
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Bayrak, Murat; Guler, S. Ilgin
Linkage Problem in Location Optimization of Dedicated Bus Lanes on a Network

Published in:
Transportation Research Record

DOI:
10.1177/03611981221148490

Published: 01/06/2023

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Bayrak, M., & Guler, S. I. (2023). Linkage Problem in Location Optimization of Dedicated Bus Lanes on a
Network. Transportation Research Record, 2677(6), 433-447. https://doi.org/10.1177/03611981221148490

https://doi.org/10.1177/03611981221148490
https://doi.org/10.1177/03611981221148490


Research Article

Transportation Research Record
2023, Vol. 2677(6) 433–447
� National Academy of Sciences:
Transportation Research Board 2023

Article reuse guidelines:
sagepub.com/journals-permissions
DOI: 10.1177/03611981221148490
journals.sagepub.com/home/trr

Linkage Problem in Location
Optimization of Dedicated
Bus Lanes on a Network

Murat Bayrak1 and S. Ilgin Guler2

Abstract
Methods for identifying optimal decisions for dedicated bus lane locations (DBLs) on a network have been extensively studied
in the literature. However, the impacts in relation to changes to car and bus delays of deploying a DBL on a given link largely
depend on where other DBLs exist on the network. Therefore, for a network-wide location optimization or a bus lane
design problem, linkages exist between decision variables. Typically used metaheuristic methods to optimize DBL locations,
such as genetic algorithms (GAs), do not perform well for such problems with linkages between decision variables. To this
end, this paper has two novel contributions to the literature by (a) demonstrating that the linkage problem exists, and (b)
testing different heuristic algorithms that are more suitable than GAs for optimizing the locations of DBL on a network. The
linkage problem in the location optimization of DBLs is demonstrated by enumerating all possible bus lane locations in a small
grid network. Next, optimization algorithms that do not enumerate all possible bus lane locations that are capable of learning
linkages between decision variables, namely Bayesian algorithm and a population-based incremental learning algorithm, are
proposed. These algorithms are compared with two types of GAs in relation to consistency and quality of the solutions, and
exploration capability. Results show that algorithms that can learn linkages between decision variables perform better than
the GAs.

Keywords
bus lane, bus transit systems, optimization, optimization, planning and analysis, public transportation, transportation network
modeling

Transportation planning and management involve count-
less decisions that can have effects that span the entire
network. Because of the importance of these decisions,
many researchers have studied methods that can identify
the optimum decisions for a given problem on a network
such as traffic signal coordination (1, 2), traffic signal
timing (3, 4), toll pricing (5–8), bus fare (9), network
design (10, 11), transit network design (12, 13), and bus
lane placement (14–23). Specifically, the dedicated bus
lane (DBL) implementation location selection problem
has been formulated as a combinatorial optimization
problem in the literature (14–22). Typically, a bi-level
methodology is used. The upper level of these methods
determines the optimal combination of bus lane locations
to minimize total travel time, while the lower level evalu-
ates the network to determine the travel times. The upper
level of these models is solved using Benders’ decomposi-
tion (21), branch and bound (19), or genetic algorithm

(GA) (14–18, 20), whereas the lower level is typically
solved with the Akcelik or Bureau of Public Roads cost
functions. The use of metaheuristic algorithms at the
upper level can often find reasonably good solutions that
can be used for planning and decision-making purposes.
However, for the problems that involve optimization of
capacity-changing network modifications (e.g., bus lane
placement), basic evolutionary algorithms are not ideal
choices for optimization because of the linkage problem
between decision variables.

1Department of Built Environment, Aalto University, Espoo, Finland
2Department of Civil and Environmental Engineering, The Pennsylvania

State University, University Park, PA

Corresponding Author:

Murat Bayrak, murat.bayrak@aalto.fi

us.sagepub.com/en-us/journals-permissions
https://doi.org/10.1177/03611981221148490
https://journals.sagepub.com/home/trr
http://crossmark.crossref.org/dialog/?doi=10.1177%2F03611981221148490&domain=pdf&date_stamp=2023-01-25


In the literature on metaheuristic algorithms, the link-
age between decision variables is defined as the influence
of one variable on another variable. From the transpor-
tation optimization perspective, linkage means that the
effect of one network modification decision depends on
the existence of another network modification. For
example, any modification of signal settings at an inter-
section can also affect the delay in neighboring intersec-
tions. Thus, for an optimization problem considering
signal settings in an area, the decision variables are
dependent on each other. This dependence makes it more
difficult for basic evolutionary algorithms, especially
GAs, to efficiently find the optimal solution, as GAs do
not explicitly account for the dependency in the decision
variables. Previous studies have found that unaccounted
linkages between decision variables can significantly
impact the performance of GAs (24, 25).

The issues caused by linkage can be avoided by signif-
icantly increasing the exploration capability of GAs
using several modifications such as diversity control
measures, increasing the size of the population, and
adopting an aggressive mutation approach. However, as
these methods increase the computation time of the opti-
mization algorithm, these methods may not be viable for
optimization problems that are computationally expen-
sive to evaluate, for example, microsimulation. Several
methods can be used to make GAs capable of learning
linkages. These methods include mutation (e.g., inver-
sion) (26), crossover regulating non-coding bits (e.g.,
metabits and punctuation marks) (27, 28), and crossover
methods (e.g., Masked crossover, shuffle crossover,
adaptive uniform crossover, selective crossover, linkage
evolving genetic operator) (29–33). These are simple
methods as they only utilize the fitness of each solution
to learn linkages between decision variables. Some more
advanced crossover methods use probabilistic models for
the crossover operator, such as general linkage crossover
(34), adaptive linkage crossover (34), and linkless self-
distancing GA (35). Regardless, if a high number of lin-
kages is present in the optimization problem, these meth-
ods are not effective in identifying and learning the
linkages. For such problems, an optimization method
capable of learning the dependencies between the deci-
sion variables is needed.

Messy GAs and estimation of distribution algorithms
are the two main types of evolutionary algorithms capa-
ble of learning linkages. The main difference between
these two types of algorithms is how the existing linkages
between the variables are identified. Messy GAs first con-
duct a partial enumeration of the solution space to select
promising building blocks to identify linkages, and then
use these building blocks to continue with a solution
method similar to the basic GA. Some common examples
of messy GAs are messy GA, gene expression messy GA,

fast messy GA, ordering messy GA, and structured messy
GA (36–39). The need for partial enumeration makes
these types of algorithms infeasible to use for simulation-
based transportation optimization problems because of
the required computation time. On the other hand, esti-
mation of distribution algorithms identify the existing
linkages within the decision variables by leveraging prob-
ability theory. Some of the commonly used estimation of
distribution algorithms include population-based incre-
mental learning (PBIL), extended compact GA, bivariate
marginal distribution algorithm, factorized distribution
algorithm, edge histogram-based sampling algorithm,
and Bayesian optimization algorithm (BOA) (40–45).
These methods construct and sample probabilistic mod-
els of linkages, and do not require a computationally
expensive partial enumeration.

To the authors’ knowledge, no existing work has
shown the problem with dependency in location selec-
tion problems in the transportation context and
explored potential heuristic solutions that can deliver
an improved performance in light of this dependency.
To this end, the first goal of this paper is to illustrate
the linkage problem among the location of DBLs on
transportation networks. More specifically, this study
will demonstrate how implementing a DBL on a given
link can change the benefits or disbenefits of imple-
menting a DBL on a different link. DBL locations are
the ideal subjects for this study because of the trade-off
between reduction in transit delay and reduction in
capacity of non-transit traffic. To do so, a bi-level algo-
rithm will be formulated and enumeration will be used
at the upper level to evaluate changes in travel time
considering all possible combinations of DBL locations
on a small network. The second goal of this paper is to
evaluate optimization algorithms (without enumera-
tion) that can account for linkages in the data, that is,
more specifically the dependency among the locations
of DBL implementations, to find near-optimum solu-
tions. This paper will explore the use of estimation of
distribution algorithms to optimize transportation
infrastructure networks. The PBIL and BOA are cho-
sen as candidates in this paper specifically for their
popularity and ease of implementation.

The optimization results of two GAs and two estima-
tion of distribution algorithms will be compared.

The rest of the paper is organized as follows. The next
section describes the network evaluation methodology
and using this method the dependency problem is demon-
strated by enumerating the total travel time of all combi-
nations of locations for possible DBL implementation in
a small network. Then, the tested optimization methodol-
ogies are described in the Solution Methods section. The
test network and experiment setup, along with the results
of four different optimization algorithms are presented in

434 Transportation Research Record 2677(6)



the Results section. Finally, some concluding remarks
are provided in the last section.

Network Evaluation Methodology

In this study, the bi-level methodology used in Bayrak
and Guler (20) is used to evaluate the network. In this
optimization framework, the lower level evaluates a set
of implementation locations of DBLs by using link
transmission model (LTM) to estimate total travel time
of network users. The LTM is chosen as it can account
for queue spillbacks caused by congestion and provide
more accurate estimations of change in car travel time
resulting from the implementation of DBLs. The LTM is
a dynamic network loading model that provides an
approximate solution to the kinematic wave problem at
the network scale (46). The inputs to the LTM are net-
work parameters (e.g., capacity of links, free-flow speed,
etc.), simulation parameters (e.g., time step, simulation
duration), and an origin–destination matrix (e.g., num-
ber of vehicles wanting to travel between an origin and
destination for each time step). The LTM propagates
aggregated groups of vehicles along a link and distri-
butes them at nodes (i.e., intersections) at discrete time
intervals according to the principles of kinematic wave
theory while assuming a triangular fundamental diagram
(47, 48). Triangular fundamental diagram is a piecewise
linear function of flow with respect to density. The main
output of the LTM is the cumulative vehicle diagrams at
the upstream and downstream end of each link. Other
outputs, such as link travel times, flows, and densities,
are obtained from the cumulative diagrams by using
queuing theory. However, as the LTM is an aggregated
model, bus movements are not explicitly modeled. To
model transit movements, a separate tracking algorithm
is used. The tracking algorithm uses the cumulative vehi-
cle counts of each link to track buses individually.
Tracking is done by estimating link entry and exit times
of each bus on all links as they travel along their bus
route. The bus-tracking algorithm has two underlying
assumptions: (1) buses travel at the same speed as cars
on links without DBL, and (2) buses travel at free-flow
speed on empty links or links with DBL. The bus-
tracking algorithm works as follows:

Step 0: Initialize the algorithm when a bus is
dispatched.
Step 1: When a bus enters a link, tag the upstream
cumulative vehicle number of the link as a bus, nb,
and record the current time step, t, as the bus entry
time to the link, tentry.
Step 2: Proceed to the next time step, t.
Step 3: Check the exit condition:

� For an empty link, or a link with a dedicated bus
lane:

s The exit condition is met if the signal is green
and current travel time of the bus on the link,
(t � tentry), is greater than the free-flow travel
time.

� For a link that is not empty or does not have a
dedicated bus lane:

s The exit condition is met if the downstream
cumulative vehicle number of the link is greater
than the tagged bus number, nb.

� If the exit condition is met, record the current time
step, t, as the exit time, texit, and proceed to Step 4.
Otherwise, return to step 2.

Step 4: Check whether there is a bus stop at the down-
stream end of the link.
� If there is a bus stop, update the on-board passen-

ger count by performing boarding and alighting
operations based on the origin–destination matrix.

� Otherwise, proceed to Step 5.
Step 5: Record the link bus travel time as texit � tentry,
and check the termination criteria.
� If the current link is the last link of the bus route,

terminate the algorithm.
� Otherwise, proceed to the next link on the route

and return to Step 1.

For simplicity, in this paper it is assumed that the
boarding and alighting of passengers at bus stops are
instantaneous. Thus, the exit time of the bus from a link
does not depend on the number of passengers at the bus
stop. However, as the number of boarding passengers
and the number of passengers waiting at each bus stop is
known at all times, a dwell time model can be easily
implemented in the algorithm by adding an exit condi-
tion to Step 4 of the algorithm.

Because the LTM propagates vehicles at discrete time
steps, implementing a dynamic route and mode choice is
possible. In this paper, mode and route choice of network
users are updated using logit models. These logit models
are based on link travel times of buses calculated from
the bus-tracking algorithm and link travel time of cars
calculated using cumulative vehicle diagrams. Equations
1 to 3 are used to update the modal split at the end of
each signal cycle.

POD
m =

exp(UOD
m )

P
M exp(UOD

m )
ð1Þ

UOD
Car =Ccar � acarTT

OD
car ð2Þ

Bayrak and Guler 435



UOD
bus =Cbus � abusTT

OD
bus ð3Þ

where POD
m is the probability of a commuter using mode

m from origin O to destination D, TTOD
car is the travel time

by car between origin O and destination D, TTOD
bus is the

travel time by bus between origin O and destination D,
Cm and am are the calibration coefficients that represent
the mode choice behavior of the network users. The
travel time by car, TTOD

car , is calculated as the sum of the
link travel times on the fastest route (the route with
shortest travel time) between the origin and destination
(OD) pair. The bus travel time, TTOD

bus , is calculated as the
sum of in-vehicle bus travel time (determined as the sum
of bus link travel times), the walking time to the bus stop,
the waiting time at the bus stop, and the transfer time (at
most one transfer is allowed). It is assumed that bus pas-
sengers are assumed to use the bus stop closest to their
origins and if their journeys require transfers, passengers
use the route with the fewest number of transfers.

A similar logit model is also used to update the route
choice dynamically. Different from the mode choice,
route choice is updated at every time step at every inter-
section by using travel times from a given intersection to
every destination.

PID
r =

exp(a3 TTID
r )

P
R exp(a3 TTID

r )
ð4Þ

where PID
r is the probability that route r from intersec-

tion I to destination D is chosen, TTID
r is the travel time

of route r from intersection I to destination D, a is the
sensitivity of the route choice to travel time, and R is the
set of alternative routes that is determined as the routes
that have the same travel distance as the fastest route
between intersection I and destination D. As a result of
Equation 4, although most cars are routed to the fastest
route, some also choose alternative routes that have the
same travel distance as the fastest route.

For each combination of DBL locations on the net-
work, the LTM is used to evaluate traffic. Cars are gener-
ated in the network for 60min (400 time steps), where for
the first 15min the demand is gradually increased and then
kept at the peak level for 45min. Then the total demand is
set to zero and the simulation is continued until all the
vehicles are discharged. The second 30min of the LTM
run is used to calculate the total travel as the sum of car
and bus passenger travel times as the mode and route
choice reach and equilibrium (i.e., vehicle accumulation
becomes stable) after the first 30min of the LTM run.

Test Network

In this section, the dependency problem is demonstrated
by enumerating all possible combinations of links for
DBL implementation for a small network shown in

Figure 1. The test network is a five by five square with
sixty-five nodes and 160 links. OD nodes are located at the
middle of each link. The link length between each node is
200m (i.e., the distance between intersections is 400m).
Each link has two lanes per direction and speed limit, capac-
ity, and jam density of the links are 40km/h, 1200vehicles
per hour per lane (vphpl), and 135vphpl, respectively. Every
intersection in the network is a signalized intersection with
30 s green and 30 s red phases that start their cycles simulta-
neously. A transit network that has four bus routes running
horizontally and vertically on a total of sixteen links is used.
Headways of all bus routes are assumed to be 6min, bus
stops are located in between intersections, and the walking
speed to bus stops is assumed to be 4.5km/h. For simplicity,
it is assumed that the boarding and alighting of passengers
at bus stops are instantaneous.

A demand pattern with 28,000 total trips per hour is
used, which is enough to saturate the network without
leading to oversaturation. The trip demand between each
OD pair has a constant and a random component. The
constant component is the same for all OD pairs, but the
random component is a uniform random variable with a
mean value of 20% of the constant component. As the net-
work is a grid network, a larger number of shortest routes
pass through center of the network than the periphery of
the network. Thus, a distinctive congestion pattern is cre-
ated by the constant part of the demand, such that the
links closer to the central part of the network carry more
volume than the links closer to the periphery of the net-
work. The random part of the demand on the other hand
is used to break the general symmetry of the network.

Dependency Problem

The dependency problem is demonstrated by determin-
ing the range of impacts a single DBL can have on car

Figure 1. Test network for exploring linkages.
Note: OD = origin–destination.

436 Transportation Research Record 2677(6)



and bus travel times. Note that the implementation of
DBLs can reduce bus delays but increase car travel times
as a result of the reduction of capacity of a link (e.g.,
reducing the roadway from two to one lanes). To achieve
this result, first a candidate link is chosen for DBL imple-
mentation. Then, two sets of scenarios are compared: (1)
DBLs are implemented on all possible combinations of
links except for the candidate link, and (2) DBLs are
implemented on all possible combinations of links, as
well as the candidate link. This comparison is done in a
paired fashion and the difference in the total travel time
by car and bus in the two scenarios is recorded. As a
result, for each candidate bus lane location, 32,768 (215)
many different comparisons are made. The distribution
of the percent difference between pairs of scenarios for a
candidate DBL link for all possible combinations of links
is created. The average, standard deviation, skew, mini-
mum and maximum of this distribution is reported in
Table 1. If there is no significant variance in the change
in total travel time resulting from a DBL implementation
depending on the location of existing DBLs, it can be
assumed that the impact of implementing a DBL on that
specific link is mostly independent of where other DBLs
are located. Otherwise, it can be concluded that the
impact of implementing a DBL on a given link largely
depends on the existence of other DBLs on the network.

Table 1 shows how the existence of DBLs located at
other, different, locations influence the impact of a DBL
at a given specific location. Furthermore, an enumeration
of all possible DBL locations was conducted to determine
the optimum solution, that is, the set of DBL locations
that led to the lowest person delay. These solutions are
shown in italics in Table 1. Looking at this table, imple-
menting a DBL at a given location can have a range of

impacts on the overall person delay depending on the
location of the existing DBLs. Moreover, a specific DBL
can increase or decrease the overall person delay depend-
ing on the location of the existing DBLs (in the range of
23.39%–4.60%). Note that although these percentages
may appear small, this is the impact of a single DBL on
the entire travel time. Further, as the results of LTM are
deterministic, these differences are absolute, and not a
margin of error.

The average impact for some DBL locations is close
to zero for implementation of DBLs at certain locations
(e.g., links 1, 4, 5, 8, 9, 12, 13, 16) with relatively small
standard deviations, shown in bold. These are the DBL
locations that have the smallest impact on person travel
time, and thus they can reduce overall delay for a wider
range of combinations of existing DBL locations. On the
other hand, for other locations the average is greater than
zero with a larger standard deviation (e.g., links, 2, 3, 6,
7, 10, 11, 14, 15), which implies that implementing DBLs
to these locations is on average expected to increase over-
all total travel time. Overall, these results show that the
decision variables of the DBL location selection problem
are dependent on each other. Therefore, an algorithm
that can account for the dependencies is needed to opti-
mize DBL locations on a network.

Further, it can be seen that the links that are chosen
for the optimal DBL location problem, shown in italics,
all have mean values close to zero with relatively small
standard deviation. This implies that the change in travel
time expected from implementing DBL on these links is
relatively stable. Thus, an optimization algorithm that
can estimate the distributions presented in Table 1 can
improve the optimum solution for the location selection
problem, as these distributions contain important

Table 1. Distribution of Percent Change in Total Travel Time (TT) for Dedicated Bus Lane on Each Link

Link number Min. TT (% change) Max. TT (% change) Avg. (% change) SD Skew

1 22.77 2.22 20.02 0.35 20.31
2 23.11 4.10 0.47 0.83 20.16
3 21.90 4.60 0.61 0.80 0.44
4 22.38 2.88 20.04 0.18 0.03
5 22.34 2.51 0.01 0.33 0.39
6 23.12 4.38 0.48 0.80 20.27
7 22.20 4.71 0.62 0.76 0.6
8 22.10 2.51 20.03 0.20 0.28
9 22.67 2.60 0.03 0.35 0.4
10 23.72 3.23 0.22 0.76 20.37
11 22.40 4.59 0.52 0.77 0.59
12 22.24 3.17 20.04 0.20 1.36
13 23.08 2.22 20.04 0.35 20.08
14 22.92 3.69 0.39 0.81 20.25
15 23.39 4.51 0.53 0.80 0.24
16 22.20 2.24 20.05 0.19 20.06

Note: Min. = minimum; Max. = maximum; Avg. = average; SD = standard deviation. Optimum bus lane locations are shown in bold and italics.

Bayrak and Guler 437



information on identifying the optimum locations of
DBL implementation.

Solution Methods

This section describes possible methods to optimize the
location of DBLs on a network, and discusses their effec-
tiveness given the dependency problem. To determine
the optimum location of the DBLs on a network a bi-
level optimization method is used. The upper level of the
optimization utilizes different heuristics to minimize the
total in-vehicle travel time. The lower-level algorithm
evaluates the total-in-vehicle travel time as the sum of
the travel time by car and by obtained from the LTM as
described previously. Note that the waiting time and
walking time of bus passengers are not included in the
objective function, as a DBL does not change these val-
ues. The decision variable is a vector consisting of 0 (no
bus lane) or 1 (bus lane) for all possible bus lane loca-
tions. To solve this problem, a bi-level approach is used.
The lower level uses the LTM as described to evaluate
the network. The upper level uses one of four different
optimization algorithms to determine the optimized bus
lane locations: (1) Basic genetic algorithm (GA1), (2)

Genetic algorithm with diversity control (GA2), (3)
BOA, and (4) PBIL. The GAs are chosen because of
their popularity in the transportation literature, and in
solving the specific DBL location optimization problem
(14–18, 20). The BOA and PBIL are chosen as they can
be used to estimate distributions and thus can help can
account for dependencies between the decision variables.

Genetic Algorithms

The flowcharts of the two GAs are shown in Figure 2, a
and b. The first GA (GA1) is a basic GA. It follows a
simple selection, reproduction, mutation, and recombi-
nation cycle. First, a random set of solutions (i.e., vectors
of DBL location configurations) is generated to create a
population of solutions. Next, a tournament selection
method is used (49) for selecting parents for generating
the next population. In a tournament selection, first, a
group of two chromosomes is picked randomly from the
population. Then, the chromosome with the lower total
travel time is selected from this pool as a parent.
Tournament selection decreases the selection pressure on
better chromosomes, thus increasing the likelihood of a
more diverse population. After two parents are selected,

Figure 2. Flowcharts of: (a) GA1, (b) GA2, (c) BOA, and (d) PBIL.
Note: GA = genetic algorithm; BOA = Bayesian optimization algorithm; PBIL = population-based incremental learning.

438 Transportation Research Record 2677(6)



two offspring chromosomes are created by a reduced
surrogate crossover method. In the reduced surrogate
crossover method, the crossing over, that is, swapping of
the genes between the parents, is only done at cutting
points where the genes differ between the two parents.
Therefore, the chance of producing identical chromo-
somes is significantly reduced. Additionally, after the
crossover is performed, a random mutation of a gene is
applied with a five percent probability. Selection, repro-
duction, and mutation steps are repeated until all the off-
spring chromosomes are created. For the recombination
step, where the next generation is created, the worse half
of the population is replaced with the offspring
population.

The second GA (GA2) aims at increasing the diversity
of the population. The only difference between GA1 and
GA2 is the diversity management step. The selection,
reproduction, mutation, and recombination methods
used for GA2 are the same as the methods used for
GA1. The purpose of the diversity management step is
to detect a converged population and increase its diver-
sity by forcing the algorithm to explore different areas of
the solution space. The diversity check is done by calcu-
lating the average Hamming distance (i.e., number of dif-
ferent bits between two solutions) and checking the
improvement of the best solution over the generations.
This step of the algorithm is initiated if the best solution
does not change for ten generations, and the population
is not diverse. When it is initiated, half of the offspring
chromosomes with the smallest Hamming distance (i.e.,
the chromosomes that are the most similar to each other)
are replaced with randomly generated chromosomes.
Note that, even though half of the offspring chromo-
somes are eliminated, the other half is still produced
from the parent population. Therefore, the information
from previous generations is not lost, and they can still
guide the algorithm to a better solution.

Bayesian Optimization Algorithm

The BOA evolves a population of solutions by fitting
and sampling of Bayesian networks. Unlike the GA, the
BOA accounts for the dependent relationships between
decision variables (i.e., locations of DBL implementa-
tions). Bayesian networks used in this algorithm repre-
sent the dependency structure between decision variables.
Each node of a Bayesian network corresponds to a possi-
ble DBL location, and each directed edge of a Bayesian
network represents a dependent relationship between
locations of DBL implementations. The flowchart of the
BOA is shown in Figure 2c.

Similar to the GA, an initial random population is
generated, and future solution populations are selected
from the current population using a tournament selection

method. Next, a Bayesian network (i.e., a network of
dependencies between decision variables) is fitted to the
selected solutions using a search procedure to find the
best Bayesian network that reflects the dependencies and
independencies of the problem. The Bayesian network is
constructed using a separate optimization algorithm
within the BOA. The BOA uses a scoring metric to assess
the quality of a Bayesian network structure, and a search
procedure to test different network structures for a given
scoring metric. In this study, the Bayesian information
criterion (BIC) is used as a scoring metric (50). The BIC
assumes that the number of dependencies in the network
is proportional to the amount of compression of the data
allowed by the network. Therefore, a Bayesian network
structure that maximizes the BIC metric can be used to
effectively describe the dependencies. The search proce-
dure uses a simple greedy algorithm to learn the structure
of the network. The process starts with a network with
no edges (i.e., a network with no dependencies), then
tests the change in the BIC metric for basic graph opera-
tions (edge addition, removal, and reversal). The opera-
tion that most increases the score is chosen. These two
steps (testing and selecting operations) are repeated until
the network can no longer be improved.

Next, offspring solutions are generated by sampling
the fitted Bayesian network. In the Bayesian network, the
variables (i.e., the presence of a DBL on a given link) can
be categorized into three groups: (1) completely indepen-
dent variables (i.e., no links are formed in the Bayesian
network), (2) variables that depend on others, and (3)
variables that others depend on (i.e., the value of the vari-
ables in group 2 that depend on the value of the variables
in group 3). To sample from these sets of variables, a for-
ward simulation is used (51). This sampling is done based
on the conditional probabilities encoded in the Bayesian
network, by assigning first the value (0—no bus lane, or
1—bus lane) for the independent variables (those in
group 1), next assigning the value for the variables in
group 3 (as the values of these do not depend on other
variables) and finally by assigning the values of variables
in group 2 (as their values depend on the values of the
variables in group 3). The sampling process is repeated
until all offspring solutions are generated.

Finally, the offspring solutions and the previous pop-
ulation are recombined by replacing the worse half of
the population with the offspring solutions. The selection
and recombination methods used in this algorithm are
the same as the GAs.

Population-Based Incremental Learning

PBIL combines the generational evolution of GAs with
competitive learning. The flowchart of the PBIL algo-
rithm is shown in Figure 2d. The main difference between

Bayrak and Guler 439



PBIL and the other algorithms tested is that there is no
parent–offspring relationship between consecutive gen-
erations. A probability vector, P, consisting of the prob-
ability of implementing a DBL on each link is used to
generate an entire new population of solutions. The
probability vector is updated and mutated after evalua-
tion of each new population, as shown in Equations 5
and 6.

Pt+ 1
i = Pt

i 3 1� LRð Þ
� �

+ Vt
i 3LR

� �
ð5Þ

Pt+ 1
i,mutated =Pt+ 1

i 1� Dmð Þ+ rand(0, 1)3Dm ð6Þ

where Pt
i is the probability of implementing a DBL on

link i in generation t, LR is the learning rate, and Vt
i is

the value (0 or 1) of the i th position of the best solution
found in generation, t. The new generation of solutions
is created by randomly sampling the solution space
weighted by the probability vector. Therefore, Equation
5 moves future solutions toward the best solution found
in the current generation. Similar to other methods
tested, the probability vector converges around a solu-
tion as the search progresses. However, unlike GAs, the
PBIL allows explicit control of the speed of convergence
with the learning rate parameter, LR. The learning rate
parameter enables the PBIL to explore a larger portion
of the solution space, which is essential for problems
with dependencies, before starting to converge to a solu-
tion. The value of the LR creates a balance between the
portion of the solution space explored and the conver-
gence speed. The mutation operator, see Equation 6, is
also responsible for expanding the explored solution
space by shifting the probabilities with a magnitude of
Dm in the probability vector. Mutation only happens
with a predefined mutation probability. Notice that, dif-
ferent from GAs, the mutation is applied to the probabil-
ity vector instead of to individual solution vectors.

Network and Experiment Setup

The four optimization algorithms described in the previ-
ous section are tested using a 7 3 7 symmetrical grid net-
work shown in Figure 3. There are a total of eight bus
routes, each of length 2.4 km (corresponding to six links)
that run east/west and north/south, see Figure 4. For this
network, the decision variable is a 483 1 vector

consisting of 0 (no bus lane) or 1 (bus lane) for all possi-
ble DBL links. The network parameters (jam density,
capacity, link length, free-flow speed, signal settings, bus
headway, and walking speed) are the same as in the link-
age problem section.

The average total trip demand in the network, equal
to 48,800 vehicles per hour, is chosen such that a network
without DBLs is saturated. The trip demand between
each OD pair has a constant and a random component,
similar to that described in the linkage problem section.

The modal split model used in the LTM calibrated to
create a 6% modal shift from cars to buses when DBLs
are implemented on all potential links. The values of
parameters used in Equations 2 and 3 are Ccar = 50,
Cbus= 54:1, and acar = abus= 0:5. For the route selection
model (see Equation 4), the sensitivity parameter, a, is
set to 2:33 to limit the unnecessary detours. The car total
travel time (in-vehicle), bus total travel time (in-vehicle),
and modal split values for the no DBL and full DBL sce-
narios are shown in Table 2.

The trade-off between the decrease in bus delay and
the increase in car delay can be seen in Table 2. Note
that as the bus network does not completely cover the
whole network, the average travel distance by bus is
shorter than by car. Therefore, the average travel time
by bus is lower than by car, too. When DBLs are imple-
mented, the car travel time increases by 12%, and the
bus travel time decreases by 25%. Overall, this corre-
sponds to a decrease in total travel time of 5%, even
though there are fewer bus users than car users. The
decrease in total travel time, despite the increase in car
travel time, can be attributed to the mode shift, that is,
the 6% mode shift from cars to buses removes enough
cars from traffic to offset the delay increase caused by
the reduction in car capacity. Even though implementing
DBLs at all possible locations can improve the total
travel time compared with the baseline scenario, it is not
the optimum solution in relation to total travel time for
the location selection problem. Given that the bus travel
time, car travel time, capacity, and mode shift directly
affect each other, it is possible that a set of DBL loca-
tions can reduce the total travel time more than the full
DBL case. The expectation is that this optimum combi-
nation of DBL locations would facilitate a mode shift by
only reducing the bus travel time without significantly
increasing car delay.

Table 2. Results of No Dedicated Bus Lane (DBL) and Full DBL Cases

Total bus travel time (TT) (Avg. bus TT) Total car TT (Avg. car TT) Total TT Bus mode share (%)

No DBL (baseline) 603 h (3.9min) 1,316 h (4.9min) 1919 h 30
Full DBL 508 h (2.9min) 1,309 h (5.5min) 1817 h 36

Note: Avg. = average.

440 Transportation Research Record 2677(6)



The parameters used for each optimization algorithm
are listed in Table 3. Note that the parameters are set to
achieve comparable computation times among the algo-
rithms. Although the computational efforts of the algo-
rithms themselves are not the same, the major
determinant of the computational time is the number of
evaluations of the test network, as each LTM run is

relatively computationally expensive. Each optimization
algorithm is run 30 times, and for each optimization
instance, 4,000 individual solutions are created over 100
generations. The consistent value of 4,000 individual
solutions ensures that the computation time of each algo-
rithm is similar. The GA algorithms, along with BOA,
have a recombination step which implies that in each
generation half the population is the same as the previ-
ous generation (and does not require evaluation).
Therefore, to generate 4,000 solutions a population size
of eighty is needed for these algorithms. On the other
hand, the PBIL generates an entirely new population in
each generation and so a population size of forty suffices
to generate 4,000 solutions. The performance of each
optimization algorithm is compared with each other in
relation to consistency and quality of the solutions, and
exploration capability of each algorithm.

All four algorithms are coded in MATLAB and a PC
with a 12-core AMD Ryzen 3900x CPU was used to
run the codes. On average, each optimization instance
took less than 4 h to complete. It should be noted that
the computation time is dominated by the lower-level
evaluation (i.e., LTM model). Thus, as the number of
lower-level evaluations for each algorithm is same and
equal to 4,000, the run time of each algorithm is almost
the same.

Results

In this section, the optimization performance of the
GA1, GA2, PBIL, and BOA are compared. First, the
solutions found by each optimization algorithm are com-
pared considering the value of the optimum minimum
total travel time on the test network, and the common
spatial characteristics of the optimum DBL configura-
tions found by the algorithms. Then, the capability of
each algorithm in exploring the solution space is com-
pared according to the number of unique evaluations,
the number of objective value improvements over the
solution duration, and the number of generations to con-
vergence in a single optimization instance.

Figure 3. Test network for exploring use of different algorithms.
Note: OD = origin–destination.

Figure 4. Ranked results of all optimization instances.
Note: GA = genetic algorithm; BOA = Bayesian optimization algorithm;

PBIL = population-based incremental learning.

Table 3. Parameters of Each Optimization Algorithm

GA1 GA2 BOA PBIL

Population size 80 80 80 40
Mutation probability 0.05 0.05 na 0.05
Tournament size 2 2 2 na
Learning rate na na na 0.1
Mutation shift na na na 0.05
Stopping criteria 100 generations 100 generations 100 generations 100 generations

Note: GA = genetic algorithm; BOA = Bayesian optimization algorithm; PBIL = population-based incremental learning; na = not applicable.

Bayrak and Guler 441



Comparison of Solutions Found by the Algorithms

To compare the solutions found by the optimization
algorithms, each optimization algorithm is run 30 times.
The solutions found by the algorithms are first compared
considering travel times, and next the optimum solutions
are compared spatially.

Travel Time Comparison. The maximum, minimum, and
average of the total travel times found as the optimal
solution are shown in Table 4. From this table, the BOA
and PBIL are able to find better solutions than the GA1
and GA2. This is further investigated in Figure 4, which
shows the ranked optimum total travel time values
obtained from these 120 optimizations runs. Figure 4
reveals that the worst nine solutions are obtained from
the GA1. Given that the GA1 is the most basic form of
the GAs, and it does not have a mechanism either to
learn linkages or to keep the population diverse enough
to explore a large part of the solution space, this result is
not surprising. Although the GA1 found decent solu-
tions in some optimization instances, results show that
the overall performance of the GA1 is unreliable. The
GA2 performed better than the GA1 as a result of the
diversity management step. However, the results of GA2
are also inconsistent compared with the results of BOA
and PBIL. Overall, the worst forty-five solutions are
found by the GA1 and GA2. Overall, the range of the
optimum travel times found from these algorithms is
rather large (1,594–1,673 h). The best performing algo-
rithms are the BOA and the PBIL. Both algorithms con-
sistently found better solutions than the GAs and the top

twenty solutions are found by either the BOA or the
PBIL. The performance difference between the BOA and
the PBIL is negligible, and the range of the optimum
total travel times found from these algorithms is rather
narrow (1,578–1,600h).

Table 5 shows the total car travel time, total bus travel
time, and the modal split values for the top three optimi-
zation results, where the top two results are found by the
PBIL and the third is found by the BOA. The results sug-
gest that the travel time values of these configurations
are similar to each other. Next, these three results are
compared spatially.

Spatial Comparison of Optimal Results. The DBL configura-
tions for the top three optimization results are shown in
Figure 5. As can be seen from Figure 5, share similar spa-
tial characteristics. These results suggest that to minimize
total travel time, the algorithms avoid implementing
DBLs on central links. These links on the central portion
of the network carry higher car and bus passengers flow
than the rest of the network. Therefore, implementing
DBLs on these links provides the largest delay savings to
bus passenger. However, the car delay significantly
increases if DBLs are implemented on these central links,
as the car volume is large. Thus, implementing DBLs to
these locations is likely to increase the total travel time of
the network users. As the objective of the optimization is
to minimize the total travel time, it is expected that the
optimization algorithms avoid the solutions that contain
the central portion of the network. This is an expected
result, as to minimize total travel time the DBLs need to
be implemented on links where they can create a mode
shift without significantly affecting car traffic.
Considering Table 5, all three DBL configurations not
only improved the bus travel (in-vehicle) time but also
slightly decreased the average car travel (in-vehicle) time
by creating a three percent mode shift from cars to buses.
Compared with the full DBL implementation, these opti-
mum DBL locations can reduce bus delays nearly as
much, with significantly lower car travel times.

Figure 6 shows a frequency heat map of the number
of runs of the optimization algorithm that finds that a

Table 4. Range of Resulting Total Travel Time Values (in hours)
for Each Optimization Algorithm

GA1 GA2 BOA PBIL

Minimum 1,594 1,594 1,579 1,578
Average 1,627 1,615 1,595 1,593
Maximum 1,673 1,641 1,601 1,600

Note: GA = genetic algorithm; BOA = Bayesian optimization algorithm;

PBIL = population-based incremental learning.

Table 5. Results of No Dedicated Bus Lane (DBL), Full DBL, and Best Three Optimization Instances

Total bus travel time (TT) (Avg. bus TT) Total car TT (Avg. car TT) Total TT Bus share (%)

No DBL (baseline) 603 h (3.9min) 1,316 h (4.9min) 1,919 h 30
1st configuration 471 h (3.0min) 1,107 h (4.7min) 1,578 h 33
2nd configuration 472 h (3.0min) 1,106 h (4.7min) 1,578 h 33
3rd configuration 468 h (3.0min) 1,111 h (4.7min) 1,579 h 33
Full DBL 508 h (2.9min) 1,309 h (5.5min) 1,817 h 36

Note: Avg. = average.

442 Transportation Research Record 2677(6)



Figure 6. Heat map showing common dedicated bus lane implementation locations found from 30 optimization instances of (a) GA1, (b)
GA2, (c) PBIL, and (d) BOA.
Note: GA = genetic algorithm; BOA = Bayesian optimization algorithm; PBIL = population-based incremental learning.

Figure 5. The dedicated bus lane configurations of the best three optimization instances: (a) best configuration, (b) second best
configuration, and (c) third best configuration.

Bayrak and Guler 443



DBL should be implemented on a given link in the opti-
mum solution. More yellow rectangles indicate a higher
frequency of DBLs being implemented, whereas more
blue rectangles indicate a lower frequency. This figure
can be used to identify the commonalities among the
solutions found for the different solution algorithms.
Most of the optimum solutions found from the different
algorithms avoid DBL implementation to the central
links to minimize the total travel time. However, as seen
from Figure 6, a and b, some of the GA1 and GA2
results include links from the central network, whereas
solutions found from PBIL and BOA always avoided
that region. On inspection of the results of the individual
optimization instances, it is found that the worst-
performing solutions found by GA1 and GA2 are the
solutions that contain links from the central part of the
network.

On the other hand, the GA1 and GA2 find a more
varied set of optimum DBL locations for the outer links
as the result of each run (average Hamming distance
between solutions is 0.79 and 0.71, respectively), whereas
the PBIL and BOA are more consistent in their solutions
(average Hamming distance between solutions is 0.51
and 0.45, respectively). Also, the links found in the best
solution as described above are frequently found in the
configurations found by the PBIL and BOA.

Exploration of Each Algorithm

For each algorithm used, there is an initial exploration
phase followed by a phase that is aimed at fine-tuning
the solution. The exploration phase is when the algo-
rithms create a variety of different solutions to explore
the solution space with the goal of identifying the general
region within the solution space that the optimal solution
may located. Next, all the algorithms shift to the

exploitation of the locality phase, where the goal is to
find a good solution within a small area of the solution
space. This dual functionality is the basic mechanics of
all evolutionary algorithms. However, without enough
exploration in the initial phase, it is likely that these algo-
rithms are likely to exploit a sub-optimal part of the
solution space.

In this section, the capability of the algorithm to
explore the solution space is investigated by comparing
the different runs of each algorithm using three metrics:

(1) The number of unique solutions evaluated in an
optimization run of 100 generations (i.e., over
the 4,000 total solutions evaluations),

(2) The number of generations in which the best
solution was improved in an optimization run of
100 generations, and

(3) The generation number in which the final opti-
mum solution first appeared in the solution space
of the optimization run.

These metrics are calculated for thirty different runs
of each algorithm, and the maximum, minimum and
average values over these thirty runs for the above
metrics for each algorithm are shown in Table 6.

Looking at Table 6, it can be seen that the GA1 evalu-
ated the least number of unique solutions, whereas the
GA2 and the BOA evaluated a similar number of unique
solutions approximately three times larger than that of
the GA1. This shows that the diversity management step
increased the exploration capability of GA2 as compared
with the GA1. Because of the increased exploration
capability, GA2 improved the best solution more fre-
quently than GA1. On inspection of the results of indi-
vidual population instances, it is found that the GA1
often converged prematurely and relied on the mutation

Table 6. Number of Unique Evaluations, Number of Generations in Which the Best Solution Improved and the Generation Number in
Which the Final Optimum Solution First Appeared

GA1 GA2 BOA PBIL

Number of unique evaluations
Minimum 284 750 1,178 2,579
Average 435 1,454 1,477 2,985
Maximum 635 2,025 2,028 3,661

Number of generations in which the best solution improved
Minimum 7 11 8 11
Average 15 19 16 20
Maximum 25 30 24 34

The generation number in which the best solution first appeared
Minimum 9 35 19 37
Average 61 81 44 72
Maximum 98 100 99 97

Note: GA = genetic algorithm; BOA = Bayesian optimization algorithm; PBIL = population-based incremental learning.

444 Transportation Research Record 2677(6)



operator for generating better solutions. However, as the
GA2 does not have a mechanism to learn linkages, this
increased exploration capability did not result in better
solutions.

On the other hand, the PBIL evaluated the greatest
number of unique solutions, approximately 104% more
than the GA2 and the BOA. The main reason for this
superior exploration capability is that the PBIL pro-
duces an entirely new population at each generation by
using the probability vector. PBIL’s superior explora-
tion capability can also be seen in Table 6. PBIL
improved the best solution more frequently than any
other algorithms. However, the exploration focus of
the PBIL diminishes the exploitation capability of the
algorithm (52), resulting in slower convergence. On
average, the best solution in an optimization instance
first appeared in the population in the later stages of
the optimization (most of the time, more than halfway
through the optimization). The exploitation capability
of the PBIL can be enhanced by increasing the learning
rate parameter (LR). However, as the DBL location
selection problem is a problem with dependencies,
increasing the learning rate can result in the premature
convergence of the solution.

The BOA was able to find solutions as good as the
ones found by the PBIL by evaluating only half of the
unique solutions that the PBIL evaluated. Moreover, the
BOA can on average find the final optimum solution in
the least number of iterations out of all the algorithms.
This is because the BOA exploits the dependencies
among the solutions to identify the optimum solution.
As BOA utilizes Bayesian networks to learn the linkages
among solutions, both the exploration and exploitation
processes are more guided than the other algorithms.

Discussion and Concluding Remarks

This study examined the dependency problem in the
mathematical optimization of transportation networks.
First, the dependency problem in the selection of the
optimum location of DBLs on a small network is illu-
strated by enumerating all possible DBLs location con-
figurations. Results show that the performance in
relation to impacts on bus and car travel times of a given
DBL depends on where other DBLs exist. Therefore, a
linkage exists between locations of DBLs on a network.
Although this work only considered the DBL location
selection problem, other transportation network optimi-
zation problems that involve capacity-changing modifi-
cations are likely to have similar linkage problems. After
the illustration of the linkage problem, the performance
of two evolutionary algorithms that are more capable of
linkage learning compared with GAs that are widely
used in transportation literature are explored.

Results show that both PBIL and BOA perform better
than the tested GAs. These two algorithms can explicitly
account for the dependencies in the solution space and
therefore can guide the algorithm to a better solution. As
expected, the basic GA (GA1) performed the worst
among the tested algorithms as its exploration capability
is significantly worse than other algorithms, and often
converged prematurely. On the other hand, because of
the diversity management step, the modified GA (GA2)
explored a much larger portion of the solution space and
found better solutions than GA1. However, the solutions
found from GA2 had a much larger range as compared
with the solutions found from BOA and PBIL. BOA and
PBIL performed similarly in relation to the total travel
time of the solutions they found. Out of a total of thirty
runs of GA1, GA2, PBIL and BOA each, the top twenty
are found by BOA and PBIL. However, BOA required
fewer generations and less exploration than PBIL to find
the solutions. When all results considered, BOA per-
formed best among all tested algorithms.

In this study, BOA and PBIL are selected as an alter-
native solution method to GAs to identify methods that
are capable of learning the linkage between decision vari-
ables better than GAs. Of course, the performance of a
metaheuristic algorithm would be subject to features that
are problem specific and algorithm specific, such as the
structure of the optimization problem and selection of
algorithm parameters. Also, with enough computational
power and fine-tuning of an optimization algorithm,
most of the metaheuristic methods can find a reasonably
good solution to an optimization problem. However, for
optimization problems that require computationally
expensive solution evaluation methods, such as microsi-
mulation or LTM, the number of iterations required to
find a good solution becomes important for practitioners.
Although GAs are easier to implement and more intui-
tive to work with, using more advanced metaheuristics
can save time and significantly improve the solutions
found.

Even though the methods are flexible, the results are
limited to the few test scenarios shown in this paper.
Future work can consider different shapes and types of
networks, travel time, and demand stochasticity, and fur-
ther test different algorithms for accounting for the
dependencies in networks. However, it is expected that
the dependency problem exists for all transportation net-
works, and that heuristic algorithms that explicitly
account for this dependency, such as BOA and PBIL,
can perform better for other transportation networks
and other location selection problems.

Author Contributions

The authors confirm contribution to the paper as follows: study
conception and design: M. Bayrak, S. I. Guler; data collection:

Bayrak and Guler 445



M. Bayrak, S. I. Guler; analysis and interpretation of results:
M. Bayrak, S. I. Guler; draft manuscript preparation: M.
Bayrak, S. I. Guler. All authors reviewed the results and
approved the final version of the manuscript.

Declaration of Conflicting Interests

The author(s) declared no potential conflicts of interest with
respect to the research, authorship, and/or publication of this
article.

Funding

The author(s) received no financial support for the research,
authorship, and/or publication of this article.

ORCID iDs

Murat Bayrak https://orcid.org/0000-0003-1600-333X
S. Ilgin Guler https://orcid.org/0000-0001-6255-3135

References

1. Ma, C., and R. He. Green Wave Traffic Control System

Optimization Based on Adaptive Genetic-Artificial Fish

Swarm Algorithm. Neural Computing and Applications,

Vol. 31, 2019, pp. 2073–2083.
2. Gupta, V., A. Sharma, S. Reddy, R. Kumar, and B. K.

Panigrahi. Traffic Signal Coordination Using Termite Spa-

tial Correlation Optimization for Oversaturated Signals.

Proc., IEEE International WIE Conference on Electrical

and Computer Engineering (WIECON-ECE), Dehradun,

India, 2017.
3. Ceylan, H., and M. G. H. Bell. Traffic Signal Timing Opti-

misation Based on Genetic Algorithm Approach, Includ-

ing Drivers’ Routing. Transportation Research Part B:

Methodological, Vol. 38, 2004, pp. 329–342.
4. Tan, M. K., H. S. E. Chuo, R. K. Y. Chin, K. B. Yeo, and

K. T. K. Teo. Genetic Algorithm Based Signal Optimizer

for Oversaturated Urban Signalized Intersection. Proc.,

IEEE International Conference on Consumer Electronics-

Asia (ICCE-Asia), Seoul, South Korea, 2016.
5. Shepherd, S., and A. Sumalee. A Genetic Algorithm Based

Approach to Optimal Toll Level and Location Problems.

Networks and Spatial Economics, Vol. 4, 2004,

pp. 161–179.
6. González Velarde, J. L., J.-F. Camacho-Vallejo, and G.

Pinto Serrano. A Scatter Search Algorithm for Solving a

Bilevel Optimization Model for Determining Highway

Tolls. Computación y Sistemas, Vol. 19, 2015, pp. 5–16.
7. Brotcorne, L., M. Labbé, P. Marcotte, and G. Savard. A

Bilevel Model for Toll Optimization on a Multicommodity

Transportation Network. Transportation Science, Vol. 35,

2001, pp. 345–358.
8. Koh, A. Solving Transportation Bi-Level Programs With

Differential Evolution. Proc., IEEE Congress on Evolution-

ary Computation, Singapore, 2007.
9. Liu, B. Z., Y. E. Ge, K. Cao, X. Jiang, L. Meng, D. Liu,

and Y. Gao. Optimizing a Desirable Fare Structure for a

Bus-Subway Corridor. PLoS One, Vol. 12, 2017.

10. Yamada, T., B. F. Russ, J. Castro, and E. Taniguchi.

Designing Multimodal Freight Transport Networks: A

Heuristic Approach and Applications. Transportation Sci-

ence, Vol. 43, 2009, pp. 129–143.
11. Mathew, T. V., and S. Sharma. Continuous Network

Design With Emission Pricing as a Bi-Level Optimization

Problem. Proc., 9th International Conference on Applica-

tions of Advanced Technology in Transportation (AATT)-

Transportation, Chicago, IL, 2006.
12. Fan, W., and R. B. Machemehl. Bi-Level Optimization

Model for Public Transportation Network Redesign Prob-

lem: Accounting for Equity Issues. Transportation Research

Record: Journal of the Transportation Research Board,

2011. 2263: 151–162.
13. Poorzahedy, H., and O. M. Rouhani. Hybrid Meta-Heur-

istic Algorithms for Solving Network Design Problem.

European Journal of Operational Research, Vol. 182, 2007,

pp. 578–596.
14. Chen, Q. An Optimization Model for the Selection of Bus-

Only Lanes in a City. PLoS One, Vol. 10, 2015.
15. Mesbah, M., M. Sarvi, and G. Currie. Optimization of

Transit Priority in the Transportation Network Using a

Genetic Algorithm. IEEE Transactions on Intelligent Trans-

portation Systems, Vol. 12, 2011, pp. 908–919.
16. Yao, J., F. Shi, Z. Zhou, and J. Qin. Combinatorial Opti-

mization of Exclusive Bus Lanes and Bus Frequencies in

Multi-Modal Transportation Network. Journal of Trans-

portation Engineering, Vol. 138, 2012, pp. 1422–1429.
17. Mesbah, M., M. Sarvi, G. Currie, and M. Saffarzadeh.

Policy-Making Tool for Optimization of Transit Priority

Lanes in Urban Network. Transportation Research Record:

Journal of the Transportation Research Board, 2010. 2197:

54–62.

18. Bingfeng, S., Z. Ming, Y. Xiaobao, and G. Ziyou. Bi-Level

Programming Model for Exclusive Bus Lanes Configura-

tion in Multimodal Traffic Network. Transportation

Research Procedia, Vol. 25, 2017, pp. 652–663.
19. Yu, B., L. Kong, Y. Sun, B. Yao, and Z. Gao. A Bi-Level

Programming for Bus Lane Network Design. Transporta-

tion Research Part C: Emerging Technologies, Vol. 55,

2015, pp. 310–327.
20. Bayrak, M., and S. I. Guler. Optimization of Dedicated

Bus Lane Location on a Transportation Network While

Accounting for Traffic Dynamics. Public Transport, Vol.

13, 2021, pp. 325–347.
21. Mesbah, M., M. Sarvi, I. Ouveysi, and G. Currie. Optimi-

zation of Transit Priority in the Transportation Network

Using a Decomposition Methodology. Transportation

Research Part C: Emerging Technologies, Vol. 19, No. 2,

2011, pp. 363–373.
22. Sun, X., and J. Wu. Combinatorial Optimization of Bus

Lane Infrastructure Layout and Bus Operation Manage-

ment. Advances in Mechanical Engineering, Vol. 9, 2017.
23. Petit, A., M. Yildirimoglu, N. Geroliminis, and Y. Ouyang.

Dedicated Bus Lane Network Design Under Demand

Diversion and Dynamic Traffic Congestion: An Aggre-

gated Network and Continuous Approximation Model

Approach. Transportation Research Part C: Emerging

Technologies, Vol. 128, 2021.

446 Transportation Research Record 2677(6)

https://orcid.org/0000-0003-1600-333X
https://orcid.org/0000-0001-6255-3135


24. Goldberg, D. E. Genetic Algorithms and Walsh Functions:
Part I, a Gentle Introduction. Complex Systems, Vol. 3,
1989, pp. 129–152.

25. Goldberg, D. E. Genetic Algorithms and Walsh Functions:
Part II, Deception and its Analysis. Complex Systems, Vol.
3, 1989, pp. 153–171.

26. Kennedy, P. J., and T. R. Osborn. A Double-Stranded
Encoding Scheme With Inversion Operator for Genetic
Algorithms. Proc., 3rd Annual Conference on Genetic and

Evolutionary Computation, San Francisco, CA, 2001.
27. Levenick, J. Metabits: Generic Endogenous Crossover

Control. Proc., Sixth International Conference on Genetic

Algorithms, Pittsburgh, PA, 1995.
28. Schaffer, J. D., and A. Morishima. An Adaptive Crossover

Distribution Mechanism for Genetic Algorithms. Proc.,

Genetic Algorithms and their Applications: Proceedings of

the Second International Conference on Genetic Algorithms,
Cambridge, MA, 1987.

29. Louis, S. J., and G. J. E. Rawlins. Designer Genetic Algo-
rithms: Genetic Algorithms in Structure Design. Proc.,

International Conference on Genetic Algorithms (ICGA),
San Diego, CA, 1991.

30. Eshelman, L. J., and J. D. Schaffer. Productive Recombi-
nation and Propagating and Preserving Schemata. Founda-
tions of Genetic Algorithms, Vol. 3, 1995, pp. 299–313.

31. White, T., and F. Oppacher. Adaptive Crossover Using
Automata. Proc., International Conference on Parallel

Problem Solving From Nature, Jerusalem, Israel, 1994.
32. Vekaria, K., and C. Clack. Selective Crossover in Genetic

Algorithms: An Empirical Study. Proc., International Con-
ference on Parallel Problem Solving From Nature, Amster-
dam, The Netherlands, 1998.

33. Smith, J., and T. C. Fogarty. An Adaptive Poly-Parental
Recombination Strategy. Proc., AISB Workshop on Evolu-

tionary Computing, Sheffield, 1995.
34. Salman, A. A., K. Mehrotra, and C. K. Mohan. Linkage

Crossover for Genetic Algorithms. Proc., 1st Annual Con-
ference on Genetic and Evolutionary Computation-Volume 1,
Orlando, FL, 1999.

35. Greene, W. A. A Genetic Algorithm With Self-Distancing
Bits But No Overt Linkage. Proc., 4th Annual Conference

on Genetic and Evolutionary Computation, New York, NY,
2002.

36. Goldberg, D. E., B. Korb, and K. Deb. Messy Genetic
Algorithms: Motivation, Analysis, and First Results. Com-

plex Systems, Vol. 3, 1989, pp. 493–530.
37. Goldberg, D. E., K. Deb, H. Kargupta, and G. R. Harik.

Rapid Accurate Optimization of Difficult Problems Using Fast

Messy Genetic Algorithms. Proc., International Conference on

Genetic Algorithms (ICGA), Urbana-Champaign, IL, 1993.
38. Kargupta, H. The Gene Expression Messy Genetic Algo-

rithm. Proc., IEEE International Conference on Evolution-

ary Computation, Nagoya, Japan, 1996.

39. Burke, D. S., K. A. De Jong, J. J. Grefenstette, C. L. Ram-

sey, and A. S. Wu. Putting More Genetics into Genetic

Algorithms. Evolutionary Computation, Vol. 6, 1998,

pp. 387–410.
40. Pelikan, M., and H. Mühlenbein. The Bivariate Marginal

Distribution Algorithm. In Advances in Soft Computing (R.

Roy, T. Furuhashi, and P. K. Chawdhry, eds.), Springer,

London, 1999, pp. 521–535.
41. Baluja, S. Population-Based Incremental Learning. A

Method for Integrating Genetic Search Based Function Opti-

mization and Competitive Learning. Technical Report

CMU-CS-94-163, Carnegie Mellon University, Pittsburgh,

PA, 1994.
42. Sastry, K., and D. E. Goldberg. On Extended Compact

Genetic Algorithm. IlliGAL Report. Illinois Genetic Algo-

rithms Laboratory (IlliGAL), Urbana, IL, 2000.
43. Mühlenbein, H., and T. Mahnig. FDA-A Scalable Evolu-

tionary Algorithm for the Optimization of Additively

Decomposed Functions. Evolutionary Computation, Vol. 7,

1999, pp. 353–376.
44. Tsutsui, S. Probabilistic Model-Building Genetic Algo-

rithms in Permutation Representation Domain Using Edge

Histogram. Proc., International Conference on Parallel

Problem Solving from Nature, Granada, Spain, 2002.
45. Pelikan, M., D. E. Goldberg, and E. Cantú-Paz. BOA: The

Bayesian Optimization Algorithm. Proc., Genetic and Evo-

lutionary Computation Conference GECCO-99, Orlando,

FL, 1999.
46. Yperman, I., S. Logghe, and B. Immers. The Link Trans-

mission Model: An Efficient Implementation of the Kine-

matic Wave Theory in Traffic Networks. Proc., 10th

EWGT Meeting, Poznan, Poland, 2005.
47. Lighthill, M. J., and G. B. Whitham. On Kinematic Waves

II. A Theory of Traffic Flow on Long Crowded Roads.

Proceedings of the Royal Society of London. Series A.

Mathematical and Physical Sciences, Vol. 229, 1955,

pp. 317–345.
48. Richards, P. I. Shock Waves on the Highway. Operations

Research, Vol. 4, 1956, pp. 42–51.
49. Miller, B. L., and D. E. Goldberg. Genetic Algorithms,

Tournament Selection, and the Effects of Noise. Complex

Systems, Vol. 9, 1995, pp. 193–212.
50. Schwarz, G. Estimating the Dimension of a Model. The

Annals of Statistics, Vol. 6, No. 2, 1978, pp. 461–464.

http://doi.org/10.1214/aos/1176344136.
51. Henrion, M. Propagating Uncertainty in Bayesian Net-

works by Probabilistic Logic Sampling. Machine Intelli-

gence and Pattern Recognition, Vol. 5, 1988, pp. 149–163.
52. Folly, K. A., and G. K. Venayagamoorthy. Effects of

Learning Rate on the Performance of the Population Based

Incremental Learning Algorithm. Proc., International Joint

Conference on Neural Networks, Atlanta, GA, 2009.

Bayrak and Guler 447

http://doi.org/10.1214/aos/1176344136

