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A B S T R A C T

Consider the estimation of an extreme quantile region corresponding to a very small probability.
Estimation of extreme quantile regions is important but difficult since extreme regions contain
only a few or no observations. In this article, we propose an affine equivariant extreme
quantile region estimator for heavy-tailed elliptical distributions. The estimator is constructed
by extending a well-known univariate extreme quantile estimator. Consistency of the estimator
is proved under estimated location and scatter. The practicality of the developed estimator is
illustrated with simulations and a real data example.

1. Introduction

There are many notions of multivariate quantile, see, for example, [1] for a review. After all, there is no natural ordering between
multivariate observations, and thus, it is not straightforward to define the concept of multivariate quantile. However, assuming that
an 𝑚-variate random variable 𝑿 has density 𝑓 , we can define a quantile region 𝑄𝑝 with 𝑝 probability mass by

𝑄𝑝 = {𝒙 ∈ R𝑚 ∶ 𝑓 (𝒙) ≤ 𝛽},

where 𝛽 is chosen such that P(𝑿 ∈ 𝑄𝑝) = 𝑝.
We consider the estimation of extreme quantile regions of the aforementioned form. By extreme quantile regions we mean 𝑄𝑝

corresponding to a very small 𝑝. For example, often in practice 𝑝 < 1∕𝑛, where 𝑛 denotes the sample size. Thus, in this problem setting
it is possible that no observations lie in the extreme quantile region 𝑄𝑝 that we desire to estimate. Consequently, nonparametric
approaches such as the plug-in estimators considered in [2] do not suffice. In order to extrapolate outside the sample we use the
tools of extreme value theory (EVT).

Estimation of extreme quantile regions has been considered by various authors. For example, [3,4] considered the estimation of
extreme quantile regions under multivariate regular variation. The former approach is based on modeling the underlying density and
the latter one is based on halfspace depth contours and not the actual density contours. On the other hand, in [5], the estimation
of bivariate extreme quantile regions was considered under the multivariate domain of attraction condition, which is a weaker
condition than the multivariate regular variation. Namely, the multivariate domain of attraction condition allows for marginals
with different extreme value indices. For reviews about the multivariate regular variation and multivariate domain of attraction
conditions, we refer to [6,7].

In [3], several applications for the estimation of extreme risk regions are listed. One application is an alarm system or outlier
detection. That is, an observation signals a risk or is classified as an outlier if it lies in the estimated extreme quantile region. Also,
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the boundaries of extreme quantile regions can be used for stress testing. That is, one can test if extreme scenarios corresponding to
the points from the boundary of a chosen 𝑄𝑝 would be sufficiently extreme to break the underlying system. Lastly, extreme quantile
regions provide an ordering for outlying observations, see Remark 3 in [3]. The aforementioned applications can be useful in risk
management. For examples in the context of insurance and aviation safety, see [5,8]. Examples in financial settings are presented
in [3,4,9]. For an application in healthcare, see [10]. This article also includes an empirical illustration in the financial context using
the same data set as in [4,9].

In this paper, we restrict to multivariate regularly varying elliptical distributions. Restriction to elliptical distributions means that
the developed estimator cannot be applied as broadly as the estimators constructed in [3,4]. However, the ellipticity assumption
allows for other useful properties.

Firstly, the constructed estimator is very easy to compute compared to, for example, the computationally demanding estimator
provided in [4]. This is a consequence of the fact that, under ellipticity, estimation of the sets 𝑄𝑝 reduces to the estimation of
location, scatter and univariate extreme quantile of a univariate random variable called the generating variate. Thus, from the
viewpoint of EVT, only univariate theory suffices. This can be motivated by the fact that, in the case of elliptical distributions,
multivariate regular variation is equivalent to the heavy-tailedness of the generating variate [11]. A tool that turns out to be crucial
in the construction of the estimator is the Mahalanobis distance. That is, in order to apply univariate EVT we have to approximate
the generating variate from the available sample, and this can be achieved with the Mahalanobis distance.

Secondly, our estimator is affine equivariant. On the contrary, the more general estimator given in [4] is only equivariant up to
scaling and orthogonal transformations. Essentially, the affine equivariance of our estimator follows from the affine invariance of
the Mahalanobis distance. As a building block, we use the Mahalanobis distance based separating Hill estimator, which is an affine
invariant extreme value index estimator tailored for elliptical distributions. Note that generally, estimators of the extreme value
index are not affine invariant. For a review of the separating Hill estimator, see [12] (under known location–scatter pair) and [13]
(under estimated location–scatter pair). Affine equivariance is an important property for practical applications. For example, we
desire that the outlyingness of a data point does not depend on the coordinate system or on the units of marginal random variables,
which holds if the estimator of 𝑄𝑝 is affine equivariant.

It is important to note that there exist other notions of multivariate extreme quantiles than the one based on density or depth
contours. For example, [10,14] considered the estimation of extreme quantiles based on the notion of geometric quantiles defined
in [15]. Geometric quantiles are defined as a solution to a generalization of an optimization problem that characterizes univariate
quantiles. Quantiles based on density or depth contours are sets indexed with probabilities 𝑝, however, geometric quantiles are
points in R𝑚 indexed by vectors 𝒖 on an 𝑚-dimensional unit ball. That is, geometric quantiles have both direction and magnitude.
In the context of [10,14] extreme quantiles are geometric quantiles with ‖𝒖‖ close to one. We, however, consider 𝑄𝑝 for a small
𝑝. Moreover, [9] developed an estimator for extreme directional multivariate quantiles. Directional multivariate quantiles were
introduced in [16,17]. This approach is based on oriented orthants. That is, [9] define oriented orthant with vertex 𝒙 ∈ R𝑚 and
direction 𝒗, where 𝒗 is a vector on a (𝑚 − 1)-sphere. Then quantile indexed by direction 𝒗 and probability 𝑝 is the boundary of the
set of vertices 𝒙 for which the corresponding oriented orthants at direction −𝒗 include at least 1 − 𝑝 probability mass. For example,
see Figures 4 and 11 on [9] for illustrations of directional quantiles. In the context of [9], extreme quantiles at direction 𝒗 are
directional quantiles corresponding to a small 𝑝.

The rest of the article is organized as follows. In Section 2, we review some selected results in univariate extreme value theory,
focusing on univariate extreme quantile estimation. In Section 3 we give the necessary preliminaries about elliptical distributions,
construct the extreme quantile estimator and give the consistency and affine equivariance results for the developed estimator.
Section 4 provides a simulation study that assesses finite sample properties of the developed estimator, as well as compares it
to a competitor. A real data example in a financial context is provided in Section 5. Lastly, the proofs of the results are given in the
Appendix.

2. Univariate extreme quantile estimation

Throughout this section, let 𝑋1,… , 𝑋𝑛 be i.i.d. univariate random variables with the cumulative distribution function 𝐹 . We
denote the corresponding order statistics by 𝑋1,𝑛 ≤ ⋯ ≤ 𝑋𝑛,𝑛. We define the tail quantile function 𝑈 corresponding to a distribution
𝐹 by

𝑈 (𝑡) = 𝐹←
(

1 − 1
𝑡

)

, 𝑡 > 1,

where the left-continuous inverse 𝑓← of a nondecreasing function 𝑓 is given by 𝑓←(𝑦) = inf {𝑥 ∶ 𝑓 (𝑥) ≥ 𝑦}. The tail function of a
distribution is denoted by 𝐹 = 1 − 𝐹 . If we want to stress that the distribution 𝐹 corresponds to some specific random variable 𝑋,
we use the notation 𝐹 = 𝐹𝑋 . A similar convention is used for the tail quantile function 𝑈 = 𝑈𝑋 , the tail function 𝐹 = 𝐹𝑋 , and the
density 𝑓 = 𝑓𝑋 if it exists. Let 𝑌𝑛 and 𝑍𝑛 be sequences of random variables. The notation 𝑌𝑛 = 𝑜P(𝑍𝑛) means that 𝑌𝑛∕𝑍𝑛 converges
to 0 in probability as 𝑛 → ∞. Similarly, we denote 𝑌𝑛 = 𝑂P(𝑍𝑛), if 𝑌𝑛∕𝑍𝑛 is bounded in probability.

In the univariate case, the problem of extreme quantile estimation can be formulated as follows. We want to estimate the (1−𝑝)-
quantile 𝑥𝑝 = 𝑈 (1∕𝑝) for a very small 𝑝. The probability 𝑝 can be so small that, for example, the quantile 𝑥𝑝 is on the right-hand side
of all the observations. In this case, the left-continuous inverse of the empirical distribution at point 1−𝑝 is an insufficient estimator
and one has to rely on extreme value theory (EVT). Analysis of extreme events usually requires some regularity conditions.
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Definition 1 (Domain of Attraction). We say that 𝐹 is in the domain of attraction of a nondegenerate distribution 𝐺 if there exists
sequences 𝑎𝑛 > 0 and 𝑏𝑛 ∈ R such that

lim
𝑛→∞

𝐹 𝑛(𝑎𝑛𝑥 + 𝑏𝑛) = 𝐺(𝑥),

for each continuity point 𝑥 of 𝐺, or equivalently, we have the weak convergence of the normalized sample maxima,
max(𝑋1,… , 𝑋𝑛) − 𝑏𝑛

𝑎𝑛

𝑑
→ 𝐺, 𝑛 → ∞,

where 𝑋1,… , 𝑋𝑛 are i.i.d. with common distribution 𝐹 . We denote 𝐹 ∈ (𝐺) if distribution 𝐹 is in the domain of attraction of 𝐺.
The limiting distribution 𝐺 is called the extreme value distribution.

It has been shown by [18,19] that the limit distribution 𝐺 has a certain form. Namely, the location-scale family of 𝐺 is
characterized by one parameter 𝛾 that is called the extreme value index.

Theorem 1 ([6], Theorem 1.1.3). Let 𝐹 be a cumulative distribution function and assume that 𝐹 ∈ (𝐺). Then there exists 𝛾 ∈ R such
that

𝐺(𝑥) = 𝐺𝛾 (𝑥) = exp
(

− (1 + 𝛾𝑥)−1∕𝛾
)

,

where 1 + 𝛾𝑥 > 0. For the case 𝛾 = 0, the right-hand side is interpreted as exp (−𝑒−𝑥).

It is typical to divide the distributions 𝐹 ∈ (𝐺𝛾 ) in three classes, depending on the value of the extreme value index 𝛾:

(i) If 𝛾 > 0, then 𝐺𝛾 is said to be a Fréchet distribution and 𝐹 ∈ (𝐺𝛾 ) is called heavy-tailed;
(ii) If 𝛾 = 0, then 𝐺𝛾 is said to be a Gumbel distribution and 𝐹 ∈ (𝐺𝛾 ) is called light-tailed;

(iii) If 𝛾 < 0, then 𝐺𝛾 is said to be a Weibull distribution and 𝐹 ∈ (𝐺𝛾 ) is called short-tailed.

There are many equivalent characterizations of the domain of attraction condition, see [6] for a review. In Theorem 2 we state
one of these characterizations. We start by giving the definitions of extended regular variation and regular variation.

Definition 2 (Extended Regular Variation). The tail quantile function 𝑈 is said to be of extended regular variation if there exists a
positive function 𝑎 such that for some 𝛾 ∈ R and for all 𝑥 > 0,

lim
𝑡→∞

𝑈 (𝑡𝑥) − 𝑈 (𝑡)
𝑎(𝑡)

= 𝑥𝛾 − 1
𝛾

,

where for 𝛾 = 0 the right-hand side is interpreted as ln 𝑥.

Definition 3 (Regular Variation). The tail quantile function 𝑈 is regularly varying if for some 𝛾 ∈ R and for all 𝑥 > 0,

lim
𝑡→∞

𝑈 (𝑡𝑥)
𝑈 (𝑡)

= 𝑥𝛾 .

Theorem 2 ([6], Theorem 1.1.6, Corollary 1.2.10). Let 𝛾 ∈ R. Then 𝐹 ∈ (𝐺𝛾 ) if and only if 𝑈 is of extended regular variation.
Furthermore, for the case 𝛾 > 0, we have that 𝑈 is of extended regular variation if and only if 𝑈 is regularly varying.

Let 𝛾 > 0 and set 𝑡𝑥 = 𝑦. Then heuristically, Theorem 2 states that for large 𝑡, quantile 𝑈 (𝑦) is related to a smaller quantile 𝑈 (𝑡)
in the following way

𝑈 (𝑦) ≈ 𝑈 (𝑡)
( 𝑦
𝑡

)𝛾
.

By setting 𝑡 = 𝑛∕𝑘, we can further approximate 𝑈 (𝑛∕𝑘) ≈ 𝑋𝑛−𝑘,𝑛. This construction motivates to define an extreme quantile estimator

�̂�𝑝 = 𝑋𝑛−𝑘,𝑛

(

𝑘
𝑛𝑝

)�̂�𝑛
, 𝑘 ∈ {1,… , 𝑛 − 1}, (1)

where �̂�𝑛 is an estimator of the extreme value index 𝛾. For example, one can choose to use the Hill estimator

�̂�𝑛 =
1
𝑘

𝑘−1
∑

𝑖=0
ln𝑋𝑛−𝑖,𝑛 − ln𝑋𝑛−𝑘,𝑛,

first introduced in [20]. The Hill estimator is a consistent estimator of 𝛾 under i.i.d. observations if the underlying distribution is
heavy-tailed and 𝑘 = 𝑘𝑛 → ∞, 𝑘𝑛∕𝑛 → 0, as 𝑛 → ∞ [21]. The estimator is also asymptotically normal under certain additional
conditions. Asymptotic normality of the Hill estimator has been studied by various authors, see for example [22,23].

For developing asymptotic results in EVT, such as limiting distributions, the domain of attraction condition is often not sufficient.
Some second order refinement is necessary. For example, the asymptotic normality of the Hill estimator is often presented under
the second order regular variation given in Definition 6, see for example [24]. Also, second order conditions are needed for the
asymptotic normality of the univariate extreme quantile estimator and the main result of this article, Theorem 5. Further discussion
about second order conditions is given in the Appendix.

Next, let us review a result about the asymptotic normality of the univariate extreme quantile estimator presented in (1).
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Theorem 3 ([6], Theorem 4.3.8). Let 𝑋1,… , 𝑋𝑛 be i.i.d. with distribution 𝐹 . Let 𝐹 ∈ (𝐺𝛾 ), 𝛾 > 0 and let �̂�𝑛 be a corresponding extreme
value index estimator based on a threshold sequence 𝑘𝑛. Let 𝑥𝑝𝑛 denote the (1 − 𝑝𝑛)-quantile of 𝐹 and let

�̂�𝑝𝑛 = 𝑋𝑛−𝑘𝑛 ,𝑛

(

𝑘𝑛
𝑛𝑝𝑛

)�̂�𝑛
.

Assume that the following conditions hold:

C1. 𝑘𝑛 → ∞, 𝑘𝑛∕𝑛 → 0, as 𝑛 → ∞;
C2. 𝑈 satisfies the second order regular variation condition given in Definition 6;
C3. lim𝑛→∞

√

𝑘𝑛𝐴(𝑛∕𝑘𝑛) = 𝜆 ∈ R, where 𝐴 is the positive or negative function for 𝑈 in Definition 6;
C4. 𝑛𝑝𝑛 = 𝑜(𝑘𝑛) and ln

(

𝑛𝑝𝑛
)

= 𝑜
(

√

𝑘𝑛
)

, as 𝑛 → ∞;

C5.
√

𝑘𝑛
(

�̂�𝑛 − 𝛾
) 𝑑
→ 𝛤 , as 𝑛 → ∞, where 𝛤 is normally distributed with known expected value possibly depending on 𝛾 and 𝜌 and known

variance depending on 𝛾 (but not on 𝜌).

Then, as 𝑛 → ∞, with 𝑑𝑛 = 𝑘𝑛∕𝑛𝑝𝑛,
√

𝑘
ln 𝑑𝑛

(

�̂�𝑝𝑛
𝑥𝑝𝑛

− 1

)

𝑑
→ 𝛤 .

Theorem 3 is applied in proving the convergence of the extreme region estimator proposed in this article, see the Appendix.
Notice that on the first part of Condition C4 of Theorem 3 we require that 𝑝𝑛 → 0 fast, as 𝑛 → ∞. This is a typical requirement

in asymptotic results for extreme quantile estimators. If the probability 𝑝 does not depend on 𝑛, then for a large enough sample
the quantile 𝑥𝑝 would be no longer extreme. However, the probability 𝑝 = 𝑝𝑛 cannot decay to zero arbitrarily fast. Intuitively, the
second part of Condition C4 states that 𝑝𝑛 has to converge to zero slowly enough compared to the convergence rate of �̂�𝑛. For an
example, see (13) in the Appendix.

Extreme quantile estimation has been considered also for short-tailed distributions. Note, however, that the short-tailed case
requires estimation of a scale function, see [6] for a review. Note also that, by construction, the Hill estimator is always positive,
and thus, it is not a suitable estimator for negative extreme value indices. Nevertheless, negative extreme value indices can be
estimated using, e.g., the Pickands estimator [25] or the moment estimator [26].

3. Main results

In this section, we propose a new approach for estimating extreme density contours of heavy-tailed elliptical distributions, but
first, elliptical distributions and estimation of the location and scatter are reviewed in Section 3.1. Then the estimator is constructed
in Section 3.2, and finally, consistency and affine equivariance results are given in Section 3.3.

3.1. Elliptical distributions and estimation of the location–scatter pair

From the perspective of EVT, elliptical distributions form a flexible family of multivariate distributions. For example, the family
of elliptical distributions includes multivariate normal distribution that has light tails, but on the other hand, 𝑡-distributions are
also elliptical distributions but have heavier tails than the normal distribution. Below we define an elliptically distributed random
variable.

Definition 4. Random variable 𝑿 ∶ 𝛺 → R𝑚 is said to be elliptically distributed if there exists a vector 𝝁 ∈ R𝑚, a positive
semidefinite matrix 𝜮 ∈ R𝑚×𝑚 and a function 𝜙 ∶ R≥0 → R such that the characteristic function 𝜑𝑿−𝝁 of 𝑿 − 𝝁 is of the form
𝜑𝑿−𝝁(𝒕) = 𝜙(𝒕⊺𝜮𝒕), 𝒕 ∈ R𝑚. We write 𝑿 ∼ (𝝁,𝜮, 𝜙) if 𝑿 is elliptically distributed with parameters 𝝁, 𝜮 and 𝜙.

We work with elliptically distributed random variables with a full rank 𝜮. Then we can apply a convenient stochastic
representation for elliptically distributed random variables.

Theorem 4 ([27], Theorem 1). 𝑿 ∼ (𝝁,𝜮, 𝜙) with rank(𝜮) = 𝑘, 𝑘 ≤ 𝑚 if and only if

𝑿
𝑑
= 𝝁 +𝜦𝑺, (2)

where 𝝁 ∈ R𝑚,  ∶ 𝛺 → R≥0 is a nonnegative random variable, 𝑺 is uniformly distributed over the unit-sphere {𝒙 ∈ R𝑘 ∶ 𝒙⊺𝒙 = 1},
𝜦 ∈ R𝑚×𝑘 is a matrix with rank(𝜦) = 𝑘 such that 𝜮 = 𝜦𝜦⊺ and random variables  and 𝑺 are independent. We call the random variable
 the generating variate, matrix 𝜮 the scatter matrix and vector 𝝁 the location vector of the distribution.

The above theorem shows that it is natural to work with elliptically distributed random variables with a full rank scatter matrix
𝜮 since otherwise 𝑿 would live in some linear subspace of R𝑚.

The generating variate  plays an important role in the theory of elliptical distributions. In [11] it was proven that elliptically
distributed random variable 𝑿 satisfies multivariate regular variation condition with 𝛾 > 0 if and only if the corresponding generating
variate  is regularly varying with the same index 𝛾. Thus, from the viewpoint of Theorem 2, univariate random variable  gives
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all the information about the tail behavior of an elliptically distributed random variable 𝑿. Notice that the scatter matrix 𝜮 and the
generating variate  are only unique up to a positive constant. In order to guarantee uniqueness one could require, for example,
that det (𝜮) = 1, see [28].

Define a norm induced by a symmetric positive definite matrix 𝑯 ∈ R𝑚×𝑚 by

‖𝒙‖𝑯 =
√

𝒙⊺𝑯−1𝒙, 𝒙 ∈ R𝑚.

Throughout the rest of the article, let 𝑿1,… ,𝑿𝑛 be i.i.d. copies of an 𝑚-variate elliptically distributed random variable 𝑿 with a
full rank scatter matrix 𝛴 and density 𝑓𝑿 . In addition, we assume that the density 𝑓𝑿 is eventually decreasing, that is, for some
𝑟 > 0 and for all 𝒙, 𝒚 ∈ 𝑆𝑟 = {𝒛 ∈ R𝑚 ∶ ‖𝒛 − 𝝁‖𝜮 > 𝑟} we have

‖𝒙 − 𝝁‖𝜮 < ‖𝒚 − 𝝁‖𝜮 ⇒ 𝑓𝑿 (𝒙) > 𝑓𝑿 (𝒚), (3)

and in the set 𝑆𝑐
𝑟 we have

inf
𝒙∈𝑆𝑐

𝑟
𝑓𝑿 (𝒙) > 0. (4)

Assumption (3) gives a natural definition for eventually decreasing density for elliptical distributions since 𝑓𝑿 is constant on
ellipsoids {𝒛 ∈ R𝑚 ∶ ‖𝒛 − 𝝁‖𝜮 = 𝑟} for 𝑟 > 0, see [29, Corollary 4] for details. Together Assumptions (3) and (4) guarantee
that extreme quantile regions 𝑄𝑝 are connected for a sufficiently small 𝑝, see Section 3.2 for details. Let 𝑃 be the law of 𝑿, that
is 𝑃 (⋅) = P(𝑿 ∈ ⋅), where P is the probability measure corresponding to the underlying probability space. Assume that �̂�𝑛 and �̂�𝑛
are estimators of the location 𝝁 and the scatter 𝜮, respectively, calculated from 𝑿1,… ,𝑿𝑛. Then we can denote the Mahalanobis
distance between the elliptically distributed random variable 𝑿, or 𝑿𝑖, and its location 𝝁 by

𝑅 = ‖𝑿 − 𝝁‖𝜮 , 𝑅𝑖 = ‖𝑿𝑖 − 𝝁‖𝜮 ,

and the corresponding versions under estimated location and scatter by

�̂� = ‖𝑿 − �̂�𝑛‖�̂�𝑛
, �̂�𝑖 = ‖𝑿𝑖 − �̂�𝑛‖�̂�𝑛

.

Random variables �̂�𝑖 will turn out to be crucial in the construction of our extreme quantile region estimator. Consequently,
estimators of the location and scatter that still perform in the heavy-tailed setup are required. More precisely, in the consistency
result of Theorem 5 we require

√

𝑛-consistent estimators for location and scatter under heavy-tailed generating variate. The literature
on the topic of estimation of the location and scatter of elliptical distribution is rich, see [28] and the references therein.

Also note that, for elliptical distributions, all affine equivariant finite population location vectors measure the same population
quantity. Moreover, for elliptical distributions, all affine equivariant finite population scatter matrices are proportional to each
other. Thus, the corresponding affine equivariant scatter estimators estimate the same population quantity up to multiplication by a
positive univariate constant. As our estimation procedure involves Mahalanobis distances with respect to the chosen scatter matrix,
the constant vanishes and one can apply any affine equivariant scatter matrix estimator.

We choose to use the minimum covariance determinant (MCD) estimator for the location and scatter [30] in the simulations and
the empirical example in Sections 4 and 5, respectively. MCD is based on dividing the whole sample into subsamples, consisting of
0.5 ≤ 𝛼 ≤ 1 portion of all observations. Then, the subsample for which the computed sample covariance has the smallest determinant
is used in estimation. That is, the sample mean and the sample covariance computed from the chosen sample are the estimates of
location and scatter, respectively. The parameter 𝛼 has an effect on the estimation. Namely, as 𝛼 decreases, MCD estimators become
more robust. However, for many models such as multivariate normal distribution and 𝑡-distribution with several different degrees of
freedom, as 𝛼 increases, at least to a certain point, MCD estimators become more efficient [31]. In the simulations and the empirical
example we choose 𝛼 = 0.5. This choice is motivated by the fact that we work in the heavy-tailed setting. Thus, we know that
outlying observations are present, and consequently, we wish to achieve maximal robustness even if the efficiency of the location
and scatter estimators suffer. In practice, it is not feasible to compute determinants of sample covariance for each subsample, but
there are fast algorithms for approximation of MCD estimates, for example, see [32]. Consistency of the MCD location estimator
and the scatter estimator, as well as the asymptotic normality of the former, are considered in [33]. In [34,35] consistency and
asymptotic normality of the MCD scatter estimator were studied under more general distributions. For a recent review about the
MCD, see [36].

3.2. Construction of the estimator

We next consider the multivariate extreme quantile region estimation under ellipticity. Recall the definition of quantile region
given in Section 1. That is, assuming 𝑚-variate random variable 𝑿 has density 𝑓𝑿 , we define quantile region 𝑄𝑝 as

𝑄𝑝 = {𝒙 ∈ R𝑚 ∶ 𝑓 (𝒙) ≤ 𝛽} , (5)

where 𝛽 is chosen such that 𝑃 (𝑄𝑝) = 𝑝. However, in the case of elliptical distributions we have

𝑓𝑿 (𝒙) = 𝐶𝑚,𝜮 ‖𝒙 − 𝝁‖1−𝑚𝜮 𝑓(‖𝒙 − 𝝁‖𝜮 )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝑔(‖𝒙−𝝁‖𝜮 )

, 𝒙 ≠ 𝝁,
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where 𝐶𝑚,𝜮 > 0 is a positive constant that depends on the dimension 𝑚 and the scatter matrix 𝛴 [29, Corollary 4]. Recall that for
some 𝑟 > 0, 𝑓𝑿 is decreasing in the set 𝑆𝑟 = {𝒛 ∈ R𝑚 ∶ ‖𝒛 − 𝝁‖𝜮 > 𝑟} in the sense of Assumption (3). Then it follows that the
restriction of 𝑔 in {𝑡 ∈ R ∶ 𝑡 > 𝑟}, denoted by �̃�, is decreasing and bijective. Moreover, for a sufficiently small 𝑝, that is by choosing
𝛽 corresponding to 𝑝 such that 0 < 𝛽 < inf𝒙∈𝑆𝑐

𝑟
𝑔(‖𝒙 − 𝝁‖𝜮 ), we have 𝑄𝑝 ⊂ 𝑆𝑟 by Assumption (4). Then we can express 𝑄𝑝 as

𝑄𝑝 =
{

𝒙 ∈ R𝑚 ∶ 𝑔(‖𝒙 − 𝝁‖𝜮 ) ≤ 𝛽
}

=
{

𝒙 ∈ R𝑚 ∶ ‖𝒙 − 𝝁‖𝜮 ≥ �̃�−1(𝛽)
}

.

Thus, for a sufficiently small 𝑝, extreme quantile regions can be characterized as

𝑄𝑝 =
{

𝒙 ∈ R𝑚 ∶ ‖𝒙 − 𝝁‖𝜮 ≥ 𝑟𝑝
}

, (6)

where 𝑟𝑝 is chosen such that 𝑃 (𝑄𝑝) = 𝑝. Since random variable 𝑿 is absolutely continuous we can choose 𝑟𝑝 uniquely. Actually,
from the definition of elliptical distribution it follows that 𝑅 𝑑

= . Indeed, 𝑟𝑝 is the (1 − 𝑝)-quantile of the generating variate  as

𝑃 (𝑄𝑝) = P(𝑅 ≥ 𝑟𝑝) = 1 − 𝐹(𝑟𝑝) = 𝑝,

leading to

𝑟𝑝 = 𝐹−1
 (1 − 𝑝) = 𝑈(1∕𝑝).

Under ellipticity, the characterization given by Eq. (6) is more natural than the definition given by (5). Firstly, 𝑟𝑝 can be easily
computed explicitly if 𝑝 corresponding to 𝑄𝑝 is given. Secondly, and more importantly, 𝑟𝑝 corresponding to a very small 𝑝 can be
estimated with the tools of univariate extreme value theory. On the contrary, [3,4] relied on multivariate regular variation in the
estimation of 𝛽, which leads to a more general but also more complicated estimator than ours.

Now, our task is to estimate 𝑄𝑝 for a very small 𝑝. We assume that 𝑝 is so small that for 𝑄𝑝 we can use the representation given by
Eq. (6). Ideally, we would like to estimate 𝑟𝑝 with extreme quantile estimator (1) given the sample 𝑅1,… , 𝑅2. However, estimation
is complicated by the fact that, in practice, we do not know the true location or scatter but only have the multivariate sample
𝑿1,… ,𝑿𝑛. Thus, we estimate the true location 𝝁 and scatter 𝜮 with estimators �̂�𝑛 and �̂�𝑛, respectively, and use approximations
�̂�1,… , �̂�𝑛 in the estimation of the (1 − 𝑝)-quantile of the generating variate,

�̂�𝑝 = �̂�𝑛−𝑘𝑛 ,𝑛

(

𝑘𝑛
𝑛𝑝

)�̂�𝑛
,

where

�̂�𝑛 =
1
𝑘𝑛

𝑘−1
∑

𝑖=0
ln

(

�̂�𝑛−𝑖,𝑛

�̂�𝑛−𝑘,𝑛

)

.

The estimator �̂�𝑛 is called the separating Hill estimator. Consistency and asymptotic normality of the estimator �̂�𝑛 are proved in [13].
Utilizing the separating Hill estimator, we define an estimator for the extreme quantile region 𝑄𝑝 as

�̂�𝑝 =
{

𝒙 ∈ R𝑚 ∶ ‖

‖

𝒙 − �̂�𝑛
‖

‖�̂�𝑛
≥ �̂�𝑝

}

. (7)

The estimator �̂�𝑝 consists of three components: the estimator of the location �̂�𝑛, the estimator of the scatter matrix �̂�𝑛 and the
extreme quantile estimator of the generating variate �̂�𝑝. Estimated quantile region �̂�𝑝 is a complement of an open ellipsoid at
location �̂�𝑛. The matrix �̂�𝑛 gives the shape of the ellipsoid, �̂�𝑛 gives the center of the ellipsoid, and �̂�𝑝 gives the scale of the ellipsoid.
If �̂�𝑛 is proportional to the identity matrix, the ellipsoid is spherical. For heavy-tailed distributions �̂�𝑝 is large. Consequently, the
heavier the tail, the larger the ellipsoid (assuming that the scatter is fixed).

3.3. Consistency and affine equivariance

Denote symmetric difference between two sets 𝑆 ⊂ R𝑚 and 𝑇 ⊂ R𝑚 by 𝑆 ▵ 𝑇 = (𝑆 ⧵𝑇 )∪(𝑇 ⧵𝑆). Since the extreme quantile region
𝑄𝑝 and the corresponding estimate are no longer scalars but subsets of R𝑚, it is not straightforward to formulate the consistency
result for the estimator �̂�𝑝. However, in many applications where some multivariate region is estimated, such as in multivariate
density estimation [2] and estimation of depth contours [37, Lemma 2], it is useful to formulate consistency in terms of probability
mass on the symmetric difference. One motivation for this is that the map 𝑃 (𝑆 ▵ 𝑇 ) ∶ × ↦ [0, 1] is a pseudometric in probability
space (R𝑚,, 𝑃 ) where  is the Borel sigma-algebra on R𝑚.

In the context of multivariate extreme quantile estimation we require that 𝑝𝑛 → 0 fast, as 𝑛 → ∞. Then both the extreme quantile
region 𝑄𝑝 = 𝑄𝑝𝑛 and the estimated region �̂�𝑝 = �̂�𝑝𝑛 shrink as 𝑛 → ∞. Hence

𝑃 (𝑄𝑝𝑛 ▵ �̂�𝑝𝑛 )
P
→ 0, 𝑛 → ∞,

is not a sufficient requirement for consistency. Otherwise, we could choose, for example, �̂�𝑝𝑛 = ∅. Instead, we must require that
𝑃 (𝑄𝑝𝑛 ▵ �̂�𝑝𝑛 ) converges to zero in probability fast as 𝑛 → ∞. More precisely, we require that

𝑃 (𝑄𝑝𝑛 ▵ �̂�𝑝𝑛 )
𝑝𝑛

P
→ 0, 𝑛 → ∞.
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Above notion of refined consistency is typical in the literature of extreme quantile region estimation, see [3,4,8]. Also, the fact
𝑝𝑛 → 0 as 𝑛 → ∞ guarantees that eventually 𝑄𝑝𝑛 are connected and have the representation given by (6).

We are now ready to consider the consistency of the elliptical extreme quantile region estimator �̂�𝑝.

Theorem 5. Let 𝑿 be an 𝑚-variate absolutely continuous elliptically distributed random variable with generating variate , location vector
𝝁 and scatter matrix 𝜮. Additionally, assume that the density 𝑓𝑿 of 𝑿 satisfies Assumptions (3) and (4). Let 𝑿1,… ,𝑿𝑛 be i.i.d. copies of 𝑿.
Let 𝐹 ∈ (𝐺𝛾 ), 𝛾 > 0, and let �̂�𝑛 denote the corresponding separating Hill estimator. Let 𝑄𝑝𝑛 denote the elliptical extreme (1 − 𝑝𝑛)-quantile
region and let �̂�𝑝𝑛 be the corresponding estimator given in Eq. (7). Estimators �̂�𝑛 and �̂�𝑝𝑛 are based on a threshold sequence 𝑘𝑛, location
estimator �̂�𝑛 and scatter estimator �̂�𝑛. Assume that the following conditions hold:

C1. 𝑘𝑛 → ∞, 𝑘𝑛∕𝑛 → 0, as 𝑛 → ∞;
C2. 𝑈 satisfies the second order extended regular variation condition given in Definition 5;
C3. lim𝑛→∞

√

𝑘𝑛𝐴(𝑛∕𝑘𝑛) = 𝜆 ∈ R, where 𝐴 is the positive or negative function for 𝑈 in Definition 6;
C4. 𝑛𝑝𝑛 = 𝑜(𝑘𝑛), ln

(

𝑛𝑝𝑛
)

= 𝑜
(

√

𝑘𝑛
)

and 1∕𝑝𝑛 = 𝑂
(

𝑛1∕(2𝛾)
)

, as 𝑛 → ∞;

C5.
√

𝑛(�̂�𝑛 − 𝝁) = 𝑂P(1) and
√

𝑛(�̂�𝑛 −𝜮) = 𝑂P(1).

Then as 𝑛 → ∞,
𝑃 (�̂�𝑝𝑛 ▵ 𝑄𝑝𝑛 )

𝑝𝑛

P
→ 0.

By comparing Theorem 5 to Theorem 3, there is an additional part in Condition C4. In Section 2 we already discussed that
the second part of Condition C4 is related to the rate of convergence of the extreme quantile estimator. Similarly, the third part is
related to the rate of convergence of the scatter estimator �̂�𝑛, see the proof of Theorem 5 in the Appendix for details. However, the
third part of Condition C4 is not too stringent. That is, we can still find sequences 𝑝𝑛 that satisfy Condition C4. For example, we
can set

𝑝𝑛 = 𝑛−
1
2𝛾 and

𝑘𝑛 =
⌈

𝑛𝛽
⌉

, where max
{

0, 1 − 1
2𝛾

}

< 𝛽 < 1.

Also, note that
√

𝑛-consistent estimators for the location and scatter exist even in the heavy-tailed framework, see Section 3.1 for a
detailed discussion.

We next consider affine equivariance of our proposed extreme quantile region estimator. Let 𝒀 = 𝑩𝑿 + 𝒃 where 𝒃 ∈ R𝑚 and
𝑩 ∈ R𝑚×𝑚 is invertible. Now from the representation (2) it follows that

𝒀
𝑑
= (𝑩𝝁 + 𝒃) +𝑩𝜦𝑺.

Thus the random variable 𝒀 is also elliptically distributed with the same generating variate as 𝑿, location 𝝁′ = 𝑩𝝁 + 𝒃 and scatter
matrix 𝜮′ = 𝑩𝜮𝑩⊺. We now have

‖𝒀 − 𝝁′
‖𝜮′ = ‖𝑿 − 𝝁‖𝜮 ,

by affine invariance of the Mahalanobis distance, see Lemma 7. Hence the assumption of ellipticity guarantees that the constructed
estimator �̂�𝑛 is affine equivariant as long as the location estimator �̂�𝑛 and the scatter estimator �̂�𝑛 are affine equivariant.

Theorem 6. Let 𝑩 ∈ R𝑚×𝑚 be invertible and let 𝒃 ∈ R𝑚. Let  = {𝑿1,… ,𝑿𝑛} denote a sample of an elliptically distributed random
variable 𝑿. Let 𝒀 𝑖 = 𝑩𝑿𝑖+𝒃 and  = {𝒀 1,… , 𝒀 𝑛}. Let �̂�𝑛(), �̂�𝑛() and �̂�𝑛(), �̂�𝑛() be estimators of the location and scatter calculated
from  and  , respectively. Assume that �̂�𝑛 and �̂�𝑛 are affine equivariant in the following sense:

�̂�𝑛() = 𝑩�̂�𝑛() + 𝒃, �̂�𝑛() = 𝑩�̂�𝑛()𝑩⊺.

Denote
�̂�𝑥
𝑖 = ‖𝑿𝑖 − �̂�𝑛()‖�̂�𝑛(), �̂�𝑦

𝑖 = ‖𝒀 𝑖 − �̂�𝑛()‖�̂�𝑛(),

�̂�𝑛() = 1
𝑘𝑛

𝑘−1
∑

𝑖=0
ln

(

�̂�𝑥
𝑛−𝑖,𝑛

�̂�𝑥
𝑛−𝑘,𝑛

)

, �̂�𝑛() = 1
𝑘𝑛

𝑘−1
∑

𝑖=0
ln

(

�̂�𝑦
𝑛−𝑖,𝑛

�̂�𝑦
𝑛−𝑘,𝑛

)

,

�̂�𝑥𝑝𝑛 = �̂�𝑥
𝑛−𝑘𝑛 ,𝑛

(

𝑘𝑛
𝑛𝑝𝑛

)�̂�𝑛()
, �̂�𝑦𝑝𝑛 = �̂�𝑦

𝑛−𝑘𝑛 ,𝑛

(

𝑘𝑛
𝑛𝑝𝑛

)�̂�𝑛()
.

Let

�̂�𝑥
𝑝𝑛

=
{

𝒙 ∈ R𝑚 ∶ ‖

‖

𝒙 − �̂�𝑛()‖
‖�̂�𝑛() ≥ �̂�𝑥𝑝𝑛

}

, �̂�𝑦
𝑝𝑛

=
{

𝒙 ∈ R𝑚 ∶ ‖

‖

𝒙 − �̂�𝑛()‖
‖�̂�𝑛() ≥ �̂�𝑦𝑝𝑛

}

.

Now

�̂�𝑦
𝑝𝑛

= 𝑩�̂�𝑥
𝑝𝑛

+ 𝒃,

where for all 𝑆 ⊂ R𝑚, 𝑩𝑆 + 𝒃 denotes the set {𝑩𝒙 + 𝒃 ∶ 𝒙 ∈ 𝑆}.



Journal of Multivariate Analysis 202 (2024) 105314

8

J. Pere et al.

Table 1
Simulation results for the elliptical extreme quantile region estimator �̂�𝑝𝑛 for the two-dimensional settings. The table contains
the medians calculated from 𝑠 = 100 approximated relative errors 𝑃 (�̂�𝑝𝑛 ▵ 𝑄𝑝𝑛 )∕𝑝𝑛 for all combinations of distributions (centered
spherical Cauchy distribution, centered elliptical Cauchy distribution and centered spherical 𝑡-distribution with 4 degrees of
freedom), 𝑛 ∈ {1000, 5000}, 𝑝𝑛 ∈ {2∕𝑛, 1∕𝑛, 1∕(2𝑛)} and 𝑘𝑛 ∈ {0.05𝑛, 0.1𝑛, 0.2𝑛}. In all scenarios location and scatter are estimated
with MCD for 𝛼 = 0.5.
Distribution Value of 𝑝𝑛 𝑛 = 1000 𝑛 = 5000

𝑘𝑛 = 0.05𝑛 𝑘𝑛 = 0.1𝑛 𝑘𝑛 = 0.2𝑛 𝑘𝑛 = 0.05𝑛 𝑘𝑛 = 0.1𝑛 𝑘𝑛 = 0.2𝑛

Centered spherical
Cauchy distribution

𝑝𝑛 = 2∕𝑛 0.28 0.24 0.22 0.17 0.17 0.14
𝑝𝑛 = 1∕𝑛 0.34 0.29 0.25 0.19 0.19 0.16
𝑝𝑛 = 1∕(2𝑛) 0.36 0.33 0.29 0.21 0.21 0.17

Centered elliptical
Cauchy distribution

𝑝𝑛 = 2∕𝑛 0.28 0.24 0.21 0.16 0.17 0.14
𝑝𝑛 = 1∕𝑛 0.34 0.28 0.25 0.18 0.18 0.16
𝑝𝑛 = 1∕(2𝑛) 0.35 0.32 0.28 0.20 0.20 0.17

Centered spherical
𝑡-distribution with 4
degrees of freedom

𝑝𝑛 = 2∕𝑛 0.31 0.39 0.66 0.29 0.54 0.81
𝑝𝑛 = 1∕𝑛 0.38 0.47 0.75 0.36 0.61 0.87
𝑝𝑛 = 1∕(2𝑛) 0.45 0.54 0.82 0.42 0.68 0.90

4. Simulation study

In this section, we provide a simulation study to illustrate the finite sample performance of our estimator in two- and
three-dimensional settings. In three-dimensional cases, we consider two centered spherical distributions, Cauchy distribution and
𝑡-distribution with four degrees of freedom. That is, for both distributions we set 𝝁 = 0 and 𝜮 = 𝑰 , where 𝑰 is the identity
matrix. In two-dimensional settings simulations are performed for three different distributions. Namely, a centered elliptical Cauchy
distribution with nontrivial scatter is considered in addition to the aforementioned centered and spherical Cauchy and 𝑡-distributions.
In two dimensions, for the nontrivial scatter we set

𝜮 =
(

11 10.5
10.5 11

)

.

Cauchy distribution is quite heavy-tailed since the extreme value index corresponding to the distribution is 𝛾 = 1. On the other hand,
𝑡-distribution with four degrees of freedom is less heavy-tailed than the Cauchy distribution and has extreme value index equal to
𝛾 = 1∕4.

For each distribution we estimate extreme quantile region corresponding to 𝑝𝑛 ∈ {2∕𝑛, 1∕𝑛, 1∕(2𝑛)} for sample sizes 𝑛 ∈
{1000, 5000} with two different estimators. We use the elliptical extreme quantile region estimator �̂�𝑝𝑛 with the scatter estimated
with MCD. For MCD we set 𝛼 = 0.5. We compare our estimator to another extreme quantile region estimator developed in [4]. We
denote this alternative estimator by �̄�𝑝𝑛 . The estimator �̄�𝑝𝑛 is based on halfspace depth, and as such, it is computationally heavy,
but does not require ellipticity. Under ellipticity, density contours and halfspace depth contours coincide. Consequently, estimators
�̂�𝑝𝑛 and �̄�𝑝𝑛 estimate the same population quantity for elliptical distributions. Estimates �̂�𝑝𝑛 and �̄�𝑝𝑛 are computed with different
values of 𝑘𝑛 ∈ {0.05𝑛, 0.1𝑛, 0.2𝑛}. The estimator �̄�𝑝𝑛 does not take into account the estimation of the location 𝝁. Thus, we assume
the location of the distribution to be known for the fair comparison between �̂�𝑝𝑛 and �̄�𝑝𝑛 . Approximation of the relative errors
𝑃 (�̂�𝑝𝑛 ▵ 𝑄𝑝𝑛 )∕𝑝𝑛 and 𝑃 (�̄�𝑝𝑛 ▵ 𝑄𝑝𝑛 )∕𝑝𝑛 is based on approximating integrals with Riemann sums in polar coordinates, see [38] for
details of the computation. Each simulation scenario with different values for 𝑛, 𝑝𝑛, 𝑘𝑛 and different distributions is repeated 𝑠 = 100
times.

Tables 1 and 2 show simulation results for the two-dimensional settings for the estimators �̂�𝑝𝑛 and �̄�𝑝𝑛 , respectively. More
precisely, the tables include medians of the approximated relative errors 𝑃 (�̂�𝑝𝑛 ▵ 𝑄𝑝𝑛 )∕𝑝𝑛 and 𝑃 (�̄�𝑝𝑛 ▵ 𝑄𝑝𝑛 )∕𝑝𝑛. Results for the
spherical and elliptical Cauchy distribution are identical for the estimator �̂�𝑝𝑛 up to numerical errors in the integration. This is
expected, since our estimator �̂�𝑝𝑛 is affine equivariant, see Theorem 6. Results for the spherical and elliptical Cauchy distribution
are also quite similar for the estimator �̄�𝑝𝑛 , even though the estimator is not fully affine equivariant, see [4, Proposition 3]. Our
estimator �̂�𝑝𝑛 performs marginally better than the estimator �̄�𝑝𝑛 for the Cauchy distribution. For the Cauchy distribution, relative
errors decrease for both estimators as the sample size 𝑛 increases. For the 𝑡-distribution, that is the less heavy-tailed case, the
performance is slightly weaker for both estimators. It also seems that, especially for the 𝑡-distribution, the choice of 𝑘 has a significant
effect on the performance of the estimators. In other words, simulations show that the estimators �̂�𝑝𝑛 and �̄�𝑝𝑛 are not robust for
the choice of 𝑘. In practice, it is not easy to choose 𝑘 optimally. The choice of 𝑘 for the Hill estimator is discussed, e.g., in [39,40].

Fig. 1 shows the best, the median and the worst estimates with respect to the relative errors 𝑃 (�̂�𝑝𝑛 ▵ 𝑄𝑝𝑛 )∕𝑝𝑛 and 𝑃 (�̄�𝑝𝑛 ▵ 𝑄𝑝𝑛 )∕𝑝𝑛
for particular scenarios when the sample size is set to 𝑛 = 1000. Figures illustrate that there is a considerable amount of variation
in the performance of both estimators. However, this is expected in the context of extreme value theory.

Fig. 2 shows boxplots of 𝑠 = 100 relative errors for both estimators �̂�𝑝𝑛 and �̄�𝑝𝑛 for certain three-dimensional scenarios with
𝑛 = 1000, 𝑝𝑛 ∈ {2∕𝑛, 1∕𝑛, 1∕(2𝑛)} and both selected distributions (the centered spherical Cauchy distribution and the centered
spherical 𝑡-distribution with four degrees of freedom). The elliptical estimator �̂�𝑝𝑛 performs marginally better than the competitor
�̄�𝑝𝑛 based on medians of the relative errors. Interestingly, it seems that the elliptical estimator has a smaller variation than the
depth-based estimator.
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Table 2
Simulation results for the extreme quantile region estimator �̄�𝑝𝑛 based on halfspace depth for the two-dimensional settings.
The table contains the medians calculated from 𝑠 = 100 approximated relative errors 𝑃 (�̄�𝑝𝑛 ▵ 𝑄𝑝𝑛 )∕𝑝𝑛 for all combinations of
distributions (centered spherical Cauchy distribution, centered elliptical Cauchy distribution and centered spherical 𝑡-distribution
with 4 degrees of freedom), 𝑛 ∈ {1000, 5000}, 𝑝𝑛 ∈ {2∕𝑛, 1∕𝑛, 1∕(2𝑛)} and 𝑘𝑛 ∈ {0.05𝑛, 0.1𝑛, 0.2𝑛}.
Distribution Value of 𝑝𝑛 𝑛 = 1000 𝑛 = 5000

𝑘𝑛 = 0.05𝑛 𝑘𝑛 = 0.1𝑛 𝑘𝑛 = 0.2𝑛 𝑘𝑛 = 0.05𝑛 𝑘𝑛 = 0.1𝑛 𝑘𝑛 = 0.2𝑛

Centered spherical
Cauchy distribution

𝑝𝑛 = 2∕𝑛 0.38 0.32 0.28 0.21 0.20 0.17
𝑝𝑛 = 1∕𝑛 0.42 0.36 0.31 0.23 0.22 0.18
𝑝𝑛 = 1∕(2𝑛) 0.49 0.39 0.33 0.26 0.24 0.18

Centered elliptical
Cauchy distribution

𝑝𝑛 = 2∕𝑛 0.54 0.39 0.29 0.24 0.17 0.13
𝑝𝑛 = 1∕𝑛 0.58 0.42 0.31 0.28 0.19 0.14
𝑝𝑛 = 1∕(2𝑛) 0.61 0.45 0.33 0.31 0.20 0.15

Centered spherical
𝑡-distribution with 4
degrees of freedom

𝑝𝑛 = 2∕𝑛 0.59 0.44 0.34 0.32 0.24 0.56
𝑝𝑛 = 1∕𝑛 0.59 0.44 0.44 0.34 0.30 0.68
𝑝𝑛 = 1∕(2𝑛) 0.59 0.57 0.59 0.34 0.41 0.77

Fig. 1. True and estimated quantile regions for the two-dimensional scenarios where 𝑛 = 1000 and 𝑝𝑛 = 1∕(2𝑛): , true; �̂�𝑝𝑛 ; �̄�𝑝𝑛 .
Upper and lower rows correspond to the centered elliptical Cauchy distribution and the centered elliptical 𝑡-distribution with 4 degrees of freedom, respectively.
Estimates in the upper row were calculated with 𝑘𝑛 = 0.2𝑛 and estimates in the lower row were calculated with 𝑘 = 0.05𝑛. The leftmost figures correspond to
the smallest relative error from 𝑠 = 100 repetitions. Middle figures correspond to the cases with relative error closest to the median and the rightmost figures
correspond to the maximum relative error.

We also performed simulations for the elliptical extreme quantile region estimator �̂�𝑝𝑛 with samples generated from the 𝑚-
dimensional centered spherical Cauchy distribution when 𝑚 ∈ {2,… , 30}. Based on the simulations it seems that if the sample size
𝑛 is fixed but dimension 𝑚 increases, then the performance of the estimator �̂�𝑝𝑛 deteriorates slightly. This is visible from the fact
that the medians of the errors computed from 𝑠 = 100 repetitions increase as 𝑚 increases (as dimension 𝑚 grows from 2 to 30, the
median error becomes approximately 2-3 times larger). For details, see Github repository elliptical-sim [38].

Lastly, Fig. 3 shows an example where the true quantile regions are not elliptically shaped. For the example we choose a
skew-elliptical distribution. Skew-elliptical distributions are a generalization of elliptical distributions where skewness of the tails is
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Fig. 2. Boxplots of relative errors 𝑃 (�̂�𝑝𝑛 ▵ 𝑄𝑝𝑛 )∕𝑝𝑛 (Elliptical) and 𝑃 (�̄�𝑝𝑛 ▵ 𝑄𝑝𝑛 )∕𝑝𝑛 (Depth) for 𝑚 = 100 repetitions of selected three-dimensional scenarios with
𝑛 = 1000. Upper row corresponds to the centered spherical Cauchy distribution (𝛾 = 1) and the lower row corresponds to the centered spherical 𝑡-distribution
with four degrees of freedom (𝛾 = 1∕4). Left, center and right columns correspond to 𝑝 = 2∕𝑛, 𝑝 = 1∕𝑛 and 𝑝 = 1∕(2𝑛) respectively. Scenarios correspond the value
of 𝑘 for which the median relative error is the smallest.

allowed. See [41] for a review of skew-elliptical distributions. More specifically, we choose skewed 𝑡-distribution with four degrees
of freedom, location 𝝁 = 0, scale equal to the identity matrix 𝑰 and skewness parameter 𝜹 =

(

1∕
√

11 − 3∕
√

11
)

. That is, we consider
the distribution of 𝒀 = [𝑿|𝑋0 > 0], where the random vector (𝑋0 𝑿) has 𝑡-distribution with the location 𝝁 = 0 and the scatter

𝜮 =
(

1 𝜹⊺

𝜹 𝑰

)

.

The value of the extreme value index for this distribution is 𝛾 = 1∕4. In this case we set 𝑛 = 5000, 𝑘 = 0.05𝑛 and estimate quantile
regions corresponding to 𝑝𝑛 ∈ {2∕𝑛, 1∕(2𝑛)} with elliptical extreme quantile region estimator �̂�𝑝𝑛 . We also estimated the location
and the scatter of the distribution with MCD and set 𝛼 = 0.5, even though the distribution is not elliptical. Clearly, the estimator
fails in the sense that the shape of the estimated quantile regions is elliptical while the real quantile regions are not. When ellipticity
assumption is not satisfied but multivariate regular variation condition still is, one should use, for example, the estimator developed
in [3].

5. Empirical illustration

Here we present a real data example in a financial context. Similar examples with the same data for the depth extreme quantile
regions and extreme directional multivariate quantiles were provided in [4,9]. Data consists of daily prices for three different stock
market indices from the 2nd of July 2001 to the 29th of June 2007: S&P 500 from the USA, FTSE 100 from England and Nikkei
225 from Japan. First, for each series 𝑿(𝑖) = (𝑋1,… , 𝑋1565), 𝑖 ∈ {1, 2, 3}, we compute daily log returns 𝑌 (𝑖)

𝑡 = log
(

𝑋(𝑖)
𝑡 ∕𝑋(𝑖)

𝑡−1

)

,
where 𝑡 ∈ {2,… , 1565}. However, for the 5% level of significance, the null hypothesis of serial independence of the Ljung–Box
test is rejected for the daily log returns corresponding to Nikkei 225. Thus, it is not appropriate to apply the extreme quantile
region estimator for the log returns 𝒀 𝑡 = (𝑌 (1)

𝑡 , 𝑌 (2)
𝑡 , 𝑌 (3)

𝑡 ) directly. Consequently, we follow the procedure in [4] and filter each
of the three time series by first fitting EGARCH(1, 1) models, see [42], and then by collecting innovations 𝒁 𝑡 = (𝑍(1)

𝑡 , 𝑍(2)
𝑡 , 𝑍(3)

𝑡 ).
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Fig. 3. True and estimated quantile regions when the elliptical extreme quantile region estimator �̂�𝑝𝑛 was used for the skewed 𝑡-distribution. In this case
𝑛 = 5000, 𝑘 = 0.05𝑛 and 𝑝𝑛 ∈ {2∕𝑛, 1∕(2𝑛)}: ∙, observations: , true; �̂�𝑝𝑛 .

We estimate parameters of EGARCH(1, 1) models by maximizing quasi-likelihood and assuming t-distributed innovations 𝑍(𝑖)
𝑡 with

unknown degrees of freedom. Now, serial independence is not rejected for innovations with 5% level of significance. For details of
the computations, see Github repository elliptical-empirical [43].

In addition to the independence of observations, we test the assumptions of ellipticity and regular variation of the estimated
generating variate. Multiple tests for (multivariate) ellipticity are available in the literature, for example, see [44–48]. We use a
Pearson’s chi-squared type test [45]. With this test, multivariate ellipticity is not rejected with 5% level of significance. To protect
against the type II error in statistical testing, we visualize the univariate marginals by histograms. Based on the approximate
symmetry of the histograms, the marginals seem elliptical. We complement the visualizations by bivariate scatter plots. All the
scatter plots of the bivariate marginals have an elliptical shape. This further supports the ellipticity assumption as the marginals
of an elliptically distributed random variable are elliptically distributed as well. Furthermore, we utilized Q–Q plots to assess
whether all the univariate marginals come from the same location-scale family. Points in the Q–Q plots fall approximately on a
straight line (excluding one outlying point), which suggests that the univariate marginals come from the same location–scale family.
Figures of histograms of 𝑍(𝑖), and scatter plots and Q–Q plots for each pair of (𝑍(𝑖), 𝑍(𝑗)), 𝑖 ≠ 𝑗, can be found in Github repository
elliptical-empirical [43].

Next, let us consider the multivariate regular variation assumption. Multivariate regular variation implies that both tails of
each univariate marginal should have the same extreme value indices. When we set 𝑘 = 80, the estimated extreme value indices
for both tails of each 𝑍(𝑖) are 0.178, 0.178, 0.223, 0.225, 0.255 and 0.261 from the smallest to the largest. Then based on the
asymptotic normality of the Hill estimator one can test if the maximal difference between the extreme value indices is significant.
The aforementioned procedure is applied for the data set of this empirical example in [4], and the null hypothesis that the extreme
value indices are equal was not rejected. If the extreme value indices of the tails are different from each other one can, for
example, transform each univariate marginal (to, e.g, Pareto distribution) to make the multivariate regular variation assumption
more plausible, but this is not necessary here. However, in the elliptical setting multivariate regular variation is equivalent to regular
variation of the generating variate. Thus, we can just test regular variation of the generating variate. For testing regular variation
we use the PE-test [49]. The test involves a free parameter 𝜂 > 0, for which we choose the value 𝜂 = 1∕2 as suggested in [49]. For
the number of the tail observations we choose 𝑘 = 160. Note that we do not have observations of the generating variate 𝑅𝑖 but only
approximated Mahalanobis distances �̂�𝑖 are available. Thus, we use estimated Mahalanobis distances �̂�𝑖 for performing the PE-test
when the location and the scatter are estimated with MCD for 𝛼 = 0.5. The assumption of regular variation is not rejected for the
5% significance level. Notice also that multivariate regular variation of log returns was tested in [50].

Now that we have tested the assumptions of independence, ellipticity and regular variation, we compute bivariate elliptical
extreme quantile regions for each pair of innovations (𝑍(𝑖)

𝑡 , 𝑍(𝑗)
𝑡 ), 𝑖 ≠ 𝑗, 𝑡 ∈ {2,… , 1565}. Predicted quantile regions for the

corresponding log returns (𝑌 (𝑖)
1566, 𝑌

(𝑗)
1566) are then obtained by affine retransformation by means of the predicted standard deviations

and the estimated offsets of the EGARCH(1, 1) models for each country. This prediction corresponds to the 2nd of July 2007 (the
next trading day). Fig. 4 shows predicted quantile regions for each pair of the log returns (𝑌 (𝑖)

1566, 𝑌
(𝑗)
1566). Regions are computed for

probabilities 𝑝 ∈ {1∕2000, 1∕5000, 1∕10000} and 𝑘 = 160. For each pair of innovations (𝑍(𝑖)
𝑡 , 𝑍(𝑗)

𝑡 ), the location and the scatter are
estimated with MCD for 𝛼 = 0.5. Fig. 4 can be used as a tool for inferring the atypicality of log returns 𝑌 (𝑖)

𝑡 . Moreover, points on the
boundary of the predicted extreme quantile regions can be used in stress testing. The shape of the regions uncovers the dependency
between different stock indices. For example, the shape of the regions in Fig. 4(a) is ellipsoidal with axes of symmetry not equal to
the main axes which tells that the risk could be grossly over- or underestimated by using only univariate extreme quantile estimators
of the marginals, since univariate estimates do not take into account the dependency structure. On the other hand, the shape of the
predicted quantile regions in Fig. 4(b) is closer to spherical. If an investor would like to invest in two index funds, she would possibly
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Fig. 4. Predicted bivariate extreme quantile regions corresponding to the log returns of the 2nd of July 2007 for 𝑝 ∈ {1∕2000, 1∕5000, 1∕10000}. In the computation
we chose 𝑘 = 160. Location and scatter were estimated with MCD (𝛼 = 0.5). Plotted points are obtained by affine transformation of the innovations by means of
the predicted standard deviations and the estimated offsets of the EGARCH(1, 1) models for each country.

prefer the pair S&P 500 and Nikkei 225 over S&P 500 and FTSE 100 as the risks related to the former pair seem less dependent.
Note also that the estimates of the extreme value indices of the generating variate in all three cases are close to each other (0.20 for
USA versus UK, 0.18 for USA versus Japan and 0.18 for UK versus Japan), which is indicated by the fact that the extreme quantile
regions for all three pairs are of a similar scale.

Next, we demonstrate the use of elliptical extreme quantile regions in outlier detection. We can say that an observation is an
outlier if the corresponding innovation 𝒁 𝑡 lies in the estimated extreme quantile region �̂�𝑝 for a fixed small value of 𝑝, i.e.,

‖𝒁 𝑡 − �̂�𝑛‖
2
�̂�𝑛

≥ �̂�𝑝,

where �̂�𝑛 and �̂�𝑛 are MCD estimates for the location and scatter of the trivariate elliptical distribution of the innovations. Again, in
the computation of the MCD estimates we choose 𝛼 = 0.5. For 𝑝 = 1∕5000 and 𝑘 = 160 we obtain the following estimates,

�̂�𝑛 =
(

0.00 0.02 0.03
)⊺ , �̂�𝑛 =

⎛

⎜

⎜

⎝

0.99 0.44 0.14
0.44 0.99 0.25
0.14 0.25 0.91

⎞

⎟

⎟

⎠

, �̂�𝑝 = 7.69.

With the above estimates, the day 27th of February 2007 was deemed as an outlier. According to [4] the Chinese market index
dropped by 9% on the same day, which broke the 10-year record.

Here we showed an empirical example where the original data had to be transformed in order to apply the extreme quantile
region estimator �̂�𝑝. Our estimator may be suitable also in other cases where the original data can be bijectively mapped such that
the transformed data satisfies the ellipticity assumption.
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Appendix. Proofs

The proofs of the main results of the article are provided in this appendix. We start by proving several technical lemmas that
are then applied in proving the main theorems.
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A vector norm induced by a symmetric positive definite matrix 𝑯 ∈ R𝑚×𝑚 is denoted by

‖𝒙‖𝑯 =
√

𝒙⊺𝑯−1𝒙, 𝒙 ∈ R𝑚.

For 𝑯 = 𝑰 , we use the notation

‖𝒙‖ = ‖𝒙‖𝑰 .

A matrix norm induced by a vector norm ‖ ⋅ ‖ is denoted by

‖𝑩‖ = sup
{

‖𝑩𝒙‖
‖𝒙‖

∶ 𝒙 ∈ R𝑚 ⧵ {𝟎}
}

,

for 𝑩 ∈ R𝑚×𝑚. For example, for a symmetric positive definite matrix 𝑯 , we have that

‖𝑯‖ = 𝜆max,

where 𝜆max is the largest eigenvalue of 𝑯 . Complement of an open ellipsoid with location 𝒉 ∈ R𝑚, shape determined by a symmetric
positive definite matrix 𝑯 and scaling factor 𝑟 > 0 is denoted by

𝐸(𝒉,𝑯 , 𝑟) = {𝒙 ∈ R𝑚 ∶ ‖𝒙 − 𝒉‖𝑯 ≥ 𝑟}.

Let 𝑿 be an elliptically distributed random variable with generating variate , location 𝝁 and scatter 𝜮. Also assume that 𝑿 satisfies
assumptions of Theorem 5. Then for a sufficiently small 𝑝𝑛 we can represent 𝑄𝑝𝑛 = {𝒙 ∈ R𝑚 ∶ 𝑓 (𝒙) ≤ 𝛽} as

𝑄𝑝𝑛 = 𝐸(𝝁,𝜮, 𝑟𝑝𝑛 ),

where 𝑟𝑝𝑛 is the (1−𝑝𝑛)-quantile of the generating variate . For details of the derivation, see Section 3.2. Without a loss of generality
we can assume the above representation for 𝑄𝑝𝑛 throughout the proofs since by the assumptions of Theorem 5 we have that 𝑝𝑛 → 0,
as 𝑛 → ∞.

The next lemma gives an upper bound for the length of the longest semiaxis of an open ellipsoid. The result is applied in the
proof of Lemma 2.

Lemma 1. Let 𝒉 ∈ R𝑚, 𝑯 ∈ R𝑚×𝑚 be a positive definite matrix and let 𝑟 > 0. Then

sup
{

‖𝒙 − 𝒉‖2 ∶ 𝒙 ∈ (𝐸(𝒉,𝑯 , 𝑟))𝑐
}

≤ 𝑟2‖𝑯‖.

Proof of Lemma 1. Notice that

(𝐸(𝒉,𝑯 , 𝑟))𝑐 =
{

𝒙 ∶ ‖𝒙 − 𝒉‖2
𝑟2𝑯 < 1

}

.

Matrix 𝑯 is positive definite. Thus, by spectral theorem, we have that 𝑯 = 𝑩𝑩, where

𝑩 = 𝑼𝜦1∕2𝑼 ⊺,

𝑼 is orthogonal, 𝜦1∕2 = diag(𝜆1∕21 ,… , 𝜆1∕2𝑚 ) and where 𝜆1 ≥ ⋯ ≥ 𝜆𝑚 are the eigenvalues of the matrix 𝑯 . Now

‖𝒙 − 𝒉‖2 = ‖(𝑟𝑩)(𝑟−1𝑩−1)(𝒙 − 𝒉)‖2 ≤ ‖𝑟𝑩‖

2
‖𝒙 − 𝒉‖2

𝑟2𝑯 = 𝑟2‖𝑯‖‖𝒙 − 𝒉‖2
𝑟2𝑯

and it follows that

sup
𝒙∈(𝐸(𝑯 ,𝒉,𝑟))𝑐

‖𝒙 − 𝒉‖2 ≤ 𝑟2‖𝑯‖ sup
𝒙∈(𝐸(𝑯 ,𝒉,𝑟))𝑐

‖𝒙 − 𝒉‖2
𝑟2𝑯 ≤ 𝑟2‖𝑯‖. □

Lemma 2. Let �̂�𝑛,𝝁 ∈ R𝑚, let �̂�𝑛,𝜮 ∈ R𝑚×𝑚 be positive definite, and let 𝑟𝑝𝑛 , �̂�𝑝𝑛 > 0. Let

𝑟𝑝𝑛 = ‖�̂�𝑛 − 𝝁‖𝜮 + �̂�𝑝𝑛
(

‖�̂�𝑛‖‖𝜮−1 − �̂�−1
𝑛 ‖ + 1

)

, �̃�𝑝𝑛 = 𝐸
(

𝝁,𝜮,max(𝑟𝑝𝑛 , 𝑟𝑝𝑛 )
)

.

Then

�̃�𝑝𝑛 ⊂ 𝑄𝑝𝑛 ∩ �̂�𝑝𝑛 .

Proof of Lemma 2. Since max(𝑟𝑝𝑛 , 𝑟𝑝𝑛 ) ≥ 𝑟𝑝𝑛 , we have that �̃�𝑝𝑛 ⊂ 𝑄𝑝𝑛 . Thus it is sufficient to prove that 𝐸(𝝁,𝜮, 𝑟𝑝𝑛 ) ⊂ �̂�𝑝𝑛 , or
equivalently,

�̂�𝑐
𝑝𝑛

⊂ (𝐸(𝝁,𝜮, 𝑟𝑝𝑛 ))
𝑐 . (8)

We start by proving that

�̂�𝑐
𝑝𝑛

⊂
(

𝐸
(

�̂�𝑛,𝜮, �̇�𝑝𝑛
))𝑐

, (9)

where

�̇�𝑝𝑛 = �̂�𝑝𝑛
(

‖

‖

‖

�̂�𝑛
‖

‖

‖

‖

‖

‖

𝜮−1 − �̂�−1
𝑛
‖

‖

‖

+ 1
)

.
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Let 𝒙 ∈ �̂�𝑐
𝑝𝑛

. Then

‖𝒙 − �̂�𝑛‖
2
𝜮 =

(

‖𝒙 − �̂�𝑛‖
2
𝜮 − ‖𝒙 − �̂�𝑛‖

2
�̂�𝑛

)

+ ‖𝒙 − �̂�𝑛‖
2
�̂�𝑛

<
|

|

|

|

(𝒙 − �̂�𝑛)⊺
(

𝜮−1 − �̂�−1
𝑛

)

(𝒙 − �̂�𝑛)
|

|

|

|

+ �̂�2𝑝𝑛

≤ ‖

‖

𝒙 − �̂�𝑛
‖

‖

2 ‖
‖

‖

𝜮−1 − �̂�−1
𝑛
‖

‖

‖

+ �̂�2𝑝𝑛 ≤ sup
𝒙∈�̂�𝑐

𝑝𝑛

‖

‖

𝒙 − �̂�𝑛
‖

‖

2 ‖
‖

‖

𝜮−1 − �̂�−1
𝑛
‖

‖

‖

+ �̂�2𝑝𝑛

≤ �̂�2𝑝𝑛

(

‖

‖

‖

�̂�𝑛
‖

‖

‖

‖

‖

‖

𝜮−1 − �̂�−1
𝑛
‖

‖

‖

+ 1
)

≤ �̂�2𝑝𝑛

(

‖

‖

‖

�̂�𝑛
‖

‖

‖

‖

‖

‖

𝜮−1 − �̂�−1
𝑛
‖

‖

‖

+ 1
)2

= �̇�2𝑝𝑛 .

Thus 𝒙 ∈ (𝐸(�̂�𝑛,𝜮, �̇�𝑝𝑛 ))
𝑐 and Inclusion (9) holds.

Next let us prove that

(𝐸(�̂�𝑛,𝜮, �̇�𝑝𝑛 ))
𝑐 ⊂ (𝐸(𝝁,𝜮, 𝑟𝑝𝑛 ))

𝑐 . (10)

Let 𝒙 ∈ (𝐸(�̂�𝑛,𝜮, �̇�𝑛))𝑐 . Now

‖𝒙 − 𝝁‖2𝜮 = ‖(𝒙 − �̂�𝑛) + (�̂�𝑛 − 𝝁)‖2𝜮 ≤
(

‖(𝒙 − �̂�𝑛)‖𝜮 + ‖�̂�𝑛 − 𝝁‖𝜮
)2

<
(

�̇�𝑝𝑛 + ‖�̂�𝑛 − 𝝁‖𝜮
)2

= 𝑟2𝑝𝑛
Thus 𝒙 ∈ (𝐸(𝝁,𝜮, 𝑟𝑝𝑛 ))

𝑐 and Inclusion (10) holds. By combining Inclusions (9) and (10) we have that also Inclusion (8) holds, which
completes the proof. □

Next, let us give two lemmas about the relations between 𝑅𝑖 and �̂�𝑖. The first lemma states that �̂� is a consistent estimator of
𝑅.

Lemma 3. Suppose 𝑿 is absolutely continuous elliptically distributed random variable with location 𝝁 and scatter 𝜮. Assume that �̂�𝑛
P
→ 𝝁

and �̂�𝑛
P
→ 𝜮, as 𝑛 → ∞. Let 𝑅 = ‖𝑿 − 𝝁‖𝜮 and �̂� = ‖𝑿 − �̂�𝑛‖�̂�𝑛

. Then

�̂�
P
→ 𝑅, 𝑛 → ∞.

Proof of Lemma 3. We have that

|�̂�2 − 𝑅2
| ≤

|

|

|

|

‖𝑿 − �̂�𝑛‖
2
�̂�𝑛

− ‖𝑿 − �̂�𝑛‖
2
𝜮
|

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Term I

+ |

|

|

‖𝑿 − �̂�𝑛‖
2
𝜮 − ‖𝑿 − 𝝁‖2𝜮

|

|

|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Term II

.

Now let us consider terms I and II separately. For term I we have

I =
|

|

|

|

(𝑿 − �̂�𝑛)⊺
(

�̂�−1
𝑛 −𝜮−1

)

(𝑿 − �̂�𝑛)
|

|

|

|

≤ ‖𝑿 − �̂�𝑛‖
2 ‖
‖

‖

�̂�−1
𝑛 −𝜮−1‖

‖

‖

= 𝑂P(1)𝑜P(1) = 𝑜P(1), 𝑛 → ∞.

Similarly, for term II we apply reverse triangle inequality to get

|

|

‖(𝑿 − 𝝁) + (𝝁 − �̂�𝑛)‖𝜮 − ‖𝑿 − 𝝁‖𝜮 || ≤ ‖𝝁 − �̂�𝑛‖𝜮 = 𝑜P(1)

from which we get by continuous mapping theorem that II = 𝑜P(1). Thus, by continuous mapping theorem

�̂�
P
→ 𝑅, 𝑛 → ∞. □

The second lemma about relationship between 𝑅𝑖 and �̂�𝑖 shows the effect of replacing order statistics 𝑅𝑛−𝑘,𝑛 with �̂�𝑛−𝑘,𝑛 when
𝑘𝑛 → ∞, 𝑘𝑛∕𝑛 → ∞, as 𝑛 → ∞.

Lemma 4 ([13], Lemma 2.2). Suppose 𝑿 has absolutely continuous elliptical distribution and let 𝑿1,…𝑿𝑛 be i.i.d. copies of 𝑿. Let
𝑅𝑖 = ‖𝑿𝑖 − 𝝁‖𝜮 and �̂�𝑖 = ‖𝑿𝑖 − �̂�𝑛‖�̂�𝑛

, 𝑖 ∈ {1,… , 𝑛}. If 𝑘𝑛 → ∞, 𝑘𝑛∕𝑛 → 0, as 𝑛 → ∞, then we have

|

|

|

𝑅2
𝑛−𝑘𝑛 ,𝑛

− �̂�2
𝑛−𝑘𝑛 ,𝑛

|

|

|

≤ 𝐾𝑛𝑅
2
𝑛−𝑘𝑛 ,𝑛

, 𝑛 → ∞,

where 𝐾𝑛 is a sequence of nonnegative random variables. If �̂�𝑛
P
→ 𝝁 and �̂�𝑛

P
→ 𝜮, as 𝑛 → ∞, then we can find a sequence 𝐾𝑛 such that

𝐾𝑛
P
→ 0, as 𝑛 → ∞.

Now let us review an equivalent formulation of the domain of attraction condition given in Definition 1.

Theorem 7 ([6], Theorem 1.1.6). Let 𝛾 ∈ R, let 𝐹 be a cumulative distribution function of a univariate random variable and let 𝑈 be the
tail quantile function corresponding to 𝐹 . Then 𝐹 ∈ (𝐺𝛾 ) if and only if there exists a positive function 𝑎 such that

lim
𝑡→∞

𝑡𝐹 (𝑎(𝑡)𝑥 + 𝑈 (𝑡)) = (1 + 𝛾𝑥)−1∕𝛾 , (11)

for all 𝑥 > 0 with 1 + 𝛾𝑥 > 0. Here, for 𝛾 = 0, the right-hand side of the equation is interpreted as 𝑒−𝑥.
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Below we present two different second order conditions. Both are needed in the proof of Theorem 5. In the definitions of the
second order conditions we restrict to the case 𝛾 > 0 as our primary interest is to study heavy-tailed distributions.

Definition 5 (Second Order Extended Regular Variation). The tail quantile function 𝑈 satisfies the second order extended regular
variation condition if there exists a positive or a negative function �̃� with lim𝑡→∞ �̃�(𝑡) = 0 such that for all 𝑥 > 0,

lim
𝑡→∞

𝑈 (𝑡𝑥)−𝑈 (𝑡)
𝑎(𝑡) − 𝑥𝛾−1

𝛾

�̃�(𝑡)
= 1

�̃�

(

𝑥𝛾+�̃� − 1
𝛾 + �̃�

− 𝑥𝛾 − 1
𝛾

)

,

where 𝛾 > 0 and �̃� < 0.

Definition 6 (Second Order Regular Variation). The tail quantile function 𝑈 satisfies the second order regular variation condition if
there exists a positive or a negative function 𝐴 with lim𝑡→∞ 𝐴(𝑡) = 0 such that for all 𝑥 > 0,

lim
𝑡→∞

𝑈 (𝑡𝑥)
𝑈 (𝑡) − 𝑥𝛾

𝐴(𝑡)
= 𝑥𝛾 𝑥

𝜌 − 1
𝜌

,

where 𝛾 > 0 and 𝜌 < 0.

Regular variation and extended regular variation are equivalent conditions in the case 𝛾 > 0, see Theorem 2. However, above
second order conditions are not equivalent [6, Example 2.3.11]. Only the other implication holds, that is, if 𝑈 is of extended regular
variation with a function �̃� and a second order parameter �̃� < 0, then it is of second order regular variation with a different function
𝐴 and possibly a different second order parameter 𝜌 < 0. [51, Corollary 3.1.]. A refined version of Relation (11) holds under the
second order extended regular variation condition.

Lemma 5 ([52], Lemma 2.4.1). Let 𝐹 be a cumulative distribution function of a univariate random variable and let 𝑈 be the tail quantile
function corresponding to 𝐹 . Suppose 𝐹 satisfies the second order extended regular variation condition given in Definition 5 with 𝛾 > 0 and
�̃� < 0. Also, assume that 𝑥0 > −1∕𝛾. Then

lim
𝑡→∞

sup
𝑥≥𝑥0

|

|

|

|

|

(1 + 𝛾𝑥)−1∕𝛾

𝑡𝐹 (𝑎(𝑡)𝑥 + 𝑈 (𝑡))
− 1

|

|

|

|

|

= 0.

The proof of Theorem 5 relies on the following lemma.

Lemma 6. Let 𝑿 be an 𝑚-variate elliptically distributed random variable with absolutely continuous generating variate , location vector 𝝁
and scatter matrix 𝜮 and let 𝑅 = ‖𝑿−𝝁‖𝜮 . Let 𝑿1,… ,𝑿𝑛 be i.i.d. copies of 𝑿. Let 𝐹 ∈ (𝐺𝛾 ), 𝛾 > 0 and let �̂�𝑛 denote the corresponding
separating Hill estimator based on a threshold sequence 𝑘𝑛. Let �̂�𝑛 and �̂�𝑛 denote estimators of 𝝁 and 𝜮, respectively. Let

�̂�𝑝𝑛 = �̂�𝑛−𝑘𝑛 ,𝑛

(

𝑘𝑛
𝑛𝑝𝑛

)�̂�𝑛
,

where �̂�𝑖 = ‖𝑿𝑖 − �̂�𝑛‖�̂�𝑛
. Suppose the following conditions:

C1. 𝑘𝑛 → ∞, 𝑘𝑛∕𝑛 → 0 as 𝑛 → ∞;
C2. 𝑈 satisfies the second order extended regular variation condition given in Definition 5;
C3. lim𝑛→∞

√

𝑘𝑛𝐴(𝑛∕𝑘𝑛) = 𝜆 ∈ R, where 𝐴 is the positive or negative function for 𝑈 in Definition 6;
C4. 𝑛𝑝𝑛 = 𝑜(𝑘𝑛) and ln(𝑛𝑝𝑛) = 𝑜

(

√

𝑘𝑛
)

, as 𝑛 → ∞;

C5.
√

𝑛(�̂�𝑛 − 𝝁) = 𝑂P(1) and
√

𝑛(�̂�𝑛 −𝜮) = 𝑂P(1).

Then as 𝑛 → ∞,
𝐹𝑅(�̂�𝑝𝑛 +𝑍𝑛)

𝑝𝑛

P
→ 1,

for any sequence 𝑍𝑛 = 𝑂P(1).

Proof of Lemma 6. The proof of this lemma is similar to the proof of Theorem A.1. in [8]. For reader’s convenience we provide
all the details here as Theorem A.1. in [8] does neither involve estimated Mahalanobis distances �̂�𝑖 nor a sequence 𝑍𝑛.

This proof relies on second order extended regular variation of 𝑅. Note that, as 𝑅
𝑑
= , second order extended regular variation

of the generating variate  implies second order extended regular variation of 𝑅.
To simplify notations, denote

𝑏 = 𝑏(𝑛∕𝑘𝑛) = 𝑈𝑅

(

𝑛
𝑘𝑛

)

, �̂� = �̂�(𝑛∕𝑘𝑛) = �̂�𝑛−𝑘𝑛 ,𝑛, 𝑎 = 𝑎(𝑛∕𝑘𝑛), �̂� = �̂�𝑛∕𝑘𝑛 = �̂�𝑛−𝑘𝑛 ,𝑛�̂�𝑛 and

𝑌𝑛 =
�̂� − 𝑏
𝑎

+ �̂�
𝑎
𝑑 �̂�𝑛𝑛 − 1

�̂�𝑛
+

𝑍𝑛
𝑎

,
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where 𝑑𝑛 = 𝑘𝑛∕𝑛𝑝𝑛. Now 𝑍𝑛
𝑎 = 𝑂P

(

1
𝑎

)

and

1 − 𝐹𝑅(�̂�𝑝𝑛 + 𝑂P(1))
𝑝𝑛

= 𝑑𝑛
𝑛
𝑘𝑛

𝐹 (𝑎𝑌𝑛 + 𝑏) = 𝑑𝑛

𝑛
𝑘𝑛
𝐹 (𝑎𝑌𝑛 + 𝑏)

(1 + 𝛾𝑌𝑛)−1∕𝛾
(1 + 𝛾𝑌𝑛)−1∕𝛾 − 𝑑𝑛(1 + 𝛾𝑌𝑛)−1∕𝛾 + 𝑑𝑛(1 + 𝛾𝑌𝑛)−1∕𝛾

= 𝑑𝑛(1 + 𝛾𝑌𝑛)−1∕𝛾
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=𝐼1

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

⎛

⎜

⎜

⎝

𝑛
𝑘𝑛
𝐹 (𝑎𝑌𝑛 + 𝑏)

(1 + 𝛾𝑌𝑛)−1∕𝛾
− 1

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝐼2

+1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Thus it is sufficient to prove that 𝐼1
P
→ 1 and 𝐼2

P
→ 0 as 𝑛 → ∞. We continue by proving that

𝑑 �̂�𝑛−𝛾𝑛
P
→ 1, �̂� − 𝑏

𝑎
P
→ 0, �̂�

𝑎
P
→ 1, 𝑛 → ∞.

After we have proven the above relations we proceed by examining terms 𝐼1 and 𝐼2 separately.
Since

√

𝑘𝑛(�̂�𝑛 − 𝛾) = 𝑂P(1) (12)

by [13, Corollary 2.2], we have that

𝑑 �̂�−𝛾𝑛 = exp

⎛

⎜

⎜

⎜

⎜

⎜

⎝

√

𝑘𝑛(�̂�𝑛 − 𝛾)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=𝑂P(1)

(

ln 𝑘𝑛
√

𝑘𝑛
−

ln(𝑛𝑝𝑛)
√

𝑘𝑛

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
→0, 𝑛→∞

⎞

⎟

⎟

⎟

⎟

⎟

⎠

P
→ 1. (13)

By [6, Theorem 2.4.1] we have

𝑅𝑛−𝑘𝑛 ,𝑛 − 𝑏

𝑎
= 𝑂P

(

1
√

𝑘𝑛

)

, (14)

and by [6, Lemma 1.2.9],

lim
𝑛→∞

𝑏
𝑎
= 1

𝛾
. (15)

Notice that since both �̂�𝑛−𝑘𝑛 ,𝑛 and 𝑅𝑛−𝑘𝑛 ,𝑛 are nonnegative, it follows from Lemma 4 that

|

|

|

�̂� − 𝑅𝑛−𝑘𝑛 ,𝑛
|

|

|

2
≤ |

|

|

�̂�2 − 𝑅2
𝑛−𝑘𝑛 ,𝑛

|

|

|

≤ 𝐾𝑛𝑅
2
𝑛−𝑘𝑛 ,𝑛

,

where 𝐾𝑛 is a nonnegative sequence of random variables such that 𝐾𝑛
P
→ 0, as 𝑛 → ∞. Thus,

|

|

|

�̂� − 𝑅𝑛−𝑘𝑛 ,𝑛
|

|

|

≤ 𝐿𝑛𝑅𝑛−𝑘𝑛 ,𝑛, (16)

where 𝐿𝑛 =
√

𝐾𝑛. Now, as 𝐾𝑛 is nonnegative, continuous mapping theorem yields 𝐿𝑛
P
→ 0, as 𝑛 → ∞. By combining Eqs. (14), (15)

and (16) we have that
|

|

|

|

|

�̂� − 𝑏
𝑎

|

|

|

|

|

≤
|

|

|

|

|

|

�̂� − 𝑅𝑛−𝑘𝑛 ,𝑛

𝑎

|

|

|

|

|

|

+
|

|

|

|

|

𝑅𝑛−𝑘𝑛 ,𝑛 − 𝑏

𝑎

|

|

|

|

|

≤ 𝐿𝑛
𝑅𝑛−𝑘𝑛 ,𝑛

𝑎
+ 𝑜P(1)

= 𝐿𝑛

(𝑅𝑛−𝑘𝑛 ,𝑛 − 𝑏

𝑎
+ 𝑏

𝑎

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
P
→1∕𝛾

+𝑜P(1)
P
→ 0, 𝑛 → ∞.

Similarly,

|

|

|

|

�̂�
𝑎
− 1

|

|

|

|

= |

|

�̂�𝑛||

|

|

|

|

|

|

�̂� − 𝑅𝑛−𝑘𝑛 ,𝑛

𝑎
+

𝑅𝑛−𝑘𝑛 ,𝑛 − 𝑏

𝑎
+ 𝑏

𝑎
− 1

�̂�𝑛

|

|

|

|

|

|

≤ |

|

�̂�𝑛||

(

𝐿𝑛𝑅𝑛−𝑘𝑛 ,𝑛

𝑎
+
|

|

|

|

|

𝑅𝑛−𝑘𝑛 ,𝑛 − 𝑏

𝑎

|

|

|

|

|

+
|

|

|

|

𝑏
𝑎
− 1

�̂�𝑛

|

|

|

|

)

P
→ 0, 𝑛 → ∞. (17)

Let us now consider term I1. Notice that

1 + 𝛾𝑌𝑛 = 𝛾 �̂� − 𝑏
𝑎

⏟⏟⏟
P
→0

+
(

1 − �̂�
𝑎
𝛾
�̂�𝑛

)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
P
→0

+ �̂�
𝑎
𝛾
�̂�𝑛

𝑑 �̂�𝑛𝑛 + 𝑂P

( 1
𝑎

)

⏟⏞⏟⏞⏟
P
→0

= 𝑑𝛾𝑛
�̂�
𝑎
𝛾
�̂�𝑛

𝑑 �̂�𝑛−𝛾𝑛

⏟⏞⏞⏟⏞⏞⏟
P
→1

+𝑜P(1)

= 𝑑𝛾𝑛
(

1 + 𝑜P(1)
)

,
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and consequently, by using continuous mapping theorem,

𝐼1 = 𝑑𝑛(𝑑𝛾𝑛 )
−1∕𝛾 (1 + 𝑜P(1)

)−1∕𝛾 = (1 + 𝑜P(1))−1∕𝛾
P
→ 1, 𝑛 → ∞.

Next, consider term I2. Let 𝑀 ∈ R. Notice that

P
(

𝑌𝑛 ≤ 𝑀
)

= P(𝑑𝛾𝑛 ≤ 𝑂P(1)) + 𝑜(1) → 0, 𝑛 → ∞.

Choose 𝑥0 > − 1
𝛾 and let 𝜀 > 0. Then

P
(

|

|

𝐼2|| > 𝜀
)

≤ P
(

|

|

𝐼2|| > 𝜀, 𝑌𝑛 ≥ 𝑥0
)

+ P
(

𝑌𝑛 < 𝑥0
)

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
→0

.

Now by Lemma 5 we have that

P
(

|

|

𝐼2|| > 𝜀, 𝑌𝑛 ≥ 𝑥0
)

≤ P

(

sup
𝑥≥𝑥0

|

|

|

|

|

𝑡𝐹 (𝑎𝑥 + 𝑏)
(1 + 𝛾𝑥)−1∕𝛾

− 1
|

|

|

|

|

> 𝜀

)

→ 0, 𝑛 → ∞.

We have proven that 𝐼1
P
→ 1 and that 𝐼2

P
→ 0 as 𝑛 → ∞, which completes the proof. □

Now we are ready to prove Theorem 5.

Proof of Theorem 5. Let �̃�𝑝𝑛 be as in Lemma 2, then �̃�𝑝𝑛 ⊂ 𝑄𝑝𝑛 ∩ �̂�𝑝𝑛 . Now it follows from triangle inequality that

𝑃 (𝑄𝑝𝑛 ▵ �̂�𝑝𝑛 )
𝑝𝑛

≤
𝑃 (𝑄𝑝𝑛 ▵ �̃�𝑝𝑛 )

𝑝𝑛
+

𝑃 (�̃�𝑝𝑛 ▵ �̂�𝑝𝑛 )
𝑝𝑛

=

(

𝑃 (𝑄𝑝𝑛 )
𝑝𝑛

−
𝑃 (�̃�𝑝𝑛 )

𝑝𝑛

)

+

(

𝑃 (�̂�𝑝𝑛 )
𝑝𝑛

−
𝑃 (�̃�𝑝𝑛 )

𝑝𝑛

)

=
𝑃 (𝑄𝑝𝑛 )

𝑝𝑛
− 2

𝑃 (�̃�𝑝𝑛 )
𝑝𝑛

+
𝑃 (�̂�𝑝𝑛 )

𝑝𝑛
.

By definition of 𝑄𝑝𝑛 we have that 𝑃 (𝑄𝑝𝑛 ) = 𝑝𝑛. Thus, it is sufficient to prove that, as 𝑛 → ∞

𝑃 (�̂�𝑝𝑛 )
𝑝𝑛

P
→ 1 (18)

and
𝑃 (�̃�𝑝𝑛 )

𝑝𝑛

P
→ 1. (19)

First, let us show that Relation (18) holds. By Lemma 3, we have that

𝑅 − �̂�
P
→ 0, 𝑛 → ∞.

Now, by using Lemma 6, we obtain

𝑃 (�̂�𝑝𝑛 )
𝑝𝑛

=
P(�̂� ≥ �̂�𝑝𝑛 )

𝑝𝑛
=

P(𝑅 ≥ �̂�𝑝𝑛 + (𝑅 − �̂�))
𝑝𝑛

=
𝐹𝑅(�̂�𝑝𝑛 + (𝑅 − �̂�))

𝑝𝑛
=

𝐹𝑅(�̂�𝑝𝑛 + 𝑜P(1))
𝑝𝑛

P
→ 1, 𝑛 → ∞.

Next, we show that Relation (19) holds. Let us start by proving that

𝑟𝑝𝑛 = �̂�𝑝𝑛 + 𝑂P(1).

Remember that
√

𝑛(�̂�𝑛 − 𝝁) and
√

𝑛(�̂�𝑛 −𝜮) are bounded in probability. Thus,

𝑟𝑝𝑛 = �̂�𝑝𝑛 +
‖

‖

�̂�𝑛 − 𝝁‖
‖𝜮 + �̂�𝑝𝑛‖�̂�𝑛‖

‖

‖

‖

�̂�−1
𝑛 −𝜮−1‖

‖

‖

= �̂�𝑝𝑛 + 𝑂P

(

1
√

𝑛

)

+ 𝑂P

(

�̂�𝑝𝑛
√

𝑛

)

.

Hence it is sufficient to show that
�̂�𝑝𝑛
√

𝑛
= 𝑂P(1).

Second order extended regular variation implies that

lim
𝑡→∞

𝑈𝑅(𝑡)
𝑡𝛾

= 𝑐 for some 𝑐 ∈ (0,∞),

see [6, page 49]. Since 𝑟𝑝𝑛 = 𝑈𝑅(1∕𝑝𝑛), we now have that

lim
𝑛→∞

𝑟𝑝𝑛
(

1∕𝑝𝑛
)𝛾 = 𝑐. (20)
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Additionally, by Theorem 3, we have that

𝑅𝑛−𝑘𝑛 ,𝑛

(

𝑘𝑛
𝑛𝑝𝑛

)�̂�𝑛

𝑟𝑝𝑛

P
→ 1, 𝑛 → ∞. (21)

Since 𝑅𝑛−𝑘𝑛 ,𝑛
𝑎.𝑠.
→ ∞, as 𝑛 → ∞ [13, Lemma 2.1], then the quantity �̂�𝑛−𝑘𝑛∕𝑅𝑛−𝑘𝑛 is almost surely well-defined for large 𝑛 and

by Eq. (16),
|

|

|

|

|

|

�̂�𝑛−𝑘𝑛
𝑅𝑛−𝑘𝑛

− 1
|

|

|

|

|

|

=
|

|

|

|

|

|

�̂�𝑛−𝑘𝑛 − 𝑅𝑛−𝑘𝑛
𝑅𝑛−𝑘𝑛

|

|

|

|

|

|

≤ 𝐿𝑛
P
→ 0, 𝑛 → ∞. (22)

Now, by combining Eqs. (21) and (22), we have that

�̂�𝑝𝑛
𝑟𝑝𝑛

=
�̂�𝑛−𝑘𝑛 ,𝑛

𝑅𝑛−𝑘𝑛 ,𝑛

𝑅𝑛−𝑘𝑛 ,𝑛

(

𝑘𝑛
𝑛𝑝𝑛

)�̂�𝑛

𝑟𝑝𝑛

P
→ 1, 𝑛 → ∞. (23)

By Condition 4 we have that 𝑝−𝛾𝑛 𝑛−1∕2 = 𝑂(1), and combining Eqs. (20) and (23) gives
�̂�𝑝𝑛
√

𝑛
=

𝑟𝑝𝑛
(1∕𝑝𝑛)𝛾
⏟⏞⏟⏞⏟

→𝑐

�̂�𝑝𝑛
𝑟𝑝𝑛

⏟⏟⏟
P
→1

(1∕𝑝𝑛)𝛾
√

𝑛
⏟⏞⏟⏞⏟
=𝑂(1)

= 𝑂P(1).

Now, by Lemma 6 we have

𝑃 (𝐸(𝝁,𝜮, 𝑟𝑝𝑛 ))
𝑝𝑛

=
𝐹𝑅(�̂�𝑝𝑛 + 𝑂P(1))

𝑝𝑛

P
→ 1, 𝑛 → ∞.

Recall that

min{𝑥, 𝑦} =
𝑥 + 𝑦 − |𝑥 − 𝑦|

2
, 𝑥, 𝑦 ∈ R.

Thus

𝑃 (�̃�𝑝𝑛 )
𝑝𝑛

=
min

{

𝑃 (𝑄𝑝𝑛 ), 𝑃 (𝐸(𝝁,𝜮, 𝑟𝑝𝑛 ))
}

𝑝𝑛
= 1

2

(

𝑃 (𝑄𝑝𝑛 )
𝑝𝑛

+
𝑃 (𝐸(𝝁,𝜮, 𝑟𝑝𝑛 ))

𝑝𝑛

)

− 1
2

|

|

|

|

|

𝑃 (𝑄𝑝𝑛 )
𝑝𝑛

−
𝑃 (𝐸(𝝁,𝜮, 𝑟𝑝𝑛 ))

𝑝𝑛

|

|

|

|

|

P
→ 1, 𝑛 → ∞.

We have now proven Relations (18) and (19), which completes the proof. □

Before we prove affine equivariance of the estimator �̂�𝑝𝑛 , we give a simple lemma about affine invariance of Mahalanobis
distance.

Lemma 7. Let 𝑯 ∈ R𝑚×𝑚 be a symmetric positive definite matrix and let 𝑩 ∈ R𝑚×𝑚 be an invertible matrix. Let 𝒙 ∈ R𝑚 and 𝒚 = 𝑩𝒙+ 𝒃.
Then

‖𝒚 − 𝒃‖𝑩𝑯𝑩⊺ = ‖𝒙‖𝑯

We call this property the affine invariance of Mahalanobis distance.

Proof of Lemma 7. Using the invertibility of matrix 𝑩, it is straightforward to obtain

‖𝒚 − 𝒃‖𝑩𝑯𝑩⊺ = ‖𝑩𝒙‖𝑩𝑯𝑩⊺ =
√

(𝑩𝒙)⊺(𝑩𝑯𝑩⊺)−1(𝑩𝒙) =
√

𝒙⊺𝑩⊺(𝑩⊺)−1𝑯−1𝑩−1𝑩𝒙 =
√

𝒙⊺𝑯−1𝒙 = ‖𝒙‖𝑯 . □

We are now ready to prove Theorem 6.

Proof of Theorem 6. Using the affine invariance of Mahalanobis distance and affine equivariance of the given location and scatter
estimators, we obtain

�̂�𝑦
𝑖 = �̂�𝑥

𝑖 .

Consequently,

�̂�𝑥𝑝𝑛 = �̂�𝑦𝑝𝑛 ,

and thus,

𝑄𝑥
𝑝𝑛

= 𝐸(�̂�𝑛(), �̂�𝑛(), �̂�𝑦𝑝𝑛 ).
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Now it is sufficient to prove that

𝑩𝐸(�̂�𝑛(), �̂�𝑛(), �̂�𝑦𝑝𝑛 ) + 𝒃 = 𝑄𝑦
𝑝𝑛
.

Let 𝒚 ∈ 𝑩𝐸(�̂�𝑛(), �̂�𝑛(), �̂�𝑦𝑝𝑛 )+𝒃. Then 𝒚 = 𝑩𝒙+𝒃, where 𝒙 ∈ 𝐸(�̂�𝑛(), �̂�𝑛(), �̂�𝑦𝑝𝑛 ). By affine invariance of the Mahalanobis distance
we have that

‖𝒚 − �̂�𝑛()‖�̂�𝑛() = ‖𝒙 − �̂�𝑛()‖�̂�𝑛() ≥ �̂�𝑦𝑝𝑛 .

Thus 𝒚 ∈ 𝑄𝑦
𝑝𝑛 and consequently,

𝑩𝐸(�̂�𝑛(), �̂�𝑛(), �̂�𝑦𝑝𝑛 ) + 𝒃 ⊂ 𝑄𝑦
𝑝𝑛
.

Reverse inclusion is proven similarly. Let 𝒚 ∈ 𝑄𝑦
𝑝𝑛 and 𝒙 = 𝑩−1(𝒚 − 𝒃). Now, by affine invariance of the Mahalanobis distance,

‖𝒙 − �̂�𝑛()‖�̂�𝑛() = ‖𝒚 − �̂�𝑛()‖�̂�𝑛() ≥ �̂�𝑦𝑝𝑛 .

Thus 𝒙 ∈ 𝐸(�̂�𝑛(), �̂�𝑛(), �̂�𝑦𝑝𝑛 ) and consequently, 𝒚 ∈ 𝑩𝐸(�̂�𝑛(), �̂�𝑛(), �̂�𝑦𝑝𝑛 ) + 𝒃. That is, we have

𝑄𝑦
𝑝𝑛

⊂ 𝑩𝑄(�̂�𝑛(), �̂�𝑛(), �̂�𝑦𝑝𝑛 ) + 𝒃,

which completes the proof. □
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