑,𝑘) 𝛾̂(𝑑𝑝, 𝑘) −𝛾̂(𝑑,𝑘)
𝛾̂(𝑟, 𝑘)

(years) Panel A: Annual
1 0.08 0.15 0.92 1.73 0.06 0.04 0.91 0.69
2 0.14 0.17 0.80 1.22 0.13 0.08 0.79 0.60
3 0.21 0.17 0.72 0.81 0.20 0.09 0.71 0.46
5 0.36 0.08 0.61 0.21 0.36 0.02 0.62 0.06
10 0.65 0.09 0.33 0.13 0.70 -0.01 0.31 -0.02
15 0.80 0.20 0.24 0.25 0.92 -0.04 0.12 -0.04

(months) Panel B: Monthly
12 0.08 0.21 0.91 2.75 0.07 0.04 0.89 0.63
24 0.15 0.23 0.81 1.52 0.14 0.07 0.79 0.47
36 0.21 0.16 0.73 0.75 0.21 0.06 0.73 0.29
60 0.38 0.04 0.61 0.11 0.37 0.00 0.62 0.00
120 0.66 0.09 0.33 0.14 0.74 -0.07 0.33 -0.10
180 0.79 0.19 0.21 0.25 0.94 -0.06 0.12 -0.07

ple period.9 The high contribution of cash flow expectations during the 
market downturn in 2008 is emphasized by Campbell et al. (2013), who 
use a VAR-based return decomposition to demonstrate that this down-
turn was primarily driven by a decline in expected cash flows, while 
the earlier market downturn in 2000–2002 is almost entirely attributed 
to discount rate variation. Garrett and Priestley (2012) however find a 
more significant role for cash flow expectations during the 2000 market 
downturn than Campbell et al. (2013). Our findings are largely in ac-
cordance with the results by Campbell et al. (2013), with a significant 
cash flow contribution in 2008 and a near-zero contribution in 2000.

5. Multiple state variables

In this section, we extend the results in Section 4 by allowing 
for multiple state variables beyond the lagged dividend yield. In Sec-
tion 5.1, we extend the set of state variables to include lagged cumula-
tive returns and lagged dividend growth rates as state variables, while 
Section 5.2 contains a selection of specific useful predictors (state vari-
ables) for returns and dividend growth proposed in the recent literature. 
In Section 5.3, we apply the time-varying parameter LPs to different se-
lections of state variables, as in Section 4.2. In Section 5.4, we apply 
the LASSO estimator to an even larger set of state variables and exam-
ine whether the main conclusions of Sections 5.1–5.3 are robust to the 
integration of even larger information sets. Finally, in Section 5.5, we 
examine a set of fast-moving state variables that are only available for 
a more recent subsample 1990–2020.

5.1. Three state variables

Instead of a single state variable (dividend yield) in Section 4, in this 
section we move to three state variables. Lagged cumulative returns and 
dividend growth rates are included as additional state variables in the 
estimated local projections, such that the predictive power of the lagged 
values of all left-hand-side variables of the system (8) is now utilized:

9 Section II of the Internet Appendix reports the (constant-parameter) decom-
positions for the subsample 1952–2020, confirming the finding of a consider-
ably lower contribution of long-run dividend expectations.

𝒙
(𝑎,𝑘)
𝑡 =

(
𝑘∑

𝑗=1
𝜌𝑗−1𝑟𝑡+𝑗−𝑘,

𝑘∑
𝑗=1

𝜌𝑗−1Δ𝑑𝑡+𝑗−𝑘, 𝑑𝑝𝑡

)
, 𝑎 ∈ {𝑟, 𝑑, 𝑑𝑝}. (18)

In addition to their natural role as predictors due to the three-variable 
system (8), the lagged values of the LHS variables have been found 
to improve the theoretical performance of LP regressions (see Mon-
tiel Olea and Plagborg-Møller, 2021). Furthermore, using cumulative 
lagged returns and dividends brings an alternative to the latent variable 
approach of van Binsbergen and Koijen (2010) and subsequent stud-
ies by Zhu (2015) and Choi et al. (2017), aggregating the longer (full) 
history of state variables. Both of these approaches expand the informa-
tion set without substantially increasing the number of parameters to 
be estimated, like in a VAR approach.

Table 4 reports the variance and dividend yield decompositions de-
rived from the local projections with three state variables, using both 
annual and monthly data over the period 1928–2020. Both the variation 
of expected returns and expected dividend growth increase compared 
to the single-state variable case in Table 2. This increase in the volatility 
of all components is expected to occur because of the additional predic-
tive power provided by lagged cumulative returns and dividend growth 
rates. However, the relative increase in volatility is greater for cash 

flow expectations than for discount rate expectations (𝜎(𝑑,𝑘)
𝜎(𝑟, 𝑘)

= 0.25

for 𝑘 = 15 years).
Looking at the covariance contributions (12) in the last four columns 

of Table 4, the relative contribution of expected cash flow growth at 
long horizons does not increase compared to the benchmark case of a 
single state variable (both annual and monthly cases) in Table 2. As al-
ready discussed in Section 4.2, the additional predictability of cash flow 
growth does not materialize in a substantially higher cash flow contri-
bution relative to the discount rate channel. The cash flow contribution 
−𝛾̂(𝑑, 𝑘) is low across all specifications and not strictly positive.10

10 In Section II of the Internet Appendix, we reproduce Table 4 for the shorter 
sample period 1952–2020, resulting in a covariance ratio of 0.04 for 𝑘 = 15
years (0.01 with monthly data). Section III reports the VAR-implied decompo-
sition based on a VAR estimated with annual data, which also reveals a small 
negative contribution of cash flows to dividend yield volatility.
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Fig. 3. Plots of the components 𝛿(𝑟,𝑘)𝑡 , 𝛿(𝑑,𝑘)𝑡 , and 𝛿(𝑑𝑝,𝑘)𝑡 (see (5)), estimated from the annual local projections (8), using three fixed state variables: 𝒙(𝑎,𝑘)
𝑡 =(

𝑘∑
𝑗=1

𝜌𝑗−1𝑟𝑡+𝑗−𝑘,

𝑘∑
𝑗=1

𝜌𝑗−1Δ𝑑𝑡+𝑗−𝑘, 𝑑𝑝𝑡

)
for 𝑎 ∈ {𝑟, 𝑑, 𝑑𝑝}, with 𝑘 = 1 year (left panel) and 𝑘 = 15 years (middle panel). The right panel shows the observed divi-

dend yield 𝑑𝑝𝑡 and the implied dividend yield 𝛿(𝑟,𝑘)𝑡 − 𝛿
(𝑑,𝑘)
𝑡 + 𝛿

(𝑑𝑝,𝑘)
𝑡 , for 𝑘 = 1 year and 𝑘 = 15 years.

Fig. 3 plots the estimates 𝛿(𝑟,𝑘)𝑡 , 𝛿(𝑑,𝑘)𝑡 and 𝛿(𝑑𝑝,𝑘)𝑡 for the case of three 
state variables. At short horizons, the picture is similar to Fig. 1, with 
both expected returns and expected dividends being fairly flat. At longer 
horizons, both the dividend growth and dividend yield components 
𝛿
(𝑑,15)
𝑡 and 𝛿(𝑑𝑝,15)𝑡 are now visibly more volatile than in Fig. 1. How-

ever, while being highly volatile, the expected cash flow component 
𝛿
(𝑑,𝑘)
𝑡 is not strongly correlated with the dividend yield and therefore 

does not contribute considerably to the dividend yield decomposition 
(10). The final panel of Fig. 3 shows that the approximate present value 
relation (5) is also accurate when the implied dividend yield is based on 
these multivariate local projections. The volatility and covariance-based 
decompositions based on three state variables reaffirm the patterns we 
found with time-varying parameters in the single state variable case. Ex-
pectations on future dividends are more volatile, as various predictabil-
ity studies show, but this extra variation does not significantly change 
the decomposition of the dividend yield. This evidence is consistent 
with of the ‘offsetting’ hypothesis by Cochrane (2011) that incremental 
predictability of cash flow growth is necessarily offset by predictability 
of discount rates.

5.2. Selected state variables

In this section, we continue with the three state variables (18), sup-
plemented with selected state variables that have been identified as 
strong predictors of dividend growth and/or returns in the recent liter-
ature. We consider separately state variables that are considered return 
predictors (to estimate 𝛾̂(𝑟, 𝑘)) and state variables that are considered 
dividend growth predictors (to estimate −𝛾̂(𝑑, 𝑘)).

The first row of Panel A in Table 5 reports the estimated (covari-
ance) contribution of expected returns to the volatility of the dividend 
yield (𝛾̂(𝑟, 𝑘)), based on the local projections (8) using the three state 
variables (18), over the sample period 1952–2020, for which we have 
data available on all the variables. In each of the next six rows, the set of 

state variables is supplemented with one of the following return predic-
tors: the price-earnings ratio with 10-year smoothed earnings (𝑝𝑒10), 
the term spread (𝑡𝑚𝑠), the value spread (𝑣𝑠), the earnings-price ra-
tio (𝑒𝑝), the output gap (𝑔𝑎𝑝), and the cointegration relation between 
consumption, wealth and labor income (𝑐𝑎𝑦).11 The inclusion of these 
state variables typically increases covariances, particularly with 𝑝𝑒10
(as pointed out by Campbell and Vuolteenaho, 2004) and 𝑐𝑎𝑦 (Lettau 
and Ludvigson, 2005). On average, the contribution of 15-year (180-
month) return expectations increases slightly from 0.88 to 0.91 in the 
annual data (0.88 to 0.92 in the monthly data) when including one of 
the return predictors as an additional state variable.

In Panel B, we repeat this exercise by estimating −𝛾̂(𝑑, 𝑘), the covari-
ance contribution of expected dividends to the dividend yield, with the 
three state variables (18) supplemented with one of the following divi-
dend predictors: the dividend payout ratio (𝑑𝑒), the earnings-price ratio 
(𝑒𝑝; Ang and Bekaert, 2007; Møller and Sander, 2017), the cointegra-
tion relation between dividends, prices and earnings (𝑑𝑝𝑒; Garrett and 
Priestley, 2012), and the cointegration relation between consumption, 
dividends and labor income (𝑐𝑑𝑦; Lettau and Ludvigson, 2005). Simi-
lar to our earlier results, the estimated cash flow component −𝛾̂(𝑑, 𝑘) is 
generally low and not uniformly positive. Among the different dividend 
predictors and different horizons, 𝑑𝑝𝑒 generally contributes the most in 
terms of increasing the importance of expected cash flows at different 
horizons.

Overall, the empirical results in Table 5 show again that moving 
beyond the baseline model, with a single state variable and constant 
parameters, does not substantially increase the contribution of long-
run dividend expectations relative to return expectations: With annual 
data (1952–2020) the average ratio Ave(𝑑,15)Ave(𝑟,15) based on the model av-

11 Variable definitions are provided in Section 3 and Section I of the Internet 
Appendix.
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Table 5

Selected state variables. Panel A reports ̂𝛾(𝑟, 𝑘), for selected annual and monthly horizons 𝑘, based 
on the local projections (8) with the three state variables (18), supplemented with one of the state 
variables listed in the first column, over the sample period 1952–2020. The first row is based on 
the three state variables (18) alone. The final row of Panel A reports the average ̂𝛾(𝑟, 𝑘), denoted 
by Ave(𝑟, 𝑘), from the four-state-variable models. Panel B reports −𝛾̂(𝑑, 𝑘), based on the local 
projections (8), and their average Ave(𝑑, 𝑘). The final row of the table reports the ratio Ave(𝑑,𝑘)

Ave(𝑟,𝑘)
.

Annual Monthly

𝑥 𝑘 = 3 6 9 12 15 𝑘 = 36 72 108 144 180

Panel A: Return predictors
. 0.26 0.47 0.67 0.84 0.88 0.27 0.48 0.69 0.83 0.88
𝑝𝑒10 0.26 0.51 0.75 0.95 0.99 0.28 0.53 0.77 0.97 0.99
𝑡𝑚𝑠 0.29 0.50 0.69 0.85 0.90 0.30 0.52 0.73 0.86 0.91
𝑣𝑠 0.29 0.47 0.68 0.86 0.90 0.27 0.48 0.69 0.83 0.88
𝑒𝑝 0.27 0.46 0.67 0.83 0.87 0.27 0.48 0.69 0.83 0.89
𝑔𝑎𝑝 0.26 0.44 0.64 0.81 0.87 0.28 0.49 0.71 0.86 0.91
𝑐𝑎𝑦 0.32 0.60 0.84 0.98 0.94 0.33 0.63 0.88 0.99 0.95

Ave(𝑟, 𝑘) 0.28 0.50 0.71 0.88 0.91 0.29 0.52 0.75 0.89 0.92

Panel B: Dividend predictors
. -0.01 -0.01 0.02 0.02 0.04 -0.04 -0.03 -0.02 -0.01 0.01
𝑑𝑒 -0.02 -0.00 0.01 0.01 0.06 -0.04 -0.03 -0.02 -0.01 -0.00
𝑒𝑝 -0.03 -0.01 0.01 0.01 0.05 -0.04 -0.03 -0.02 -0.01 -0.00
𝑑𝑝𝑒 -0.02 -0.03 -0.04 -0.01 0.18 -0.03 -0.05 -0.07 -0.04 0.04
𝑐𝑑𝑦 -0.01 0.00 0.09 0.10 0.12 -0.04 -0.02 0.01 0.01 0.04

Ave(𝑑,𝑘) -0.02 -0.01 0.02 0.03 0.10 -0.04 -0.03 -0.02 -0.02 0.02

Ave(𝑑,𝑘)
Ave(𝑟,𝑘)

-0.07 -0.02 0.02 0.03 0.11 -0.13 -0.06 -0.03 -0.02 0.02

erage of various specifications with four state variables is estimated at 
0.11, compared to 0.16 and -0.04 with one and three state variables, 
respectively. This shows that the dividend growth predictability by se-
lected predictors (e.g., Lettau and Ludvigson, 2005; Ang and Bekaert, 
2007; Garrett and Priestley, 2012; and Møller and Sander, 2017) does 
not substantially change the dividend yield decomposition.

As a summary of this subsection, we are able to incorporate addi-
tional predictive information within our dividend yield decomposition 
due to the flexibility of local projections, which allow selecting dif-
ferent state variables for estimating the discount rate and cash flow 
expectations. The results show that dividend growth predictability (as 
examined in various earlier studies referred above) does not guarantee 
a relative increase in the importance of the cash flow component over 
the discount rate component. The results largely confirm our conclu-
sions from Sections 4–5.1. That is, due to the correlation of expected 
returns and dividend growth rates, the increase in dividend predictabil-
ity (or increased variance of dividend growth expectations) does not 
affect the relative contributions to the dividend yield decomposition.

5.3. Time-varying parameters

In addition to the time-invariant (constant-parameter) LPs (8), we 
also apply the time-varying parameter LPs (14) to the selections of 
multiple state variables considered in the previous subsections. In this 
section, we focus on the conditional (time-varying) long-run contribu-
tions (17), obtained with three state variables (Section 5.1) and three 
state variables supplemented with selected dividend and return predic-
tors (Section 5.2).

The left panel of Fig. 4 depicts the time-varying contribution of 
expected returns 𝛾𝑡(𝑟, 𝑘) over time for the different selections of state 
variables, with 𝑘 = 180 (i.e., for a 15-year horizon). The right panel of 
Fig. 4 shows the corresponding time-varying cash flow contributions 
−𝛾𝑡(𝑑, 𝑘).

The solid lines in both panels, based on one state variable, are the 
same as plotted in the last panel of Fig. 2. With three state variables, 
we can use the same sample period to construct the conditional con-
tributions. For the volatility ratio based on selected state variables, we 
use the average of the estimated discount rate contribution 𝛾𝑡(𝑟, 𝑘) ob-
tained using each of the six return predictors listed in Table 5, and the 

average of the estimated discount rate contribution −𝛾𝑡(𝑑, 𝑘) for each of 
the four dividend predictors. Therefore, the thick dashed lines in Fig. 4
show the conditional (time-varying) equivalent of the unconditional av-
erage contributions Ave(𝑟, 𝑘) and Ave(𝑑, 𝑘) in Table 5. As Fig. 4 shows, 
the conditional contributions based on selected state variables start later 
due to the availability of several variables only after the year 1952. The 
first estimates of the conditional contributions based on selected state 
variables are for 1982, due to the horizon 𝑘 and an initial estimation 
window of 180 months each.

The estimated conditional contributions vary considerably over 
time. The return contributions in the left panel are generally larger than 
the cash flow contributions in the right panel, reaffirming our earlier 
finding that the discount rate contribution generally dominates. How-
ever, as we noted when discussing the time-varying contributions in 
Fig. 2, there are clearly periods during which the cash flow contribu-
tions are considerably higher, while there are also periods during which 
the cash flow contribution is negative. Our time-varying volatility de-
composition somewhat contradicts the ‘tug-of-war’ hypothesis by Zhu 
(2015), in which either dividends or returns are predictable. Overall, 
Fig. 4 indicates that both the discount rate and cash flow components 
matter with a varying degree of importance throughout the sample pe-
riod.

The patterns of the different conditional return contributions in the 
left panel of Fig. 4 are rather similar, which may result from the divi-
dend yield as a single state variable already capturing a significant part 
of the return predictability. Adding additional state variables does not 
have a large impact on the estimated return expectations (𝛿𝑡

(𝑟,𝑘)
) and 

therefore on its (time-varying) contribution to the dividend yield de-
composition. For the cash flow expectations, however, changing the set 
of state variables has a more profound impact on the dynamics of the 
estimated cash flow contribution, as can be seen from the relative dis-
persion between the three lines in the right panel of Fig. 4.

5.4. Large set of state variables and LASSO

As already surveyed in the Introduction, a vast literature compiles 
evidence that various variables besides the dividend yield predict stock 
returns as well as dividend growth rates at different frequencies and 
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Fig. 4. Plots of 𝛾𝑡(𝑟, 𝑘) (left) and −𝛾𝑡(𝑑, 𝑘) (right) obtained from (17), with 𝛿(𝑟,𝑘)𝑡 and −𝛿
(𝑑,𝑘)
𝑡 estimated by EWLS from rolling window local projections (14), with 

𝑘 = 180, using three different information sets: (i) one state variable, (ii) three state variables, and (iii) three state variables supplemented with selected dividend 
and return predictors. The sample period is 1928–2020 for (i) and (ii) and 1952–2020 for (iii). The figures start 30 years later, due to the horizon 𝑘 and initial 
estimation window of 180 months each.

forecast horizons. To accommodate the integration of such large sets of 
state variables, while keeping concerns on possible overfitting to a min-
imum, we apply common data-driven methodologies from the machine 
and statistical learning literature. In this section, we concentrate on 
LASSO (Least Absolute Shrinkage and Selection Operator) to examine 
whether the main conclusions in Sections 5.1–5.3 are robust to a larger 
information set, while Section V of the Internet Appendix contains sim-
ilar results obtained with the elastic net approach, having potentially 
some advantages over LASSO for highly correlated state variables.

The LASSO estimator, as popularized by Tibshirani (1996), is an al-
ternative to the OLS estimator where the idea in short is to select the 
optimal state variables, by shrinking the parameters of irrelevant state 
variables to zero, without taking a prior standpoint on which variables 
should be included in LPs. This shrinkage (penalization)-based method 
allows us to consider a potentially large number of state variables si-
multaneously. In our context, this means that the LASSO estimator will 
select the state variables separately for all three components in (5) and 
for all horizons 𝑘, without causing excessive computational burden.

The LASSO estimator for parameters 𝝋(𝑎,𝑘) = (𝛼(𝑎,𝑘), 𝜷(𝑎,𝑘)), 𝑎 ∈
{𝑟, 𝑑, 𝑑𝑝}, is defined as:

𝝋̂
(𝑎,𝑘)
𝐿𝐴𝑆𝑆𝑂

= argmin
𝝋(𝑎,𝑘)

{
1
2𝑇

𝑇∑
𝑡=1

(
𝐿𝐻𝑆(𝑎) − 𝛼(𝑎,𝑘) − 𝒙

(𝑎,𝑘)
𝑡 𝜷(𝑎,𝑘)

)2

+ 𝜆

𝑛𝑎∑
𝑗=1

|||𝛽(𝑎,𝑘)𝑗
|||
}

,

(19)

where 𝐿𝐻𝑆(𝑎) is one of the three left hand side variables in (8) and 𝑇
is the number of observations in the estimation sample (depending also 
on the horizon 𝑘 in this notation). The number of candidate state vari-
ables is denoted by 𝑛𝑎. Intuitively, the aim of the LASSO estimator is to 
find a set of coefficient estimates that lead to the smallest residual sum 
of squares, subject to the constraint set by the penalty term 

∑𝑛𝑎
𝑗=1 |𝛽(𝑎,𝑘)𝑗

|. 
The amount of shrinkage is controlled by the tuning parameter 𝜆: In-
creasing 𝜆 results in a greater shrinkage towards zero in the coefficients 
𝛽
(𝑎,𝑘)
𝑗

. We follow, e.g., Medeiros and Mendes (2016) and Medeiros and 
Vasconcelos (2016), who recommend in a time series context to deter-
mine 𝜆 by the Bayesian information criterion (BIC), as opposed to the 
cross-validation typically used in cross-sectional LASSO analyses. For a 
sufficiently large value of 𝜆, the LASSO estimator shrinks some 𝛽(𝑎,𝑘)

𝑗
exactly to zero (e.g., Hastie et al., 2009, Section 3.4), thus perform-
ing parameter estimation and model selection at the same time. This 
is effective and in practice highly useful in our context by automati-
cally producing the required horizon-specific local projections where 
the optimal state variables are selected depending on the horizon 𝑘. 
As a result, the estimated local projections generated from LASSO are 

‘sparse’ and likely circumvent overfitting since only a subset of the full 
set of potential state variables is involved.12

In the LASSO estimation, we do not apply shrinkage to the dividend 
yield (i.e., the penalty term in (19) does not include the regression co-
efficient related to the lagged dividend yield), due to its essential role 
in the benchmark decompositions (see, e.g., Engsted et al., 2012). This 
implies that 𝑑𝑝𝑡 is always included in the resulting local projections.13

Table 6 presents the annual and monthly volatility decompositions 
using local projections estimated by LASSO. Even if LASSO exploits 
larger information sets, the resulting decompositions are not very differ-
ent from those obtained with three or selected state variables (Tables 4
and 5). Our main result that, despite the increased predictability of div-
idend growth rates, the expected cash flow contribution remains low 
and is occasionally even slightly negative, is robust to expansion of the 
predictive information set.

Table 7 presents still detailed LASSO regression results, i.e., the es-
timated local projections at selected forecast horizons that are used 
for obtaining the annual volatility decompositions reported in Table 6. 
These results include information on both the variable selection (i.e., 
the inclusion and exclusion of state variables), and the estimated LASSO 
coefficients (see (19)). First of all, we can clearly see that the selected 
LASSO local projections are indeed horizon-specific so that different 
state variables are valuable for different horizons. For returns, the best 
predictors in terms of systematic inclusions, along with the dividend 
yield, are term spread (𝑡𝑚𝑠), realized volatility (𝑠𝑣𝑎𝑟), investment-to-
capital ratio (𝑖𝑘), consumer price inflation (𝑖𝑛𝑓𝑙), value spread (𝑣𝑠), 
price-10 year earnings ratio (𝑝𝑒10) and the consumption-wealth ratio 
(𝑐𝑎𝑦). As reviewed in the Introduction, these are largely the variables 
that are expected to have predictive power for returns (see, e.g., Fama 
and French, 1989; Lettau and Ludvigson, 2001, 2005; and Martin, 2017, 
and as also emphasized in Section 5.2). On the contrary, earnings yield 
(𝑒𝑝), short-term interest rates (𝑡𝑏𝑙 and 𝑟𝑓𝑟𝑒𝑒) and long-term corporate 
bond rates (𝑐𝑜𝑟𝑝𝑟) are typically excluded. For the dividend growth lo-

12 All computations in this paper are carried out in R (RStudio). Specifically, 
the LASSO-based local projections are constructed with the glmnet package and 
BIC-based tuning parameter 𝜆 selection (see, e.g., Medeiros and Vasconcelos 
(2016) and the modification of ic.glmnet function available in the HDecono-
metrics package. See https://rdrr .io /github /gabrielrvsc /HDeconometrics /man /
ic .glmnet .html. As robustness checks, we also determine the tuning parameter 𝜆
by cross-validation and apply the elastic net approach, as reported in Section V 
of the Internet Appendix.
13 Section V of the Internet Appendix presents annual and monthly results 
where the dividend yield is also subject to shrinkage. It turns out that the divi-
dend yield is typically included in all local projections and hence the resulting 
volatility decompositions are very close to those reported in Table 6.

https://rdrr.io/github/gabrielrvsc/HDeconometrics/man/ic.glmnet.html
https://rdrr.io/github/gabrielrvsc/HDeconometrics/man/ic.glmnet.html
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Table 6

Variance and dividend yield decompositions: LASSO. This table reports the annual (Panel A) 
and monthly (Panel B) volatility components (12) and variance decomposition of the dividend 
yield (10), based on the local projections (8), using LASSO, for different horizons 𝑘. The first 
columns report the volatility components of return, dividend growth and dividend yield pre-
dictions and ratio 𝜎(𝑑,𝑘)

𝜎(𝑟,𝑘)
. The final four columns report the relative covariance contributions 

of expected discount rates ̂𝛾(𝑟, 𝑘), cash flows −𝛾̂(𝑑, 𝑘) and forward dividend yields ̂𝛾(𝑑𝑝, 𝑘), as 
well as the ratio −𝛾̂(𝑑,𝑘)

𝛾̂(𝑟,𝑘)
. Sample period: 1952–2020.

𝑘 𝜎(𝑟, 𝑘) 𝜎(𝑑,𝑘) 𝜎(𝑑𝑝, 𝑘) 𝜎(𝑑,𝑘)
𝜎(𝑟, 𝑘)

𝛾̂(𝑟, 𝑘) −𝛾̂(𝑑,𝑘) 𝛾̂(𝑑𝑝, 𝑘) −𝛾̂(𝑑,𝑘)
𝛾̂(𝑟, 𝑘)

(years) Panel A: Annual
1 0.15 0.10 0.86 0.65 0.13 0.02 0.84 0.17
2 0.24 0.21 0.77 0.88 0.23 0.02 0.75 0.08
3 0.31 0.23 0.75 0.74 0.26 0.02 0.72 0.07
5 0.51 0.29 0.64 0.56 0.42 0.03 0.54 0.08
10 0.95 0.34 0.71 0.35 0.84 0.06 0.11 0.07
15 0.96 0.45 0.55 0.47 0.94 0.18 -0.12 0.19

(months) Panel B: Monthly
12 0.27 0.22 0.90 0.83 0.14 0.02 0.84 0.16
24 0.43 0.23 0.85 0.55 0.25 -0.00 0.75 -0.00
36 0.49 0.32 0.84 0.65 0.29 -0.03 0.74 -0.10
60 0.69 0.35 0.81 0.51 0.50 -0.06 0.55 -0.11
120 0.92 0.36 0.72 0.40 0.79 -0.05 0.25 -0.06
180 1.04 0.42 0.57 0.40 1.01 0.03 -0.05 0.03

Table 7

LASSO model selection and estimation results – Annual data. This table reports the results of the 
LASSO model selection and parameter estimates (see (19)), for selected horizons 𝑘. Empty cells 
indicate the exclusion of those state variables. The candidate state variables are described in Ta-
ble 1 and 𝑟 and 𝑑 denote the (discounted) cumulative lagged returns and dividend growth rates 
(see (18)). The results are reported for local projections with two different left hand side (LHS) 
variables: cumulative returns (left panel); and cumulative dividend growth (right panel). Sample 
period: 1952–2020. Full results, including the LPs with the dividend yield as LHS variable, for all 
horizons 𝑘, using both annual and monthly data are reported in Internet Appendix Section V.

LHS: returns LHS: dividend growth

𝑘 (years) 3 6 9 12 15 3 6 9 12 15

const 1.09 1.58 4.31 5.59 2.79 0.05 -0.24 1.12 4.43 1.46
𝑟 -0.12 -0.05 -0.10 -0.08
𝑑 -0.16 -0.78 -0.16 -0.30 -0.44 -0.54 -0.28
𝑑𝑝 0.23 0.33 0.30 0.29 -0.12 -0.13 -0.27 0.01 -0.30 -0.00
𝑒𝑝 -0.18 0.88
𝑑𝑒 0.08 0.33 0.08 -0.14 -0.81 -0.18
𝑠𝑣𝑎𝑟 0.23 1.68 1.92 -0.44 0.89 -0.02
𝑏𝑚 -0.58 0.78 0.31 0.59 -0.66
𝑛𝑡𝑖𝑠 -2.30 -4.38 1.05 0.32 0.67 0.30
𝑡𝑏𝑙 -1.03 -1.78 -0.87
𝑙𝑡𝑦 3.96 6.16 2.16 -3.61 -1.23
𝑅𝑓𝑟𝑒𝑒 -1.89 -3.19 -1.76
𝑡𝑚𝑠 3.86 2.01 1.38 1.19
𝑙𝑡𝑟 0.08 0.23
𝑑𝑓𝑦 -8.21 -14.11 2.62
𝑑𝑓𝑟 -0.82 -0.75 -1.43 -0.17 0.24 0.30 0.03 0.40
𝑐𝑜𝑟𝑝𝑟 0.11 0.09 0.10
𝑖𝑛𝑓𝑙 4.00 1.01 1.72 0.13
𝑐𝑎𝑦 1.09 3.97 2.61 -2.14 2.03 -1.20 -3.43 -4.15 -4.17
𝑒𝑞𝑖𝑠 -0.18 -0.47 -0.09 -0.13 0.14 0.33 0.24
𝑖𝑘 -45.73 -23.24 -25.73 -6.09 -5.17 3.63
𝑐𝑑𝑦 3.94 1.06 0.28 0.81
𝑔𝑎𝑝 -0.59 -1.40
𝑣𝑠 0.10 0.03 0.03 0.08 0.07 -0.08 -0.03
𝑝𝑒10 -0.31 -0.93 -0.60 -0.11 -0.05 -0.23
𝑑𝑝𝑒 0.34 0.45 -0.19 -0.36 -0.30 -0.84

cal projections, 𝑐𝑎𝑦 also appears to be an important predictor, as well 
as lagged dividends, value spread (𝑣𝑠), net equity expansion (𝑛𝑡𝑖𝑠) and 
𝑑𝑝𝑒.14

14 Section V of the Internet Appendix reports the full estimation results, includ-
ing the LPs with the dividend yield as LHS variable at all horizons 𝑘, estimated 
with both annual and monthly data.

5.5. Option-implied state variables

As a final empirical analysis, we consider four state variables that are 
recently proposed in the literature: the conditional variance of stock re-
turns (𝑐𝑣) and the equity variance premium (𝑣𝑝) proposed by Bekaert 
and Hoerova (2014), and the risk-aversion index (𝑟𝑎) and uncertainty 
index (𝑢𝑛𝑐) proposed by Bekaert et al. (2022). These four variables are 
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Table 8

Option-implied state variables. This table reports ̂𝛾(𝑟, 𝑘) and −𝛾̂(𝑑, 𝑘) for selected monthly 
horizons 𝑘, based on the local projections (8) with the three state variables (18), supple-
mented with one of the option-implied state variables listed in the first column. The first 
row is based on the three state variables (18) alone. The final row reports the averages of 
𝛾̂(𝑟, 𝑘) and −𝛾̂(𝑑, 𝑘), from the four-state-variable models. Sample period 1990:1–2020:12.

𝛾̂(𝑟, 𝑘) −𝛾̂(𝑑,𝑘)

𝑥 𝑘 = 12 24 36 60 120 𝑘 = 12 24 36 60 120

. 0.21 0.41 0.55 0.88 1.22 0.13 0.13 0.11 0.16 0.19
𝑐𝑣 0.22 0.43 0.48 0.79 0.87 0.40 0.39 0.28 0.09 0.20
𝑣𝑝 0.30 0.54 0.57 0.78 0.93 0.43 0.39 0.28 0.13 0.16
𝑟𝑎 0.25 0.50 0.52 0.79 0.84 0.45 0.39 0.23 0.02 0.14
𝑢𝑛𝑐 0.08 0.24 0.24 0.60 0.79 0.37 0.35 0.22 0.02 0.22

Ave 0.21 0.43 0.45 0.74 0.86 0.41 0.38 0.25 0.06 0.18

derived from option market data (and other financial variables), which 
is why we refer to these as “option-implied state variables”. These vari-
ables are generally mean-reverting at shorter horizons than the more 
traditional predictors, such as valuation ratios, and are thus meant to 
capture higher frequency variation in expected discounted rates and 
cash flows.

We apply our local projections (8) combining each of these predic-
tors with the three benchmark state variables (18), such that expected 
discount rates and cash flows have both a short-term and long-term 
component. Table 8 reports the contribution of expected discount rates 
(𝛾̂(𝑟, 𝑘)) and cash flow growth (−𝛾̂(𝑑, 𝑘)) for selected monthly horizons 
𝑘. Due to the shorter data availability (1990–2020) of these option-
implied variables, we focus on monthly data only and exclude the 
15-year horizon from our analysis, instead focusing on (monthly) hori-
zons of 1, 2, 3, 5 and 10 years.

Particularly at shorter horizons, the additional state variables in-
crease the contribution of expected dividends. At the 12-month horizon, 
adding the risk aversion index (𝑟𝑎) to the model more than triples 
−𝛾̂(𝑑, 12) from 0.13 to 0.45. For expected returns, the increase is less 
sizeable: from 0.21 to 0.30 when the variance premium (𝑣𝑝) is added 
to the model. At longer horizons, the incremental impact of these state 
variables is modest: the covariance ratio −𝛾̂(𝑑,120)

𝛾̂(𝑟,120) at the 10-year hori-

zon is 0.16 for the benchmark model without additional state variables 
and 0.21 using the average across the four extended specifications. The 
limited impact at longer horizons is as expected due to the swiftly mean-
reverting nature of these specific variables.

6. Discussion

The main contribution of this study is the introduction of flexible 
local projections to examine the relative importance of the cash flow 
and discount rate components to the variation in the dividend yield. 
Our main empirical result is that the (time-varying) contribution of 
expected cash flow growth is not completely negligible but clearly sec-
ondary compared to the contribution of expected discount rates. In the 
baseline case of a single state variable (the dividend yield) and constant 
parameters, we find that expected dividend growth is relatively flat and 
does not contribute much to the volatility of the dividend yield. When 
we expand the information set to contain multiple state variables, we 
find more evidence of variation of expected cash flows, but this does not 
show up in the dividend yield decomposition where expected discount 
rates remain the dominant component. When we estimate the local pro-
jections recursively (i.e., allowing for time-varying parameters), we find 
that expected dividend growth rates are at times more volatile than in 
other time periods, and even become temporarily the dominant com-
ponent of market volatility, but discount rate expectations remain the 
primary driver of volatility for most of the sample period.

Our results provide a new methodological perspective to the puz-
zling ‘stylized fact’ that dividend growth is not predictable by the div-
idend yield in the U.S. during the postwar period. As documented by 

Engsted and Pedersen (2010), this finding does not hold in general in 
international equity markets, while Chen (2009) and Golez and Koudijs 
(2018) do find dividend growth predictability in the U.S. prior to 1945. 
As emphasized by Menzly et al. (2004), Lettau and Ludvigson (2005), 
van Binsbergen and Koijen (2010), and Møller and Sander (2017), it is 
possible for dividend predictors to have offsetting effects on the divi-
dend yield, thereby obfuscating the predictability of dividends by the 
dividend yield. Indeed, various studies have found evidence of cash flow 
predictability by other factors than the dividend yield (e.g., Lettau and 
Ludvigson, 2005; Ang and Bekaert, 2007; Larrain and Yogo, 2008; Gar-
rett and Priestley, 2012; Møller and Sander, 2017). The flexibility of 
local projections allows this dividend predictability to be utilized when 
obtaining the dividend yield volatility decomposition by integrating ad-
ditional state variables beyond the dividend yield in the projections of 
both returns and dividends. When expanding the set of state variables 
beyond the dividend yield, the incremental predictive power increases 
both the volatility of expected dividend growth and of expected returns. 
However, despite the increased predictability of dividend growth, the 
contribution of dividend growth to the decomposition of the dividend 
yield is hardly affected, due to the weak covariance between expected 
dividend growth and the dividend yield. Surprisingly, the correlation 
between expected dividend growth and the dividend yield is for some 
specifications and (short) time periods even slightly positive, resulting 
in a negative cash flow contribution to the covariance-based decompo-
sition. Therefore, we conclude that predictability of dividend growth is 
a necessary but not sufficient condition for a high cash flow contribu-
tion to the covariance-based dividend yield decomposition.

While the main focus of our analysis is on long-term horizons, our 
results in Section 5.5 show that recently proposed state variables such as 
the equity variance premium (Bekaert and Hoerova, 2014) and the risk 
aversion index (Bekaert et al., 2022) have an impact on the volatility 
decomposition at 1-2 year horizons. Building upon the local projection 
approach by combining high and low persistence state variables such 
that expected returns and dividends have both short-term and long-term 
elements may be a useful direction for future research.

In addition to including additional state variables, local projections 
allow us to investigate the time-varying nature of the dividend yield 
decomposition. Time-varying patterns are surprisingly similar across 
different choices of state variables. This suggests that there are alter-
nating periods of relatively strong dividend and return predictability 
(or ‘pockets of predictability’, cf. Farmer et al., 2023). Within these pe-
riods, the choice of state variables appears to be of less importance. 
The idea of alternating periods of predictability at first glance resem-
bles the ‘tug-of-war’ hypothesis by Zhu (2015), in which returns and 
dividends take turns between regimes of high and low predictability. 
However, our results do not imply this type of binary and exclusive 
regime-switching process for the dividend yield decomposition. In fact, 
we find evidence of both dividend and return predictability across the 
full sample, with the relative importance of discount rate and cash flow 
variation being relatively smooth and stable over time.
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Chen et al. (2012) attribute the apparent lack of dividend growth 
predictability by dividend yields in the postwar period to dividend 
smoothing, causing the dividend yield to be uninformative of cash flows 
in the near future, but not necessarily implying that future cash flows 
are truly unpredictable. By relying on direct (i.e., LP-based) long-run 
predictions, as opposed to iterated (i.e., VAR-based) short-run predic-
tions, we circumvent the diminished predictability caused by short-run 
dividend smoothing and its potential disruptive impact on the dividend 
yield decomposition.15 The time-varying nature of dividend growth pre-
dictability is in fact consistent with dividend growth being subject to 
time-varying payout policies, affected by factors including dividend 
smoothing but also time-varying investor demand for dividends (see, 
e.g., Baker and Wurgler, 2004; Chen et al., 2012; Larkin et al., 2017).

7. Conclusions

We specify horizon-specific local projections to identify the rela-
tive contributions of expected discount rates and expected cash flows 
to the variation of the dividend yield. Building upon the well-known 
vector autoregressive (VAR) approach, we apply our local projection 
approach to develop a flexible dividend yield decomposition. In addi-
tion to robustness to model misspecification, local projections provide 
various advantages over the VAR approach. Despite strong seasonali-
ties in dividend payments, we are able to accommodate monthly data 
in addition to annual data. The enlarged sample size resulting from the 
use of monthly data allows us to apply recursive estimation to examine 
time variation in the dividend yield decomposition. Furthermore, in ad-
dition to the standard dividend yield, we are able to incorporate several 
different predictors of both dividend growth and returns.

Our results generally confirm that variation in expected discount 
rates is the dominant component of observed dividend yield volatility. 
The cash flow component is also present, but its relative importance 
does not increase substantially for any choice of state variables. While 
we find, consistent with earlier literature, evidence of more volatile 
dividend expectations when we move beyond the lagged dividend yield 
as the single state variable, this incremental predictability of cash flows 
does not covary strongly with the dividend yield and therefore does not 
contribute to its decomposition.

Only when allowing for time variation in the dividend yield decom-
position, we find that in certain periods, such as around the 2008 finan-
cial crisis, the contribution of expected cash flows to the decomposition 
of the dividend yield increases temporarily. Nevertheless, over the full 
sample, the contribution of expected discount rates remains clearly 
dominant. Various alternative specifications and robustness checks re-
ported throughout this paper and in the Internet Appendix point to 
the same main conclusion: circumventing the econometric restrictions 
implied by the VAR approach results in increased predictability of div-
idend growth, but does not lead to a significantly larger cash flow 
contribution to the decomposition of dividend yield volatility.
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15 Section VI in the Internet Appendix presents a simple simulation exercise to 
demonstrate that the LP approach is indeed less sensitive to dividend smoothing 
than the VAR approach.

Appendix A. VAR-based approaches

In this Appendix, we briefly outline the vector autoregressive 
(VAR) approaches implemented by Campbell and Shiller (1988b) and 
Cochrane (2008). In contrast to the local projection approach that we 
employ, both of these VAR-based approaches are built upon the as-
sumption that the multivariate system containing stock return (𝑟𝑡), 
dividend growth rate (Δ𝑑𝑡) and the dividend yield (𝑑𝑝𝑡) follows a 
VAR representation, from which the long-run contributions of expected 

dividend growth rates (𝐸𝑡

∞∑
𝑗=1

𝜌𝑗−1Δ𝑑𝑡+𝑗 ) and expected discount rates 

(𝐸𝑡

∞∑
𝑗=1

𝜌𝑗−1𝑟𝑡+𝑗 ) can be derived. Due to the linear structure of the VAR, 

Campbell and Shiller (1988b) and Cochrane (2008) derive closed form 
expressions of these long-run predictions.

A.1. Campbell and Shiller (1988b)

Starting from the long-run identity (7) with infinite horizon (𝑘 ⟶
∞), Campbell and Shiller (1988b) attempt to estimate the component 

associated with expected dividend growth 
(
𝛿
(𝑑,∞)
𝑡 = 𝐸𝑡

∞∑
𝑗=1

𝜌𝑗−1Δ𝑑𝑡+𝑗

)
by fitting a bivariate VAR to the annual price-dividend ratio and the 
annual dividend growth rate (both measured in logs):

𝐳𝑡 ≡

[
𝑝𝑑𝑡

△𝑑𝑡

]
= 𝐀𝐳𝑡−1 + 𝜺𝑡. (A.1)

For ease of exposition, we assume a VAR structure with only one lag 
(VAR(1)) below, but as Campbell and Shiller (1988b) show, the frame-
work can be straightforwardly adapted to a more general VAR(p) struc-
ture. Also note that Campbell and Shiller model the price-dividend ratio, 
while we and others model the dividend-price ratio. Due to the logarith-
mic transformation and the linear structure of the models, this choice 
has no impact on the final results since 𝑝𝑑𝑡 = −𝑑𝑝𝑡. The matrix of esti-
mated parameters 𝐀 in (A.1) and the calibrated parameter 𝜌 (Eq. (3)) 
can be used to recover the conditional expectations 𝐸𝑡Δ𝑑𝑡+𝑗 , and to 
compute a time series of the VAR-implied dividend growth variable 
𝛿
(𝑑,∞)
𝑡 :

𝛿
(𝑑,∞)
𝑡 = 𝐸𝑡

∞∑
𝑖=0

𝜌𝑖 △ 𝑑𝑡+1+𝑖 =
∞∑
𝑖=0

𝜌𝑖
(
𝐞′2𝐀

𝑖𝐳𝑡
)
= 𝐞′2𝐀 (𝐈− 𝜌𝐀)−1 𝐳𝑡, (A.2)

in which 𝐞2 is a vector of zeros in which the second element is re-
placed by one. A full derivation is provided by Campbell and Shiller 
(1988b). The constructed variable 𝛿(𝑑,∞)

𝑡 can be thought of as a ‘the-
oretical PD ratio’ that should closely trace the observed PD ratio, if 
expected discount rates would be constant (i.e., if all variation in the 
PD ratio is due to expected cash flow variation). Campbell and Shiller 

report the ratio 
Std(𝛿(𝑑,∞)

𝑡 )
Std(𝑝𝑑𝑡)

, which is clearly closely related to our mea-

sure 𝜎(𝑑, 𝑘) in (12). The main difference is that, instead of obtaining 
long-run predictions by iterating forward a one-period VAR, we obtain 
these predictions with horizon-specific direct regressions (8) at different 
horizons 𝑘.

A.2. Cochrane (2008)

Cochrane (2008) fits a first-order VAR system to the annual returns, 
dividend growth rates and dividend yields:

𝑟𝑡+1 = 𝑐(𝑟) + 𝑏(𝑟) 𝑑𝑝𝑡 + 𝜀
(𝑟)
𝑡+1

Δ𝑑𝑡+1 = 𝑐(𝑑) + 𝑏(𝑑) 𝑑𝑝𝑡 + 𝜀
(𝑑)
𝑡+1 (A.3)

𝑑𝑝𝑡+1 = 𝑐(𝑑𝑝) + 𝑏(𝑑𝑝) 𝑑𝑝𝑡 + 𝜀
(𝑑𝑝)
𝑡+1 ,
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where the lagged dividend yield is the only state variable. As Cochrane 
(2008) shows, the (approximate) log-linear present-value identity (1)
implies the following link between the VAR coefficients of (A.3):

𝑏(𝑟) = 1 − 𝜌𝑏(𝑑𝑝) + 𝑏(𝑑), (A.4)

which also leads to links between the error terms by 𝜀(𝑟)
𝑡+1 = 𝜀

(𝑑)
𝑡+1+𝜌 𝜀(𝑑𝑝)

𝑡+1 . 
The system of three equations (A.3) is thus overidentified: The regres-
sion coefficients and the error term of any of the three equations are 
implied by the other two.

Dividing the identity (A.4) by 1 − 𝜌 𝑏(𝑑𝑝) yields the long-run coeffi-
cients of returns (𝑏(𝑟,𝑙𝑟)) and dividend growth (𝑏(𝑑,𝑙𝑟)):

𝑏(𝑟,𝑙𝑟) − 𝑏(𝑑,𝑙𝑟) = 𝑏(𝑟)

1 − 𝜌𝑏(𝑑𝑝)
− 𝑏(𝑑)

1 − 𝜌𝑏(𝑑𝑝)
= 1. (A.5)

As Cochrane (2008) demonstrates, the coefficients 𝑏(𝑟,𝑙𝑟) and 𝑏(𝑑,𝑙𝑟) can 
be interpreted as the slope coefficients of hypothetically regressing 
long-run cumulative discounted returns 

(∑∞
𝑗=1 𝜌

𝑗−1𝑟𝑡+𝑗

)
and dividend 

growth 
(∑∞

𝑗=1 𝜌
𝑗−1Δ𝑑𝑡+𝑗

)
on the dividend yield 𝑑𝑝𝑡:

𝑏̂(𝑟,𝑙𝑟) =
Cov

(∑∞
𝑗=1 𝜌

𝑗−1𝑟𝑡+𝑗 , 𝑑𝑝𝑡

)
Var(𝑑𝑝𝑡)

and

𝑏̂(𝑑,𝑙𝑟) =
Cov

(∑∞
𝑗=1 𝜌

𝑗−1Δ𝑑𝑡+𝑗 , 𝑑𝑝𝑡

)
Var(𝑑𝑝𝑡)

.

(A.6)

The fitted values of these hypothetical regressions thus correspond to 
the fitted values of our local projections (9), in the special case of the 
dividend yield as the only predictor and the infinite horizon (𝑘 ⟶∞):

𝛿
(𝑟,∞)
𝑡 = 𝑐(𝑟,𝑙𝑟) + 𝑏̂(𝑟,𝑙𝑟)𝑑𝑝𝑡

𝛿
(𝑑,∞)
𝑡 = 𝑐(𝑑,𝑙𝑟) + 𝑏̂(𝑑,𝑙𝑟)𝑑𝑝𝑡.

(A.7)

From (A.7), it is easy to see that volatility components (12) are related 
to the implied long-run coefficients by Cochrane (2008):

𝜎(𝑎,∞) =

√
Var(𝛿𝑎,∞𝑡 )
Var(𝑝𝑑𝑡)

=

√
Var(𝑏̂(𝑎,𝑙𝑟)𝑑𝑝𝑡)

Var(𝑑𝑝𝑡)
= |||𝑏̂(𝑎,𝑙𝑟)|||

√
Var(𝑑𝑝𝑡)
Var(𝑑𝑝𝑡)

= |||𝑏̂(𝑎,𝑙𝑟)||| ,
(A.8)

for 𝑎 ∈ {𝑟, 𝑑}. Moreover, concerning the covariance components (10)
(as 𝑑𝑝𝑡 = 𝑑𝑝𝑡, which holds in this VAR case with 𝑘 = ∞), equations 
(A.7) imply

Cov
(
𝑑𝑝𝑡, 𝛿

(𝑟,∞)
𝑡

)
= 𝑏̂(𝑟,𝑙𝑟) and Cov

(
𝑑𝑝𝑡, 𝛿

(𝑑,∞)
𝑡

)
= 𝑏̂(𝑑,𝑙𝑟). (A.9)

In other words, in this one-variable case there is one-to-one correspon-
dence between the long-run coefficients in (A.7) and the information in 
our volatility decomposition (10).

Appendix B. Supplementary material

Supplementary material related to this article can be found online 
at https://doi .org /10 .1016 /j .jbankfin .2024 .107127.
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