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We consider the scenario in which the light Higgs scalar boson appears as the pseudo-Goldstone boson.
We discuss examples in both condensed matter and relativistic field theory. In *He-B the symmetry
breaking gives rise to four Nambu-Goldstone (NG) modes and 14 Higgs modes. At lower energy one of the
four NG modes becomes the Higgs boson with a small mass. This is the mode measured in experiments
with the longitudinal NMR, and the Higgs mass corresponds to the Leggett frequency My = hQp. The
formation of the Higgs mass is the result of the violation of the hidden spin-orbit symmetry at low energy.
In this scenario the symmetry-breaking energy scale A (the gap in the fermionic spectrum) and the Higgs
mass scale My are highly separated: My << A. On the particle physics side we consider the model inspired
by the models of Refs. Cheng et al. [J. High Energy Phys. 08 (014) 095] and Fukano et al. [Phys. Rev. D
90, 055009 (2014)]. At high energies the SU(3) symmetry is assumed which relates the left-handed top and
bottom quarks to the additional fermion y; . This symmetry is softly broken at low energies. As a result the
only CP-even Goldstone boson acquires a mass and may be considered as a candidate for the 125 GeV
scalar boson. We consider a condensation pattern different from that typically used in top-seesaw models,
where the condensate (7; yy) is off-diagonal. In our case the condensates are mostly diagonal. Unlike the
work of Cheng et al. [J. High Energy Phys. 08 (014) 095] and Fukano et al. [Phys. Rev. D 90, 055009
(2014)], the explicit mass terms are absent and the soft breaking of SU(3) symmetry is given solely by the
four-fermion terms. This reveals a complete analogy with 3He, where there is no explicit mass term and the

spin-orbit interaction has the form of the four-fermion interaction.

DOI: 10.1103/PhysRevD.92.055004

I. INTRODUCTION

Spontaneous symmetry breaking gives rise to collective
modes of the order parameter field—the Higgs field. The
oscillations of the Higgs field include the Nambu-
Goldstone (NG) modes—the gapless phase modes which
in gauge theories become massive gauge bosons due to the
Anderson-Higgs mechanism; and the gapped amplitude
modes—the Higgs bosons. The Higgs amplitude modes
have been recently observed in an electrically charged
condensed matter system—the s-wave superconductor
[1,2] (see also the review paper [3])—and in the past they
have been theoretically [4-7] and experimentally [8—10]
investigated in electrically neutral superfluid phases of *He.

In superfluid phases of *He the Higgs field contains 18
real components. This provides an arena for the simulation
of many phenomena in particle physics, including the
physics of the NG and Higgs bosons. In particular, super-
fluid *He-A violates the conventional counting rule for the
number of NG modes. In *He-A the number of NG modes
exceeds the number of broken symmetry generators, but it
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obeys the more general Novikov rule [11], according to
which the number of NG modes coincides with the
dimension of the “tangent space” in the space of the order
parameter; see the review paper [12] and references therein.

Another example of the influence of superfluid *He is
the connection between the fermionic and bosonic masses
in the theories with a composite Higgs, which was first
formulated by Nambu after considering the *He-B collec-
tive modes [13]. If the Nambu sum rule is applicable to the
Standard Model (SM), one may predict the masses of extra
Higgs bosons [12,14].

Here we discuss one more phenomenon: the appearance
of the light Higgs bosons (LHBs) as the pseudo-NG modes.
The origin of this phenomenon in *He is the hierarchy of
energy scales, which exists in superfluid *He. In particular,
the spin-orbit interaction is several orders of magnitude
smaller than the characteristic energy scale responsible for
the formation of the vacuum Higgs field [15]. When this
interaction is neglected, the symmetry group of the physical
laws is enhanced, and the broken symmetry scheme in

© 2015 American Physical Society
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3He-B gives rise to four NG modes and 14 Higgs amplitude
modes. The spin-orbit interaction reduces the symmetry
and transforms one of the NG modes to the Higgs mode
with a small mass. The mechanism of the formation of the
mass of the Higgs boson #15 in 3He-B is analogous to the
little Higgs scenario [16]. A similar mechanism could be
responsible for the relatively small mass of the observed
125 GeV scalar boson. We consider the LH bosons in
superfluid *He-B. The parametric excitation of the LH
modes has been recently reported, which corresponds to the
decay of a magnon to two light Higgses [17]. We also
consider the LH modes in the recently discovered [18]
polar phase of *He in a nematically ordered aerogel.

The idea, that Higgs boson of the SM may be composed
of fermions follows the analogy with the models of
superconductivity and superfluidity. In 1979 it was sug-
gested, that Higgs boson is composed of additional
technifermions [19]. This theory contains an additional
set of fermions that interact with the technicolor (TC) gauge
bosons. This interaction is attractive and, therefore, by
analogy with BCS superconductor theory it may lead to the
formation of fermionic condensate. The TC theory suffers
from the problems related to fermion mass generation.
Extended technicolor (ETC) interactions [20] do not pass
precision electroweak tests due to the flavor-changing
neutral currents and due to the contributions to the
electroweak polarization operators. The so-called walking
technicolor [21] improves the situation essentially, but the
ability to generate the top-quark mass remains problematic.

The idea that the Higgs boson may be composed of
known SM fermions was suggested even earlier than
technicolor (in 1977) by H. Terazawa et al. [22]. In the
top-quark condensation scenario, the top quark represents
the dominant component of the composite Higgs boson due
to its large mass compared to the other components [23]. In
1989 this construction was recovered in Ref. [24]. Later,
the top-quark condensation scenario was developed in a
number of papers [25]. In the conventional top-quark
condensation models the scale of the new dynamics was
assumed to be at about 10> GeV. Such models typically
predict a Higgs boson mass of about 2m, ~ 350 GeV
[23-25], and they are excluded by present experimental
data. In those models the prediction of the Higgs boson
mass is subject to large renormalization group corrections
[25] due to the running of coupling constants between the
working scale 10" GeV and the electroweak scale
100 GeV. But this running is not able to explain the
appearance of the Higgs boson mass around 125 GeV.

In addition to the TC and top-quark condensation
models, models were developed [26] (topcolor, topcolor-
assisted technicolor, etc.) that contain the elements of both
mentioned approaches. Other models were suggested in
which the Higgs boson appears as the Goldstone boson of
the broken approximate symmetry [27] (for the realization
of this idea in little Higgs models, see Ref. [28]).
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It seems reasonable to look for a conceptually new
model, in which Higgs bosons are composed (possibly,
partially) of known SM fermions. Such a model may avoid
the difficulties of the technicolor models or the conven-
tional models of top-quark condensation if it is based on
an analogy with certain condensed matter systems (like
superfluid *He) in which the condensates are more
complicated than in the technicolor models and conven-
tional models of top-quark condensation. (The Ilatter
models are based on the analogy with the simplest
s-wave superconductors.)

Recently, models were proposed that in a certain sense
realize this idea [29,30]. In these models the pseudo-
Goldstone boson—the candidate for the 125 GeV Higgs
boson—appears in the framework of the top seesaw [31]. In
both of these papers the additional fermion y was present
typical for the top-seesaw models. It has the quantum
numbers fp but if the gauge interactions of the Standard
Model are neglected, its left-handed component may be
considered together with b; and #; as the component of the
SU(3) triplet. As a result the structure of condensates is
indeed more complicated than in the s-wave superconduc-
tor or in the simplest models of top-quark condensation and
is, therefore, to a certain extent similar to *He. The original
interfermion interactions of Refs. [29,30] are SU(3) sym-
metric. This symmetry is broken spontaneously, giving rise
to several Nambu-Goldstone bosons. Then, the authors of
Refs. [29,30] introduced terms that softly break the SU(3)
symmetry explicitly (in particular, the explicit mass term
for y is added). As a result, one of the Goldstone bosons
acquires a mass that may be smaller than 2m,. Such a state
is considered as a candidate for the 125 GeV Higgs boson.

In the present paper we consider a model inspired by the
models of Refs. [29,30]. In our case the original SU(3)
symmetry is broken explicitly by the additional four-
fermion interaction instead of the explicit mass terms.
We investigate the resulting model in the leading order of
the 1/N, expansion. It is shown that the CP-even pseudo-
Goldstone boson may have a mass equal to 125 GeV, while
the branching ratios of its decays do not contradict the
present LHC data. We consider a condensation pattern
different from that typically used for the top-seesaw models
with an of-diagonal condensate (7;yz). In our case the
condensates are mostly diagonal.

It is worth mentioning that the considered model is of
the Nambu-Jona-Lasinio (NJL) type, that is, it contains the
effective four-fermion interaction [32]. The use of the one-
loop approximation may cause confusion because formally
the contributions of higher loops to various physical
quantities are strong. In Refs. [33,34] it was shown that
the next-to-leading-order approximation to the fermion
mass my is weak compared to the one-loop approximation
only if this mass is of the order of the cutoff m, ~ A. It
follows from analytical results and from numerical simu-
lations made within the lattice regularization [35] that the
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dimensional physical quantities in the relativistic NJL
models are typically of the order of the cutoff unless their
small values are protected by symmetry.

In the model of the present paper, the one-loop results
cannot be used because the cutoff is assumed to be many
orders of magnitude larger than the generated fermion
mass. This means that in order to use the one-loop results
we should start from the action of the model with the
additional counterterms that cancel dangerous quadratic
divergences in the next-to-leading orders of the 1/N.
expansion. Then the one-loop results give reasonable
estimates for the physical quantities. Such a redefined
NJL model is equivalent to the original NJL model defined
in zeta or dimensional regularization. The four-fermion
coupling constants of the two regularizations are related
by a finite renormalization (see Appendix, Sec. 4.2. of
Ref. [36]). The NJL models in the zeta regularization were
considered in Refs. [36,37]. The NJL model in dimensional
regularization was considered, for example, in Ref. [38].

It is generally assumed that there is an exchange by
massive gauge bosons behind the NJL models of top-quark
condensation, top seesaw, and ETC. The appearance of the
one-loop gap equation of the NJL model may follow from
the direct investigation of the theory with massive gauge
fields interacting with fermions. Indeed, recently indica-
tions were found that in the theory with an exchange by
massive gauge bosons the NJL approximation may be
applied through its one-loop expressions [39]. Anyway, we
assume that the model with the four-fermion interactions
considered here should be explored in this way, i.e., the
higher orders of the 1/N. contributions are simply dis-
regarded. We suppose that such an effective model appears
as an approximation to a certain unknown renormalizable
microscopic theory. For a further discussion of this issue,
see Refs. [12,14,37] and references therein.

The paper is organized as follows. In Sec. II we discuss
the appearance of the pseudo-Goldstone boson in super-
fluid phases of 3He due to the spin-orbit interaction. In
Sec. III we consider a model in which the pseudo-
Goldstone boson composed of a top quark and the heavy
fermion y plays the role of the 125 GeV Higgs boson. In
Sec. IV we end with our conclusions.

II. SUPERFLUID *He

A. “Hydrodynamic action” in *He
(neglected spin-orbit interaction)
According to Ref. [40], helium-3 may be described by an

effective theory with the action
|

} (iw — vp(|k|
M(A,A) = R
W[(/ﬁ

- kF))éplpz

- ]%é)Aia(pl + p2)lo,
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s = ;axp)e(p)axp) - /;;p;i;’zﬁiia(p)Jm(p),
(1)
where
p=(@.k). ,;:%
(P)=iw—vF<|k|— P,
Jia Z (ki = B)au(p2)lod§acp)e®.  (2)

P1+P2 =p

Here V is the three-dimensional volume, while f = 1/T
is the imaginary time extent of the model (i.e., the inverse
temperature). Both # and V should be set to infinity at the
end of the calculations. a.(p) is the fermion variable in
momentum space, v is the Fermi velocity, kg is the Fermi
momentum, and g is the effective coupling constant. Since
the spin-orbit coupling in liquid *He (the dipole-dipole
interaction) is relatively small, the spin and orbital rotation
groups, SO3 and SO%, can be considered independently,
and one has

G = U(1) x SOt x SOS. (3)

Let us call this G the high-energy symmetry. Equation (1) is
invariant under the action of this group.

Next [40], we proceed with the bosonization. Unity
is substituted into the functional integral, which is repre-
sented as

1~/DADAexp< D Aia(p)Aial ) (4)

p.ia

where A, (i,a =1,2,3) are bosonic variables. These
variables may be considered as the field of the Cooper
pairs, which serves as the analog of the Higgs field in
relativistic theories. A shift of the integrand in DADA
removes the four-fermion term. Therefore, the fermionic
integral can be calculated. As a result we arrive at the
“hydrodynamic” action for the Higgs field A:

eff - ZAZ a

])l(l

1
Elog DetM(A,A), (5)

where

ﬂV 1/2 [(kl - k2) ta(pl + p2)]6a>
~(iw = vp (k| = kp)Bp s )
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The relevant symmetry group G of the physical laws,
which is broken in superfluid phases of 3He, contains the
group U(1), which is responsible for conservation of the
particle number, and the group of rotations SO%. This
symmetry is spontaneously broken in superfluid phases of
3He. The order parameter—the high-energy Higgs field—
belongs to the representation S = 1 and L = 1 of the SOj
and SO% groups and is represented by a 3 x 3 complex
matrix A;, with 18 real components.

B. Vacuum of *He-B

In superfluid *He-B, the U(1) symmetry and the relative
spin-orbit symmetry are broken, and the vacuum states are
determined by the phase ¢ and the (orthogonal) rotation
matrix R;,:

A ~ AeR,,. (7)

Here A is the gap in the spectrum of fermionic quasipar-
ticles. The symmetry H of the vacuum state is the diagonal
SO; subgroup of G: the vacuum state is invariant under
combined rotations. The space R of the degenerate vacuum
states in *He-B includes the circumference U(1) of the
phase ® and the SO; space of the relative rotations:

R =G/H = U(1) x SO;. (8)

The number of Nambu-Goldstone modes in this sym-
metry-breaking scenario is 7 — 3 = 4, while the other 14
collective modes of the order parameter A,; are Higgs
bosons. These 18 bosons satisfy the Nambu sum rule,
which relates the masses of bosonic and fermionic exci-
tations [13]. The possible extension of this rule to the
Standard Model Higgs bosons was discussed in
Refs. [12,14].

In the B-phase of *He the condensate is formed in the
state with J =0, where J =L + S is the total angular
momentum of the Cooper pair [15]. In the absence of spin-
orbit interactions, the matrix R;, may be absorbed within
Egs. (5) and (6) by the rotation of the vector k'. At the same
time the phase ¢ may be absorbed by the transformation
M(A,A)—diag(e*®,e 2" )M (A,A)diag(e~>'*,€*'®), which
does not change the value of the determinant in Eq. (5). As
a result the vacuum is invariant under the combined spin
and orbit rotations. So, we consider the state

A
AL (p) = (BV)2 5,00 ()

as the symmetric low-energy vacuum. The parameter A
satisfies the gap equation

3 4

= B (@® + v (k| = kp)* + A%)71 (10)
p
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where A is the constituent mass of the fermion excitation.
We denote the fluctuations around the condensate by

O0Ajq = Ajg —A[(-g). The tensor 6A,, realizes the reducible
representation of the SO;(3) symmetry group of the
vacuum (acting on both spin and orbital indices). The
mentioned modes are classified by the total angular
momentum quantum number J = 0, 1, 2.

C. Collective modes in He-B

According to Refs. [41,42], the quadratic part of the
effective action for the fluctuations around the condensate
has the form

s = wo-am(Y).a

where 6A;,(p) = Upiq + i, While IT is the polarization
operator. At each value of J = 0, 1,2 the modes u and v are
orthogonal to each other and correspond to different values
of the bosonic energy gaps. The spectrum of the quasi-
particles is obtained at the zeros of the expressions for

5 (1) 5
S0ty Serr and 501035

the solutions of the equation Det(gII(iE) — 1) = 0:

Sé;f) The energy gaps appear [42] as

E\) = \/202(1 £ ). (12)

This proves the Nambu sum rule for 3He-B [12-14]:

EVP + [EV]? = 482 (13)
An explicit calculation gives 7’=° =#/~! =1 and
n’=* =1L The 18 collective modes [nine real and nine

imaginary deviations 6A,; of the high-energy order param-
eter from the vacuum state (9)] decompose under the S 0§
group as

J=0", J=1%,

(14)

Here + and — correspond to real and imaginary perturba-
tions 6A,;. The bosons in the first two representations are
NG bosons in the absence of spin-orbit coupling: the first
one is the sound mode [which appears due to the broken
U(1) symmetry] and the second set represents three spin
wave modes.

The other sets represent 143 45+5 =14 heavy
Higgs amplitude modes with energies of order of the
fermionic gap A. These are the so-called pair breaking
mode with J = 0 and mass 2A, three pair breaking modes
with J =17 and mass 2A, five so-called real squashing

12/5A, and five imaginary
8/5A.

modes with J = 27 and mass
squashing modes with J = 2~ and mass

055004-4
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D. Taking into account the spin-orbit interactions

The spin-orbit interaction reduces the degeneracy of the
vacuum space and transforms one of the NG modes to
the massive Higgs boson. Under the spin-orbit interaction
the high-energy symmetry group G is reduced to the
low-energy symmetry group

Gy, = U(1) x SO, (15)
where S 0§ is the group of combined rotations in spin and

orbital spaces. The spin-orbit interaction gives the follow-
ing contribution to the effective low-energy action [15]:

SsolA QDZA, a

2
(5 oBip + abip — 35,,-5aﬂ>, (16)

jﬂ(p

where g, is the new coupling constant. The matrix R; , can
still be absorbed by the rotation of k' in Eq. (6). However,
the complete effective action depends on it due to the
contribution of Eq. (16). As a result, instead of Eq. (9) we
keep

A
P) = (BV)'2 S 30Ri, (17)

where the orthogonal matrix R;, may be represented in
terms of the angle @ and the axis i of rotation:

Rio(0,0) = i ity 4 (845 — figh;) cos @ — ey iy sin 6.

(18)

Here 6 changes from 0 to z; the points (fi,0 = ) and
(—i, 6 = 7) are equivalent. Substituting this into Eq. (16),
the condensate of the form of Eq. (17) gives

Sso[A0)] = gpA2 (g (cos@ + 1/4) — g) pv.  (19)

The minimum of this expression is achieved when
6 = 6, ~ 104° (the so-called Leggett angle).

In principle, Eq. (16) affects the gap equation. The
functional form of the condensate is given by Eq. (10).
However, the constant g entering this equation receives
small A-dependent contribution. We neglect this contribu-
tion in the following. The most valuable effect of the spin-
orbit interaction is the appearance of the explicit mass term
for the collective mode given by the fluctuations of 6
around its vacuum value given by the Leggett angle 6.

It is worth mentioning that an interaction term of the
form of Eq. (16) is equivalent to a certain modification
of the original four-fermion interaction of Eq. (1). The

PHYSICAL REVIEW D 92, 055004 (2015)

modified four-fermion interaction is obtained as a result of
Gaussian integration over A;, in the functional integral.

E. Higgs #15 from spin-orbit interaction

Let us consider the collective mode 60 = 0 — 6. It
originates from the modes with J =17 and forms the
low-energy Higgs field—the light Higgs. The J =17
collective mode is the 3-vector field, whose components
can be obtained from the orthogonal matrix R,; when it is
represented in terms of the angle 6 and the axis i of
rotation. The directions of the unit vector fi correspond to
the two massless Goldstone modes. The field 60 represents
the gapped collective mode.

The mass term for this collective mode is given com-
pletely by Eq. (16) because the dynamical contribution
coming from the integration over fermions vanishes.
However, the kinetic term comes from the integration over
fermions. We represent the effect of the fluctuation 56 on
the condensate function as follows:

Ai,a[50] = Ri,(,0) = R;,(f,0p)R;, (1, 50). (20)
Within the functional determinant we absorb R;, (i, 6y) by
the rotation of k’. The remaining part gives the actual form
of 0A,; 4

A
0Aiq = _eaikﬁkée(ﬁv)l/zz- (21)

The kinetic term for 86 has the form Sy;,[60] =
> willg(@, k)[80(w, k)], where

Ty(w,0) —fZSpG €+ . k)O(A)G(e, k) O(#)
zZéaﬂ, (22)
with
_ (ie —vp (k| —kp)) A(ko)
G (e k)= .
(&:8) < —A(ko) (—ie + vp(|k| - )))
(23)
and
L 0 l%ieiakaaﬁk
O(i) = (—icieiakaaﬁk . > (24)

A constant Z, enters the expression for the effective action
of 8(w,0):

Sy~ 2@: (z§w2 + Z gDA2> [60(w,0)]2.  (25)
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This gives the following expression for the energy gap of
the LH mode:

3
Ey=Qp = 2—29\/9DA- (26)

Here Qp is the Leggett frequency (the frequency of the
longitudinal NMR) in 3He-B [15].

In the language of quantum field theory Z3 is the wave-
function renormalization constant for the field 6. It depends
logarithmically on the width of the region of momenta
around the Fermi surface. This is the region over which we
should integrate in Eq. (22). Using manipulations with the
derivatives of the partition function, we are able to relate Z,
with the spin susceptibility 3 = -% (6), where (o) is the
spin density in the presence of a magnetic field B:

s =12} (27)

Here y is the gyromagnetic ratio for the *He atom. This
allows one to rewrite the #-dependent part of Eq. (19) for
the spin-orbit interaction as

32y
=15, (P —niypv.  (28)

Ssol0]
where no = 1/5/8, which corresponds to the Leggett angle
cosf, = —% measured in NMR experiments. Here we

represent the field of the J = 1" collective modes [see
Egs. (2.2) and (2.3) in Ref. [43]] as

0
n :ﬁsini. (29)

The spin-orbit interaction fixes the magnitude of the light
Higgs field (jn| = ng) in equilibrium, but it leaves the
degeneracy corresponding to the other two components
of the J = 1% collective mode given by the direction
of fi. This corresponds to the symmetry-breaking scheme
SO} — S04/S03, where SO is the symmetry group of
rotations around the axis n. Thus the Higgs mechanism
gives rise to two NG modes and one LH, i.e., the spin-orbit
interaction (28) transforms one of the NG modes to the
LH mode.

The mass of the LHB is determined by the parameters
in Eq. (28). The Leggett frequency €p determines the
mass of the amplitude Higgs mode—the #-boson with the
dispersion low

E? = Q% + k% (30)

Here c is the relevant speed of spin waves, which in general
depends on the direction of propagation [15]. In *He-B,
Qp ~ 10734, i.e., the light Higgs acquires a mass that is
much lower than the energy scale A, at which the symmetry

PHYSICAL REVIEW D 92, 055004 (2015)

breaking occurs and which characterizes the energies of the
heavy Higgs bosons. Note that in 3He-B the low-energy
physics has all the signatures of the Higgs scenario. The
low-energy vector Higgs field n has both a massive
amplitude mode and two massless NG bosons.

In an applied magnetic field the time-reversal symmetry
1s violated, and two massless NG modes transform to the
mode with the Larmor gap (magnon) and the NG mode
with quadratic dispersion. The parametric decay of mag-
nons to pairs of the LH bosons has been recently observed
in NMR experiments with Bose-Einstein condensates of
magnons [17].

The given scenario in *He-B does not say anything about
the NG mode, which comes from the breaking of U(1)
symmetry. The latter is determined by the high-energy
physics and is not influenced by spin-orbit coupling. When
the spin-orbit coupling is taken into account, the symmetry-
breaking scheme gives

Reo = Gyo/Hyo = U(1) x SO%/SO5 = U(1) x §>. (31)

This results in 2+ 1 NG bosons instead of 3+ 1 NG
bosons in the absence of spin-orbit coupling.

The U(1) degree of freedom does not appear if instead of
superfluid *He-B one considers a nonsuperfluid antiferro-
magnetic liquid crystal. Here the transition occurs without
breaking U(1) symmetry, and U(1) drops out of Eqgs. (15)
and (8). Such a transition is fully determined by the real-
valued order parameter matrix A,;. If the relative spin-orbit
symmetry is broken in the same manner as in *He-B, one
obtains (in the absence of spin-orbit coupling) 1 + 5 heavy
Higgs bosons with J = 0 and J = 2, and 3 NG bosons with
J = 1. The spin-orbit coupling then transforms one of the
NG bosons to the light Higgs.

F. Polar phase of superfluid *He

The polar phase of superfluid *He has been recently
observed in strongly anisotropic alumina aerogel [18,44].
New phases of superfluid *He with strong polar distortion
have also been reported in anisotropic aerogel [45]. Here
we neglect the anisotropy of aerogel. The inclusion of this
anisotropy is straightforward, and does not influence the
mechanism of the light Higgs mass generation.

1. Neglected spin-orbit interaction

In the polar phase, the U(1) symmetry is broken and each
of the two SO; groups is broken to its SO, subgroup:
H = SO3 x SO%. The order parameter matrix A,; in the
polar phase vacuum has the form

Ay = Ae'®d, i, (32)

where d and 1 are unit vectors. The space R of the
degenerate states in the polar phase includes the circum-
ference U(1) of the phase ® and the two S spheres:
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R=G/H=U(1) x §? x §%. (33)
The high-energy polar phase has 1 + 2 + 2 = 5 NG modes
and 18 — 5 = 13 heavy Higgs modes with a mass (gap) of
order A. The anisotropy of aerogel fixes the orbital vector
m and thus removes 2 NG modes.

2. Higgs #14 from the spin-orbit interaction

When the spin-orbit interaction is taken into account, the

symmetry-breaking scheme becomes

Gy, = U(1) x SO3, Hy,=1Re =Gy.  (34)
The spin-orbit interaction reduces the degeneracy of the
vacuum space, R, < R, leaving only 1+3 =4 NG
modes (two of which are removed by the strong orbital
anisotropy of aerogel). As a result, the spin-orbit coupling
transforms one of the NG modes to the massive Higgs
boson—the light Higgs.

Let us start with the vacuum state with d = i1 = 2. This
vacuum state has quantum numbers S, = L, = 0, and thus
J. =0, which corresponds to the symmetry SO4 of the
vacuum state. This symmetry is broken by the light Higgs.
The LH field can be introduced, for example, as the real

vector field n_LZ which describes the deviation d — 1:

m=2/1-nf+n, d=2\/1-n?-n. (35

In terms of the vector n the spin-orbit interaction in the
polar phase is

X
Fy= nggol(‘nlz - ng)?,

(36)

where €, is the Leggett frequency for the polar phase, and
ny = +/1/2. The spin-orbit interaction fixes the magnitude
of the little Higgs field |n| in equilibrium, but leaves the
degeneracy with respect to its orientation in the plane
perpendicular to the z axis. This leads to one NG boson (the
spin wave mode with spectrum E = cp) and the light Higgs
mode:

E* = + K, (37)

with mass (gap) Q,, < A.
III. A MODEL WITH THE PSEUDO-GOLDSTONE
BOSON COMPOSED OF THE TOP QUARK

A. Dynamical symmetry breaking and
dynamical masses of quarks

1. Lagrangian

Let us consider a model inspired by the top-seesaw
model suggested by Cheng, Dobrescu, and Gu in Ref. [29].

PHYSICAL REVIEW D 92, 055004 (2015)

This model contains (in addition to the SM fermions) the
fermion y. The action contains the four-fermion interaction
terms, which (written through the auxiliary three-
component field ®) have the form

1 1 1
Ly =—-M} <§2 DO, +?<I>;<I>X + [0/, + @;@J)
t X ty
—((b, 7 7 )+ (b T 7)) P+ Hel.

(38)

For convenience we have changed the order of ¢ and b’
compared to Ref. [29]. Also, for convenience we denote
¢ =(0,9,,®,) and

L; = -Tr®Qd" — [, Dy + Hoel, (39)
where
b, by
W = l"L ) Yr = tﬁe ’ (40)
xr AR

while Q is the corresponding 3 x 3 matrix. Notice, that
the three components of y are equal to the fields of b, ¢, and
y only in the basis in which the mass matrix is diagonal
(see below). Therefore, in Eq. (40) (written in an arbitrary
basis) we do not identify &', ¢ and )’ with the actual fields
of the b quark, top quark, and heavy quark y.

The global symmetry of the given Lagrangian is
SU(3), ® U(1), ® U(1),x ® U(1), &. Here SU(3),, cor-
responds to the SU(3) rotations of y;, while the U(1) parts
of the global symmetry of our Lagrangian correspond to
the transformations y; — ey, w, z = ¢y, p, and , >
¢®P)®, (and a similar transformation for y).

The quantum numbers of y; and y} including the
hypercharge (and the quantum numbers of #}) are equal
to the quantum numbers of the right-handed top quark. This

/

1s the doublet field < l;,L ) , which is transformed under the
L

SU(2), SM gauge field. Therefore, the gauge interactions
of the SM break the SU(3), symmetry, an effect which we
neglect here.

Using the orthogonal rotation of 7z and yp, we can
always bring Q to a diagonal form with 1/&,, = 0. We
denote in this representation

0 0 0 0 0 0
QO =[0 o” o0 |=|0 172 0o |M.
0 0 o 0 0 1/g

(41)

In Ref. [29] the explicit mass term in the Lagrangian that
breaks the SU(3) symmetry down to SU(2) was added:
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Ly = —pydLtr — My Xixr + He. (42)

In addition, in Ref. [29] other contributions to the
Lagrangian were considered that do not originate from
the four-fermion interactions. A similar construction was
considered in Ref. [30] where the original SU(3) symmetry
was broken by both the additional four-fermion terms and a
mass term of the form of Eq. (42). In our model we restrict
ourselves to the four-fermion interaction terms and do not
consider the explicit mass term. We introduce the following
modification of the four-fermion interaction that reveals an
analogy with the spin-orbit interaction of *He considered in
the previous section [see Eq. (16)].

Namely, we add the following terms to the Lagrangian:

Lg= g}({0)|q))3(|2 + g0 | o3P + gg{n(@(@? + (H.c.))

= TrdGO o5, (43)
and
Ly = —b) [Im®32 — b\ [Im®3 2
— 25 (Im®3) (Im?)
1
= ZTr(<1> — &*)BO(T — &H) Ty, (44)
where
0 0 0 0 0 0
co—lo ¢” g0  po—|o p»® Y|
0 gy g 0 by by
00 0
Y;=[0 0 0 (45)
00 1

We bring Q to the diagonal form via orthogonal rotations
of y. Further, we choose a representation in this basis. We
assume that the elements of the matrices Q, B, and G are

real valued.

2. Effective action for scalar bosons

Let us choose the parametrization in which the massless
w!. It corresponds to the
representation ® = (®) + & = V + &, where

b quark is identified with &’

PHYSICAL REVIEW D 92, 055004 (2015)

0 0 0
v=160 \/LEU, \/szx ,
0 %ut %”}(
0 Hy H;
b=|0 5 +iA) (b, +iA) (46)
0 (o +im) (e, +iny)

This expression is similar to that of Eq. (2.11) in Ref. [29].
Here the values of v,, and u,, correspond to the
condensate. _

The effective action for the field ® has the form

A ~ A

S[®] = — / d*xTr(V + ®)QO(V + &)+

1
+ / d4xZTr(V -V +d - DY)

BOWT — v+ 4+ o7 — @+,

— ilog Det(iyd — Q(V + ®@)). (47)
Here. for any matrix O we define
Q0 = (0+ 0 > (48)
~\o o)

V+ plays the role of the mass matrix, and we

A

denote m = V.

3. Gap equation

The gap equation appears as

— S[®] =0, i=1,2,3, a=2.3. (49)
69;,
We represent the determinant in Eq. (66) as follows:
— ilog Det(iyd — Q(V + p© + @)
= const — iSp log(i0X — T i)
1 -
iSp———=-7
TP ios T
i 1 ~ 1 ~
=S TP TP+ --- 50
T Pes T Ciom-Ta (50
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This gives for the gap equation (i = 2,3 and a = 2,3)

[QOVT + (iBImV — GOVHT;]!

2i / dp
p— m —
o) [P —wtw |,

First of all, Eq. (44) suppresses the imaginary parts
of ®,,. Therefore, it is reasonable to look for solutions
of the gap equation with a real-valued V. This allows one to
eliminate the matrix B from the consideration of the gap
equations:

~(Fwar).  (52)

Let us perform orthogonal rotations of y; » that bring /i to
the diagonal form:

v — Opyp, Wr = Ay,
i — OTmA = diag(0, m,, m,), (54)
where
0 = exp(—ifc?), A = exp(—iac?),
1 0 0
0y = 0 0 —i . (55)
0 i O

As a result, we come to the following form of the gap
equation with a diagonal matrix 7:

ATQOA — ATGO AM@T ;07!

2
_ N <A2 - AzlogA > (56)
T8

We assume that the SU(3)-breaking terms are small,
that is,

(0)

it <1, (57)

Wy

This does not mean, however, that the resulting correc-
tions to the fermion and boson masses are small if we
consider the system near criticality and disregard the
next-to-leading 1/N, corrections (see discussion in the
Introduction).

We also assume m, << m, and § < 1. By g,, we denote
the elements of the matrix ATGA that are related to the
(0)

i, as follows:

original parameters g

PHYSICAL REVIEW D 92, 055004 (2015)

g, = (cos agg()) + sin agg{))) cosa

+ (cos agg()) + sin agffo)) sina,

gy, = —(cos aggo) + sin agg())) sina

+ (cos agg{)) + sin ag)({())) cosa,

(0)

g, = —(=sinag, ’ + cos agg?)) sina

+ (—sin agg)?) + cos agf(o)) cosa. (58)

A direct calculation gives the following relation between
the angle 6, the ratio m,/m,, and the values of g,

0 = (g,m,sin@ + g,,m, cos0) cos 0/ m,

— (gym, sin@ + g,m, cos 0) sin@/m,.  (59)

Therefore,

or 1 O(m}). (60)

( (0) (0)

1
5@ — o ) sin 2a
m; .
= <g,—sm9+g,1cos.9> cosO~ gy. (61)
m

This leads to

ar 1zurctg 295)? )
20 -0 - g + g

+0(m?). (62)

We are left with the following equations:

A2
—f, = (Az—m, log >
l
N, 5 5 A2
w,—f,= o2 A—mlog (63)
1

where A is the ultraviolet cutoff (of the order of the scale of
the new hidden interaction), while

w,, = cos’ aw') + sin? aw) ) (64)
and
f,= sm@(g, sin @ + g,}( Z cos €> T + O(m?),
Iy

f = cos9<gw%sin9 + g, cos ¢9> ~ g, + 0(m7).
P
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The gap equation provides that . x N 5 A%, while
a)ffo) —wEO) ~m)2(. Therefore, in the general case a is
not small.

For the calculation of the scalar boson spectrum we will
need the exact expressions for f,, f, through € and the
exact expression that relates m?/ mﬁ and 0. In the following
we shall use the values of g, ,,, but we should remember

that they differ from the original parameters gﬁfj},,l. In

principle, Eqgs. (58) and (59) allow one to precisely
(0)

determine @ and a as functions of g, .,
(0)

as functions of g, , ,,. However, the corresponding expres-
sions are so complicated that we do not represent
them here.

and then Giy iy

B. Effective action for scalar bosons

1. Polarization operator

Let us consider a system with the parametrization in
which the fermion mass matrix is diagonal. The fermion
fields that are the mass eigenstates are expressed linearly
through the original fields 7, y} , t%, x- This is the doublet

/
field ( l;,L ), which is transformed under the SU(2), SM
L

gauge field. At the same time, y} has the quantum numbers
of tz. Thus, the mass eigenstates do not have definite
charges with respect to the SM gauge fields. Below we
neglect the influence of the gauge fields on the dynamics of

|
5 [
abi

)R P (p) + Z/

PHYSICAL REVIEW D 92, 055004 (2015)

the scalar bosons. We shall consider the terms in the
effective action with the interaction between the gauge
fields of the Standard Model and the composite scalar
bosons in Sec. Il D.

In this basis Q has the form

w w
Q = ATdiag(0”, w\"))A = ( o )

Wy Wy

wt;( Sif 2 (65 )

In the same way, we substitute G =ATGYA, B=
ATBOA, and T = ©Y;0 instead of G, B, and T;.
Taking into account that 5%5 [@] = 0, we come to

S[®] = — / d*xTrdQd ™ + / d*XTrdGI Y
1
+ / d4xZTr(<I> - ®*)B(®T — d)T
— iSplog(iyd — i)
i 1 ~ 1 ~

+§Spiya_mgq>iya_mg<1>+m. (66)

Let us denote ®(p) = [d*x®(x)e’?™, and ®;,(p) =
Pl.(p) + i®l,(p). The CP-even scalar states are given
by the real parts of the components of ®(p), while
imaginary parts correspond to the CP-odd states. Then
we have S = const + §' + §” with

/ 4221]\[ / m?)((cll:i p) -

M%@+Z/

S / a* P §
abi

dp

P)Bay®y ()Y
tlblj

d4p 21N d*k
+§:/ l/wz ) ((k+ p)* =

S BT
s (K + RO () mim B ()W (p). (67
4 ~ ~
S )G ()T
s (K + TP - mm B (P, (68)

The masses of scalar bosons appear as the zeros of operators,

Pliain (P) = =(27)*

P//la jb( ):

~2a) ==
50, (p)o®},(p)

& ~
P

== S?
5, (p)6®y,(p)

AT} (69)
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We may represent

/ _ 1] ij !
Pliayio) = Qavd” = Gap TV + T3 )

,Pz/ ) = Qabaij - GabTij + BabTij + H/(,i

ia)(jb a)(jb)* (70)

where II is the polarization operator. For its nonvanishing components, we have (a # i)

Maa(aa) ™ = (227134 / =) ({,l:i S (kP )+ ),
2i d*k
Miaytia) = (21,],\/)3 / =) (et )=y (P
1 4

Toen >~y | @i sy P
Moo =~ g | Gy =y K+ 0=

(ia)(ia) ™~ (221,];;3/ (= m%)((ff_ DV = m) k(p + k),
Mo =+ G | s e 1P )

2. Calculation of the polarization operator
Let us introduce the notations

i 1
tom.) = =5 | Gty 7

Using these notations, we rewrite

!
H(aa)(aa)

H/(ia)(ia) ~ <_p2 + ml2 + m%)NCI(mh mg, p) - Ncl(mi) - Ncl(ma)v

~ (_P2 + 4m%)NCI(mi’ mg, p) - 2Ncl(ma)’

T ai) ® 2mimgN I (mi, my., p).,

H’(’M)(M) ~—p>N.I(m;, mg, p) — 2N I(m,),

H/(/ia)(m) ~ (=p* + mi + mz)N A (m;,my, p) = NA(m;) = N.I(m,),

HE’ia)(al.> ~ =2m;m N I(m;,mg,, p). (73)
At the same time, the gap equation can be written as

0, = fo= ZNcl(ma) (74)

for a =t,y.
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C. Evaluation of the scalar boson masses

1. Masses of charged scalar bosons

The masses of charged bosons appear as the solutions of the equation

Det Pcharged(pz) =0, (75)
where
(=p* +m7)
XN 1(0,m,, p) Wy,
+fr = Nc(I(m,) —1(0))
P char. 2y = 76
cha ged(p ) (_pz + mf) ( )
@y, XN I(0,m,, p)

Here the parameters @ are the elements of the matrix Q in
the basis of mass eigenstates and are given by Eq. (64). The
parameters f are given by the next equation after Eq. (64).
In those equations « and 6 are the mixing angles that enter
the transformation from the basis of the initial fermion
fields to the mass eigenstates [see Eqgs. (54) and (55)]. The
integrals [ are defined in Eq. (72).

First of all, it is clear that there is a massless charged scalar
[one can check this using Eq. (76)] that has a vanishing
determinant at p = 0. The second scalar is massive, and in
order to evaluate its mass we have to substitute p? ~ m)z( into
Eq. (76). Let us define the following quantities:

N I(my,my,m.) =272, .. (77)
Here
Ncl(ma’mbf p)
Ne [t A2
162 Jy Ogm%,x—l—m,z,(l —x)=p?x(1=x)°
(78)

and we substitute p> = m?. Notice that these integrals have
imaginary parts for m. > m, + m,,, which correspond to the
decays of the corresponding state with mass m,. into the two
fermions with masses m, and m,,. In the following we will
chose the definition of the logarithm (for negative values of
arguments) in the above integral such that the imaginary part
of the integral is positive. This will result in negative
imaginary parts of the unstable scalar boson masses. If
one of the arguments of I(m,, my,, m,) is zero, we denote the
corresponding constantby Z2, - witha = 0,b = 0,0rc =0
correspondingly. In the Euclidian region where p? < 0,
the integrals remain real valued. Therefore, the mentioned

+f;( - NC(I(m)() - I(O>)

[

imaginary parts do not affect the stability of the vacuum (to
be considered after the Wick rotation). We also take into
account that

Ncl(mb) - Ncl(ma) )

2

72,0 =N.JI(m, m,,0) =
ab0 ( a b ) m%_mb

(79)

In Table I we represent the real parts of Zibc for various
choices of the arguments. These values should be compared
to the quantities

N, 2
Zi =g 2’
N, 2
z2 16ﬂ210gm2 (80)

represented in Table II.

Let us assume that the parameters b and g of the original
Lagrangian are of the order of m2. Then in order to
calculate the second charged scalar boson mass (which
is of the order of m,) we may apply an approximation in
which the integrals I(m;, m,, p) are substituted by Z2, o
This approximation may be used at least for the rough
evaluation of the scalar boson masses as follows from
Tables I and I, i.e., its accuracy is within about 20 percent
for A = 10 TeV, m, = 10m,, and it is improved when the
ratios m,/m, and m,/A decrease. For example, for
A =1000 TeV, m,/m, =1/100 the accuracy is within
about 5 percent, while for A =5x 10° TeV, m,/m, =
1/100 the accuracy is within 2 percent. Later we shall
improve this accuracy by substituting into the integrals
I(my, m,, p) the values of p? equal to the calculated values
of the corresponding scalar boson masses squared. Thus in
the first approximation we come to
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TABLE L

The values of ReZ?

abc

PHYSICAL REVIEW D 92, 055004 (2015)

for the values of parameters encountered in the text. The masses entering the corresponding integrals

are denoted here by m, = my, m;, = my, m, = mz. For m3 > m; + m, the values of Z2, . have imaginary parts, which are omitted here.

A =10 TeV, m, = 10m,
m; =0 msy = m, msy = my m3 =m, msy =2m,
my =m, 0.1727103569 0.1917080789 0.1785398615 0.1052842378 0.07821589679
my = 0
my =my =m, 0.1537126350 0.1572500229 0.1553811083 0.1063659370 0.07854932119
my = my 0.08433889975 0.08442804052 0.08438340225 0.09888674840 0.08900924267
my = m,
my = m, 0.08522261432 0.08531792115 0.08527018798 0.1042203362 0.08856698817
my, =0
my=m, =m, 0.06622489239 0.06625658696 0.06624073174 0.06976228029 0.1042203362
A =100 TeV, m, = 10m,
my =0 my = m, my = my ms3 =m, m3 =2m,
mp =m, 0.2601980996 0.2791958215 0.2660276041 0.1927719804 0.1657036394
ny = 0
mp = my =m, 0.2412003776 0.2447377655 0.2428688510 0.1938536796 0.1660370638
my =m, 0.1718266423 0.1719157831 0.1718711449 0.1863744910 0.1764969853
my, =m,
my =m, 0.1727103569 0.1728056638 0.1727579306 0.1917080789 0.1760547308
my = 0
my = m, =m, 0.1537126350 0.1537443296 0.1537284743 0.1572500229 0.1917080789
A =100 TeV, m, = 100m,
my =0 nmsy = m, my = my my =m, msy =2m,
my =m, 0.2601980996 0.2791958215 0.2660276041 0.1042397334 0.07788940920
my = 0
my =my =m, 0.2412003776 0.2447377655 0.2428688510 0.1042591342 0.07789491718
my = my 0.08520511502 0.08520605549 0.08520558924 0.1036341612 0.08857432364
my = m,
my =m, 0.08522261432 0.08522356424 0.08522308927 0.1042203362 0.08856698817
my, =0
my =m, =m, 0.06622489239 0.06622520902 0.06622505070 0.06976228029 0.1042203362
A = 1000 TeV, m, = 100m,
my =0 msy = m, my = my ms3 =m, ms3 =2m,
mp =m, 0.3476858422 0.3666835641 0.3535153468 0.1917274761 0.1653771518
ny = 0
mp =my =m, 0.3286881203 0.3322255082 0.3303565936 0.1917468768 0.1653826598
my =m, 0.1726928576 0.1726937981 0.1726933318 0.1911219038 0.1760620662
my, =m,
my = m, 0.1727103569 0.1727113068 0.1727108319 0.1917080789 0.1760547308
my = 0
my =my =m, 0.1537126350 0.1537129516 0.1537127933 0.1572500229 0.1917080789
A =5x10° TeV, m, = 100m,
my =0 msy =m, msy = myg msz =m, ms =2m,
my =m, 0.9337636057 0.9527613276 0.9395931101 0.7778052396 0.7514549153
ny = 0
mp =my =m, 0.9147658838 0.9183032715 0.9164343571 0.7778246403 0.7514604233
my =m, 0.7587706210 0.7587715618 0.7587710286 0.7771996673 0.7621398296
my = m
my = mj 0.7587881204 0.7587890701 0.7587885946 0.7777858424 0.7621324942
my = 0
my =m, =m, 0.7397903985 0.7397907150 0.7397905568 0.7433277863 0.7777858424
TABLE II.  The values of Z7 and Z; for certain values of the parameters.
z, Z,
A =10 TeV 0.06622489236 0.1537126349
m, = 10m,
A =100 TeV 0.1537126349 0.2412003776
m, = 10m,
A = 100 TeV 0.06622489236 0.2412003776
m, = 100m,
A =1000 TeV 0.1537126349 0.3286881202
m, = 100m,
A =5x10° TeV 0.7397903985 0.9147658838
m, = 100m,
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5 (=p* +mi)Zgy, + fr —miZy, Dy
Pcharged(p ) = 2 2 2 272 (81)
Wy (=p* + m)r)zxo;( + 1y = my 2y

2

Because of the SU(2), symmetry of the original Lagrangian we have w;, = f.f,. Let us neglect the difference between Z,,

and Z,q. This gives for the channels that include the b quark

2 2
M/f(l,i).H; = Mll;(,i,)H; =0,

I 1(g 1 g 2 g
[M;SQH#]Z =5 TI (1 +w?r) +mzs, | +5 Tx (1 +w?y) —mps, | + 4’”;2(5le
oy 2\Z 2 ZZOX ZZOX

o Iy 2.2 2
NZT(I +w yX)+m%5%TVt/2]/)2(’

20
2 2
Zyoy _ Z)KOJ( — Z)(OO
i i et (82)
lO){ )(O)(

At mentioned above, in this channel the charged exactly massless Goldstone boson appears (to be eaten by the W boson),

which corresponds to the spontaneous breakdown of SU(2), . Notice that the constant Z?o;( has an imaginary part because
(1)

HE receives an imaginary part as well, which corresponds to the decay of
the charged scalar field into the pair 7b (or bf). As mentioned above, in order to improve the estimate of this mass, we should

substitute into Eq. (82) the constants N.I(m;, 0, M;S? H;) and N .I(m,,0, M;S? H;) instead of tho;( and Z;Z(o;( with the masses

we consider the case m, > m,. As aresult, M

Mll-(lli) - evaluated using the first-order approximation of the above expression.
oy

2. Masses of CP-odd neutral scalar bosons

For the CP-odd neutral states we use the basis A, =@} ~ [tig —Tgty), A, =@y ~ [firr — ZrlL]s

7, = (i))/(/t ~ et =ty @, = (i))/(/)( ~ [¥1xr — ¥rxr]- We should solve the equation
Det P"(p?) = 0. (83)
The matrix function P”(p?) in the above-mentioned basis is given by

(—pz)NCI(m,, my, p)
Lf - (gt _ thI Wy, — (gt;( - bt;{)/lt _(gt - bt)j't)( _(gt)( - bt){)/lt;(
(=p? + mi + my)
XN I(m,, m,, p)
+N(I(my) = 1(m,))

+f)( - (g;( - b}()/lt

—2mm,
XNL'I(mHm;(’ p) _(g)( -b

_(gt;( - bt){)/lt;(

84
(=02 + 4 ) *
—2m,m,N I (m,, m,, p) XN I(m,, m,, p)
—(g, = b,)A ' w,, — (g, — by,)A
' v _(gt)( - bt)()ﬂt)( _Nc (I(m)() - I(’"t)) ” ” w
+fi=(g: = bt)/l;(
(_pz)NcI(m)p m)(? P)
—(9yy = b))y —(9, = b)), @y = (93 = by,)2
74 )My ly = Px) My 74 7 )y +f, = (g, - b)A,
Here the parameters A are given by
A, = sin’0), Ay = sinfcos, 4, = cos?6. (85)
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The parameters g are the elements of the matrix G in the
basis of mass eigenstates and are given by Eq. (58). The
parameters b are the elements of the matrix B in the same
basis. The parameters @ are the elements of the matrix Q
in the basis of mass eigenstates and are given by
Eq. (64). The parameters f are given by the next equation
after Eq. (64). In those equations « and @ are the mixing
angles that enter the transformation from the basis of
initial fermion fields to the mass eigenstates [see

Egs. (54) and (55)]. The integrals [ are defined
in Eq. (72).
272 9:1
—-p le){ + 9 gl)(
gt;( ( P +m )th){)( 22%;(0 + g)(
0 0 (-p?
0 0
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First of all, we have checked using MAPLE that the
determinant of Eq. (84) for p = 0 is zero, which means that
there exists a CP-odd neutral Goldstone boson that is eaten
by the Z boson. Again, we assume that the parameters b
and g are of the order of mf( Therefore, the remaining
masses are of the order of m,. And as for the charged scalar
bosons, we first apply the approximation in which all
integrals [ are substituted by the factors Z%mmzm/

Next, we neglect the ratio m,/my and arrive at the
following expression for P”(p?):

0 0

0 0
+m3)ZE, + 2Zt2;(0 +gi_9t + b, by,

bt)( 22)2(}(}( + b

The exactly massless Goldstone boson that is eaten by the Z boson is mostly given the combination of A, and A, . The
masses of the remaining CP-odd neutral scalar bosons in this approximation are

m _
Mya, = 0,
@ 1 2 1 9){ 25\’ 25 I
My P == | =5 (L4 wh?) +m2s, | + = (1 +wri) —m3s, | +4mis,—5—
o 2\z3, 2 ht ox
9y 1
~—=—(1 25—,
th;(x( + w2y )+mxtl+w2y,2
— _Z = Zho
l Zy' T Ziy
M0 _ m2+bl+bti m2+b +b,\? bb_2 217)(4_1)2 1/2\ 1/2
Tyt — X 222 4 222 Z4 ){ZZ Z4 s
ox 74 /74 74 774
|
where nonzero imaginary part from the very beginning because
_ 7, m,, > 2m,. Therefore, the mass M@‘I has an imaginary
by=b,—g +—=. (86) part, which also means that the corresponding state is
74

In expression for M %Q we neglect the difference between

Zy > Ziyo> and Z,,, for simplicity. In practical calculations
of these masses for particular choices of parameters (see
Sec. [II D 3), we take this difference into account. It appears
that the above expression is only a first approximation, and
the actual values of the masses may have imaginary parts
which correspond to the decays of the given states to the

pairs of fermions [see Sec. III D 3, where we substitute into
M,,/ ,,t) and
with the

the mass matrix the constants N .I(m,,,m

N I(m, m, M z2,, and Z,zu,
(1.2)

masses Mz, 7, evaluated using the first-order approximation
of the above expression]. Notice that ZZ itself has a

,, ,,,) instead of Z

tty

unstable and is ably to decay into the pair 7.

3. Masses of CP-even neutral scalar bosons
For the CP-even neutral states we use the basis h, =
P, ~ [Tp1g + Tpty), h, = ‘I);)( ~[tyr + gL, @0 = ‘1’;/(1 ~
rtr +trye)s @, = (D;/mr ~ [¥rxr + xrxe]- In order to cal-
culate the scalar boson masses we need to solve the
equation

DetP'(p?) =0 (87)

and identify the lowest solution of this equation with M2,.
The matrix function P'(p?) is
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(=p* +4m7)
XNCI(mt, my, p) WD — gt;(/lt
+fi = 9t
(=p* + m} + m})
XN I(m,,m,, p)
Wy — gt)(j't
+N(I(my) = 1(m,))
+f)( - g)(/lt
2m;m,
_gtﬂt;(
XN I(m;,m,, p) = g,A
—Jihy Gyl

Here the parameters A are given by Eq. (85), and the
parameters g are the elements of the matrix G in the basis of
mass eigenstates and are given by Eq. (58). The parameters
w are the elements of the matrix Q in the basis of mass
eigenstates and are given by Eq. (64). The parameters f are
given by the next equation after Eq. (64). In those equations
a and @ are the mixing angles that enter the transformation
from the basis of initial fermion fields to the mass
eigenstates [see Eqs. (54) and (55)]. The integrals [ are
defined in Eq. (72).

Our aim is to check that there exists a region of the
parameters where the lowest CP-even neutral scalar boson
mass is given by My ~ m,/+/2. One can easily find that in
the zeroth-order approximation in powers of m, we have
|

%y

74
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—9ihyy ~ Gy
2m,m,
XN I(m,, m,, p) —Gy Ay
Gy
(cp? + m + m) (88)
XN I(m,, m,, p)
Wy = Gy
=N (I(m,) = 1(m,))
+fi = g4,
(—p*+4m3)
@y = Gy XN I(m,,m,, p)
+fy = 9y

Mg)) = 0. In order to calculate the first- and the second-
order approximations we substitute p> = M%, = m?/2 into
the integrals I(m,, m,, p) in Eq. (88). Since we know the
exact value of the required mass, we can do this in order to
evaluate the region of parameters that gives the correct
lightest Higgs boson mass. For the calculation of this
lightest CP-even scalar boson mass we use a more refined
approximation than that for the calculation of the other
scalar boson masses. Namely, in order to calculate the

correction to [Mgg)]z = 0 proportional to m? we first

consider the zeroth-order approximation to P’(p?) [with
p? = M?% substituted into the integrals I(m;,m,, p)] in
the form

—P*Zoy + 9 iy 0 0
iy (-p* + m;z()z%;(H - m;%Zzz;(O + 9y 0 0
0 0 (=p* +my) 25,y + m;Z o + ‘;i — 9 0
0 0 0 (=p*+ 4m§)Z§;{H

The zeroth order in powers of m, gives the following value for the smallest mass:

op_ L( 9 2.2 2
[M,(L,] :—( (1+wy)+m5>——
2\Z;, “ 2
~ m2s Wzyz
O
Z 72 -7
_ tyH _ tyH ty0
Zun’ Z;ZXH

) (
wa

Iy

2
(1 +w??) - m§6> +am2s &

-, (89)
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and the corresponding Higgs scalar field

h, — wyCh
H~N2Z, 0y — ==

1 +wyg

2
(=1- " (90)

x5
g,(1+w??)

(The kinetic term for this field is normalized in such a way
that it is given by 1 H>p*H.)

gr/ ZU(H
70 + 4Z%Hm)(

PHYSICAL REVIEW D 92, 055004 (2015)

We take into account that § < 1, i.e., that the difference
between Z? o and Z, o 18 small. For example, for
A =1000 TeV, m, =100m, we have §~3x 107 as
follows from Table I. Thus, this is a reasonable approxi-
mation that allows one to evaluate the lightest mass even
in the presence of a fine-tuning. In order to calculate the
corrections to the value of M proportional to m? we use
ordinary second-order perturbation theory applied to the
lowest eigenvalue of the following matrix M2, (calculated
up to the terms ~m?):

2
1tH _ m;1 Ziyn _ my Zyn _ m Zyn Ziyn
2 2 [gﬂfw + W( 2W g)() mz] Zun [ g[Wm ] Zun W g){ my Zun Zyyn
+[ ) ) ] ZU(H) m? 7 4 4 774
wo — w —
9t Iy z, mf
2 2
> g, +m ( i — 2 0)
w(g, —2w?g,) 75 3 ‘
27 my 7 2 m m, Ziyn
Ziyn +(( e * U(O) (2Zl)(Hm)( w g)() mt Wy m; ij{H
1y
21 +QXW] Zun _g){W )m_z
7 m
tyH
~ 2 2
m Zom ( )m 9; + (Zt;(H Zt)(O) m Zon
iy t t Ziy
9wt ZZt Hm —-wg 2 9w 7
my Zupy 24 X/ my, +(3gt _ ngW )W2 Z_% My Zn
7
472 m
Zon Z z z uH
2 My LyH LyH wg m, “yH g m; ZyH 5
A my Zun Zygn X my Zyn 1 my Zyy +g,w 1 m; iy
2" m2 22
~ 2 2 . _ ng . . . . . : .
Here g, = (Zt)(H + tho)mx +w°g, — g, while w= o This mass matrix is defined in the basis ® =

(ZttHhﬂ Zt)(Hh)(’ Zt)(Hd’t! )()(Hgb)()

in which the effective action for p?> around m?/2 has the form

a* P S ~ 2
Seven ~ / (2”4) [q) ]T(pZ - Mgven>q) . (91)
In the correction to M3, proportional to m? we may neglect 5. The resulting expression for M% has the form
0 2 2
72 1+ " m
ZZ H |: :| 4
22,2 1_w2 /é(H I)(H |:1 + 1;(0:|
2 ZZZJ(H th)(O v zf,(: 2 Fu g i 4

My~ m = 4t 4 - +0(m}). (92)

iyH 1 +w 2 ZI{H 1 + W2 szH

ttH

1tH

In the following we may neglect § in all other expressions. This means, in particular, that { = 1 in Eq. (90). Notice
that Eq. (92) is valid only for small values of the ratio m,/m,. Our numerical analysis demonstrates that Eq. (92) gives
an accuracy within 1 percent for the calculation of the lightest neutral Higgs boson mass for A = 1000 TeV and
m,/m, = 1/100, while for A = 10 TeV and m,/m, = 1/10 it gives an accuracy of about 10 percent.

In order to calculate the remaining masses (that are of the order of 1, ), we neglect the ratio m,/m, and consider P'( p?)in

the form
pZZ%t)( + % gt)( 0 0
9y ( p + m)() tor z;(O + 9y 0 0
yf
0 0 (=p* +my)Z3, + miZy o+ =g, 0
0 0 0 (=p* +4m; ) $724
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This gives
2 /g
[MEZI;I]Z =5 (ZTX (1 +w?) + m§5,>
74

1 I 2.2 25 > am2s.
T3 ZT( +wiyi) —myd, | +4my N

o 774

Iy ( 2.2 2
~ = (1 +woyi) + mys,———,
Z%, ! N+ wiy?
2 2
_ ZW 5. — Ztm B ZU(O
Vi =% > )
Zuy Ziyy
M% ~2m,,
\/(Z%” + Z,z)(o)m; + wzgx -9,
M, ~ ~ . (93)

o

Recall that Z2, has a nonzero imaginary part because

ity
m,, > 2m,. Therefore, the mass Mﬁl has an imaginary

part, which means that the corresponding state is unstable
and may decay into the pair 7. Again, as for the CP-odd
states the above expression for M, is only a first approxi-
mation. It actually may have an imaginary part, which
results from the more precise estimate

@y, + Zegn +wg, =g,
M, ~ 7 . (94)

ye:

We should substitute Z3, ,, , = N I(m,, m,, M, ) with the
first-order approximation for M, . If the latter mass is larger
than the sum of m, and m,, the value of M, acquires an
imaginary part. In the practical calculations in Sec. III D 3
we apply the same procedure to all other composite scalar
boson masses.

D. Phenomenology

1. Pseudo Nambu-Goldstone candidate
Jor the 125 GeV Higgs

The symmetry-breaking pattern in the given model is
as follows. Without the SU(3)-breaking terms we have
the original global SU(3), ® U(1), @ U(1),z ® U(1), ¢
symmetry that is broken spontaneously down to
U(1), ® U(1), ® U(1),. [Here U(1),, U(1), act on the
left- and the right-handed components of ¢ and y, while

U(1), acts on the left-handed b quark.] As a result, among
the 12 components of & we have eight Goldstone bosons.
There are four massless states that are composed of b

quarks Hi", Hf; three CP-odd massless states A,, z,, and

A,my,+mm, m,h,—mp,

N/ mi+m} ’ \/mZ+m? ’
When the SU(3)-breaking modification of the model
is turned on, the original symmetry is reduced to

and one CP-even massless state

PHYSICAL REVIEW D 92, 055004 (2015)

SU(2), ® U(1),. This symmetry is broken spontaneously
down to U(1),. As a result we have three exactly massless
Goldstone bosons to be eaten by W* and Z, and five
pseudo-Goldstone bosons. When the SU(3)-breaking terms
are turned on, the structure of the scalar spectrum is
changed.
We consider the particular case when there are the
following relations between the parameters of the model:
m; <L gy, ~me<Lw,~w,~A. (95)
In the considered case the lightest CP-even state H is
given mostly by the combination of 4,, i, instead of the
combination of ¢, h, [Eq. (90)]. This state realizes the
conventional top-quark condensation scenario when
9y < g, so that it is composed mostly of 7z. When
m,; = 0 it becomes massless. The presence of a nonzero
m, gives it the mass. The expression for the mass in the
general case is very complicated. It depends on five
parameters: g, g,, g;,» m;, m,. The leading order in m, is
M2, ~ m?. We demonstrate that there exists an appropriate
choice of the remaining parameters such that the Higgs
boson mass is set to its observed value, that is, M7 ~ g
We derived Eq. (92) for the Higgs boson mass, which is
valid at m, << m,. The parameters g entering this expres-
sion are the elements of the matrix G in the basis of mass
eigenstates and are given by Eq. (58). The corresponding

values of he parameters satisfy the relation My = m,/\/2;
915 Gy» Gyy» Z,my, m,,  are expressed through the above-
mentioned bare parameters via the gap equations (63)

and Eq. (64), and Egs. (58) and (59) allow one to precisely

. . 0
determine @ and « as functions of gEJ(),,){, and g;, . as

functions of gﬁfj},,x. (As was already mentioned, the corre-

sponding expressions are so complicated that we do not
represent them here.)

In Euclidean space the effective potential for the
CP-even neutral scalar bosons and charged scalar bosons
is stable if

g, >0, g, > 0. (96)
The appropriate choice of the parameters b,, b,, b,, always
allows one to make the effective potential stable for the
CP-odd scalar bosons [these parameters do not enter
Eq. (92)]. Therefore, we consider Eq. (96) as the condition
for the stability of the vacuum.

2. Electroweak symmetry breaking

We have calculated the effective action for the field
<i>, which is the fluctuation above the condensate. We
may consider the part of this effective action that
contains p? and reconstruct the whole effective action
for the field ®:
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>+A2<Ncl(mt’o7ﬁ)
P 0

+

)ﬁz 0

+ Ncl(mtv
d4 A2
+/ x( >l’< 0

where the potential V(p, ®) depends on the momentum
operator as well as on the scalar fields. V(0, <I>) V(®) has
its minimum at (®,,) = \'}’— =m,and (®,,) = \/— =m,. We
are not interested in the particular form of V.

In order to calculate the gauge boson masses we
should substitute p — p — A, where A is the correspond-
ing gauge field. At the tree level we should then
substitute the scalar fields by the condensates, and omit
p. The mass term with the gauge field squared originates
from the factor p? of the above expression if the integrals
I(my, m,, p) are constants. Since these integrals are
slow-varying logarithmic-like functions, for the evalu-
ation of the gauge boson masses we are able to substitute
them by the values I(m;,m,,p) for a certain typical
value of the momentum p. For example, for A =
1000 TeV and m, = 17.5 TeV (and for A =10 TeV

7
and m, = 1.75 TeV) the difference between the values

< Dy,

X

(I)b;(

(b[[
%

®

xt
(I))()(

<Ncl(mtvmt7f7) 0

my, D) 0 ) (@W
N (m,,m,, p)
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Py, )

D,
@,

¢

oo
)

)—Wﬁ@%

Ncl(mt’m)(vi)) 1y

97)

(P)()(

|
instead of N.I(m,,m,, p) in the following we substitute
the constants Z2,,,.

The mass eigenstates y; and t; are composed of the
original y; and 7} :

xL = —sin6t; + cos by, .

t;, = cos @t +sinfy;. (98)

/

These make up the field (ZZ,L

numbers of the SM SU(2), left-handed doublets. At the
same time, t%, ., & carry the quantum numbers of the
right-handed top quark. Correspondingly, we represent

), which carries the quantum

¢, = —sin 9<I>,/L, + cos «9<I>/ i
¢, = —sin 9<I>,/ + cos 9(1)121,

®, = cos 0P, , 4 sin 6P

NI (m,,m;0), N.I(m, m,My), and N.I(m,, m, iMy) 0
is within 1 percent. The typical value of p> in this 0, = cos 0D, , +sin 0D, , (99)
problem is, in turn, of the order of the gauge boson mass -
squared, which is of the same order as M. Therefore,  This gives
|
Dy, N\ T 72 0 P
e fon() o ()
D, 0 Z;(OH D,
Dy N\t [ ZLpsin?0 + Z3cos0 0 d,,
fag,) (7 z ) er,)
Dy, 0 Z2 ysin®0 + Z; ycos’ ) \ @y,
, + 1 2 2 /
N / d4x< Py, ) 5 <2sm 20(Zi — Ziym) 0 2 ) < Py, )
@y 0 sm 20(Z? H Z”H) Dy
/ d4x< D, >+f)2 <%sin 20(Z3y = Ziy) 0 ) ( P, )
D, 0 58in20(Z5,y = 22 ,) ) \ Puy
O, \ T sin?0 + Z2 ,,cos?0 0 o,
+ / d4x< “’) ;32( Z wH ) ) ) ( ”) —V(®). (100)
Dy 0 72 0?0 + Z3 ysin®0 ) \ ®,1
In this basis (7], x}, tz, xg) the vacuum averages are
(@40 (@g)\ 5 Vicosf  ——su,sind o)
(D) (Pyry) % v,sin@ \/izu)( cosf |’
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The fields (I>,rL ,and (b"d( are transformed under the action
of the SM gauge group, while (I)x’L . and <I>m are not. In

order to calculate the gauge boson masses induced by the

scalar fields, we need to keep in the effective action the

terms proportional to p? standing at the products of P!, e
L

/ .
and (I)f'L e
Sy = / d4x<I>;,L“ P2}, ysin*0 + Z%)(Hcoszé’)@’fm
+ / d4x<I>;,L W PP (25 psin®6 + Z,2,H00529)4>;,L "
(102)
In this expression we should substitute (®}, ) = v, cos ¢
L
and (@), )= —u, sin@. At the same time we substitute p?
L
by the gauge field squared, A2 = (293, W, W¥ + ¢3Z,7+).
Then Eq. (102) gives the masses of the W and Z bosons,
M, = g,m/2 and My, = gyn/2, where
n* = vj cos® 0(Z5,y; cos® 0 + Z3,, sin® 0)
+ uy sin* O(Z;,p; sin® 0 + Z7,j; cos® 0)
@Zrzw>
9 Zim
(We neglect the terms proportional to m7/m3.) The W and
Z bosons acquire their observable masses if n ~ 246 GeV.

~ 2Zt2tht2<1 + (103)

TABLE III.

PHYSICAL REVIEW D 92, 055004 (2015)

In principle, this expression works reasonably well even for
A =10 TeV, m, = 10m,.

Notice that in our approach the two composite scalar
fields ®,, and ®,, are condensed and both contribute to the
gauge boson masses. While the condensate of @, (propor-
tional to the mass of the heavy fermion y) is larger than the
condensate of ®,, the coupling of ®,, to the W and Z
bosons is suppressed by the factor m,/m,. Thus, in the
general case the contributions of both scalars to the gauge
boson masses are of the same order. For large values of A
the ®, dominates, while for low values of A the ®,,
dominates. The 125 GeV Higgs boson is composed mostly
of ®, and ®,,. Therefore, for the low scale of the hidden
interaction its contribution to electroweak symmetry break-
ing is not dominant.

3. Example parameter choices

Below we consider two specific choices of parameters,

which give a realistic spectrum for the scalar boson masses.

(1) Let us suppose first that the scale of the new

interaction is A ~ 10% TeV while m, = 100m,. We
require

My ~m,/V2~125 GeV (104)

and consider as an example the following particular

choice of parameters [that gives Egs. (103) and
(104)]:

Values of bare and intermediate coupling constants as well as the observable masses for the first considered choice of

initial parameters. Bare coupling constants enter the original Lagrangian [Egs. (39), (41), (43), and (44)]. The ultraviolet cutoff A is
present there implicitly. Intermediate coupling constants appear when the Lagrangian is written in terms of mass eigenstates. These
parameters enter the gap equation (63) and the expressions for the scalar boson masses. The mixing angles a and 0 enter the relation
between the original fermion fields of the model and the mass eigenstates in Eqs. (54) and (55). The accuracy of our calculations is
within about 5 percent for the considered choice of parameters. All scalar bosons excluding the 125 GeV Higgs are unstable, which
corresponds to their decay into pairs of fermions. Correspondingly, their masses have imaginary parts. The imaginary part of M, 0, is

suppressed by the factor m,/m, and is not represented here.

Bare parameters

R e by A
87 TeV? —84 TeV? 106 TeV? 18 TeVZ 59 TeV? 563 TeVZ 33 TeV? —0.073 TeV? 1000 TeV
Intermediate parameters

w; — é\’?AZ a);{ - é\’?AZ 9 gr;( g)( bt bt;( b){ ft f){
78 TeV? —74 TeV?> 92 TeV? 39 TeV? 20 TeV? 528 TeV? 105 TeV? 264 TeV?> 77 TeVZ 20 TeV?
Fermion masses, scalar boson masses, and mixing angles
2 2 1
m my My M, Mg, My e
175 GeV 17.5 TeV 125 GeV (22 - 2.9i) TeV (22 = 2.9i) TeV (22 = 2.9i) TeV
M!/’r M‘/’;{ MS[I ?7[ MSIZ)H a 0
(22 - 0.5i) TeV 35 TeV (63 —10i) TeV (38 = 7i) TeV —-0.0763x 0.006277x
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N .
XZU(H thtH ’
=0. 379ZU(Hm s =1. 74Zt)(Hm (105)

All values of the bare and intermediate coupling
constants as well as all observable masses for this
choice of initial parameters are collected in Table III.

(2) The second choice of parameters corresponds to
A =10 TeV and m, = 10m,. In this case we con-
sider the following particular choice of parameters
[that gives Egs. (103) and (104)]:

0 =g Zun L_l
ty — )
g XZU(H Zzth
, =0.169Z2 ym2, g, = 17422 m2.  (106)

All values of the bare and intermediate coupling
constants as well as all observable masses for this
choice of initial parameters are collected in Table I'V.
Recall that the values of g,, g,, g,, are the elements of the
matrix G in the basis in which the fermion mass matrix is
(0)

diagonal. The original parameters of the model g; ,, ., are the
elements of the matrix G in the basis in which (b} 7} )"
the SU(2), doublet, y; is the SU(2), singlet, and matrix Q

PHYSICAL REVIEW D 92, 055004 (2015)

given by Eq. (61). The parameters w,, are related to the
values of the masses through the gap equations (63) and are

é\; < A2, which is much larger than the other

quantities we have encountered here. The original param-

0
eters are related to w,, as o, i = = cos? aa)g ) + sin? aa)f( )

o Ne A2 This is the difference

é\,/fz A? that—together with the values of
91 4.,,—define the dynamical fermion masses. The angle ¢
relates the mass eigenstates ¢;,y; with the original states
1}, x; [where 7} is transformed under the action of the SM
SU(2), gauge group].

In the first of the above examples the difference of the
scales between A ~ 103 TeV, m, ~17.5 TeV, and m; ~
175 GeV implies a kind of fine-tuning. Such a difference
may survive in the theory only if the values of the coupling
constants are close to their critical values at which the chiral
symmetry breaking occurs. Moreover, to provide this we
disregard the higher-order 1/N, corrections. The latter
implies that the given NJL model should be defined with
counterterms that cancel the dangerous terms of the order of
~A? coming in the next-to-eading 1/N, corrections. (As
mentioned in the Introduction, we imply this kind of
NJL model. For a discussion of this issue see also
Refs. [14,39,46] and references therein.) Notice that the
results of Ref. [30] are valid under the same assumptions.

between w,,

is diagonal. [Here SU(2), is part of the SM gauge group.]

The values 95,(;)(),1;( are related to g, , ,, via Eq. (58), while a is

In the general case the masses of the remaining CP-even
scalar bosons are of the order of m,, if g, ~ mf( and may be

TABLE IV. Values of bare and intermediate coupling constants as well as the observable masses for the second considered choice of
initial parameters. Bare coupling constants enter the original Lagrangian [Egs. (39), (41), (43), and (44)]. The ultraviolet cutoff A is
present there implicitly. Intermediate coupling constants appear when the Lagrangian is written in terms of mass eigenstates. These
parameters enter the gap equation (63) and the expressions for the scalar boson masses. The mixing angles a and 0 enter the relation
between the original fermion fields of the model and the mass eigenstates in Eqs. (54) and (55). The accuracy of our calculations is
within about 15 percent for the considered choice of parameters. All scalar bosons excluding the 125 GeV Higgs are unstable, which
corresponds to their decay into pairs of fermions. Correspondingly, their masses have imaginary parts. The imaginary part of M, o, is

suppressed by the factor m,/m, and is not represented here.

Bare parameters
wEO) _ éVT A2 CU;((O) _ ;V7 A2 950) gg(» g)({o) bEO) pO b)((o) A
0.45 TeV?

—0.38 TeVZ  0.48 TeVZ  0.063 TeVZ  0.0094 TeVZ 2.7 TeVZ 027 TeVZ  —0.056 TeVZ 10 TeV

Intermediate parameters
w; — év?/\z w, — %Az 9 iy 9y b, bl){ b)( S f;(
0.43 TeV?

—0.36 TeV? 0.45 TeV? 0.14 TeV? 0.044 TeV? 2.6 TeVZ 0.5 TeVZ 1.3 TeVZ 0.44 TeVZ 0.044 TeV?

Fermion masses, scalar boson masses, and mixing angles

2 2 1
m; " My My, M), M) e
175 GeV 1.75 TeV 125 GeV (2.0 — 0.5i) TeV (2.0 — 0.5i) TeV (2.0 — 0.5i) TeV
M(”r MV’;{ Mgrl.)n M7(52>7r a 0
(2.3 - 0.1i) TeV 3.5 TeV (5.8 — 2i) TeV (3.5 1i) TeV ~0.0547 0.00987
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made sufficiently large by an appropriate choice of the ratio
m,/m,,. Correspondingly, they are able to decay into pairs
of fermions, which results in the imaginary part of their
masses. The masses of CP-odd scalar bosons depend on the
additional parameters b,, b,, b,,. These parameters should
be chosen large enough in order to provide the stability of
the vacuum. We may choose their values in such a way that
the corresponding masses are also of the order of m,. The
mass of the charged scalar boson is given by Eq. (82) and is

(2)

approximately equal to M i, & Mf,)AI' In the considered

examples the CP-even pseudo-Goldstone boson—the can-
didate for the 125 GeV Higgs—is the only stable composite
boson and is sufficiently lighter than the other composite
scalar states. Due to mixing, all neutral scalar bosons
(except the 125 GeV scalar) are able to decay into the pair
it. We do not exclude that some of the composite scalar
bosons may become stable if the scale of the interaction is
lower than 10 TeV while the heavy fermion mass is smaller
than 1.75 TeV; this may occur if the masses of the scalar
bosons are smaller than 2m;, (for the neutral scalar bosons)
and m, + m; =~ m, (for the charged scalar boson).

4. The effective Lagrangian for the decays of the CP-even
pseudo-Goldstone boson (neglecting the ratio m,/m,,)

As we will see below, the decay probabilities of the given
scalar boson do not contradict the present experimental
constraints. The H-boson production cross sections and the
decays of the Higgs bosons are typically described by an
effective Lagrangian of the following form:

2m m3
+ Z
Leff_CWTHW W +CZ—HZ/4Z;J

HAA

+c WG+ ¢, (107)

912

Here G,, and A, are the field strengths of the gluon and
photon fields. We do not consider here the masses of the
fermions other than the top quark and y. Therefore, we omit
in this Lagrangian the terms responsible for the corre-
sponding decays. This effective Lagrangian should be
considered at the tree level only and it describes the
channels H — gg,yy,ZZ,WW. The fermions and W
bosons have been integrated out in the terms corresponding
to the decays H — yy, gg, and their effects are included
in the effective couplings ¢, and ¢,. In the SM we have
cz = cy = 1, while ¢, = 1.03, ¢, # —0.81 (see Ref. [47]).

Below we evaluate the previously mentioned coupling
constants in our model neglecting the ratio m,/m,. We will
demonstrate that the result is given by the SM values.
Therefore, corrections to these values depend on the ratio
m,/m, and are small provided that this ratio is small. The
evaluation of these corrections is out of the scope of the
present paper.

PHYSICAL REVIEW D 92, 055004 (2015)

Let us define the neutral scalar field given by the sum
of the condensate and the fluctuation H around the
condensate:

2

VA
/o yH /
By ~ \/EzttH(Ptt w7 Py
1 +w? Z’{H

ttH

] } Z, - _
\/EzttH(tLtR +ipty) — 075 (fyr + IrlL)

~

1+W2 t;(H
Zin

(108)
The vacuum average of this field is

ZH?;

(@) (109)

We also define the neutral scalar fields

a)Z,ZH i, + Zt)(H P

~ w
Dy, ~V2 ,
X Z')
1 + W2 z;(H
IIH
\/’Zt)(H xts
o, ~ \[Z;(xH $74

(110)
The latter field has the vacuum average

(@, )~Z

il (111)

In order to calculate the decay constants of the Higgs
boson we should substitute into Eq. (102) the following
expressions:

q)z/Lz = cos 0P, — sinOP,,,

¢, =cos0P, —sindP,, (112)

This gives

Sy = /d4x(c0s 0%, —sin0®,,)p*(Z; ;sin*0
+ ZU{Hcos 20)(cos 0P, — sin 6P, )
+/d4x(c059<I>n—sin6’<I>ﬂ)132( S usin®0

+ Z2%;,c0s%0)(cos 0P, — sin 0P ,,).

(113)

The real parts of the scalar fields should be expressed
through ®4, (I)h,h)(’ (I)wn and <I>%
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Z,
((I)H + Wz_ﬂl_jcbh,h )

(D;t = = 2 ’
V2Zugy\ 1+ W
1ttH
Zr
o (=W 4 Dy )
¢, =

V2Zy\ |1+ w2 Zyn
HH

!~y P

! \/EZ tyH ’
Iy q)‘ﬂz
xx \/z Z;(;{H

Next, we expand them around the condensates and keep
only the terms linear in H:

cos OHw 22 o
Spy= /d4x i [32(22 ysin?0

U(H 1+W

IIH

+ 77, ;1c0s%0) sin u,

cosOH N .
+ / d*x — p*(Z,ysin0
Zur |1 +w? #’::
+ Z2,,c08%0) cos Ov,. (114)
Finally, we substitute p? by the field A> = § (2¢3, W,y W +
gZZﬂZ” ):
w2 ?L”
Sy = / dx——2 7, 0,
1 2 ZWH
v z%,H
/d4 A Z”H’U[
2 t)(H
ZUH
o
~ / d*xHv, Zygy [ 1+ w? —E7A (115)
ttH
~ / d*xHnA?. (116)

Recall that M, = g,n/2 and My, = gwn/2. Thus we are

able to evaluate the values of ¢y, and ¢, entering Eq. (107):

lewl? = lez? = 1. (117)

In order to evaluate the constant ¢, we need to consider

the vertex for the transition H — 7t. It comes from the
interaction term of the Lagrangian,

PHYSICAL REVIEW D 92, 055004 (2015)

L(I’—>fl = _[;L(I)IZIR + HC] (1 18)

This gives the interaction term of H and the top quark,

H _ _
Ly_;=— tt:—@ttH, (119)
t;(H 17
\/EZIIH 1+ w? Z,
and results in the Standard Model value
|cg\2 =1. (120)

The expression for ¢, is more complicated. However, in the
considered approximation (where we neglect corrections
proportional to m?/m ) it is also given by the SM value.
Notice that the top quark is integrated out in Eq. (107), and
its coupling to H is absorbed by ¢, and c,.

In principle, if we consider the choice of coupling
constants that corresponds to a sufficiently light y, the
valuable corrections to the Higgs boson decay constants
would appear. The corresponding experimental data are
presented in Fig. 25 of Ref. [48].

Thus we see that, although the contribution of the
125 GeV Higgs to electroweak symmetry breaking may
not be dominant, its decay constants are close to their
values in the Standard Model, where it gives the only
contribution to the gauge boson masses.

It is worth mentioning that in our estimates we com-
pletely disregarded the running of coupling constants from
the scale A to the electroweak scale. This running affects
essentially the values of the scalar boson masses if the scale
is sufficiently high [24,25]. It is more or less obvious,
however, that our large number of free parameters allows a
choice that leads to the necessary relation between the
renormalized values of the scalar boson masses and the
renormalized values of the effective coupling constants
entering Eq. (107).

In this paper we did not consider the other contributions
of the electroweak gauge fields to the effective Lagrangian.
Those contributions are suppressed, however, due to the
smallness of the electroweak gauge coupling (see
Refs. [29,30]). We also did not consider the contribution
of the heavy fermion y to the electroweak polarization
operators (S and T parameters). The latter contribution is
controlled by the ratio m,/m,, and if its value is sufficiently
small the contribution of y to the S and 7 parameters is
suppressed [30].

IV. CONCLUSION AND DISCUSSIONS

In the considered scenario, the symmetry breaking takes
place at a high-energy scale where there is a hidden
symmetry. (In *He-B it is the separation of the spin and
orbital rotations; in the proposed model of top-quark
condensation it is the SU(3); symmetry). This symmetry
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is violated at low energy. As a result, some of the Nambu-
Goldstone modes transform to the light Higgs bosons. Such
scenarios of the emergence of a light Higgs may have some
(though not always exact) parallels in other models of high-
energy physics.

Let us consider, for example, the hidden chiral symmetry
in QCD. It is provided by an approximation in which the u
and d quarks are considered as massless. The spontaneous
breaking of the hidden symmetry leads to three pions (one
neutral and two charged) as the massless Goldstone bosons.
These pions become massive when one takes into account
the nonzero masses of the u and d quarks. The masses of
the pions are much smaller than the mass of the local Higgs
boson (the & meson). This situation is similar to that of the
top-seesaw models of Refs. [29,30], where the explicit
mass term was introduced that breaks the hidden SU(3),
symmetry. However, it is different from that of 3He-B,
where there is no explicit mass term for the fermions.
Instead, the spin-orbit interaction appears as a modification
of the original four-fermion interaction. In the present paper
we proposed a model of top-quark condensation in which
the SU(3), symmetry is broken by the modification of the
four-fermion interaction in analogy with *He-B.

The top-quark condensation model considered in the
present paper is similar to the top-seesaw models of
Refs. [29,30]. Our model (as well as the models of
Refs. [29,30]) contains the CP-even light Higgs, whose
mass appears as a result of the soft breakdown of SU(3),
symmetry. In this respect this model differs from QCD,
where the massive pions are CP-odd states. The light Higgs
of our model is similar to the light Higgs boson of *He-B,
which has all the signatures of the Higgs boson: it is the
amplitude mode of the Higgs triplet vector field n, while
the rotational modes of the Higgs triplet represent the NG
bosons in full correspondence with the Higgs scenario.

The situation in *He-B and in the complicated top-quark
condensation model considered here is also close to that of
the little Higgs models (see the review [16] and references
therein). In the little Higgs approach the Higgs particles
also appear as the pseudo-NG bosons (although they not
composed of top quarks). The corresponding field has all
the properties of the Higgs field, whose collective modes
contain both the amplitude Higgs modes (the Higgs
bosons) and the NG modes (in gauge theories the NG
modes are absorbed by the gauge fields and become the
massive gauge bosons). This is why we may also say that
the massive mode #15 in *He-B (the gapped spin wave)
represents the condensed matter analog of the little Higgs.
The appearance of the analogs of the little Higgs bosons is
also possible in other condensed matter systems. The
abstracts of the recent International Workshop “Higgs
Modes in Condensed Matter and Quantum Gases” can
be found in Ref. [49].

In 3He-B, there is a large difference in energy scales
between the heavy Higgs bosons and the light little Higgs.

PHYSICAL REVIEW D 92, 055004 (2015)

This is why the transformation of the NG mode to the little
Higgs practically does not violate the Nambu sum rule [13].
The Nambu partner of the little Higgs is the heavy Higgs
with energy close to 2A, which has the same quantum
numbers (J = 1,J, = 0) but different parity. The consid-
ered light Higgs is essentially lighter than the fermionic
quasiparticles, which have the gap A. This indicates that if
this scenario works in the SM and the observed 125 GeV
Higgs is the pseudo-Goldstone boson, then there should
be an additional fermion that is much heavier than the
top quark.

Indeed, in the considered model of top-quark condensa-
tion the additional fermion y is much more heavy than the
top quark. In the proposed model we evaluated in the
leading order of the 1/N, expansion the decay branching
ratios of the Higgs boson. Their deviations from the SM
values are suppressed by the ratios m,/m,,, and therefore do
not contradict the present LHC data. The CP-even neutral
pseudo-Goldstone boson may be composed mostly of the
f1tg and 7, yp pairs (with a valuable contribution from
the first pair). The corresponding coupling constants in the
effective Lagrangian (that describe its decays) may be very
close to the SM values. The parameters of the model may
be chosen in such a way that the Higgs boson mass is given
by the observable value 125 GeV. In the present paper we
did not analyze the phenomenology of the model in detail.
In particular, we did not consider the effect of the SM gauge
interactions on the model and the mechanism for the
generation of the masses of the other SM fermions.
(Only the mechanism for the generation of m, has been
discussed.) Besides, we disregarded completely the running
of coupling constants from the scale A to the electroweak
scale. This running may affect the values of the scalar
boson masses if the scale A is sufficiently high [24,25]. It is
more or less obvious, however, that even in such a case our
large number of free parameters allows a choice that leads
to the necessary relation between the renormalized values
of scalar boson masses and renormalized values of the
effective coupling constants entering Eq. (107). On the
other hand, for low values of A our estimate for the Higgs
boson mass (92) becomes less accurate. For example, at
A =10 TeV and m, = 1.75 TeV it gives an accuracy of
about 10 percent. However, the proposed approach clearly
remains valid for A equal to a few TeV. The detailed
consideration of this case is technically rather complicated
if we need to achieve a better accuracy for the estimates.
Thus we expect that our consideration may give a sufficient
qualitative pattern of the theory, in which the pseudo-
Goldstone boson plays the role of the 125 GeV Higgs. We
prefer not to call our construction the top-seesaw model
because (unlike Ref. [31]) the traditional scheme with the
off-diagonal condensate (7;yz) is not necessary (though
allowed).

Unlike Refs. [29,30], in our case the explicit mass term is
absent and the soft breaking of the SU(3) symmetry is given
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solely by the four-fermion terms. This reveals the complete
analogy with 3He, where there is no explicit mass term and
the spin-orbit interaction has the form of a modification of
the original four-fermion interaction.

The top-quark condensation model with the four-fermion
interaction considered here should necessarily appear as
the effective low-energy approximation of the unknown
microscopic theory. Certain non-NJL corrections to various
physical quantities should arise from this microscopic
theory. If the discussed scenario (in which the 125 GeV
Higgs boson appears as the composite pseudo-Goldstone
boson) is confirmed by experiment, such a theory is to be
constructed. It may be very unusual. In particular, the
nature of the forces binding fermions in a Higgs boson may
be related to such complicated objects as the emergent
bosonic fields that exist within the fermionic condensed
matter systems (graphene and superfluid He-3). In con-
densed matter systems various emergent gauge and gravi-
tational fields appear [50]. These emergent gravitational
fields should not be confused with the real gravitational
fields. Typically, the emergent gravity in condensed matter
does not have the main symmetry of the gravitational
theory (invariance under diffeomorphisms does not arise).
That is why in the majority of cases we may speak of
emergent gravity only as the geometry experienced by the
fermionic quasiparticles. The fluctuations of the gravita-
tional fields themselves are not governed by a diffeo-
morphism-invariant theory. We suppose that objects like
these emergent gauge and gravitational fields may play a
certain role in the formation of forces binding fermions
within the composite Higgs bosons.

We also do not exclude the possibility that a certain
part of the extended real gravitational fields may play a
role in the formation of such forces. In particular, there
exist theories of quantum gravity with torsion [46] in
which the fluctuations of torsion have a scale slightly
above 1 TeV, while the scale of the fluctuations of the
metric is the Plank mass. The mentioned fluctuations of
torsion may also be related to the formation of composite
Higgs bosons.

PHYSICAL REVIEW D 92, 055004 (2015)

A less unusual scenario of physics behind the four-
fermion interactions of the top-seesaw model involves the
exchange of massive gauge bosons, which appear in the
conventional renormalizable field theory (see, for example,
Ref. [39] and references therein).

It is worth mentioning that our model, in principle,
admits a generalization to the case when all remaining SM
quarks and leptons are present. In the framework of top-
seesaw models the corresponding generalization has been
discussed, for example, in Ref. [31]. In our case we should
start from the generalization of Egs. (39) and (40), where
all left-handed and right-handed quarks and leptons are
present. In addition, the Lagrangian may include several
extra fermions )((i), i=1,2,... (similar to the y of the
present paper). The Lagrangian should be invariant under
the unitary transformation group G that mixes left-handed
quarks and leptons and the extra fields )((L’). At the next step
of the construction we should break this G softly by the
four-fermion interactions and, possibly, by the explicit
mass terms that involve the extra fermions y(V). This will
result in the appearance of the pseudo-Goldstone bosons.
The whole construction should give rise the appearance of
the CP-even pseudo-Goldstone boson that may be identi-
fied with the 125 GeV Higgs boson, while the remaining
scalar bosons should have much larger masses (or much
smaller production cross sections) in order to avoid the
present experimental exclusions. From the technical point
of view such a construction should be rather complicated.
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