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A transcriptomics data-driven gene space
accurately predicts liver cytopathology and
drug-induced liver injury
Pekka Kohonen1,*, Juuso A. Parkkinen2,*, Egon L. Willighagen1,3, Rebecca Ceder1, Krister Wennerberg4,

Samuel Kaski2,5 & Roland C. Grafström1

Predicting unanticipated harmful effects of chemicals and drug molecules is a difficult and

costly task. Here we utilize a ‘big data compacting and data fusion’—concept to capture

diverse adverse outcomes on cellular and organismal levels. The approach generates from

transcriptomics data set a ‘predictive toxicogenomics space’ (PTGS) tool composed of 1,331

genes distributed over 14 overlapping cytotoxicity-related gene space components. Involving

B2.5� 108 data points and 1,300 compounds to construct and validate the PTGS, the

tool serves to: explain dose-dependent cytotoxicity effects, provide a virtual cytotoxicity

probability estimate intrinsic to omics data, predict chemically-induced pathological states in

liver resulting from repeated dosing of rats, and furthermore, predict human drug-induced

liver injury (DILI) from hepatocyte experiments. Analysing 68 DILI-annotated drugs, the

PTGS tool outperforms and complements existing tests, leading to a hereto-unseen level of

DILI prediction accuracy.
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P
roducts and compounds to be placed in products undergo
safety testing to variable levels of depth and complexity.
Even highly regulated and rigorous testing practices

unfortunately still fail in detecting inherent toxicological
properties, of which some effects become evident only after
exposure to a marketed product1–3. For the drug developing
pharmaceutical industry, severe drug-induced liver injury (DILI)
remains an enormous problem, as its occurrence is often not
predicted3–6.

Systems biology-based assays relying upon quantitative
mechanistic information are increasingly envisaged as corner-
stones of future safety evaluation of drugs and chemicals1,7–11.
Accordingly, various modelling approaches have analysed ‘omics
data sets to generate biomarker signatures or to characterize
mechanisms of toxicity at a system-wide level, but suffer from the
high dimensionality of omics data relative to sample number
as well as problems in scaling across experimental systems
(for example, hepatocyte cultures to liver) or species (for example,
rat to human)11–16. Complicating predictive biomarker discovery,
different genes and gene families will unlikely have similar
dose response, so dose-dependent transitions will influence
the classification of (toxic) modes-of-action17,18. Addressing the
issue, the adverse outcome pathways (AOP) concept was designed
to facilitate the use of modern human-specific in vitro models to
understand toxicity and disease pathways at multiple levels of
biological organization19,20. Embracing the complete chain of
events from the first compound-induced molecular cellular
changes to influence adversity on cellular, organ, individual and
even population levels, the AOP concept has been incorporated
into in vitro tests for an accepted replacement of animal
experiments20. Large-scale consortia and projects, for example,
Tox21, ToxCast and SEURAT/EUToxRisk, address the issue by
complementing the traditional structure-based analysis with
developing ‘new approach methodologies’ for safety prediction
inspired by the AOP concept, including transcriptomics
assays10,21–24.

The US Broad Institute Connectivity Map (CMap) data set has
thousands of gene expression profiles of mostly FDA approved
drugs and has been used to connect small molecules, genes and
diseases (‘connectivity mapping’) to define biologically similar
compounds, including for the purpose of identifying toxic modes
of action11,15,25–29. The US National Cancer Institute (NCI) 60
tumour cell line screen includes results on GI50 (50% growth
inhibition), total growth inhibition (TGI), and LC50 (50% lethal
concentration) for many compounds tested in the major CMap
cell lines30. A number of screening assays have been developed to
explore possible mechanisms of DILI with the ultimate aim of
predicting clinical exposure levels of concern6,31,32. The US FDA
Liver Toxicity Knowledge Base (LTKB) is a centralized resource
for drug information related to liver damage33. The Open
‘Toxicogenomics Project-Genomics Assisted Toxicity Evaluation
system’ (TG-GATEs) constitutes a resource that spans both
in vitro and in vivo analyses of 158 potentially hepatotoxic
compounds16. On the basis of these data sources we decided to
test the hypothesis that a predictive set of toxicogenomics-
relevant changes would lie within the large space of chemically
induced transcriptomic alterations of the CMap, most of which
could potentially be extracted and validated via bioinformatics
processing of cytotoxicity effects and gene profiling results. As
the CMap database generally has a single concentration per
compound and cell line, this idea included the a-priori
assumption that dose–response relationships should potentially
be captured by the cross-compound potency–response
relationships. We further selected hepatocellular toxicity
prediction as the initial target of this approach, the ultimate
aim being to predict human organ-level clinical toxicity using

preclinical data. This objective included to assess if the approach
could serve to complement existing DILI tests6,32.

Here we describe a data compacting modelling approach34,35,
and apply it to the gene space of the CMap. Fusing the resulting
component space with cytotoxicity data from the NCI-60 tumour
cell line screen generates a predictive toxicogenomics space
(PTGS). Enrichment analyses relative to pathways and gene
regulators, cell culture experiments, compound structure-based
analyses and assessment of the large independent data source
constituted by the TG-GATEs demonstrates that PTGS captures
all studied liver pathological changes observed in rats. Moreover,
PTGS enables high-fidelity prediction of human DILI from
hepatocyte-derived toxicogenomics data.

Results
Modelling for generating a Predictive Toxicogenomic Space.
The PTGS was defined with probabilistic component modelling
of the combined CMap and NCI-60 data, as the minimally sized
component gene space that captured dose-dependent cytotoxicity
within the complete data set. Modelling of the CMap tran-
scriptomics response was done in a two-step semi-supervised
manner; performing unsupervised component modelling on the
whole CMap data set and subsequently using the component
models and the NCI-60 cytotoxicity data to build supervised
models. Gene sets that represent the components were then
derived and applied as a basis for predictive scoring; Fig. 1 and
Supplementary Fig. 1 depict the overall analysis and validation
strategies that generated the PTGS. The protocol extracted and
reduced the number of data points, compounds and genes.
Positive concentration-dependent data indicated which CMap
measurement instances had been produced at a concentration
inducing at least 50% growth inhibition, and therefore reflected a
potentially cytotoxic response (Supplementary Fig. 2).

The modelling approach decomposed the entire pre-processed
CMap data, consisting of 3062 instances (an instance represents a
chemical treatment of one cell line), to 100 partially overlapping
and non-orthogonal components (Fig. 2a). Superimposing the
NCI-60 data enabled integrating 222 CMap compounds and 492
instances, measured over a B106-fold potency range relative to
GI50. This crossover data set permitted the selection of an
optimally sized set of the 14 most cytotoxicity-associated
components, which defined the PTGS (Fig. 2b,c). With area
under the ROC curve (AUC) peaking at 40 components, these
fourteen components give 95% of the highest AUC value for
predicting whether cytotoxicity was above the GI50-level. Most of
the components were proportionally active in all cell lines,
suggesting that they capture generalizable cytotoxicity-related
responses (Supplementary Fig. 3a). Hierarchical clustering of the
PTGS revealed clustering of the components into one group
comprising a majority of the components, another less distinct
cluster (including E and K), and one outlier component (L),
demonstrating that most of the components had overlapping
gene activities (Supplementary Fig. 3b).

Defining a cytotoxicity scoring concept from the PTGS.
A PTGS-based scoring concept was defined based on the premise
that activation of any of the PTGS components indicated
dose-dependent cytotoxicity (Fig. 2, Supplementary Figs 4 and 5
and Supplementary Data 1). The cytotoxicity effects of the
compounds correlated with the transcriptional variation (Pearson
correlation is 0.69; P-value o2.2� 10� 16, Fig. 2c,d). The 14
components overall responded over a wide dose-range and,
as expected, primarily became active at or above the GI50-dose
(Fig. 2d–g). The PTGS therefore covered instances with
varying numbers of differentially expressed genes and toxicities.
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Some CMap instances represented toxicities above the TGI level
(Fig. 2e,f); such instances tended to have many differentially
expressed genes (Fig. 2f) and highly active components A-C, D
and F-H (Supplementary Figs 4 and 5a). On the other hand,
instances belonging to the smaller cluster and components E, K,
I and M tended to be active at around the GI50 growth-inhibitory

level and displayed smaller numbers of differentially expressed
genes (Fig. 2c,e,g; Supplementary Fig. 5b). A low number of
instances that reflected cell-killing doses, that is, LC50, (Fig. 2g;
Supplementary Fig. 5c) were also covered by the PTGS and
components A-C in particular. A PTGS scoring concept for
ranking compounds for probability of cytotoxicity was thereafter
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Figure 1 | Generating the Predictive Toxicogenomics Space (PTGS) concept. (a) The probabilistic component modelling leading to the PTGS scoring

concept utilized latent Dirichlet allocation. This unsupervised method uncovers common themes that describe collections of profiles, seeking associations

between compound treatments (‘instances’) and differential expression of gene sets, leading to data reduction and discovery of components that can be

used to quantitatively classify new gene expression profiles. (b) Probabilistic modelling of transcriptomics and cytotoxicity data from exposed cells was

used to identify specific component models representing mechanistic aspects of the responses and genes activated by the treatments. Scores derived

either from the models or the gene set encapsulated by the PTGS serve to predict a variety of types of dose-dependent cytotoxicity effects; the analysis

steps are presented in detail in Supplementary Fig. 1. Validation of the PTGS scoring concept encompassed: bioinformatics-driven assessment of the

component-associated genes relative to genes known as cytotoxicity-related, generation of cellular cytotoxicity screening data for comparison of the

omics-based PTGS relative to quantitative structure-activity relationships (QSAR) analysis, and finally, assessment of the in vitro to in vivo extrapolation

applicability of the PTGS in two ways against the Open ’Toxicogenomics Project-Genomics Assisted Toxicity Evaluation system’ (TG-GATEs), that is, for

prediction of histopathology of rats subjected to repeat dose-toxicity studies, and for prediction of human drug-induced liver injury from human and rat

hepatocytes. Numbers of compounds assessed within each omics data set used to establish the PTGS and to validate the concept are indicated.
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Figure 2 | Generating the PTGS and establishing the cytotoxicity-scoring concept. (a) Selecting the number of probabilistic components to retrieve as

many biologically significant associations with as few components as possible. (b) Selecting an optimal size of the PTGS based on cytotoxicity-predictive

performance relative to the NCI-60 data. (c) The 14 PTGS components (labelled) ranked based on their probability-weighted mean concentration-

dependent cytotoxicity values (that is, log10CMap–log10GI50 concentration) versus the number of associated genes. (d) Correlation of the number of

differentially expressed genes with the concentration-dependent cytotoxicity. Colour and size indicate amount of transcriptional variation explained by the

PTGS that is, the component-based score (n¼492). (e,f) Instances with a small number of differentially expressed genes tend to have cytotoxicity below

the TGI level (blue oval), whereas (g) compounds profiled at cell-killing doses (4LC50) show greater differences (green circle). (h) Analysis of component-

based PTGS scores versus concentration-dependent cytotoxicity was used to determine (i) a cut-off, plotted here against the proportion of instances above

the GI50-level. Dashed red line indicates the threshold at the GI50-level and the dashed black line the cut-off at 0.12 when B50% of CMap instances are

above GI50. (j) The gene-based scoring, based on the proportion of active PTGS-related genes, was evaluated similarly. (k) The cut-off was set at 25%

(cf. Supplementary Figs 4 and 5, for data see Supplementary Data 1).
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defined, that is, being the sum of the contributions of the 14
components relative to the other 86 components; for the calcu-
lation formula, see Materials and Methods (Fig. 2h). The score
served to predict whether an instance was measured at a con-
centration above GI50, employing a decision-threshold designed
to maximize sensitivity versus specificity (Fig. 2i).

The gene alterations corresponding to the PTGS components
were next assessed and applied to cytotoxicity scoring (Fig. 2c,j
and k). Overall 1331 genes associated to PTGS (listed in
Supplementary Data 2). In analogy to the components, the
PTGS-associated genes exhibited a dose–response relationship
that could be used to predict with similar accuracy whether an
instance was measured at a level above GI50. The composite of
these results confirmed that the PTGS scoring constitutes a tool
for predicting cytotoxicity over a wide range of concentrations
and corresponding gene alterations.

PTGS captures diverse cytopathological changes. A number of
different approaches were taken to validate the functionality
of the PTGS (Figs 1b and 3, Supplementary Fig. 6 and
Supplementary Data 3–8). The PTGS gene lists were enriched in a
variety of basic biological and metabolic processes associated
to growth inhibition, cellular cytotoxicity and stress response
pathways, as well as to pathological effects in liver, kidney and
heart; this analysis is plotted as an eye diagram with reference
to highly associated instances (drug/cell line-pairs) (Fig. 3a).
The pathological effects included changes typically associated
with adverse drug reactions and those seen in repeated-dose
toxicity studies of laboratory animals, for example, hepatic
fibrosis4,12,16,36. Components A-C enriched most strongly for
liver necrosis/cell death, whereas E and K enriched for liver
cell proliferation, among other organ effects. The analysis also
indicated enrichment for receptor-mediated toxicity, for example,
Aryl Hydrocarbon Receptor Signaling and LXR/RXR Activation.

The genomic structure complexity of PTGS involved overall
1331 genes (716 up-regulated and 835 down-regulated, meaning
that around 200 genes had up-regulation in one or several
components, and down-regulation in others), 101 molecular
networks and 97 transcriptional regulators (Supplementary
Data 3). Regarding the respective components, the proportional
network complexity varied extensively, and was only partially
related to the gene numbers (Fig. 3b). Components towards
the higher toxicity end exhibited mostly up-regulated genes,
whereas the lower toxicity end components showed mostly,
or even entirely, down-regulated genes (Supplementary Data 3).
Component C contained many genes associated to many
variables, whereas components G and B associated to many
variables from fewer gene numbers. The number of upstream
regulators also varied extensively among the components.
Commonly involved transcriptional regulators, spanning three
or more components, are shown in Fig. 3c. Totally 19 of these
regulators are found in the 1331 gene set that constituted PTGS
(Supplementary Data 5). Components such as G enriched for
regulatory factor gene signatures (for example, TP53, NFKBIA),
inflammation-related gene ontology categories as well as stress
from DNA damage and reactive oxygen (Supplementary Fig. 6).
Components E and K enriched for cell cycle and cell division
related categories, for example, S phase of mitotic cell cycle, as
well as related regulators including MYC, CDKN2A and E2F1. Of
all the regulators, P53, EP300 and CDKN2A were associated with
the largest numbers of components (Fig. 3c). The functional
associations of the components based on gene-level analysis thus
reflected the component-level clustering based on CMap
instances; indicating that many aspects of the probabilistic model
are preserved within the gene lists (Supplementary Fig. 3b).

Comparison to the transcriptional regulators addressed in the
comprehensive ToxCast project21 indicated coverage of 14 of the
35 regulators identified in the PTGS (Supplementary Data 5).
The transcriptional regulators non-examined in ToxCast were
distributed evenly across the 14 components of the PTGS,
indicating potentially a different coverage of cytotoxicity
mechanisms relative to the ToxCast assays; the PTGS genes
overall matched 22% of the genes annotated to ToxCast, see
Materials and Methods.

PTGS-based grouping outperforms structure-based grouping.
The components variably enriched for particular structural and
functional classes among the CMap compounds, for example,
A–C were enriched for protein synthesis inhibitors and carde-
nolide glycosides (Fig. 3a and Supplementary Data 8). Grouping
of diverse classes of compounds to specific components sup-
ported applicability of the PTGS tool as such to connectivity
mapping and compound grouping. Cell culture experiments were
therefore designed to challenge the fact that structure basis is so
far the one accepted means of grouping compounds for avoidance
for toxicity testing in regulatory contexts22,24. Cytotoxicity
screening of 38 CMap test compounds, for which such data are
not available in the NCI-60 data, and a set of 16 NCI-60-assessed
controls demonstrated a wide range of cytotoxicity effects, and
moreover verified the comparability of the chosen cytotoxicity
assay relative to the NCI-60 assay (Fig. 4a–c). Both gene set-based
and ‘component-based’ scores predicted the cytotoxicity of the
non-NCI-60-assessed compounds with high sensitivity and
specificity (Fig. 4d), and consistently outperformed predictions
generated from quantitative structure-activity relationships
(QSAR) analysis. This result was obtained applying either the
structures for 201 of the 222 training compounds (448 of the
492 instances with cytotoxicity data), or the 35 structures of the
38 validation compounds (85 of the 91 instances) (Fig. 4,
Supplementary Fig. 7 and Supplementary Data 9).

PTGS predicts dose-dependent liver toxicity. The applicability
of the PTGS scoring concept was next assessed in relation to
non-dividing normal hepatocytes and rat liver pathology data in
the TG-GATEs toxicogenomics database (Figs 1b and 5a–h and
Supplementary Data 10–15). Applying component-based scoring,
human hepatocyte experiments generated increased scores with
concentration at both 8 and 24 h exposures (Fig. 5a,b). Machine
learning-based inference with TG-GATEs 28-day study data
was then used and resulted in the selection of components G, H,
I and N, as they had the highest liver toxicity predictive ability
(see Materials and Methods; Supplementary Data 13–14).
Capture of dose–response applying gene-based scoring with these
components was verified in human and rat hepatocytes
(Fig. 5c,d). Scoring using these components predicted diverse
pathological changes in 45 combinations of pathological findings
and severity grade, covering 1689 distinct treatments with 143
compounds in the rat liver 28-day repeated dosing data set, and
thus constituted a functional DILI score (Fig. 5e,f). All 17 types
of pathological effects were captured at high sensitivity and
specificity, including severity grades (Fig. 5e–g; Supplementary
Data 15). The endpoints included liver necrosis/cell death,
ground glass appearance, fibrosis, hyperplasia/hyperproliferation
(swelling), cholestasis (degeneration, fatty) and further patholo-
gies (Fig. 5e,f), as well as liver pathologies as aggregate endpoints
according to grade and even ‘death’, the latter being the
one organism-level endpoint scored. These results exemplified
effective PTGS-based extrapolations from cells to organ-level,
as well as between species.
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Figure 3 | Validation of the PTGS using gene set enrichment analysis. (a) ‘Eye diagram’ showing the associations between the genes associated with the 14

PTGS components (middle, colour) and the top 5 CMap instances (left) and overrepresented toxicological functions (right). Line widths indicate association

strengths. The components have been sorted according to similarity, as shown in Supplementary Fig. 3b; data in Supplementary Data 4. (b) Biological and

toxicological complexity of the PTGS components defined as the proportion of results (above a set statistical threshold) in each analysis category ascribed to

the component gene set. Numbers above bars denote the numbers of genes in each component. Details of the data are found in Supplementary Data 3–7. (c)

Frequency plot of the upstream regulator enrichments for the PTGS components depicting multiple transcriptional regulators associated with stress responses,

inflammation and with cell division. For data and further related analyses, see Supplementary Fig. 6b and Supplementary Data 5.
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PTGS broadly predicts human drug-induced liver injury. The
hypothesis was thereafter tested that toxicogenomics changes
measured in vitro can be used to predict DILI potential in human
patients (Figs 1b and 5i, Supplementary Fig. 9 and Supplementary
Data 16–18). For in vitro-based prediction we used the in vivo
phenotype ‘presence of toxicity’ that is, the presence of

pathological findings in the animal liver, to tune the predictions
(see Material and Methods). A threshold for the magnitude of the
score was set at a level above which at least 50% of instances
showed pathological changes (Fig. 5g,h). Basis for predicting
clinical exposure levels of concern is shown and explained in
Supplementary Fig. 9a and b, including legend. Two withdrawn
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Figure 4 | High-throughput screening cell-based validation of PTGS to predict cytotoxicity in the CMap database. (a) Cell survival measured in the

three CMap cell lines at different concentration levels for 38 non-NCI-60 CMap compounds. (b) Concentration-dependent cytotoxicity values of 16

compounds (36 instances) indicated data agreement between the NCI-60-based test and the chosen cytotoxicity assay (ATP content) (Pearson correlation

0.86). As shown, the classification of toxic versus non-toxic repeated in 32 of 36 instances, and the four instances where this changed had a score close to

the cut-off in both data sets. (c) Proportions of CMap, CMap/NCI-60 crossover and validation (test) instances predicted by the PTGS to have been

measured above the GI50-level show a balance of toxic and non-toxic treatments (numbers tested shown). About 25% of 3062 CMap profiles are

predicted to be above the GI50 levels. (d) ROC curves indicating the cytotoxicity-predictive performance of the gene-based, component-based and the

Partial Least Squares QSAR methods. The AUC values were 0.92 (n¼ 80), 0.91 (n¼ 91) and 0.64 (n¼85), respectively. Further details of the QSAR

analysis are in Supplementary Fig. 7. For screening data see Supplementary Data 9.
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Figure 5 | Validation of the PTGS using in vitro and in vivo profiles from the TG-GATEs toxicogenomics database. The increase with dose in the

proportion of treatments exceeding the virtual GI50-level (dashed line) in human hepatocytes measured at (a) 8 h (n¼ 388) and (b) 24 h (n¼ 394) and in

(c) human (n¼ 388) or (d) rat (n¼419) hepatocytes measured at 8 h, using either the component-based (a,b) or the gene-based (c,d) methods

(Supplementary Data 10,11). The PTGS DILI score (for analyses see Supplementary Data 12–15, Supplementary Fig. 8), defined as the score given by the

most sensitive component from among G, H, I and N, (e,f) predicts the severity grade (denoted by colour) and covers 17 different types of histopathological

changes observed in repeated dose treatments of rats for up to 28 days. (g) Separation between positive and negative classes increases with the severity of

histopathological changes from present to severe; n¼463, 448, 282, 116 and 30 of 1689 total. (h) Defining a threshold for the score above which more

than 50% of the observations have histopathological changes present (dashed line). (i) The ability of PTGS to predict clinical exposure levels raising

DILI concerns was tested and compared to other in vitro assays. Numbers of matching compounds with rat hepatocyte data are indicated inside red bars.

PTGS, by itself, outperforms the other approaches, and in combination with other hepatocellular-based assays achieved a positive predictive ability of

72–86% without a loss of specificity (further details in Supplementary Fig. 9 and Supplementary Data 16–18).
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drugs (nimesulide and benzbromarone) and one drug with a
good safety profile (aspirin) illustrate the calculations. Associated
to idiosyncratic DILI, nimesulide and benzbromarone are
metabolically converted drugs for which the mechanism of
action/toxicity is not known precisely and likely to vary between
patients5,6,37. The PTGS DILI score is activated in a
dose-dependent manner by both compounds, in hepatocytes
(Supplementary Fig. 9b) and rats (Supplementary Data 12).
Interestingly, aspirin at the highest doses, also caused liver injury
and activates the DILI score, reaffirming that dosing and
exposure needs to be taken into account when assessing
compound toxicities.

A literature search of the TG-GATEs data thereafter enabled
annotating 68 compounds with their therapeutic Cmax values and
results on liver toxicity. The gathered information implied that
the data set in several instances reflected therapeutic doses also
below the Cmax values (Supplementary Data 16). The PTGS DILI
score was then applied to derive a safety margin of exposure
relative to the therapeutic Cmax concentration (see Materials
and Methods). The DILI potential of the annotated agents was
found to be predictable to a level of 100% specificity and 71%
sensitivity with rat hepatocyte data (Supplementary Fig. 9c
and Supplementary Data 17). Differently, the similar analysis
with human hepatocytes indicated 100% specificity and 58%
sensitivity. Interestingly, while the rat hepatocyte data performed
best overall, perhaps owing to low sample variation, the human
data performed better and exceeded the rat performance, by 73%
versus 71%, in predicting the most clinically troubling withdrawn
and boxed warning labelled toxicities in the Liver Toxicity
Knowledge Base32. The analyses provided the similar level
of prediction with the subset of drugs labelled ‘most
DILI-concerning’. Compared to other in vitro methods applied
to predict DILI38–41, PTGS provided better predictive
performance, and moreover, provided further improved
prediction levels in combination with the methods (Fig. 5i,
Supplementary Data 18).

Discussion
This study represents a large-scale data analysis aimed at
addressing broadly human health and safety of chemical
compounds, including drug molecules. Coupling of omics data
to the prediction of dose-dependent induction of cytotoxicity
effects resulted in the first ever description of a PTGS.
Representing a comprehensively validated construction, it
captures a wide range of dose-dependent cytotoxicity effects,
and therefore serves to improve prediction of hepatocellular
toxicity and liver pathologies in humans and rats relative to
existing methods.

The data fusion underlying the PTGS tool involved extensive
probabilistic modelling-driven transformation, compacting and
selection of the data points, instances, compounds, components
and genes (summarized for overview in Table 1). The level of
reduction was to between 1 and 10% of the input data; for
example, the CMap was reduced, transformed and decomposed
to 0.7% of the original data size, and altogether, 22% of the gene
expression alterations, that is, 1331 versus 6064 genes (11% of all
measured transcripts), connected to cytotoxicity-related tran-
scriptomic changes. As around 25% of the CMap gene expression
profiles likely reflect cytotoxicity above GI50 (cf. Figs 2c and 4c),
the PTGS is based on, and covers, a significant portion of the
CMap gene and sample dimensionality. Giving further support to
this assumption, the 14 components included those of the overall
100 original components with the most extensive gene expression
changes (cf. Fig. 2c). The PTGS calculation methods are most
likely equally applicable to both microarray and RNA-seq gene

expression data. Because of the ability of RNA-seq to detect
alterations more sensitively than microarrays, it may detect
activation of PTGS at lower doses, an issue that would be testable
in sufficiently large and matching data sets. Further studies could
also consider the PTGS approach and scoring concept using
proteomics and metabolomics data.

Overall, the described ‘big data-driven’ analysis enabled:
(1) a virtual cellular cytotoxicity probability estimate intrinsic
to omics-data, (2) calculation of toxic exposure thresholds
for compound effects, (3) grouping of compounds into
mechanistically similar classes, (4) assessment of the cytotoxicity
of CMap profiles, with implications for using the database and
gene expression profiles generally for mode of action studies,
(5) coverage of adverse outcome-coupled toxicity effects involving
a multitude of transcriptional regulators, (6) prediction of known
measured liver toxicity and pathology effects in the TG-GATEs,
including a ‘severity-grade response’, from data obtained in
cultured cells (for example, rat/human hepatocytes) and labora-
tory animals (for example, in rats) and, finally, (7) prediction of
exposure levels raising concern for human DILI from hepatocyte
experiments. The latter analysis includes opportunity for
improved preclinical ab initio prediction of safety margin for
novel drug molecules, while serving in a complementary manner
to raise the prediction level of existing evaluation tests (range
14–38%; cf. Fig. 5i), including a commercially available test. An
ab initio testing of a previously non-tested compound under the
PTGS concept would generate a probability score for both
cytotoxicity and liver pathology. Under a qualified, preclinical
efficacy drug testing protocol, a range of human-relevant
concentrations would be derived that could be assessed with
PTGS to then include risk-prediction of DILI to this analysis. The
overall results would constitute a qualitative and quantitative
hepatotoxicity/DILI measure, including coverage of mild to overt
effects. The DILI prediction scoring could likely be further
refined from standardizing drug concentrations relative to the
therapeutic Cmax more precisely and by incorporating further
negative control compounds. Furthermore, future connectivity
mapping-based testing with PTGS components to predict in vivo
outcomes from in vitro hepatocyte toxicogenomics data would
likely indicate further the applicability of PTGS in relation to
specific pathological states. Applying the concept to capture
further organ toxicities is an even further interesting task,
agreeing with that the bioinformatics assessment indicated
component association to a diversity of heart and kidney
conditions (cf. Fig. 3a; Supplementary Data 4).

Being the focus of the current study, DILI is multifactorial,
sometimes receptor-mediated or occurs in response to gross
stress5,6. Idiosyncratic DILI occurs unpredictably, with variable
length latency and sometimes without dose-dependency5,6,32,33.
Interestingly, the PTGS classified idiosyncratic DILI-drugs
in dose-dependent manners, for example, nimesulide
(cf. Supplementary Fig. 9b). The predictive components
(G,H,N,I) might therefore quantitatively evaluate a relatively
broader complexity of DILI-inducing mechanisms than existing
tests. Interestingly, these components associated to lower
cytotoxicity in the CMap training data set (cf. Fig. 2c,
Supplementary Data 3), implicating that relatively milder, rather
than severe, cellular toxicity effects might better reflect at least
certain DILI mechanisms. We hypothesize overall that the current
work could serve to stimulate the integration of component models
in future DILI studies, and generally, scoring concepts into AOP-
based risk assessment strategies. For example, the PTGS
component gene sets are enriched in liver fibrosis-related gene
signatures and detect hepatocellular damage markers in the fibrotic
mechanism. Thus, PTGS could be used to ‘biomark’ key events
detailed in the corresponding AOP20,42 (cf. Fig. 3a and
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Supplementary Fig. 6). Such mapping of the PTGS would then
constitute a hybrid data and knowledge-driven approach for novel
AOP developments.

Capturing potentially the multitude of gene activities that
underlie the dose-dependency of many cytotoxicity mechanisms
within a reduced feature set, the PTGS-generating approach can
be considered as a model for defining toxome descriptions43.
The analyses overall applied 84� 106 data points and 1217
compounds to generate the PTGS (cf. Table 1), and assessed
250� 106 data points overall, including the TG-GATEs data.
Variably from 140 to 170 compounds were assessed to validate
the scoring concept. Being a small but important part of the
current study, the toxicogenomics-based scoring outperformed
the QSAR-based toxicity predictions (cf. Fig. 4d). Regulatory
agencies such as the European Chemicals Agency and the United
States Environmental Protection Agency are increasingly
advocating for the inclusion of trancriptomics data and new
approach methodologies in chemicals risk evaluation1,2,11,18,24.
Thus, the demonstration of this mostly expected outcome fills the
important role of implying broad applicability of the PTGS

concept also outside of drug discovery studies. Challenging to
traditional means of optimizing biological testing practices
and coupled mechanistic reasoning, the CMap-derived PTGS
establishes that even tumour-derived cellular models with known
aberrant metabolism and differentiation capacity can be used to
capture mechanisms that predict in vivo dose-dependent liver
toxicity in a cross-organism manner. The rich variety of agents
assessed in the CMap, including direct acting cytotoxic cancer
drugs, may potentially underlie the capturing of cytotoxicity/
pathology of agents requiring metabolism to exert their effects.
Although complex in overall structure and function, PTGS is
naturally suited for analysis in high-throughput transcriptomics
assays, for example, the Tox21 platform10,23. We emphasize
finally the full adherence of our study and the PTGS concept to
replacing animal testing protocols with quantitative systems
toxicology and human cell culture-based experiments, arguing
overall for broad and opportune applicability of the PTGS
concept in diverse future safety testing practices.

Methods
Pre-processing of the connectivity map data set. To decrease the low-intensity
noise in the data the Connectivity Map (CMap) raw data25, the CEL-files
(downloaded from http://www.broadinstitute.org/cmap/; and E-GEOD-5258 for
build01) were robust multi-array normalized with R/Bioconductor-package
aroma.affymetrix and mapped to Ensembl gene identifiers (custom CDF version
12, http://brainarray.mbni.med.umich.edu/Brainarray/Database/CustomCDF/
CDF_download.asp)44–47. Results from the most abundant microarray platform
(HT-HG-U133A) were used, containing measurements for the three cell lines
MCF7, PC3 and HL60. To further reduce the noise in the expression data the 5% of
the genes displaying the highest variance in the control measurements were
removed48. Differential expression was then computed as the log2 ratio between the
drug treatments and respective control measurements. The CMap measurements
had been made in batches. In the case of multiple negative controls per batch,
adapting established procedures, a more robust control was formed by calculating a
mean of the control measurements after first removing, as an outlier, the control
with the highest (Euclidean) distance to the other controls. To balance between the
varying sample sizes for different compounds, the instance for each compound and
cell line with the strongest effect, measured as the highest (Euclidean norm of)
response, was selected for further analysis. A total of 18 compounds in the data set
had more than one (and mostly two) concentrations. To balance between the
varying sample sizes for different compounds, the instance for each compound and
cell line with the strongest effect, measured as the highest (Euclidean norm of)
response, was selected for further analysis. The resulting gene expression data
consisted of 3062 treatment instances (compound and cell line pair) and profiles
for 1217 distinct compounds in the three cell lines (MCF7, PC3 and HL60, with
1203, 1131 and 728 instances per cell lines, respectively). For further details see
Table 1.

Probabilistic component modelling. It was assumed that compound treatments
may activate multiple response patterns, each of which may be shared by several
compounds49. These patterns were identified with probabilistic modelling that
decomposes the chemical-induced transcriptional variation into components of
interrelated activity. Biological prior knowledge was brought into the analysis while
also reducing the data dimensionality with Gene Set Enrichment Analysis
(GSEA)50. GSEA was computed (Java software version 2–2.05, http://
www.broadinstitute.org/gsea) using 1321 distinct C2-curated gene sets v2.5 from
the Molecular Signature Database (http://www.broadinstitute.org/gsea/msigdb).
The false discovery rate q value (FDRq), which GSEA produces to represent the
strength and direction of the gene set activation, was quantized to non-negative
integer values with the transformation min(round(� log2FDRq))–1, 0), separately
for the positively and negatively activated genes in the gene sets, resulting in
activation counts for 3062 instances over 2642 gene sets.

The latent Dirichlet allocation34,35 (LDA) model was then used to identify
transcriptional response patterns from the gene set activation count data. Each
resulting component associates probabilistically a subset of the treatments with a
subset of the gene sets. Each component thus represents a specific chemical-
induced response pattern, interpretable based on the associated gene sets. To select
the number of components, an external validation set describing the functional
similarity of the drugs based on their known protein targets and ATC (Anatomical
Therapeutic Chemical, http://www.whocc.no/atc_ddd_index/) codes was used48.
Drug target information was obtained from ChEMBL (https://www.ebi.ac.uk/
chembl/), DrugBank (http://www.drugbank.ca/), DUD (http://dud.docking.org/)
and ZINC (http://zinc.docking.org/). In addition targets and ATC codes for the
CMap compounds were extracted from publicly available sources26. Drugs sharing
fourth-level ATC codes were treated as functionally similar for the purposes of this
analysis. In total, 4427 associations between 821 CMap compounds and 796 targets

Table 1 | Key features of data processing that generated the
Predictive Toxicogenomics Space (PTGS).

Data items* Numberw Percentagez

Data Points
Entire Data set (CMap) 84 M 100
Data set after pre-processing of the most
abundant platform (A)

34 M 41

Data set mapped to MSigDB-C2 gene
sets (B1)

8 M 9.5

Data set mapped to the component
model (B2)

0.6 M 0.7

PTGS scores calculated from the data
set (D3)

3,062 0.004

Instances
Entire Data set (CMap) 6,100 100
Instances after selecting one array platform,
pre-processing and averaging (A)

3,062 50

Instances in the crossover data set with
toxicity data (C1)

492 8

Instances with toxicity above GI50 (C2) 121 2

Compounds
Entire Dataset (CMap) 1,309 100
Compounds after pre-processing of the
most abundant platform (A)

1,217 93

Compounds with toxicity data (C1) 222 38
Compounds with toxicity above GI50 (C2) 68 5

Components
Full component model (B2) 100 100
PTGS components (D3) 14 14
DILI predictive components (E5) 4 4

Genes
Genes mapped to Ensembl IDs in the CMap
HG-U133A series (A1)

11,948 100

Genes after pre-processing of the most
abundant platform (A2)

11,350 95

Genes responding to chemical
perturbations (A4)

6,064 51

PTGS associated genes (D5) 1,331 11
DILI predictive genes (E5) 299 2.5

*Steps in data reduction and analysis, letters refer to detailed explanations in Supplementary
Fig. 1.
wM¼ 1 million data points.
zPercentages calculated from the first item in the category.
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or ATC codes were used. The component count which maximized the performance
in retrieving (that is, predicting) drugs sharing these annotations was chosen from
the set of 20, 50, 100, 150 and 200. The posterior distribution of the model
parameters was computed with collapsed Gibbs sampling. For the hyperparameters
controlling the sparsity of the model, gamma hyperpriors were applied with fixed
parameters and their posterior was estimated with Metropolis sampling.

Toxicological profiles from NCI-60. Toxicological profile data were downloaded
from the NCI-60 DTP human tumour cell line screen web site (http://dtp.nci.
nih.gov/docs/ cancer/cancer_data.html)30. The data set has three reported drug
response values: GI50 (50% growth inhibition), TGI and LC50 (50% lethal
concentration) for 59 different cell lines. These values have been inferred from
measurements covering typically five concentration values, most common range
being from 10 nM to 100 mM (or from � 8 to � 4 log10 M). The NCI-60 and CMap
instances were matched based on the compound names. In addition, alvespimycin
and tanespimycin, named 17-DMAG and 17-AAG in NCI-60, respectively, were
added manually. The three drug response values were extracted from NCI-60 data
for in total 222 CMap compounds and 492 cross-over measurement instances on
the three cell lines (MCF7, PC3 and HL60; with 197, 179 and 116 instances per cell
line, respectively), averaging over multiple measurements when available. The
resulting NCI-60 data are provided in Supplementary Data 1.

Concentration-dependent cytotoxicity. Concentration-dependent cytotoxicity
was defined as the difference of the logarithmic CMap concentration and GI50

values, that is, log10(CMap concentration)� log10(GI50). Cellular growth inhibition
above the GI50-level was used as a cut-off to classify the 492 cross-over instances as
either cytotoxic (n¼ 121) or non-cytotoxic (n¼ 371), as shown in Fig. 2.

Defining the Predictive Toxicogenomics Space (PTGS). As the CMap generally
includes one concentration assessment (10 mM), dose-dependent cytotoxicity was
modelled across compounds under the a-priori assumption that compound-
induced transcriptomic responses are subject to the compounds’ intrinsic potency
to cause cytotoxicity (for additional details see Supplementary Fig. 2). The
100 components produced by the probabilistic model covered the full space of
transcriptional responses caused by the 3062 CMap measurement instances.
Associations of the components to cytotoxicity were sought by evaluating their
ability to predict the concentration-dependent cytotoxicity for the cross-over
instances. The concentration-dependent cytotoxicity values have the highest
density around GI50, making the data set ideal for predicting relatively low levels of
cytotoxicity. Thus, a classification model was trained to identify whether an
instance had been measured above the GI50-level. The 100 LDA-components were
first ranked based on their probability-weighted mean concentration-dependent
cytotoxicity values over the 492 training instances. The mean cytotoxicity values
were computed as

zTOX ¼
X

i

½PðijzÞ � iTOX�;

where iTOX is the concentration-dependent cytotoxicity in relation to GI50 and
where the normalized probabilities pn(i|z) for the training instances i to belong to
component z were computed as

PðijzÞ ¼ P z j ið ÞP
i0

P z j i0ð Þ :

Starting with components with the highest associated cytotoxicity and using the
sum of the component probabilities to calculate a predictive score, the 100
components were progressively included in the model. The cumulative
concentration-dependent cytotoxicity classification performance over the test
instances was evaluated, providing area under the ROC curve values (AUC) for
each component count (Fig. 2b). A perfect model would have an AUC-ROC of 1
and an AUC-ROC of 0.5 indicates a random classifier. To focus on the components
with the highest relevance to cytotoxicity, the number of components was chosen
where the AUC value reached 95% of the highest value, resulting in a trade-off
between interpretability and the highest predictive performance. Cytotoxicity-
predictive performance is expected to decline with a large number of components,
as non-relevant components are included, see Fig. 2a,c. The resulting top 14
components were chosen to define the Predictive Toxicogenomics Space (PTGS).
The components were labelled from A-N, with component A having the highest
probability-weighted mean concentration-dependent cytotoxicity value. The
probability of an instance to belong to the PTGS components, calculated as the sum
of their individual contributions, was thereafter used as a predictive score for its
cytotoxicity.

PTGS associated genes and a gene-based scoring method. The PTGS and
each of the 14 components were then characterized further by a most active set
of instances and set of genes. The most active genes were obtained for each
component as follows: top instances having the largest P(i|z) were chosen,
thresholding at cumulative probability reaching 0.2. The same was done for the
gene sets. The differential expression of all genes included in the top gene sets was

evaluated within the respective top instances with a standard two-sided t-test. A set
of PTGS associated genes was defined based on t-test P-value cut-off 0.01, after
Bonferroni correction for multiple testing (labelled ‘PTGS Core’). This subset of
199 genes strongly associated to the PTGS in general, but was not further sub-
divided by component membership. To generate a component-specific list, and
considering that Bonferroni correction would be too conservative, a ranked list of
genes thresholded at the 0.01 level was derived, with the rationale that the higher a
gene is on the list, the more evidence there is for it being informative in char-
acterizing the component. The 14 gene lists are referred to as ‘PTGS-associated
genes’ and listed in Supplementary Data 2. Thus a total of 1331 most active genes,
as indicated by the P-values, characterized the individual components. They were
used for functional enrichment analysis and as cytotoxicity-predictive genes/
features.

To further simplify PTGS scoring, a gene-based scoring method using gene set
enrichment analysis was implemented. The ROAST test within the limma
R/Bioconductor package51,52 was selected as it has advantageous characteristics,
for example, in relation to robustness to sample heterogeneity53. It also uses the
variance-modelling strategies implemented in limma to improve performance with
small sample sizes52. The score was calculated using non-directional (that is,
mixed) P-values and the ‘floormean’ summarization. This method detects instance-
cytotoxicity when as few as 25% of genes in the set are differentially expressed,
defined as |z|4sqrt(2)51, with z denoting z-score based on limma differential
expression analysis. Thus the gene-based PTGS components are defined as a
combination of the gene sets and a gene set testing statistic, that is, method used to
derive the score from them.

To test the gene-based scoring method, instances corresponding to the 222
NCI-60 DTP and CMap crossover compounds within batches with at least 3
replicate untreated control measurements were analysed. Scores from replicated
treatments were averaged to obtain 482 unique instances in the three CMap cell
lines (MCF7, PC3 and HL60; with 176, 156 and 150 instances per cell line,
respectively). A virtual GI50 estimation using the PTGS-associated genes is thus
calculated as follows: (1) Normalize data to remove systematic variation. (2) Fit
treatments and controls to a linear model using the R/Bioconductor limma/eBayes
method52. (3) Calculate activities of the PTGS-component derived gene sets (A-N)
and the PTGS_ALL gene set (which contains all of the 1331 PTGS-associated
genes). (4) Use results from PTGS_ALL to predict GI50-level of activation (utilizing
qo0.05 and proportion of active genes 425% as thresholds).

Characterization of the PTGS by enrichment analyses. Biological interpreta-
tions of the PTGS were enabled by the enrichment analysis of the component gene
sets using Ingenuity Pathway Analysis (IPA, application version 220217, content
version 16542223; build: 430520M and 31813880 content version for networks)
and Gene Ontology (GO) enrichment analysis (R package topGO, version
2.12.0)54,55. The results were visualized with eye diagrams56. For visual
interpretation, the results were thresholded at P-value 0.001, and at least three
genes were required to be annotated to each GO category, IPA toxList or IPA
regulator. IPA upstream regulator analysis results were further filtered to include
all regulators that were enriched both in the overall gene set of 199 genes (PTGS
Core) as well as in any of the components, and additionally connected to other
regulators via a mechanistic network55 to give further evidence of a genuine
regulatory relationship. Furthermore, since the core set did not cover all biological
functions, highly overrepresented regulators (P-value o10� 5) that occurred in at
least one third of the 14 components were added to the eye diagram. To compare
upstream regulator analysis results with the ToxCast assay information21,
information on genes associated with the assays was downloaded (http://
actor.epa.gov/actor/faces/ToxCastDB/GenesAssocAssays.jsp) and matched with
Ingenuity upstream regulators on the basis of the gene symbol. Association of
cytotoxicity to biological complexity was calculated for each type of analysis by,

analysisTOX ¼
X

z

ðzTOX � zBCÞ;

where zBC describes the biological complexity of a components, computed as
nresults(Zi)/nresults(Z), where as Zi denotes each individual component and Z all
components and nresults is the number of statistically significant results produced by
an analysis, as detailed in Supplementary Data 3.

Hierarchical clustering and principal components analyses. Grouping of the
components was assessed by hierarchical clustering of CMap instances mapped
to the PTGS components with ggdendro (v. 0.1–20), using default settings.
Furthermore, Principal Components Analysis (PCA) with the made4 (v. 1.44.0)57

R package and visualization with the scatterplot3d (v. 0.3–37) was used to assess
overall grouping. Clustering of the gene sets was also investigated with PCA,
treating presence of absence of genes within a component as a Boolean vector.

Cell culture and in vitro cytotoxicity predictions. To validate the predictive
performance of the PTGS, a set of CMap instances that were not included in the
NCI-60 data set were assessed for cytotoxicity (Fig. 4a). CMap cell lines MCF7
(ATCC HTB22), PC-3 (ATCC CRL-1435) and HL-60 (ATCC CCL-240) were
obtained directly from American Type Culture Collection (LGC Promochem AB)
and maintained at 37 �C with 5% CO2 in a humidified incubator according to
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provider’s instructions. As described previously, the cell lines were grown in larger
volume to make assay ready cells, tested for mycoplasma using PCR-based test kit
and frozen in several ampules58. Before screening, the cell number was titrated to
ensure that cell proliferation remained in a linear-exponential phase throughout
the experiment (1,000–2,000 cells per well were plated)59. Each experiment was
performed from unique assay ready cells (same passage). Data quality and assay
comparability were first verified by replicating the measurements for 36 instances
for 16 different compounds already measured in NCI-60. For the controls, using
the formula N¼ ((ZaþZb)/C)2þ 3, adequate sample size (430) were chosen to be
able to detect with a power (1� b) of 0.8 a correlation coefficient (r) of 0.5 or
greater with 0.05 two-tailed alpha-level (a, Type I error rate); Z is the a or b z-score
and C¼ 0.5� ln((1þ r)/(1� r))60. The test assumes normality. In total 91
instances for 38 unique compounds were then chosen for measurement according
to pre-established criteria (Supplementary Data 9): instances from the very top of
the list (highest expected cytotoxicity) as well as instances with very low score
(controls with expected low cytotoxicity) were included. Compounds were
purchased from Sigma-Aldrich and dissolved in DMSO. To reduce plate-level
signal bias, compounds were distributed randomly on the 384-well plates and
diluted from a single master plate each time. These 91 instances were then
measured using CellTiter-Glo Luminescent Cell Viability Assay (Promega) on cells
treated with the compounds at five concentrations spanning a 10,000-fold range for
72 h in 384-well plates using automated methods to reduce investigator bias. The
raw concentration response data were processed, as explained in the NCI-60 web
page30 (http://dtp.nci.nih.gov/), and GI50 values were computed using vehicle
(DMSO)-only treated cells cultured in the plates for 72 h (corresponding to 0% GI)
and for 0 h (corresponding to starting cell number, TGI). Predictive ability
(retrieval) versus the measured GI50-level was tested with area under the ROC
curve analysis; in addition to chemical structure-based analysis (see below),
both component-based and gene-based PTGS analyses were carried out. The
component-based analysis encompassed 91 instances, whereas the gene-based
analysis had data on 80 of these instances. The R-package pROC (Version 1.7.2)
was used for statistical analyses related to ROC curves61. Data is available at
FigShare (10.6084/m9.figshare.4954583).

QSAR analysis. PTGS was compared with predictive models based on the
chemical structures of the compounds. Various QSAR approaches62 were tried,
including partial least squares63 (PLS), decision trees and supervised Kohonen
maps64. PLS models were found to perform equally well or better than decision
trees and Kohonen maps, and only those details are reported. No support was
found for the presence of non-linear patterns. The training set was defined by
chemical structures from the NCI-60 data set. For a few compounds it was not
possible to confidently map the chemical name to a structure, resulting in
structures for 201 of the 222 compounds (448 of the 492 instances). The validation
set was based on the experimental validation data and, based on theoretical
descriptors65 and molecular signatures, 35 chemical structure representations of
the 38 compounds were formed (85 of the 91 instances). These descriptors were
calculated with the Chemistry Development Kit66 R-package rcdk, version 3.1.21).
This resulted in 185 descriptors and 2400 signatures with non-zero variation within
the test and training sets.

PLS models were trained for the NCI-60 data set correlating the compound
structures with their cytotoxicity using PLS. While compounds were classified
based on the concentration-dependent cytotoxicity for PTGS, the QSAR models
were built to correlate the chemical structure with their GI50 values. Following
previous studies, a � 5 log10 M cut-off was used, below which compounds were
classified as toxic67. This difference is justified because the concentration-
dependent cytotoxicity and GI50 values are highly correlated in this data set, as is
also clear from the small differences between the class labels (Supplementary
Fig. 2b; Supplementary Data 9). Cross validation was used to estimate the suitable
number of latent variables for the final PLS models: the smallest number of latent
variables was selected that gave performance within one s.d. of the highest mean
performance. The regression models were then used to predict the cytotoxicity
classes of the test set compounds (toxic or non-toxic). This performance in the test
set, as measured by ROC curves, was compared with PTGS component predictions,
and y-randomization models were used to establish a baseline. To ensure
conformity between the complete and reduced data sets (85 versus 91 instances),
the performance of the component-based PTGS approach was additionally
evaluated in exactly the same setup in which the QSAR was run, resulting in an
AUC value equal to the reported PTGS performance. Thereafter, Tanimoto
similarity measurements between the compounds were made to evaluate whether
the diversity between the compounds in the data sets could explain the
performance of the PLS.

Open TG-GATEs data normalization and pre-processing. Liver-related
treatments from the Open TG-GATEs16 database were employed to assess
the predictive ability of the PTGS-associated gene sets against external data.
The complete data was downloaded from the publisher’s web site (http://
dbarchive.biosciencedbc.jp/en/open-tggates/download.html) and custom
processed, unless otherwise stated. Raw data is also available at ArrayExpress
(E-MTAB-800, E-MTAB-799, E-MTAB-798 and E-MTAB-797) and through the
EBI Dixa data warehouse (http://wwwdev.ebi.ac.uk/fg/dixa/index.html): diXa-005,

DIXA-006 and DIXA-008. As detailed by the creators, the data assayed 143
compounds on 6765 genome-wide microarrays and 1689 treatment instances from
repeated dose treatments of Sprague–Dawley rats, employing three dose levels, that
is, low, medium and high in the 1:3:10 ratios with time-matched controls16.
To generate the profiles, organs had been obtained from the animals 24 h after the
last dose of repeated administration for 3, 7, 14 and 28 days with 3 animals in
each treatment group. Two types of in vitro study, primary hepatocytes from
Sprague–Dawley rats (3370 Affymetrix microarrays; 1255 comparisons/instances)
and from human donors (2605 Affymetrix microarrays; 941 instances), were also
used. Hepatocytes had been treated with three dose levels that is, low, medium,
high with 1:5:25 ratios utilizing time-matched controls, and measured with gene
expression analysis 2, 8 and 24 h after treatment. To normalize the data, the robust
multi-array method was employed with the R/Bioconductor package simpleaffy
(v. 2.40.0) using mappings of Affymetrix probes to Ensembl gene identifiers
from custom cdf files, using the hgu133plus2hsensgcdf version 17.1.0 for human
and the rat2302rnensgcdf version 19.0.0 (refs 44–47). Separately processed
Open TG-GATEs data were employed to validate the component-based analysis.
Rat hepatocyte and liver gene expression profiles (CAMDA 2013; http://
dokuwiki.bioinf.jku.at/doku.php) were downloaded as FARMS-normalized pre-
processed data (log2 fold change relative to respective control treatments), with
replicates collapsed to a single treatment instance. Uninformative genes according
to the FARMS metric (0.1 threshold) were filtered out of the data set68. In total,
data for 131 compounds in rat hepatocytes (1177 instances) and rat livers
(1568 instances) was obtained for this analysis.

To obtain pathological severity scores for each unique treatment instance, data
on pathological findings was downloaded (http://dbarchive.biosciencedbc.jp/en/
open-tggates/download.html) and processed into table format using R workflows
and packages tidyr, reshape2 and dplyr69. Typically each treatment included
6 animals that were assessed for histopathological changes, while 3 of those were
profiled with arrays. All findings were processed and later selected for analysis
based on sample number. The type of pathological change (for example, fibrosis)
and its severity grade were combined, and are here defined as endpoints. Pathology
endpoints were cumulatively summed, in the order from the lowest grade-level
indicated, that is, present (presentþminimalþ slightþmoderateþ severe),
minimal (minimalþ slightþmoderateþ severe), slight (slightþmoderateþ severe),
moderate (moderateþ severe) and severe (only severe samples included). Findings
were also summarized, as above, on their severity grade alone. To reduce multiple
testing burdens and to aid interpretation, a weighted approach producing a single
score per finding was used as an alternative scoring metric throughout: pathology
score¼ 1*presentþ 2*minimalþ 3*slightþ 4*moderateþ 5*severe. The endpoints
were filtered to include only those with at least 10 instances, as power calculations
performed with MedCalc (v. 16.8) indicated the need for 410 out of 1689 samples
for significant detection (AUC 4 0.75, power 0.8, type I error rate (two-tailed
alpha) of 0.05). Numbers of differentially expressed genes were included for
reference using Po0.01, absolute log2 fold change40.25; multiple testing
correction was done with a nested structSSI-method (Structured Simultaneous
and Selective Inference for Grouped or Hierarchically Structured Data), treating
all comparisons within a single compound treatment-set as a grouping variable70.
For the tabulated pathological scores covering all the analyses, see Supplementary
Data 12.

Component selection for analysis of liver pathology. To identify and study the
components most central to liver toxicity and to demonstrate the applicability of
the PTGS component-based method to assess risk of agent-induced (for example,
chemical compounds, drugs) liver toxicity, predictive modelling was undertaken.
To begin, PTGS model-derived components were computed as in the ‘‘Defining
the Predictive Toxicogenomics Space (PTGS)’’ section: Broad Institute GSEA
tool was run on differential expression (fold-change-based) results using the
R/Bioconductor limma version 3.20.9 and, as for the CMap data, the output was
quantized. To update older symbols, the gene symbols were mapped to Ensembl
gene identifiers for human and rat, using the multi-symbol checker tool
(http://www.genenames.org/cgi-bin/symbol_checker). Based on the estimated
component distributions, the individual component probabilities and the PTGS
scores were computed and used for toxicity prediction. For an example, see code at
Zenodo (DOI:10.5281/zenodo.570115).

Subsequently, in order to study which individual components are predictive
of liver pathologies, 24 elastic net regularized regression models, one for each
finding (19) and for each severity grade (5), were fitted with the 14 component
probabilities as input (X-variables) and the dichotomized pathological findings as
the output (y-variable); and trained using repeated (10 times) three-fold cross-
validations71. The weighted scoring of pathological findings was employed. The
findings were then dichotomized using a score at least 3 for present and minimal
grades, at least 2 for the other three and at least 3 for the severity grade-weighted
scores (range for N: 17-444). For robust results, only findings with more than 15
positive instances were included in the analysis. Receiver operator curves (ROC)
were computed for each model using the pROC version 1.7.2 (ref. 61). Significance
for the AUCs for the classifiers was estimated using two-tailed univariate Wilcoxon
rank-sum statistics in R between the effected and non-effected groups. For
comparison, a standard error estimate of the AUC using parametric methods is
included. For the calculation of component-wise P-values, selective inference was
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carried out using the lasso penalized score test, termed lassoscore, employing the
lambda values derived earlier using cross-validation72,73. Nested multiple testing
procedures from the R package structSSI were used70, employing the adaptive
Group Benjamini-Hochberg Procedure with the ‘tst’ (two step test) method and
model identity, that is, the pathological finding endpoint/grade as the nesting
variable or group index. A qo0.05 for both component and over-all model
significance was used as a dual threshold. Based on these analyses, components
were selected for scoring hepatic injury (Supplementary Data 3 and 13).

Analysis of liver pathology using the gene-based method. To test the predictive
ability of the component-based and the gene-based methods the rat repeated dose
study was analysed using either all components or the ones which were selected
earlier as being the most liver pathology predictive (that is, G, H, I and N). Gene set
activities and P-values were computed with the ROAST method using 9999 rota-
tions and the ‘floormean’ gene set summary statistic. In addition to the full PTGS,
drug-induced liver injury (DILI) predictive scores were defined as:

Component-based DILI score¼ sum(probG, probH, probI, probN)
Gene-based DILI score¼max(%actG, %actH, %actI, %actN)
Gene-based DILI P-value¼min(PG, PH, PI, PN)
Where the prob-prefix refers to the component probability i.e. P(i|z). As per the

ROAST function, the %act is the percentage of genes which are at least marginally
differentially expressed at |z|4sqrt(2) where as z denotes a z-score according to
limma analysis and P.

To evaluate the gene-based scores with AUC analysis, the proportion of active
genes was used for scoring. The findings were dichotomized using a score at least
three for present and minimal grades and at least two for the other three; only
findings with at least 10 positive instances were included in the analysis (range for
n: 16–463 for gene-based and 11–444 for component-based). Significance for the
AUCs was computed using two-tailed univariate Wilcoxon rank-sum statistics in R
between the effected and non-effected groups and multiple testing corrected using
the Benjamini–Hochberg procedure. Analyses using these parameters were also
performed for the component-based PTGS and DILI scores. Results for
component-based and gene-based analyses are tabulated in Supplementary Data 14
and 15, respectively. To further characterize the performance of the scores, for each
endpoint an optimal score cut-off was computed using default settings in pROC
and sensitivity, specificity and accuracy at that point was tabulated. Gene-based
predictions were further characterized by parametric and nonparametric summary
statistics, by identifying the proportions of outliers, by normality assumptions tests
and by testing for the homogeneity of variance between effected and non-effected
groups. For selected endpoints the relationship of the scores to the pathological
findings was visualized with boxplots and with a cumulative distribution plot
(Fig. 5). On the basis of the significance levels in predicting rat liver histopathology,
the gene-based DILI scoring approach was chosen. To establish a threshold for the
DILI score, scoring thresholds were plotted against the proportion of findings
with histopathological changes (n¼ 1689 overall and n¼ 463 for the ‘present’
endpoint), and the 50% level (about two-fold enrichment of findings) was used
as the decision threshold (score 40.3) in parallel with the significance level of
qo0.05.

Predicting human drug-induced liver injury. Human and rat hepatocyte data
from the Open TG-GATEs database was analysed in combination with Cmax values
(maximal total blood concentration) from literature to predict clinical exposure
levels of concern for DILI32,38–41,74–77 (tabulated in Supplementary Data 16).
Withdrawn drugs and other labelling associated with drug-induced liver injury
concern were also obtained from the Liver Toxicity Knowledge Base33. Assay
concentrations were compared to the Cmax values to derive a safety margin relative
to the Lowest Observable Effect Level (LOEL). The approach is similar to high-
content screening based studies that have been used to predict DILI from in vitro
data, that is, omics data processed into PTGS scores is used as a high-content
endpoint31,32. Safety margin was thus defined as: log10(concentration of chemical
in rat hepatocytes when PTGS becomes active)–log10(human blood therapeutic
Cmax concentration). To derive a threshold for predicting DILI, negative control
compounds were analysed to establish first whether the PTGS could be used to
achieve 100% (or nearly) true negative rate (that is, specificity) using an acceptable
safety margin of 10–100 fold above the Cmax, and subsequently to establish a
threshold for safety margin with 100% specificity. The human hepatocyte data
permitted the analysis of 11 negative controls and 54 compounds annotated as
DILI positive, whereas the rat had 9 negative control and 55 DILI positive
compounds. Compounds with a safety margin below the threshold of the negative
controls were predicted as DILI positive. Comparative and combinatorial analyses
in relation to representative in vitro methods were done using conditional array
formulae in Excel. A positive result was achieved if either of the methods gave a
positive DILI prediction with the shared compounds, with steps illustrated in
Supplementary Data 17,18.

Statistical and bioinformatics analyses. Nonparametric statistics were
extensively used for between-group comparisons78, and for sample numbers below
5 variance-adjusted parametric tests were used52. Analyses were performed using
the R statistical programming language, v. 2.15.3–3.2.3 (http://www.r-project.org/).

Various R packages were used for data pre-processing and transformations69:
tidyr (v. 0.4.1), stats::reshape (R 2.15.3–3.2.3), plyr (v. 1.8.4), dplyr (v. 0.4.3),
magrittr (v. 1.5), reshape (v. 0.8.5) and reshape2 (v. 1.4.1). Statistics analysis
utilized R base functions, stats/stats4 (R 2.15.3 - 3.2.3), MASS (v. 7.3–45), aod
(v. 1.3), structSSI (v. 1.1.1)70, vcd (v. 1.4–1), glmnet (v. 2.0–5)71, q value (v. 2.2.2),
lassoscore (v. 0.6)72,73, caret (v. 6.0–7.0), ISLR (v. 1.0) made4 (v. 1.44.0)57 and
pROC (v. 1.7.2–1.8)61, foreach (v. 1.4.3) and BiocParallel (v. 1.4.3) libraries, as
well as the MedCalc (v. 16.8) software. Figures were produced with the ggplot2
(v. 2.1.0)79, scales (v. 0.4.0), RColorBrewer (v. 1.1–2), ggdendro (v. 0.1–20), ggrepel
(v. 0.5), grid (R 2.15.3–3.2.3) and gridExtra (v. 2.2.1). EyeDiagrams were produced
with the custom software (2011–2012)56. R/Bioconductor47 packages were utilized
for bioinformatics analyses: Biobase (v. 2.30.0), BiocGenerics (v. 0.16.1),
aroma.affymetrix (v. 1.2.0)46, limma (v. 3.26.9)51,52, simpleaffy (v. 2.46.0), affy
(v. 1.48.0), topGO (v. 2.12.0)54 and GO.db (v. 2.9.0). Microsoft Excel (various
versions) was used for browsing and editing of tables.

Code availability. Code for R/Bioconductor47,51,52 packages is available at http://
bioconductor.org. Custom R code and methods to calculate component-based
PTGS scores is archived via the CERN OpenAIRE online service Zenodo (DOI:
10.5281/zenodo.570115).

Data availability. Freely available data were used in the project throughout. Data
sources included the Connectivity Map (CMap)25, NCI-60 DTP human tumour
cell line screen database30, the Molecular Signatures Database (MSigDB)50, the
Open TG-GATEs toxicogenomics database16, the Liver Toxicity Knowledge Base33

and Cmax and DILI potential-related information extracted from various
studies32,38–41,74–77, as detailed in Supplementary Data 16. Validation data
generated in the study is available at FigShare (DOI: 10.6084/m9.figshare.4954583).
All other data are available on reasonable request.

References
1. Collins, F. S., Gray, G. M. & Bucher, J. R. Toxicology. Transforming

environmental health protection. Science 319, 906–907 (2008).
2. Hamburg, M. A. Advancing regulatory science. Science 331, 987 (2011).
3. Willyard, C. Foretelling toxicity: FDA researchers work to predict risk of liver

injury from drugs. Nat. Med. 22, 450–451 (2016).
4. Olson, H. et al. Concordance of the toxicity of pharmaceuticals in humans and

in animals. Regul. Toxicol. Pharmacol. 32, 56–67 (2000).
5. Hussaini, S. H. & Farrington, E. A. Idiosyncratic drug-induced liver injury:

an update on the 2007 overview. Expert Opin. Drug Saf. 13, 67–81 (2014).
6. Atienzar, F. A. et al. Key challenges and opportunities associated with the use of

in vitro models to detect human DILI: integrated risk assessment and
mitigation plans. BioMed Res. Int. 2016, 9737920 (2016).

7. Bai, J. P. & Abernethy, D. R. Systems pharmacology to predict drug toxicity:
integration across levels of biological organization. Annu. Rev. Pharmacol.
Toxicol. 53, 451–473 (2013).

8. Sturla, S. J. et al. Systems toxicology: from basic research to risk assessment.
Chem. Res. Toxicol. 27, 314–329 (2014).

9. Krewski, D. et al. A framework for the next generation of risk science. Environ.
Health Perspect. 122, 796–805 (2014).

10. Andersen, M. E., McMullen, P. D. & Krewski, D. Developing tools for defining
and establishing pathways of toxicity. Arch. Toxicol. 89, 809–812 (2015).

11. Grafström, R. C. et al. Toward the replacement of animal experiments through
the bioinformatics-driven analysis of ‘omics’ data from human cell cultures.
Altern. Lab Anim. 43, 325–332 (2015).

12. Natsoulis, G. et al. The liver pharmacological and xenobiotic gene response
repertoire. Mol. Syst. Biol. 4, 175 (2008).

13. Chen, M., Zhang, M., Borlak, J. & Tong, W. A decade of toxicogenomic
research and its contribution to toxicological science. Toxicol. Sci. 130, 217–228
(2012).

14. Gusenleitner, D. et al. Genomic models of short-term exposure accurately
predict long-term chemical carcinogenicity and identify putative mechanisms
of action. PLoS ONE 9, e102579 (2014).

15. Kohonen, P. et al. Cancer biology, toxicology and alternative methods
development go hand-in-hand. Basic Clin. Pharmacol. Toxicol. 115, 50–58
(2014).

16. Igarashi, Y. et al. Open TG-GATEs: a large-scale toxicogenomics database.
Nucleic Acids Res. 43, D921–D927 (2015).

17. Holsapple, M. P. & Wallace, K. B. Dose response considerations in risk
assessment—an overview of recent ILSI activities. Toxicol. Lett. 180, 85–92
(2008).

18. Thomas, R. S. et al. Incorporating new technologies into toxicity testing and
risk assessment: moving from 21st century vision to a data-driven framework.
Toxicol. Sci. 136, 4–18 (2013).

19. Langley, G. et al. Lessons from toxicology: developing a 21st-century paradigm
for medical research. Environ Health Perspect. 123, A268–A272 (2015).

20. Vinken, M. Adverse outcome pathways and drug-induced liver injury testing.
Chem. Res. Toxicol. 28, 1391–1397 (2015).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15932 ARTICLE

NATURE COMMUNICATIONS | 8:15932 | DOI: 10.1038/ncomms15932 | www.nature.com/naturecommunications 13

http://www.r-project.org/
http://bioconductor.org.
http://bioconductor.org.
http://www.nature.com/naturecommunications


21. Kleinstreuer, N. C. et al. Phenotypic screening of the ToxCast chemical library
to classify toxic and therapeutic mechanisms. Nat. Biotechnol. 32, 583–591
(2014).

22. Daston, G. et al. SEURAT: safety evaluation ultimately replacing animal
testing—recommendations for future research in the field of predictive
toxicology. Arch. Toxicol. 89, 15–23 (2015).

23. Huang, R. et al. Modelling the Tox21 10 K chemical profiles for in vivo toxicity
prediction and mechanism characterization. Nat. Commun. 7, 10425 (2016).

24. ECHA Read-Across Assessment Framework (RAAF). European Chemicals
Agency; Helsinki, Finland. http://echa.europa.eu/documents/10162/13628/
raaf_en.pdf (2017).

25. Lamb, J. et al. The Connectivity Map: using gene-expression signatures to
connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).

26. Iorio, F. et al. Discovery of drug mode of action and drug repositioning from
transcriptional responses. Proc. Natl Acad. Sci. USA 107, 14621–14626 (2010).

27. Iskar, M. et al. Characterization of drug-induced transcriptional modules:
towards drug repositioning and functional understanding. Mol. Syst. Biol. 9,
662 (2013).

28. Parkkinen, J. A. & Kaski, S. Probabilistic drug connectivity mapping. BMC
Bioinf. 15, 113 (2014).

29. De Abrew, K. N. et al. Grouping 34 chemicals based on mode of action using
connectivity mapping. Toxicol. Sci. 151, 447–461 (2016).

30. Shoemaker, R. H. The NCI60 human tumour cell line anticancer drug screen.
Nat. Rev. Cancer 6, 813–823 (2006).

31. Muller, P. Y. & Milton, M. N. The determination and interpretation of the
therapeutic index in drug development. Nat. Rev. Drug Discov. 11, 751–761
(2012).

32. Shah, F. et al. Setting clinical exposure levels of concern for Drug-Induced Liver
Injury (DILI) using mechanistic in vitro assays. Toxicol. Sci. 147, 500–514
(2015).

33. Chen, M. et al. The liver toxicity knowledge base: a systems approach to a
complex end point. Clin. Pharmacol. Ther. 93, 409–412 (2013).

34. Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003).

35. Ghahramani, Z. Probabilistic machine learning and artificial intelligence.
Nature 28, 452–459 (2015).

36. Klaassen, C. D. (ed.) Casarett and Doull’s Toxicology: the basic science of poisons
8th ed. (McGraw-Hill, 2013).

37. Donati, M. et al. Risk of acute and serious liver injury associated to nimesulide
and other NSAIDs: data from drug-induced liver injury case-control study in
Italy. Br. J. Clin. Pharmacol. 82, 238–248 (2016).

38. Xu, J. J. et al. Cellular imaging predictions of clinical drug-induced liver injury.
Toxicol. Sci. 105, 97–105 (2008).

39. Khetani, S. R. et al. Use of micropatterned cocultures to detect compounds that
cause drug-induced liver injury in humans. Toxicol. Sci. 132, 107–117 (2013).

40. Persson, M., Løye, A. F., Mow, T. & Hornberg, J. J. A high content screening
assay to predict human drug-induced liver injury during drug discovery.
J. Pharmacol. Toxicol. Methods 68, 302–313 (2013).

41. Chen, M. et al. A testing strategy to predict risk for drug-induced liver injury in
humans using high-content screen assays and the ‘rule-of-two’ model. Arch.
Toxicol. 88, 1439–1449 (2014).

42. Bell, S. M., Angrish, M. M., Wood, C. E. & Edwards, S. W. Integrating publicly
available data to generate computationally predicted adverse outcome pathways
for fatty liver. Toxicol. Sci. 150, 510–520 (2016).

43. Hartung, T. Toxicology for the twenty-first century. Nature 460, 208–212
(2009).

44. Irizarry, R. A. et al. Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics 4, 249–264 (2003).

45. Dai, M. et al. Evolving gene/transcript definitions significantly alter the
interpretation of GeneChip data. Nucleic Acids Res. 33, e175 (2005).

46. Bengtsson, H., Simpson, K., Bullard, J. & Hansen, K. aroma.affymetrix: a
generic framework in R for analyzing small to very large Affymetrix data sets in
bounded memory (Department of Statistics, University of California, Berkeley,
Technical Report 745, 2008).

47. Huber, W. et al. Orchestrating high-throughput genomic analysis with
Bioconductor. Nat. Methods 12, 115–121 (2015).

48. Khan, S. A. et al. Comprehensive data-driven analysis of the impact of
chemoinformatic structure on the genome-wide biological response profiles of
cancer cells to 1,159 drugs. BMC Bioinf. 13, 112 (2012).

49. Hopkins, A. L. Network pharmacology: the next paradigm in drug discovery.
Nat. Chem. Biol. 4, 682–690 (2008).

50. Subramanian, A. et al. Gene set enrichment analysis: A knowledge-based
approach for interpreting genome-wide expression profiles. Proc. Natl Acad.
Sci. USA 102, 15545–15550 (2005).

51. Wu, D. et al. ROAST: rotation gene set tests for complex microarray
experiments. Bioinformatics 26, 2176–2182 (2010).

52. Ritchie, M. E. et al. limma powers differential expression analyses for
RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015).

53. Rahmatallah, Y., Emmert-Streib, F. & Glazko, G. Gene set analysis approaches
for RNA-seq data: performance evaluation and application guideline. Brief
Bioinform. 17, 393–407 (2016).

54. Alexa, A., Rahnenführer, J. & Lengauer, T. Improved scoring of functional
groups from gene expression data by decorrelating GO graph structure.
Bioinformatics 22, 1600–1607 (2006).
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