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Energetics and structure of grain 
boundary triple junctions in 
graphene
Petri Hirvonen1, Zheyong Fan1, Mikko M. Ervasti1, Ari Harju1, Ken R. Elder2 & Tapio Ala-
Nissila1,3

Grain boundary triple junctions are a key structural element in polycrystalline materials. They are 
involved in the formation of microstructures and can influence the mechanical and electronic properties 
of materials. In this work we study the structure and energetics of triple junctions in graphene using 
a multiscale modelling approach based on combining the phase field crystal approach with classical 
molecular dynamics simulations and quantum-mechanical density functional theory calculations. 
We focus on the atomic structure and formation energy of the triple junctions as a function of the 
misorientation between the adjacent grains. We find that the triple junctions in graphene consist 
mostly of five-fold and seven-fold carbon rings. Most importantly, in addition to positive triple junction 
formation energies we also find a significant number of orientations for which the formation energy is 
negative.

In three-dimensional (3D) polycrystalline materials, a grain boundary triple junction, or a triple junction for 
short, is a line defect where three grains and grain boundaries meet. In 2D materials such as graphene – the 2D 
allotrope of carbon discovered experimentally in 20041 – the triple junctions are reduced to point defects, con-
nected by a network of 1D grain boundaries. Triple junctions are present in all polycrystalline materials and can 
influence their physical properties in a number of ways. First, triple junctions have a finite formation (free) energy 
fp associated with them (as compared to the pristine ground state), influencing the thermodynamics of micro-
structure evolution. In addition, limited triple junction mobility can result in drag on the motion of the grain 
boundaries connected during grain growth2–4. Furthermore, theoretical works indicate that fractures are likely to 
initiate at triple junctions5–9 affecting the mechanical strength of polycrystalline materials. Triple junctions can 
also serve as channels of improved mobility for diffusion10–12.

There has been some controversy regarding the energetics of triple junctions. Gibbs argued that the formation 
energy of triple junctions between fluid phases could be negative13. Later, McLean claimed that triple junction 
formation energies should be positive in crystalline materials14. King viewed triple junctions as defects to grain 
boundaries in analogy to grain boundaries being defects in the crystalline state15. From this viewpoint one can 
treat the grain boundaries and triple junctions as separate elements with different formation energies. Using this 
approach, Srinivasan et al. actually found negative triple junction formation energies for FCC crystals by employ-
ing the simple Lennard-Jones potential16. In contrast, Constantini et al. obtained only positive formation energies 
for more general triple junctions in silicon17. Caro and Van Swygenhoven criticised the idealization of Srinivasan 
et al. and proposed an alternative description where the grain boundaries and the triple junctions comprise a 
“defect matter” phase of uniform formation energy density18. Accounted for in this way, all triple junction forma-
tion energies were found positive in nickel. Later works have reported both positive19, 20 and negative21 values for 
copper and iron, respectively. To our knowledge, triple junction formation energies in realistic 2D materials have 
not been investigated previously – neither experimentally, nor theoretically.

To fully understand the microscopic structure and energetics of triple junctions it is crucial to study the prop-
erties of triple junctions using realistic model systems, but constructing such configurations is not a trivial task 
even in silico. Typically the procedure of initialising defect structures such as grain boundaries for atomistic 
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calculations involves multiple steps including, for example, iterative grain growth, annealing and quenching22, 
or applying coincidence site lattice theory and optimising using force-field calculations23. To this end, we have 
recently presented a new powerful multiscale modelling strategy24 based on using the phase field crystal (PFC) 
models25–28 to initialise and relax atomic configurations that can then be used as input to further relaxation either 
with classical interaction potentials or quantum-mechanical density functional theory (DFT). In particular, we 
carried out a comprehensive study of the structure and formation energy of grain boundaries in graphene and 
showed that quantitatively accurate results can be obtained with this strategy, and the standard PFC model25 is 
well-suited for creating structurally correct grain boundaries.

The PFC models have already been exploited to investigate the role of triple junctions in grain shrinking in 2D 
where they were found to act as sinks to reacting dislocations29. However, for triple junction formation energies 
and structures in graphene there are no detailed experimental or theoretical data available. In this work we har-
ness our multiscale modelling strategy to investigate the structure and the formation energy of triple junctions 
in graphene as function of the misorientation angle between the adjacent grains. We first use the PFC models 
to construct relaxed atomic level configurations of triple junctions and then refine these by carrying out further 
analysis with Molecular Dynamics (MD) simulations and DFT. Our results confirm the somewhat controversial 
existence of triple junctions with negative formation energy for several misorientations in graphene.

This paper is structured as follows: In Section II, we first detail our methodology for modelling and analysing 
triple junctions, and finally report and discuss the related results. More specifically, formation energies of triple 
junctions and their structures will be treated in Sections II D and II E, respectively. Section III gives a summary 
and discussion. Section IV details the PFC, MD and DFT methods used in this work.

Results
Model systems.  Triple junctions come with multiple orientational and translational degrees of freedom15, 
considerably complicating their analysis. To simplify the picture we focused on a highly symmetric family of 
triple junctions. First, the grain boundaries that meet at the junction have 120° angles between them and, second, 
two of the surrounding grains are rotated symmetrically in the opposite directions from a reference orientation 
retained by the third grain. Figure 1 demonstrates our model system layout. The periodic 2D computational unit 
cell is divided into six regular hexagon-shaped and equal-sized grains leaving 12 triple junctions between them. 
Each model system also contains six symmetric and 12 asymmetric grain boundaries. The symmetric boundaries 
are located between two rotated grains (red-cyan boundaries in Fig. 1), whereas the asymmetric boundaries lie 
between a rotated grain and an unrotated one (red-gray and cyan-gray). While this layout exhibits two different 
kinds of grain boundaries, all the triple junctions are identical. We investigate the formation energies of the asym-
metric grain boundaries in Supplementary Section S1 to explicitly demonstrate that PFC describes them properly, 
too (our previous work considered only the symmetric ones24). We note that a similar layout was exploited in ref. 7  
where the fracture behaviour of graphene was considered.

The hexagonal grains are initialised with a honeycomb lattice using the one-mode approximation30

ψ = −x y qx qy qy( , ) cos( )cos( / 3 ) cos(2 / 3 )/2, (1)

where the wave number q controls the length scale. Around each triple junction two grains are rotated by angles 
θ and −θ, where 0° < θ < 30° and the limits give armchair and zigzag edges, respectively. The third grain is kept 
fixed in a reference orientation with either armchair or zigzag edges. We use the shorthands θAC and θZZ to indi-
cate the reference orientation alongside the rotation angle. As a further remark, a six-fold symmetric rotation 
centre of the lattice is aligned to coincide with the centre point of each grain, and for the rotated grains the lattice 
is rotated about the grain centre.

Figure 1.  A layout of the triple junction model system. There are six grains, 12 triple junctions, six symmetric 
grain boundaries (between two rotated grains), and 12 asymmetric grain boundaries (between a rotated and an 
unrotated grain). The alternatingly rotated grains have been highlighted in red and cyan, and the rotation angles 
are further indicated by the red and cyan wedges. The unrotated grains at the center and at the corner have not 
been coloured, but the armchair (AC) edges of the former have been sketched out in green. The rotation angle 
here is θAC ≈ 16.1°. Note also that the periodicity of the symmetric grain boundaries between red and cyan 
grains exactly matches the hexagon side length. The total width of the system is about 4.6 nm.
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We required that the periodicity of the symmetric grain boundaries matches the side length of the grains. We 
also required that the side length for the unrotated grains should be between (n + 0.05) a*, where n is an arbitrary 
positive integer and a* is the lattice constant for both the zigzag (a* = a) and armchair =⁎a a( 3 ) reference 
orientations. The systems in the present calculations have a total width W 14nm to avoid finite size effects that 
were analysed in Appendix C in ref. 24. However, we allowed for two exceptions that have W ≈ 9.2 nm (≈1800 
carbon atoms) but are feasible to be studied using DFT. Both systems have θ ≈ 16.1° (corresponding to the special 
tilt angle θII in ref. 24) but different reference orientations.

Due to the highly symmetric initial state and the fact that the PFC models exhibit Peierls barriers for disloca-
tion motion but lack thermal fluctuations, motion of the grain boundaries and triple junctions is limited within 
a few atomic spacings in most cases. We carefully inspected the relaxed systems and rejected all cases where 
the grain boundaries had become significantly curved or the triple junctions had migrated from their initial 
positions.

Decomposition of formation energy.  For any finite system in 2D, the total free energy F can be written 
as ref. 31

= + +F f A f L f N , (2)s L p

where the first term is the contribution of the pristine single crystal state, given by its surface free energy density 
fs times the total area A. The second term is the contribution of the 1D line defects, given by the mean formation 
energy of grain boundaries per unit length, or the grain boundary energy fL times the total length of the bound-
aries L. The third term is the contribution of 0D triple junctions, given by their mean formation energy fp times 
their number N. Note that while the triple junctions considered here are macroscopically identical, they are likely 
to display small differences in structure and energy due to the inevitable breaking of symmetry during numerical 
relaxation. The same applies for the two types of grain boundaries as well24.

The formation energy with respect to the single-crystalline ground state ΔF can be obtained by calculating 
the energy of the ground state independently and by subtracting it from Eq. (2) which for the PFC models reads

∆ = − = + .F F f A f L f N (3)s L p

For the atomistic MD and DFT calculations the corresponding expression is given by

 ∆ = − = +F N f L f N( ) , (4)eq C L p

where  and eq  denote the energy per carbon atom in a defected system and in the pristine state, respectively, and 
NC is the number of carbon atoms.

The model systems have N = 12 and = =L W H2 3 6 , where W and H are the width and height of a system. 
By scaling the system dimensions, fL and fp can be solved as the slope d(ΔF)/dL and as one-twelfth the intercept 
ΔF(L = 0), respectively. The width of the systems is given by

θ=W mW ( ), (5)0

where m = 1, 2, 3, 4, 5 and W0 gives, for a particular θ, the smallest width for which the constraints detailed above 
in Section II A hold. Note that W0 is different between the two reference orientations. For all cases of θ consid-
ered in this study, we tabulate the corresponding values of W0 in Supplementary Table S2. Due to using a system 
size optimization algorithm (see Sec. IV A), the final W and H varied a little from their initial values, but only 
negligibly even for small m. For the MD and DFT systems, we estimated L using the dimensions of the original 
planar PFC1 configurations and took into account the small differences in the equilibrium lattice constants by 
rescaling L → (ai/aPFC1) L, where ai (i = MD, DFT) and aPFC1 are the equilibrium lattice constants given by either 
MD or DFT, and PFC1. Using this approach, one can estimate L consistently without needing to worry about the 
out-of-plane buckling of the monolayer.

As pointed out by an anonymous referee, an alternative to the scaling analysis described above is to vary N 
while keeping L fixed. We compared the two approaches and found consistent results. The alternative scaling 
analysis is presented in Supplementary Section S3. We thank the anonymous referee for the helpful comment.

Scaling analysis.  Figure 2 demonstrates the scaling of the total formation energy ΔF as a function of the 
total grain boundary length L for some rotation angles and reference orientations. Results are given of PFC1, 
PFC3, MD and DFT calculations. Linear fits (least squares) to these data are also given whose slope and intercept 
indicate the mean grain boundary energy and the total triple junction formation energy, respectively. One-sigma 
confidence intervals for the estimated slope and intercept are used to obtain all error estimates in the subsequent 
figures. Of the cases presented, (a) and (b) correspond to the two cases with the smallest W0 whose analysis is 
feasible using DFT for m = 1. Panel (c) corresponds to the case with the third smallest W0, and (d) to one of larger 
system sizes.

As anticipated based on Eqs (3) and (4), all plots in Fig. 2 show excellent linear scaling. In the whole of the 
PFC1, PFC3, MD(2D) and MD(3D) data, R2 > 0.999 for all the cases except for a few PFC and MD cases where 
R2 > 0.996. The total formation energy increases with length, approximately 5 eV per nanometre of grain bound-
ary, which is consistent with our previous results for the grain boundary energy of symmetric boundaries (<8 eV/
nm)24 and with those of earlier works referenced therein. In the insets to the panels we show the extrapolated limit 
of L → 0 magnified. The intercepts are in all cases very close to zero when compared to the absolute energy scale, 
but it can already be seen here that in some cases the intercepts are negative. For such cases, the crossover from 
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negative to positive total formation energy typically occurs where L is only a few nanometres, corresponding to 
nanometre-wide systems that cannot be realised with the present layout. Even in the most extreme cases, the 
width required is much smaller than W0.

In these plots and in our data in general, PFC3 agrees quite well with both MD(2D) and MD(3D). MD(3D) 
gives values lower than MD(2D), because the corresponding systems are allowed to relax further by buckling out 
of plane32. We carried out DFT calculations to validate our PFC and MD results. The energies given by DFT(2D) 
and DFT(3D) are expectedly low – the two DFT data points correspond to systems where the symmetric grain 
boundaries have a particularly low energy; see the kink at 2θ ≈ 32.2° in Fig. 4 of ref. 24. Nevertheless, DFT, MD 
and PFC3 are all in good agreement. This was to be expected based on our previous work24. On the other hand, 
the total formation energy given by PFC1 rises noticeably steeper. This is not surprising because PFC1 has been 
shown to overestimate grain boundary energies24.

Figure 3 demonstrates some of the configurations corresponding to the cases shown in Fig. 2. The systems 
in panels (a) and (b) correspond to the two smallest systems with m = 1. These systems have been relaxed using 
DFT(2D) and have retained the topology of the initial PFC1 configuration. In both cases, the hexagonal grain 
structure is identifiable but far from ideal. Despite the distortion of the hexagonal structure, the formation ener-
gies of these two systems line up nicely with those of their larger m counterparts, as can be seen in Fig. 2(a,b). 
Panel (c) showcases a larger version of the system portrayed in (a) with m = 2 and relaxed using PFC1. While the 
linear system size is only doubled, the grain boundaries are highly ordered and the hexagonal layout is almost 
ideal. The same applies to the larger PFC1 system in panel (d) as well that corresponds to Fig. 2(d) with m = 1. 
Note that the asymmetric grain boundaries in (d) demonstrate some intrinsic undulation, but, in the macroscopic 
limit, they can be viewed as straight, mathematically thin lines.

Formation energy of triple junctions.  Overview.  Figure 4 gives the mean formation energy per triple 
junction calculated using PFC1, PFC3 and MD as a function of θ. Panels (a) and (b) focus on PFC1 and PFC3, 
respectively. Panels (c) and (d) compare PFC3 to MD for both reference orientations separately. We chose to use 
PFC3 over PFC1 in this comparison because it has been found to describe the formation energy of grain bound-
aries more accurately24. PFC data points with error estimates 1 eV per triple junction have been omitted as 

Figure 2.  Scaling of the total formation energy for triple junction model systems. Data are given by PFC1, 
PFC3, MD and DFT as a function of the total grain boundary length L. The atomistic configurations were 
either constrained to a plane (2D), or allowed to relax freely in three dimensions (3D). The straight lines 
are linear fits to the data. The insets magnify the limit L → 0 to which the data have been extrapolated. The 
systems corresponding to (a–d) have θAC ≈ 16.1°, θZZ ≈ 16.1°, θAC ≈ 10.9°, θZZ ≈ 3.9° and W ≈ 9.2 m, 9.2 m, 
14 m, 75 m nm, respectively. Note that the two cases with the smallest W0 depicted in (a,b) have the same θ but 
different reference orientations.
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unreliable. Furthermore, data are lacking for θZZ ≥ 25° due to imperfect relaxation of the systems. This is elabo-
rated further in Supplementary Section S4.

The PFC1 and PFC3 data shown in Fig. 4(a,b), respectively, display both positive and negative formation 
energies with their average slightly on the negative side – roughly −0.5 eV for both models. Most of the data 
show no obvious trends, but for θAC < 5°, both models give a consistent set of four data points with small error 
margins and slightly negative formation energies decreasing with increasing θ. In this limit, both the symmetric 
and asymmetric grain boundaries are small-angle boundaries sparse with dislocations. At the triple junctions, 
therefore, only the elastic fields of the surrounding dislocations come together. With increasing θ, complexity 
grows as dislocations meet at the triple junctions and this trend vanishes. In general, the microscopic arrange-
ments of dislocations in the model systems are so complex that a systematic mapping between the structures and 
the features in the formation energy falls beyond the scope of this work. Nevertheless, we investigated fitting sums 
of sinusoidal wave modes to the triple junction energy to reveal possible periodic trends in the data, but did not 
find clear evidence of periodicity.

The data in Fig. 4(a,b) are not clearly divided between the armchair and zigzag reference orientations; rather, 
the two datasets appear to follow each other to some extent. While the correlation is not perfect and the data hold 
significant uncertainty, this modest agreement suggests that the formation energy is dominated by misorientation 
rather than by the microscopic differences between triple junctions of the two reference orientations.

The absolute scale of the formation energies is very low, of the order of a few electron volts for both models. 
For the most part, this is lower than has been reported for isolated defects in graphene: 5 eV33 and 7.5 eV32 for a 
5|7 dislocation, and 7.6 and 4.8 eV for a vacancy and a Stone-Wales defect, respectively34. Previous experimental 
and theoretical studies have also reported low triple junction line energies in 3D materials. Fortier first measured 
a relatively high value of 3 keV/nm35, but more recent works17–21 have reported significantly lower estimates of the 
order of 40 eV/nm. If a triple junction in graphene is viewed as a line defect of length 0.35 nm, the results of 
these more recent works correspond to absolute values of 14 eV per triple junction.

Details of the energetics.  The striking fact that can be seen in our results is that there are indeed many misorien-
tation angles where the triple junction formations energy is negative. To check that this indeed is the case, we used 
MD simulations to verify the low formation energies obtained. Unfortunately, in cases where the PFC models 
give the most negative energies, the corresponding system sizes are too large to obtain converged MD results in 
a reasonable time. Nevertheless, as shown in Fig. 4(c,d), our MD results corresponding to moderately negative 
PFC data points support negative formation energies. For both the armchair and zigzag reference orientations the 
agreement between PFC3, MD(2D) and MD(3D) is fairly good with significant overlap and just a few outliers. 
The MD(2D) and MD(3D) results show minor differences between them, and in most cases the MD(3D) values 
are lower as expected. In cases where the MD(2D) values are lower, the corresponding results fit within each 

Figure 3.  Some typical relaxed triple junction configurations. Panels (a) and (b) show the two smallest 
DFT(2D) systems corresponding to Fig. 2(a,b), respectively, with m = 1. The pentagons and heptagons are 
highlighted in green and in cyan, respectively. (c) A larger version of (a) with m = 2 and relaxed using PFC1. (d) 
A coarse-grained representation of the PFC1 system corresponding to Fig. 2(d) with m = 1. Coarse graining has 
been done by filtering out the atomic level structure and by mapping the local crystallographic orientation to 
different hues; see comment [60] in ref. 24 for details. The chains of dark dots are individual dislocations along 
small-angle armchair grain boundaries, and the slightly undulating solid black lines are large-angle armchair-
zigzag boundaries.
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other’s error margins. At θZZ ≈ 3.9° both MD(2D) and MD(3D) give particularly low formation energies around 
−6 eV, but with large error margins.

If one compares the data given by the different methods, one finds a few interesting data points either in a 
particularly good agreement or in a strong disagreement. Two examples of agreement are found at θAC ≈ 4.7° and 
θZZ ≈ 2.2°. For these two cases, all methods predict slightly negative triple junction formation energies with small 
error margins. In the former case, all grain boundaries have small misorientations and are, therefore, sparsely 
populated with dislocations. There are no defects at the triple junction core – only overlapping elastic fields of the 
surrounding dislocations. The latter case displays symmetric boundaries of small misorientation and asymmetric 
ones with a large misorientation. As a consequence, there are two grain boundaries packed tightly with disloca-
tions and a sparse one that all coincide at the triple junction. The small error bars are indicative of triple junction 
and grain boundary structures that are highly similar for all m.

At θAC ≈ 17.6°, both PFC models agree on a data point whose energy exceeds that of the neighbouring data 
points. A closer inspection of the triple junction structures revealed defect topologies that appear similar to 
those corresponding to the neighbouring data points. As we will discuss in Section II E, there are microscopic 
differences between triple junctions both within a single model system and in systems of different m. In this case, 
for PFC1 model systems with m > 3, we observe isolated heptagons (see Section II E) at some triple junctions, 
whereas for m < 4 we do not. It is possible that for this particular θ isolated heptagons are energetically preferred 
and bias the fitted scaling line to yield a higher formation energy for the triple junctions.

On the other hand at θZZ ≈ 9.7°, PFC1 and PFC3 disagree strongly with the former showing a positive forma-
tion energy and the latter giving a clearly negative one. Both methods have preserved the initial hexagonal layout 
perfectly during relaxation. The grain boundaries in the systems are straight and appear identical at mesoscopic 
scales. At the atomic level, however, PFC3 systems display tetragons24 near some of the triple junctions. It is likely 
that the rise in formation energy is due to the presence of such metastable tetragons. The case at θZZ ≈ 24.8° also 
shows a relatively high formation energy according to PFC3, but PFC1 predicts a slightly negative value. At a 
larger scale, the hexagonal layout and the grain boundaries in the corresponding PFC systems appear to have 
relaxed without issues. However, an atomic level inspection of the PFC3 systems again reveals various unexpected 
structures near the triple junctions, such as carbons with four bonds, dimers26 and many others. Also in this case 
metastable structures are the probable culprit for the higher value of energy.

Figure 4.  Triple junction mean formation energy fp. Data are given by (a) PFC1, (b) PFC3 and (c,d) PFC, 
MD(2D) and MD(3D) as a function of the rotation angle θ. Subfigures (a,b) offer data of both armchair (AC) 
and zigzag (ZZ) reference orientations, whereas (c,d) treat these limits separately. In (c,d), PFC3 results of cases 
not studied using MD have been omitted. Furthermore, in (c,d), the PFC3 data points included and their error 
estimates have been plotted with solid lines and lighter-coloured bands, respectively, to alleviate the overlap of 
data markers and error bars. Note that the lines and the bands are not indicative of the triple junction energy 
between the data points.



www.nature.com/scientificreports/

7Scientific Reports | 7: 4754  | DOI:10.1038/s41598-017-04852-w

Origin of the negative formation energies.  Based on our analysis we can conclude that negative formation ener-
gies are abundant in graphene. Because the triple junctions here are likely to display small microscopic differ-
ences to one another, the values reported here must be viewed as average formation energies per triple junction. 
Because of the high-symmetry initial state, many of the triple junctions have very similar atomic-level structures 
and formation energies.

The possibility of negative formation energies has been criticised because they could endlessly multiply dest-
abilising the material. King15, however, gives arguments against such a scenario. First of all, triple junctions can 
exist only in conjunction with grain boundaries whose formation energy is always positive (by definition). Based 
on the low absolute values determined for triple junction energies in this work, and on the relatively large grain 
boundary energies obtained in our previous work24, the grain boundaries dominate the total formation energy. 
Second, if a triple junction were to multiply, its orientational variables would not, in general, be identical and the 
anisotropy is likely to result in an increase in the total formation energy. Furthermore, a triple junction does not 
necessarily have defects in its core – especially if it links three small-angle grain boundaries together – in which 
case it is merely a region where the elastic fields of the grain boundary segments composed of sparse chains of 
dislocations can either add up or cancel, resulting in an energy contribution that is either positive or negative, 
respectively.

Lastly, we would like to note, that treating triple junctions as zero-dimensional elements, with the constant 
part of the total energy as their formation energy, is the only mathematically rigorous definition, because it makes 
no assumptions of the spatial distribution of energy. While triple junctions could, in principle, be treated as 
finite-size elements, with always positive formation energies18, such approaches must assume unrealistic energy 
distributions with step-like or other arbitrary profiles.

Structure of the triple junctions.  PFC configurations.  Despite the fact that the PFC3 calculations were 
initialised with relaxed PFC1 configurations, they resulted in varying topologies for the grain boundaries as 
already discussed in our previous work24. While many of the PFC3 triple junctions contain only pentagons and 
heptagons, alternative structures such as tetragons and octagons, as well as structures too ambiguous for topolog-
ical reconstruction, are also observed. Therefore, we decided to limit the topological analysis to the more realistic 
PFC1 structures with pentagons and heptagons only.

As mentioned, most of the model systems retained the high degree of symmetry of the initial state during 
relaxation, and display highly periodic arrangements of dislocations along their grain boundaries. Nevertheless, a 
closer inspection reveals some differences in the atomic-level structure between different triple junctions within 
the same model systems. Figure 5 juxtaposes two triple junctions found within the same model system that 
appear similar. Note however, that the dislocations present in (a) are facing the opposite direction with respect to 
the ones in (b). As a result, (a) has one pentagon and two heptagons facing the triple junction, whereas in (b) the 
orientations are reversed. Geometry necessitates that such asymmetry is always present in our model systems. 
The corresponding smoothed free energy density plots (see Supplementary Note S5) shown in Fig. 5(c,d) appear 
identical, suggesting very similar formation energies for the two alternate structures.

Figure 6 demonstrates another case of topologically different triple junctions. Here, the system shown in 
panel (a) the dislocations come close together around every second triple junction; compare with (b) and (c). 
In graphene, the strain energy fields of dislocations decay ∝1/r4 33 which can result in a significant difference in 
formation energy between the two junctions. Panels (d) and (e) visualise the smoothed free energy density and 
further demonstrate the difference in overlap between the elastic fields.

In the absence of large angle grain boundaries, the only defects observed at the triple junctions are 5|7 dislo-
cations. However, when large angle boundaries are involved, more complex arrangements of pentagons and hep-
tagons are also observed that were not encountered in isolated grain boundaries24. Examples of such structures 
are given in Fig. 7.

In triple junctions, the dislocations can form clusters where two or more like polygons are connected, whereas 
in isolated low-energy PFC1 grain boundaries pentagons are not connected to other pentagons and similarly 
heptagons not to other heptagons24. Figure 7(a) demonstrates two pairs of connected pentagons and heptagons. 
In large-angle PFC1 grain boundaries the 5|7 dislocations coalesce to form continuous chains of alternating 
pentagons and heptagons, terminating with a pentagon at one end and with a heptagon at the other24. At triple 
junctions, as well as along grain boundaries in their vicinity, we observe very short chains with same kind of pol-
ygons at both ends; see Fig. 7(b). In addition, isolated pentagons and heptagons surrounded solely by hexagons 
are relatively common as well; see Fig. 7(c,d), respectively. The distribution of free energy density shown in (e) 
and (f) is similar in the vicinity of both isolated non-hexagons, but the heptagon results in a peak distinguishable 
in the smoothed free energy density. In most of the close-ups presented in Fig. 7, the angles between the grain 
boundaries appear to deviate somewhat from 120°, but this is explained by intrinsic undulation of the asymmetric 
boundaries; recall the undulation of the asymmetric boundaries in Fig. 3(d).

The results presented in this section highlight the fact that not all of the triple junctions within a model system 
are identical. The microscopic structural variations inevitably reduce the analysis to that of average triple junction 
formation energies with finite statistical error.

DFT calculations.  We used DFT(3D) calculations to verify the stability of the different types of PFC1 triple 
junction topologies as discussed earlier in this section. To facilitate this task, we cut out from the model systems 
small, roughly circular flakes centred around the triple junctions. We prepared these flakes with about 300–400 
atoms to ensure quick numerical convergence. The edges of the flakes were passivated with hydrogen atoms and 
no boundary constraints were imposed.

Figure 8 displays a collage of triple junction flakes relaxed using DFT(3D). All of the flakes investi-
gated retained their initial topology predicted by PFC during relaxation. The PFC1 flakes depicted in (a)–(d) 
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demonstrate increasing levels of clustering of pentagons and heptagons in the triple junction core. The three 
isolated 5|7 dislocations in (a) remained stable during relaxation and kept from slipping and annihilating each 
other. Stability of the fairly simple triple junction structures in (b) and (c) may not come as a surprise, but in 
(d) there are two opposite 5|7 dislocations with a net Burgers vector of zero that one might expect to annihilate 
each other. However, the two pentagons in the middle cannot fuse into a hexagon due to the two excess carbons 
between them that would have to be transported elsewhere. No other reactions take place, either. The PFC1 flakes 
in (e)–(g) display isolated pentagons and heptagons. In the vicinity of isolated nonhexagons the surrounding 
honeycomb lattice must deviate from its six-fold rotational symmetry which necessitates dislocations around 
this region and considerable elastic energy33 – a recipe for structural transformations. However, all of these triple 
junction structures were found to be stable. The flake (h) with three connected pentagons was extracted from a 
PFC3 model system. With the introduction of an extra carbon, the outer two of the three connected pentagons 
could transform into hexagons, leaving a chain of pentagons and heptagons. However, with the number of car-
bons fixed, this structure proved stable.

The side views in Fig. 8 reveal that while the topologies extracted from planar PFC systems are stable, the triple 
junction structures tend to buckle out of plane. We must point out, however, that only qualitative conclusions can 
be drawn from the buckling of such small flakes. Nevertheless, it is well known that grain boundaries themselves 
can give rise to significant curvature and folding of the monolayer23, 33, 36–41, and are likely to give the major con-
tribution to the buckling observed here as well. However, the isolated pentagon in Fig. 8(e) results in a distinct 
conical protrusion in the buckled sheet. Previously33, a conical out-of-plane profile has been verified for flakes 
occupied by a solitary pentagon. Similar buckling is visible also in (g) due to the isolated pentagon. The isolated 
heptagons in (f) and (g) also result in a significant local curvature. Surprisingly, the cluster of three pentagons 
in panel (h) gives rise to relatively small local curvature in the sheet; rather, the right-hand side view reveals that 
greatest curvature is located around the isolated 5|7 dislocation. Buckling at triple junctions will be investigated 
in more detail in a future work.

Figure 5.  Two seemingly similar triple junctions in a single system. In panel (a) there is a pentagon and two 
heptagons facing the triple junction, and vice versa in (b). Panels (c) and (d) give the smoothed free energy 
density (see Supplementary Note S5) in (a,b), respectively. Here θAC ≈ 13.2°.
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Summary and Discussion
In this work we have employed an efficient multiscale protocol24 to model the energetics and atomic struc-
tures of triple junctions in graphene. We first use phase field crystal (PFC) models to initialise relaxed atomic 

Figure 6.  A model system with more and less crowded triple junctions. The system (a) has two types of triple 
junctions where the dislocations are either closer together (b) or farther apart (c). The corresponding smoothed 
free energy densities are shown in (d,e), respectively. The green and blue boxes in (a) indicate where the 
junctions shown in (b,c), respectively, are located. In (b,c) the triangles spanned by the dislocations are shaded 
gray to better illustrate the degree of separation. Here, θAC ≈ 4.7°.



www.nature.com/scientificreports/

1 0Scientific Reports | 7: 4754  | DOI:10.1038/s41598-017-04852-w

configurations in 2D, which are then mapped into atomic coordinates for further relaxation with classical MD 
and quantum-mechanical DFT calculations both in 2D and 3D. We exploit a highly symmetric layout for our 
model systems to ensure consistent results. We concentrate here on the formation energy of triple junctions as a 
function of the misorientation between the adjacent grains. Our calculations show that there indeed exist both 
positive and negative formation energies on the order of a few electronvolts. This energy scale is low compared to 
the formation energy of the grain boundaries, which dominates the total energy of the systems. We consistently 

Figure 7.  More complicated defect structures at and near the triple junctions. (a) A cluster of 5|7 dislocations at 
a triple junction (θAC ≈ 16.1°). (b) A chain of coalesced 5|7 dislocations terminating with heptagons at both ends 
(θZZ ≈ 0.8°). (c) An isolated pentagon and (d) an isolated heptagon at triple junctions within the same model 
system (θAC ≈ 25.5°). Panels (e) and (f) give the smoothed free energy density of the triple junctions shown in 
(c,d).
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find slightly negative formation energies for triple junctions with small-angle armchair grain boundaries, but no 
obvious trends beyond this.

In addition, we have studied the atomic-level structure of the triple junctions. We investigate the subtle 
microscopic differences between different triple junctions and, moreover, explored the different types of defect 
topologies possible at a triple junction core. In addition to 5|7 dislocations clustered to varying degrees and 
in different arrangements, isolated pentagons and heptagons were discovered as relatively common structures. 
Using DFT(3D) calculations, we have verified the stability of the different types of topologies predicted by PFC, 
and also showed that the out-of-plane curvature of the monolayer varies significantly between different triple 
junction structures.

Figure 8.  Small flakes with various triple junction structures. The flakes have been relaxed using DFT(3D) 
with hydrogen-passivated edges (yellow atoms) and free boundary conditions. On top and adjacent to each 
flake are side views as seen from the corresponding sides. The flakes in (a–g) have been extracted from a PFC1 
system, whereas the one in (h) is from a PFC3 system. (a) A triple junction with three low-angle boundaries 
and no core defect (θAC ≈ 4.7°). (b) A pair of heptagons connected to each other (θAC ≈ 27.8°). The third, small 
misorientation grain boundary had a dislocation spacing greater than the flake radius. (c) A pair of heptagons 
connected to each other (θZZ ≈ 10.9°) with a third grain boundary of a larger misorientation. (d) Two opposite 
5|7 dislocations (θAC ≈ 16.1°). A closed Burgers loop is sketched in red. (e) An isolated pentagon (θAC ≈ 16.1°). 
(f) An isolated heptagon (θAC ≈ 16.1°). (g) An isolated pentagon and an isolated heptagon (θAC ≈ 16.1°). (h) 
Three connected pentagons (θZZ ≈ 5.7°).
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Methods
Phase field crystal models.  PFC is a relatively new approach for modelling microelasticity in crystalline 
materials25. PFC models describe the structure of matter at the atomic scale via a smooth classical density field 
ψ r( ). The systems modelled using PFC are governed by a free energy functional ψ rF[ ( )] that is minimised when 
ψ is constant or periodic. While the former case can be viewed as corresponding to a disordered (liquid) phase, 
the latter corresponds to crystalline states whose symmetries can be matched with a crystal structure of interest 
via the choice of F. In addition to equilibrium crystal structures, defect structures with arbitrary crystal shapes, 
positions and orientations are possible, and elastoplastic processes ranging from dislocation slip to evolution of 
large-scale microstructures can be captured. The numerically convenient nature of PFC models and their stand-
ard relaxational dynamics give access to largely uncharted multiscale modelling regimes that combine large 
length and time scales with atomic-level spatial features. As a consequence, PFC is particularly well-suited for 
modelling the structural and mechanical properties of microstructures24.

In our previous work24 we compared four different PFC models in terms of the topology and the formation 
energy of symmetrically tilted grain boundaries to find the best model for graphene. We found that the simplest of 
the models – the standard one-mode PFC model (PFC1) – well captures the topology of graphene grain bound-
aries with realistic chains of 5|7 dislocations42, whereas the three-mode model (PFC3) is in good quantitative 
agreement with the atomistic techniques DFT and MD in terms of the formation energy of the grain boundaries. 
We will use both of these models here. The free energy of the PFC1 model is given by


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ψ ψ τψ ψ
=


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

+ +

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The free energies above combine a double-well potential ψ ψ+/2 /42 4  with gradient terms that favour a spatially 
oscillating ψ with certain length scales. The odd-powered terms break the symmetry between the two double-well 
minima and thereby control the average density, which in part controls the stability of the 2D honeycomb phase. 
Of the parameters, c1 and c3 are coefficients for selecting the energy scale of the models,  is related to temperature, 
λ and bj=0,1,2 weight the contributions of the modes given by qj=0,1,2, and τ and μ control the asymmetry of the 
double-well potential.

We use the standard nonconserved dynamics for efficient equilibration of the model systems. Further details 
about the dynamics, the numerical method used and the model parameter values are given in ref. 24. The system 
size optimization algorithm described in Appendix B in ref. 24 was used in all PFC calculations to eliminate 
global strain effects.

Molecular dynamics.  The triple junctions and the accompanying grain boundaries were investigated using 
a in-house GPUMD code implemented fully on graphics processing units (GPUs)43–45. We used the Tersoff 
potential46, but with optimised parameters provided by Lindsay and Broido47 that are well suited for modelling 
graphene. We performed MD simulations at a low temperature of 1 K in order to suppress the entropic contri-
bution to the formation energy. Furthermore, the in-plane stress was set to zero in a barostat48. We adopted the 
velocity-Verlet integration method49 with a time step of 1 fs. For each system, a simulation time of 2 ns is used to 
ensure full convergence of the data.

Density functional theory.  Since DFT involves a much larger numerical effort than either PFC or MD, we 
studied the formation energies and structures of only the very smallest triple junction model systems. We used the 
all-electron FHI-aims package50 with numerical atom-centred basis functions to ensure that the grain boundary 
regions are treated accurately. The default light basis sets were employed together with the GGA-PBE functional51. 
Since the periodic computational cells were large (roughly 1800 carbon atoms), only the Γ point was included in 
the k grid. During the course of the calculations, the self-consistent cycle was considered converged if, among 
other things, the total energy had converged down to 10−6 eV between consecutive iterations. The computational 
cells and the atomic geometries were relaxed in each case until the forces acting on the atoms were smaller than 
10−2 eV/Å.

Multiscale approach.  We investigated the formation energy of grain boundary triple junctions by varying 
the misorientation between the grains. In our previous work24, the PFC1 model was found efficient and robust for 
constructing realistic atomic configurations. Therefore, here we also used PFC1 to equilibrate our model systems 
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and to estimate the formation energy of the triple junctions. The relaxed PFC1 configurations were used as the 
starting point for comparative PFC3 and DFT calculations, and MD simulations. The procedure of converting a 
continuous PFC density field into atomistic coordinates for the calculations is described in ref. 24. For the initiali-
zation of PFC3 calculations, the equilibrated PFC1 density fields were renormalised to match the average density, 
amplitude and lattice constant of the PFC3 ground state.

Data availability.  The PFC systems generated and analysed during the current study are not publicly availa-
ble due to their large size, but other numerical data and visualization are available from the corresponding author 
on reasonable request.
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