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We propose a novel scanning tunneling microscope (STM) device in which the tunneling tip is formed by a
Majorana bound state (MBS). This peculiar bound state emerges at the boundary of a one-dimensional topological
superconductor. Since the MBS has to be effectively spinless and local, we argue that it is the smallest unit
that shows itself the properties of odd-frequency superconducting pairing. Odd-frequency superconductivity is
characterized by an anomalous Green’s function, which is an odd function of the time arguments of the two
electrons building the Cooper pair. Interestingly, our Majorana STM can be used as the perfect detector of
odd-frequency superconductivity. The reason is that a supercurrent between the Majorana STM and any other
superconductor can only flow if the latter system exhibits itself odd-frequency pairing. To illustrate our general
idea, we consider the tunneling problem of the Majorana STM coupled to a quantum dot placed on a surface of
a conventional superconductor.

DOI: 10.1103/PhysRevB.95.174516

I. INTRODUCTION

The phenomenon of superconductivity (SC) comes in
different facets. Conventional SC, having granted us a number
of exciting microscopic and macroscopic effects, is only a
part of the whole manifold of superconducting phenomena.
In recent years, unconventional superconducting pairing [1,2]
has been proposed to exist in various forms, for instance, as
the pairing mechanism for high-Tc SC [3], p-wave SC [4],
topological SC with Majorana bound states as part of it [5,6],
and odd-frequency SC [7–15]. In this article, we will combine
the latter two forms of unconventional SC to propose a new
device: the Majorana scanning tunneling microscope (STM).

Let us start with describing the different ingredients of the
Majorana STM, see Fig. 1 for a schematic. Most importantly,
we need a Majorana bound state (MBS), which has been
predicted to exist at the boundary of a one-dimensional (1D)
topological superconductor [5]. A MBS can be induced into
a spin-orbit coupled nanowire under the combined influence
of conventional s-wave pairing and an external magnetic field
[16,17]. Recent experiments on the basis of nanowires and
magnetic adatoms on s-wave superconductors have, indeed,
shown some evidence that these exotic bound states, which
constitute their own antiparticles, do exist in nature [18–21].
A MBS should form the tip of our STM, which can, for
instance, be achieved by using a corresponding nanowire setup
or, likewise, by any other realization of a 1D topological
superconductor. Now, the interesting question comes up how
this device relates to odd-frequency pairing.

Odd-frequency SC is defined on the basis of the anomalous
Green’s function that describes the superconducting pairing,
cf. Eq. (1) below. This Green’s function contains two annihi-
lation operators corresponding to the particles that form the
Cooper pair. Due to the Pauli principle, the Green’s function
has to be odd under the exchange of these operators. In the
case of equal-time pairing, this oddness implies that singlet
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pairing has to be even in space coordinates and odd in triplet
pairing. Interestingly, Berezinskii realized already in 1974 [7]
that the symmetry of the pairing amplitude becomes richer
if pairing at different times is allowed. This was the birth
of odd-frequency superconductivity where the oddness in
time is transferred to the frequency domain. Then, pairing
mechanisms that are odd in frequency, triplet in spin space,
and even in spatial parity (OTE) [10] are allowed by symmetry.
Exciting new physics is attributed to OTE pairing, e.g., related
to a long-range proximity effect in hybrid Josephson junctions
based on ferromagnetism and superconductivity [22–25],
cross correlations between the end states in a topological
wire [26], the interplay of superconductivity and magnetism
in double quantum dots [27], or its connection to crossed
Andreev reflection at the helical edge of a 2D topological
insulator [28].

Remarkably, a single MBS is the prime example for OTE
superconductivity. This somewhat provocative statement can
be understood by very simple means: The annihilation operator
γ of the MBS is Hermitian, i.e., γ = γ †. Thus, in the case
of a MBS, the normal and the anomalous Green’s functions
coincide (see Appendix A). Moreover, a single MBS has
no additional quantum numbers, such as spin, momentum,
etc., i.e., it corresponds to a spinless, local object. Thus,
the time-ordered Majorana correlator 〈Tγ (t)γ (0)〉 has to be
antisymmetric in t because of the Pauli principle. This property
is, in fact, in one-to-one correspondence to the definition of
odd-frequency superconductivity [24].

Therefore, it is natural to use this property of a MBS as
building block for our theoretical proposal of the Majorana
STM. If the tip of this device is formed by the MBS
then a supercurrent from this tip can only flow into any
other superconductor if and only if this superconductor also
exhibits (at least partly) odd-frequency triplet SC. If not the
corresponding supercurrent completely vanishes for symmetry
reasons. It should be mentioned that it is rather difficult to
detect odd-frequency SC in general. So far, most experiments
rely on an indirect probe, for instance, the detection of triplet
pairing in a disordered system where spatial parity has to
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FIG. 1. Majorana STM. The scanning tip contains the MBS
described by γ , which is used to probe—via tunneling coupling
tσ —either an unknown superconductor (SC) with odd-frequency
pairing or a quantum dot (QD), which can realize odd-frequency
pairing by proximity to an s-wave superconductor and an external
magnetic field.

be even [13–15]. In that case, the Pauli principle implies
that odd-frequency pairing should be present. Our novel idea
constitutes a qualitative way of achieving this challenging
task instead. The reason is that in our setup the supercurrent
through the Majorana STM is really absent in the absence of
odd-frequency pairing in the scanned sample.

The article is organized as follows. In Sec. II we discuss the
general symmetries of the anomalous correlations functions,
which are play an important role in the Majorana STM setup
analyzed in Sec. III. Section IV demonstrates the general result
on the basis of the superconducting quantum dot, and Sec. V
analyzes the results of the previous section within the Green’s
functions formalism.

II. SYMMETRY CONSIDERATIONS

Odd-frequency SC can be best understood on the basis of
the symmetry properties of the Green’s function that describes
the anomalous (causal) correlation function, i.e.,

Fc
αβ(t)=−i〈Tψα(t)ψβ(0)〉 = 1

2

(
FK

αβ + FR
αβ + FA

αβ

)
(t). (1)

Here, ψα(t) is an annihilation operator for the electron in state
α (encoding orbital and/or spin degrees of freedom) at time
t ; angle brackets denote the averaging over the ground state;
and F

R/A/K

αβ (t) are the retarded/advanced/Keldysh components
[29] of the anomalous correlation function. Due to the
Pauli principle, the time-ordered Green’s function fulfills the
following symmetry condition: Fc

βα(−t) = −Fc
αβ(t). When we

calculate transport properties below, not the time-dependent
correlation functions F

R/A/K

αβ (t) matter but instead their

Fourier transforms F
R/A/K

αβ (ω). Therefore, it is important to
state how retarded, advanced, and Keldysh Green’s functions
behave under a sign change of ω. This behavior is summarized
in Table I. In this table, we do not only refer to the symmetry
properties of the anomalous Green’s functions F

R/A/K

αβ (ω)
(relevant for the superconducting properties of the system)
but, for completeness, also to the normal Green’s functions
G

R/A/K

αβ (ω). The detailed analysis of the correlators, their
symmetries, and the manifestation of the fermionic anticom-
mutativity is given in the Appendix A.

In thermal equilibrium at temperature T , the Keldysh
Green’s function can be expressed as a simple function of

TABLE I. Symmetry properties of the symmetrized (with respect
to α,β space) Green’s functions of a general fermionic system:
Re / Im denotes whether the functions are real or imaginary; even/odd
means whether the functions are even/odd in ω. R ± A should be
understood as the corresponding linear combination of retarded and
advanced Green’s function.

R + A R − A K

Normal Gαβ + Gβα Re Im Im
Anomalous Fαβ + Fβα odd even odd
Majorana D Re, odd Im, even Im, odd

retarded and advanced Green’s function via (with h̄ = kB = 1)

XK (ω) = tanh
ω

2T
[XR(ω) − XA(ω)], (2)

where X could be the normal (G) or the anomalous (F ) Green’s
function. Evidently, cf. Table I, some linear combinations of
retarded, advanced, and Keldysh Green’s function are even
with respect to frequency ω and others are odd. Therefore, we
need to carefully address their influence on the current that will
flow through the Majorana STM to fully understand why this
device functions as a perfect detector for odd-frequency SC.
We now develop a general microscopic model for the Majorana
STM. Specifically, we derive a formula for the Josephson
supercurrent between the superconducting STM tip and an
unknown SC as sample.

III. MAJORANA STM

The coupling between the Majorana state γ and another
system can be described by the tunneling Hamiltonian
[30]

Ht = γ
∑

α

tα(ψα − ψ†
α) =

∑
α

tα(γψα + ψ†
αγ ), (3)

where α denotes the different quantum numbers (e.g., spin,
momentum, etc.), ψα is the annihilation operator of the
scanned sample, and tα is the absolute value of the tunneling
amplitude. This representation is valid for the general case (see
Appendix B). The current operator can be written as

Î = eṄ = i[Ht,N ]− = i
e

h̄
γ

∑
α

tα(ψα + ψ†
α), (4)

where N is the number of electrons in the studied supercon-
ductor. Hence, the average current is given by

I = e

h̄

∑
α

tα Re
∫

dω

2π
WK

α (ω), (5)

where the integrand is the Fourier transformed Keldysh com-
ponent of the cross correlator WK

α (t) = −i〈[ψα(t), γ (0)]−〉,
which can be calculated exactly by means of the Dyson
formula

WK
α (ω) =

∑
β

tβ
{[

G
(0)R
αβ (ω) − F

(0)R
αβ (ω)

]
DK (ω)

+ [
G

(0)K
αβ (ω) − F

(0)K
αβ (ω)

]
DA(ω)

}
. (6)
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In this expression, the functions of ω are the Fourier transforms
of the retarded/advanced/Keldysh components of the Majorana
Green’s function D, and normal (anomalous) Green’s function
of the lead G (F ), which are defined in a standard way
(see Appendix A). The superscript (0) in Eq. (6) denotes that
the Green’s functions are bare with respect to the tunneling
Hamiltonian Ht . Substituting the cross correlator from Eq. (6)
into Eq. (5) and removing all vanishing terms due to the
mismatching symmetries with respect to ω, we obtain

I = e

2h̄

∑
αβ

tαtβ

∫
dω

2π

{− Im
[
G

(0)R
αβ (ω) − G

(0)A
αβ (ω)

]
× Im DK (ω) + Im G

(0)K
αβ (ω) Im[DR(ω) − DA(ω)]

+ Im
[
F

(0)R
αβ (ω) + F

(0)A
αβ (ω)

]
Im DK (ω)

− Re F
(0)K
αβ (ω) Re[DR(ω) + DA(ω)]

}
. (7)

Note that this current takes into account both normal current
and supercurrent contributions. The first two summands in the
integrand of Eq. (7) are responsible for the normal current
that probes the density of states in the substrate (convoluted
with the Majorana Green’s functions). We are, however, more
interested in the supercurrent determined by the last two
summands in the integrand of Eq. (7). This means that we want
to run the Majorana STM at zero bias (and zero temperature
difference) between the tip and the sample to be able to detect
odd-frequency SC. The assumption of thermal equilibrium
reduces the number of independent Keldysh Green’s functions
according to Eq. (2). In that case, the terms proportional to the
normal Green’s functions drop out, and we are left with the
following expression for the supercurrent

I = e

2h̄

∑
αβ

tαtβ

∫
dω

2π
tanh

ω

2T

× {
Im

[
F

(0)R
αβ (ω) + F

(0)A
αβ (ω)

]
Im[DR(ω) − DA(ω)]

− Re
[
F

(0)R
αβ (ω) − F

(0)A
αβ (ω)

]
Re[DR(ω) + DA(ω)]

}
.

(8)

If we now compare the integrand of the latter equation with
the symmetry properties of the Green’s functions in Table I,
we evidently see that only odd contributions to the anomalous
correlation functions (that describe the scanned sample) can
contribute to the supercurrent. This constitutes the main result
of our article. In order to express the current by means of
correlators of the investigated superconductor only, we need
to know the full Majorana Green’s function D, the self-energy
of which can be written as

	R/A(ω) =
∑
αβ

tαtβ
{
G

(0)R/A

αβ (ω) − G
(0)A/R

αβ (−ω)

−F
(0)R/A

αβ (ω) −
[
F

(0)A/R

αβ (ω)
]∗}

.

Note that the self-energy obeys the same symmetry relations
as the Majorana Green’s function itself, i.e., 	R(ω) =
[	A(ω)]∗ = −	A(−ω). The bare Majorana Green’s function
is D(0)R/A = 2(ω ± i0)−1, so the full Majorana Green’s
function becomes DR/A = 2[ω − 2	R/A(ω)]−1. These

expressions can be plugged into Eq. (8) to further evaluate the
supercurrent for a particular sample.

In the case of weak tunnel coupling, the self-energy of
the MBS can be written as 	A/R(ω) ≈ ∓i
/2 where the
rate 
 = 4π

∑
α ναt2α is assumed to be much smaller than the

typical energy scales in the scanned superconductor. Here, να

corresponds to the density of states in the sample. Then, the
first term in the Eq. (8) is negligible and the current can be
approximated as

I ≈ −2e

h̄

∑
αβ

tαtβ P
∫

dω

2π

1

ω
Re

[
F

(0)K
αβ (ω)

]
, (9)

where the symbol P denotes the principal value of the
integral. Interestingly, this latter equation illustrates a straight
connection between the supercurrent through the Majorana
STM and the symmetry of the anomalous Green’s function
of the superconducting substrate with respect to ω. We
now illustrate our general result on the basis of a concrete
example where the amount of odd-frequency SC can be nicely
tuned.

IV. OTE SUPERCONDUCTING QUANTUM DOT

Let us consider a single-level quantum dot (QD) with
Coulomb energy U subject to an external magnetic field
B = (B⊥ cos θ,B⊥ sin θ,Bz) pointing in an arbitrary direction
with respect to the spin quantization axis that is effectively
defined by the MBS at the tip of the STM. The magnetic field
acts only on the spin degree of freedom Ŝ = 1

2

∑
σσ ′ c†σσ σσ ′cσ ′

of the QD, where σ is the vector of Pauli matrices. The QD
level with energy ε is coupled via the tunnel coupling 
� to
a conventional s-wave superconductor with order parameter
�eiφ . In the following, we will focus on subgap transport
where quasiparticle contributions are exponentially suppressed
in �/T . This allows us to integrate out the superconducting
degrees of freedom and leave aside sophisticated Kondo
physics [31]. Hence, we obtain an effective dot Hamiltonian
[32–34]

Hdot =
∑

σ

εc†σ cσ + B · Ŝ + Un↑n↓ − 
�eiφ

2
c
†
↑c

†
↓ + H.c.

(10)

The eigenstates of the isolated QD superconductor system are
given by states of a single occupied QD with spin parallel
|↑B〉 and antiparallel |↓B〉 to the magnetic field with energies
E↑/↓ = ε ± B/2. Furthermore, there exist the mixtures of
empty |0〉 and fully occupied |↑↓〉 dot states

|±〉 = 1√
2

(
e−iφ/2

√
1 ∓ δ

2εA
|0〉 ∓ eiφ/2

√
1 ± δ

2εA
|↑↓〉

)

with energies E± = δ
2 ± εA, where εA = 1

2

√
δ2 + 
2

� and δ =
2ε + U .

In order to characterize the superconducting correlations
induced on the QD, we consider the time-ordered anomalous
Green’s functions Fc

σσ ′(t) = 〈Tcσ ′ (t)cσ (0)〉, which can be
written in terms of the density matrix elements of the
QD 〈α|ρ|β〉 = Pαδαβ , where |α〉 are the eigenstates of the
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Hamiltonian (10) given above, Pα = Z−1e−Eα/T , and Z =∑
α e−Eα/T . We find

Fc
σ ′σ (t) =

∑
αβ

∫
dω

2π
eiωtPα

( 〈α|cσ |β〉〈β|cσ ′ |α〉
ω − Eβ + Eα + i0+

+ 〈α|cσ ′ |β〉〈β|cσ |α〉
ω + Eβ − Eα − i0+

)
. (11)

Parametrizing the Green’s functions as Fc
σσ ′(t) =

{i[Fc
s (t) + Fc

t (t) · σ ]σy}σσ ′ , we can define an effective
order parameter for the singlet part, which corresponds to the
even-frequency component and is equal to

Fc
s (0) = iπ
�

2εA
(P+ − P−). (12)

To characterize the triplet part, we employ the time derivative
of the Green’s function as an effective order parameter of the
odd-frequency component [35–38]

∂tFc
t (0) = π
�S − i

2
BFc

s (0). (13)

Evidently, these order parameters depend on the expectation
value of the spin operator S = ∑

α Pα〈α|Ŝ|α〉 of the QD and
on the magnetic field B.

The coupling between the dot level and the MBS on the tip is
given by the general tunneling Hamiltonian (3) (with ψα = cσ

and tα = tσ ). In the following, we represent the MBS γ by
a conventional spinless (nonlocal) fermion f as γ = f + f †.
(This representation implies that there is a second MBS on the
STM far away from the tunneling tip, which naturally happens
in any realization of a 1D topological superconductor.)
Then, the full Hamiltonian decomposes into two blocks
corresponding to even and odd parity sectors. As both blocks
are equivalent to each other, we now focus on the odd parity
sector. It is spanned by the states |↑↓,1〉, |↑,0〉, |↓,0〉, and
|0,1〉, where the first ket entry denotes the dot occupation,
while the second ket entry is the occupation of the nonlocal
fermion described by the operator f †f . Choosing the spin
quantization axis such that t↑ = t is real and t↓ = 0, the
Hamiltonian takes the form (all gauge transformations related
to the tunneling Hamiltonian are addressed in the Appendix B)

H=

⎛⎜⎜⎜⎜⎝
δ 0 t −
�

2 eiφ−iθ

0 ε+Bz

2
B⊥
2 −t

t B⊥
2 ε−Bz

2 0

−
�

2 e−iφ+iθ −t 0 0

⎞⎟⎟⎟⎟⎠. (14)

The eigenvalues of this Hamiltonian are the energies
Eα(φ − θ ) corresponding to many-body eigenstates |α〉,
which depend on the superconducting phase. Then, the
supercurrent can be calculated via the derivative of the free
energy with respect to the phase,

I (φ) = 2e

h̄
∂φ(−T ln Z) = 2e

h̄

∑
α

Pα∂φEα(φ − θ ). (15)

We find that a supercurrent can only flow if the direction of the
external magnetic field is not collinear with the spin quantiza-
tion axis of the MBS, i.e., B⊥ �= 0. In Appendix C, we demon-
strate how Eqs. (5) and (15) can be transformed into each

0 0.5 1 1.5 2
B⊥/ΓΔ

0

0.2

0.4

0.6

0.8

1
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1.4

|F
c s
(0

)|
an

d
∂

t|F
c t(

0)
|/

Γ
Δ

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

I c
/(

eΓ
Δ
/h̄

)

ε = 0.9ΓΔ

ε = ΓΔ

ε = 1.1ΓΔ

FIG. 2. The critical current Ic (solid lines) in comparison with the
odd-frequency order parameter ∂t |Fc

t (0)| (dashed lines) and the even-
frequency order parameter |F c

s (0)| (dashed-dotted lines) for Bz = 0,
U = 
�, weak coupling t = 0.1
�, and temperature T = 0.2
�.

other. Furthermore, in Sec. V, we calculate the supercurrent of
a MBS-QD-superconductor setup directly on the basis of the
Green’s function formalism to explicitly demonstrate how the
symmetry of the Green’s functions affects the supercurrent.

The current is 2π periodic (with respect to φ) with a
dominating first harmonics, so one can approximate I (φ) ≈
Ic sin(φ − θ ). Interestingly, the influence of the angle θ on the
current allows for a so-called φ0 junction [39]. The dependence
of Ic on the system parameters is shown in Fig. 2. Evidently, the
supercurrent correlates nicely with the odd-frequency pairing
(dashed line) defined in Eq. (13) instead of the even-frequency
component (dash-dotted line) given in Eq. (12). The difference
to the case of a conventional superconducting STM tip (which
would follow the even-frequency component) is the sign of the
gradient of the B⊥ dependence.

V. CURRENT IN SC-QD-MBS SETUP FROM GREEN’S
FUNCTIONS FORMALISM

To connect better between the more general part in the
Sec. III and the example of the SC-QD-MBS setup in Sec. IV,
we now apply the Green’s function formalism, equivalent
to Eqs. (5)–(8), to calculate the current flowing through a
single-level quantum dot of energy ε coupled to a Majorana
bound state and a conventional s-wave superconductor. We
consider the regime where Kondo interactions can be neglected
and the effect of the Coulomb repulsion is to renormalize
the level position and tunneling amplitudes [40]. Further,
we allow the quantum level to couple with an external
magnetic field B = (B⊥ cos θ,B⊥ sin θ,Bz) and assume that
the level separation is the largest energy scale. We describe the
system in the combined Nambu-spin space with spinor fields
� = (d↑,d↓,d

†
↑,d

†
↓)T , where d†

σ (dσ ) annihilates (creates) an
electron with spin σ = ↑,↓ on the dot. The Hamiltonian of the
isolated quantum dot is given by

Ȟqd = εσ̂0τ̂3 + B⊥ cos θσ̂1τ̂3 + B⊥ sin θσ̂2τ̂0 + Bzσ̂3τ̂3,

where σ̂ν (τ̂ν), with ν = 0,1,2,3, are Pauli matrices in spin
(Nambu) space with identity matrix σ̂0 (τ̂0). The transport
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properties of the system are described by the Green’s function

Ǧqd (ω) = [ωσ̂0τ̂0 − Ȟqd − 	̌S(ω) − 	̌M (ω)]−1, (16)

where ω stands for ω ± i0+ for retarded/advanced Green’s
functions or iωn = 2πi(n + 1/2)kBT , with temperature T , for
Matsubara Green’s functions. The superconducting substrate
and the Majorana state are included as self-energies

	̌S(ω) = t2[gs(ω)σ̂0τ̂0 + fs(ω)(iσ̂2)τ̂1],

	̌M (ω) = t2
↑(gm(ω)τ̂0 − fm(ω)eiφτ̂3 τ̂1)

σ̂0 + σ̂3

2
.

By an appropriate charge U (1) gauge choice, the static phase
φ is included in the Green’s function of the Majorana state.
Due to the SU (2) spin symmetry of the conventional super-
conductor, its tunnel coupling to the QD t is spin independent.
Choosing the appropriate spin gauge we let the spinless Ma-
jorana state couple only to the fermions in the superconductor
with spin ↑ with the amplitude t↑. For the singlet s-wave super-
conductor, the normal and anomalous dimensionless Green’s
functions are fs(ω) = −(�/ω)gs(ω) = �/

√
�2 − ω2. The

dimensionless Green’s functions for the Majorana state are
obtained from the edge Green’s function of a topological su-
perconductor as fm(ω) = (�/

√
�2 − ω2)gm(ω) = �/ω (see

Refs. [10,41–43]). For simplicity, we have assumed that both
superconductors have the same gap �. As in the main text, we
are only considering the equilibrium case where the junction
is phase biased, i.e., the applied voltage is zero. As a result,
the current adopts the simple form

I (V =0,T ) = e

2h̄

∫
dω

2π
tanh

(
ω

2T

)
× Tr

{
τ̂3

[
	̌r

M (ω)Ǧr
qd (ω) − 	̌a

M (ω)Ǧa
qd (ω)

]}
.

(17)

Let us now consider the Green’s function of the isolated
system formed by the quantum dot and the superconducting
substrate. Using the Dyson equation, we can recast Eq. (16) as

Ǧqd = [(ǧqd )−1 − 	̌M ]−1,

where ǧqd = (ωσ̂0τ̂0 − Ȟqd − 	̌S)−1 is the Green’s function
of the dot-superconductor system. To further analyze the
proximity-induced superconducting pair amplitude at the
quantum dot, we focus on the anomalous part of ǧqd , which in
spin space adopts the form

(ǧqd )eh = − t2fs(ω)

det[ǧqd ]

(
−2ωsB⊥e−iθ F0(ω) + 2ωsBz

−F0(ω) + 2ωsBz 2ωsB⊥eiθ

)

= t2fs(ω)

det[ǧqd ]
(F0σ̂0 + 2ωsB · σ̂ )(−iσ̂2) (18)

with ωs = ω − t2gs an odd function of the frequency and
F0(ω) = F0(−ω) = ω2

s − t4fs(ω) − ε2 + B2, where B2 =
B2

⊥ + B2
z is the magnitude of the magnetic field. It is thus

clear from Eq. (18) that the induced pairing in the dot-
superconductor system is a superposition of spin-singlet and
triplet states, where the spin-triplet state is parallel to the
external magnetic field. Additionally, since both fs(ω) and
det[ǧqd ] are even functions of frequency, the induced singlet
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FIG. 3. Critical current of the SC-QD-MBS system (solid lines)
as a function of the noncollinear component of the external magnetic
field B⊥ compared to the even-frequency singlet |F0| (dashed-dotted
lines) and the magnitude of the odd-frequency triplet |Ft | (dashed
lines) of the induced pairing in the dot. The current is calculated using
Eq. (20) with θ = 0, Bz = 0, t = 3�/2, t↑ = 0.1�, β = 1/(kBT ) =
5�, and � = 1. The pairing amplitudes are normalized by the scaling
factor (t2

↑/t2). This figure nicely confirms the results displayed in
Fig. 2 on the basis of Green’s functions calculation.

state accounts for the even-frequency component of the pair
amplitude while the triplet is odd in frequency. To characterize
the superconducting correlations induced in the quantum dot
by proximity to the superconductor, we define the quantities

Fs =
∑
ωn

t2fs(ωn)

det[ǧqd (ωn)]
F0(ωn), (19a)

Ft =
∑
ωn

ωn

2t2fs(ωn)ωs

det[ǧqd (ωn)]
B, (19b)

which play the same role as the corresponding expressions
in Eqs. (12) and (13), though they should not be compared
directly, as the models are complementary to each other (here
the QD has finite � and no double occupancy).

We can now find a more compact expression for the
Josephson current in terms of the Green’s functions of the
Majorana state and the dot-superconductor system. We thus
rewrite Eq. (17) as

I (V = 0,T ) = 2e

βh
t2t2

↑ sin(φ − θ )
∑
ωn

2ωsB⊥fs

det[Ǧqd ]
fm, (20)

with β = 1/(kBT ). The Josephson current is finite only if
B⊥ �= 0, as it is shown in Fig. 3. According to Eq. (19),
this is equivalent to inducing an odd-frequency triplet (OTE)
component in the superconducting substrate. Therefore, as
it is demonstrated in Sec. III on general grounds, a finite
supercurrent is only possible in the presence of odd-frequency
pairing in the superconducting substrate.

Additionally, in the limit where the tunneling to the
Majorana state is much smaller than the energy scales of
the studied superconductor, we can neglect the self-energy
of the Majorana bound state 	M in the determinant to find
det[Ǧqd ] ≈ det[ǧqd ]. In such a case, the current expression in
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Eq. (20) adopts a simpler form equivalent to Eq. (8), namely

I (t↑  �) � 2e

βh
t2
↑ sin(φ − θ )

∑
ωn

fm[(Ft )⊥(θ = 0)].

VI. CONCLUSIONS

We suggest a new device corresponding to a Majorana
bound state at the tip of a scanning tunneling microscope,
which we dub Majorana STM. It is shown that a single
Majorana bound state exhibits a pair amplitude that is an
odd function of time. This feature is decisive that the
Majorana STM serves as an ideal detector for odd-frequency
superconductivity. If a supercurrent builds up between the
Majorana STM and an unknown superconducting sample then
the latter superconductor has to experience odd-frequency
pairing itself. We illustrate this general result on the basis
of a simple quantum dot model coupled to the Majorana STM.

ACKNOWLEDGMENTS

Financial support by the DFG (SPP1666 and SFB1170
“ToCoTronics”), the Helmholtz Foundation (VITI), the ENB
Graduate school on “Topological Insulators”, and the Min-
istry of Innovation NRW is gratefully acknowledged. P.B.
acknowledges European Union’s Horizon 2020 research and
innovation program under the Marie Skłodowska-Curie Grant
Agreement No. 743884.

APPENDIX A: CORRELATORS, GREEN’S FUNCTIONS,
AND THEIR SYMMETRIES

In this section, we study the symmetries of the general
correlators, apply the obtained results to the fermionic Green’s
functions, and examine the manifestation of the Fermion
anticommutativity for the different types of Green’s functions.

Let us consider two different objects described by the
operators A and B in Heisenberg representation. We can
define three correlators that account for the different order
of the operators with respect to time coordinates, or for
their Hermitian conjugated versions. Expressing the resulting
Green’s functions on the Keldysh contour [29,44], we can write

GK(ti ,t
′
j ) = −i〈TKA(ti)B(t ′j )〉,

G̃K(ti ,t
′
j ) = −i〈TKB(ti)A(t ′j )〉,

GK(ti ,t
′
j ) = −i〈TKB+(ti)A

+(t ′j )〉,
(A1)

where TK is the time-ordering operator on the Keldysh
contour. Here, we follow a notation similar to Ref. [44], where
for the time coordinate ti , the index i = +(−) corresponds to
the c1 (c2) contour that lies above (below) the time axis and
is the first (second) part of the full Keldysh contour. We thus
express the Green’s functions in matrix form as

GK(ti ,t
′
j ) = [GK(t − t ′)]ij ≡

(
Gc G<

G> Gac

)
(t − t ′)

= −i

(〈TA(t)B(t ′)〉 ∓〈B(t ′)A(t)〉
〈A(t)B(t ′)〉 〈̃TA(t)B(t ′)〉

)
, (A2)

where T is the time-ordering operator, T̃ is the reverse
time-ordering one, and the sign −(+) corresponds to fermion

(boson) operators. Gc, Gac, G<, and G> are causal, anticausal
(with reverse time ordering), greater, and lesser Green’s
functions. Note that

〈TA(t)B(t ′)〉 = ∓〈TB(t ′)A(t)〉,
〈̃TA(t)B(t ′)〉 = ∓〈̃TB(t ′)A(t)〉,

〈TA(t)B(t ′)〉∗ = 〈̃TB+(t ′)A+(t)〉,
〈̃TA(t)B(t ′)〉∗ = 〈TB+(t ′)A+(t)〉.

These relations allow us to establish the connection between
the different correlators defined in Eq. (A1). Assuming that the
Hamiltonian is time independent, the correlators depend on
the time difference only, and are transformed into each other as

G̃K(t − t ′) = ∓[GK(t ′ − t)]T

GK(t − t ′) = −τ 1[GK(t ′ − t)]+τ 1,
(A3)

where the + superscript denotes Hermitian conjugation in
Keldysh matrix space and τ i are the Pauli matrices acting on
the same space. The four Green’s functions defined in Eq. (A2)
are, however, linearly dependent. We can eliminate one compo-
nent, if we rotate the basis of the Keldysh space [44] as follows

Ĝ(t − t ′) = Lτ 3GK(t − t ′)LT =
(
GR GK

0 GA

)
(t − t ′), (A4)

where L = (1 − iτ 2)/
√

2 and GR,A,K are retarded, advanced,
and Keldysh Green’s functions, respectively. Applying the
same rotation to the other Green’s functions defined in
Eq. (A1), we obtain

ˆ̃G(t) = ∓τ 1ĜT(−t)τ 1, Ĝ(t) = τ 2Ĝ+(−t)τ 2. (A5)

Performing the Fourier transform over the time variable, we
get the relation between the different correlators in frequency
representation, namely,

G̃R/A(ω) = ∓GA/R(−ω), G̃K (ω) = ∓GK (−ω), (A6)

GR/A
(ω) = [GA/R(ω)]∗, GK

(ω) = −[GK (ω)]∗. (A7)

Let us illustrate these relations at the example of the
Majorana bound states and the electron normal/anomalous
Green’s functions defined as

DR/A(t) = ∓i〈{γ (t), γ (0)}+〉θ (±t),

DK (t) = −i〈[γ (t), γ (0)]−〉,
G

R/A

αβ (t) = ∓i〈{ψα(t), ψ†
β(0)}+〉θ (±t),

GK
αβ (t) = −i〈[ψα(t), ψ†

β(0)]−〉,
F

R/A

αβ (t) = ∓i〈{ψα(t), ψβ(0)}+〉θ (±t),

FK
αβ(t) = −i〈[ψα(t), ψβ(0)]−〉.

(A8)

The normal electron Green’s function can be obtained from
the definitions in Eq. (A1) by substitution of the generic
operators A = ψα and B = ψ+

β . It is thus defined as

GKαβ(ti ,t
′
j ) = −i〈TKψα(ti)ψ

+
β (t ′j )〉, (A9)

where the indexes α and β denote the full set of the
electron quantum numbers, such as spin, momentum, etc.
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TABLE II. The transformation of the different correlators with respect to the exchange of the ladder operators. The sign and the position of
the cell denotes the connection between the Green’s functions. The nonstandard correlators ac (anticausal) and s (spectral) are defined in the
Eqs. (A2) and (A18), respectively.

F R
αβ (ω) F A

αβ (ω) F K
αβ (ω) F c

αβ (ω) F ac
αβ (ω) F >

αβ (ω) F <
αβ (ω) F s

αβ (ω)

F R
βα(−ω) −

F A
βα(−ω) −

F K
βα(−ω) −

F c
βα(−ω) −

F ac
βα(−ω) −

F >
βα(−ω) −

F <
βα(−ω) −

F s
βα(−ω) +

In that case, two of the correlators listed in Eq. (A1) are
equivalent up to the exchange of the quantum numbers,
namely, GKαβ(ti ,t ′j ) = GKβα(ti ,t ′j ). Together with Eqs. (A7),
we obtain the symmetry of the normal electron Green’s
function in frequency representation

G
R/A

αβ (ω) = [
G

A/R

βα (ω)
]∗

, GK
αβ(ω) = −[

GK
βα(ω)

]∗
. (A10)

The anomalous electron Green’s function is defined via the
substitution A = ψα and B = ψβ , resulting in

FKαβ(ti ,t
′
j ) = −i〈TKψα(ti)ψβ(t ′j )〉. (A11)

Since the two generic operators are of the same type, we
immediately find that F̃K αβ(ti ,t ′j ) = FKβα(ti ,t ′j ). As a result,
the symmetry dependence with respect to frequency of the
anomalous Green’s function is

F
R/A

αβ (ω) = −F
A/R

βα (−ω), FK
αβ(ω) = −FK

βα(−ω). (A12)

For the Majorana fermion, due to its fundamental Hermic-
ity, γ + = γ , only one correlator can be defined. By setting
A = B = γ , we find

DK(ti ,t
′
j ) = −i〈TKγ (ti)γ (t ′j )〉, (A13)

which combines the properties of both normal and anomalous
Green’s functions, D̃K(ti ,t ′j ) = DK(ti ,t ′j ) = DK(ti ,t ′j ). There-
fore, it must fulfill the same symmetry properties with respect
to frequency as the normal and the anomalous Green’s
functions,

DR/A(ω) = −DA/R(−ω), (A14)

DK (ω) = −DK (−ω), (A15)

DR/A(ω) = [DA/R(ω)]∗, (A16)

DK (ω) = −[DK (ω)]∗. (A17)

Next we discuss the manifestation of the fermionic anti-
commutation of the anomalous Green’s function. For clarity,
we summarize the transformations under the exchange of
the particles of various anomalous correlators in Table II.
The usual choice of Keldysh, retarded and advanced Green’s
functions does not fully reflect the fermionic nature of the
particles. While the Keldysh component indeed changes the
sign under the exchange of particles, the retarded and advanced
components transform into each other. However, we can

construct two independent correlators from the symmetric
and antisymmetric superposition of the retarded and advanced
Green’s functions. From the sum of FR and FA, we obtain an
independent correlator, which is odd with respect to particle
exchange. Further, using the initial Keldysh Green’s function
in Eq. (A2), we notice that FR + FA = Fc − Fac.

The other independent correlator is given by FR − FA =
F> − F< ≡ F s , and it is even with respect to particle
exchange, as can be seen from

F s
αβ(t − t ′) = −i〈ψα(t)ψβ(t ′) + ψβ(t ′)ψα(t)〉. (A18)

The correlation function F s , which is expressed in terms of
the greater and lesser Green’s functions F<,>, describes the
spectral properties of the system. We would like to stress that,
even in the case of pure odd-frequency superconductivity, this
correlator is still even in ω. This is not surprising when we
consider that, for thermal equilibrium, the Keldysh Green’s
function adopts the form FK = F s tanh(ω/2T ). As long as
the Keldysh component is odd in frequency, the spectral one
is bound to be even.

APPENDIX B: GAUGE IN THE TUNNELING
HAMILTONIAN OF THE SC-QD-MBS SETUP

The full Hamiltonian of the quantum dot on the super-
conducting substrate coupled to the Majorana state is H =
Hdot + Ht , where Hdot is given in Eq. (10) of the main text.
The tunneling term in the most general gauge of the dot ladder
operators can be written in the form

Ht =
∑

σ

(t∗σ γ cσ + tσ c†σ γ ). (B1)

The general gauge transformations of the operators cσ belong
to the U (2) = U (1) ⊗ SU (2) Lee group, which can be split
into the U (1) charge gauge and the SU (2) spin gauge. The
Hamiltonian Hdot is invariant under SU (2) transformations,
but U (1) = eiϕ changes the superconducting phase by φ →
φ + 2ϕ. The tunneling Hamiltonian Ht , due to the Hermicity
of the Majorana operator γ , is not invariant under either U (1) or
SU (2) transformations. As a result, the tunneling coefficients
tσ change if the spin gauge changes. In an experimental
realization of a MBS, this SU (2) symmetry is usually broken,
not by the tunneling amplitude, but by the magnetic order and
the spin-orbit interaction in the STM tip, in a typical setup for
the creation of the MBS [16,17]. Thus, in the effective model
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of Eq. (B1), the gauge change cσ → ∑
σ ′ Uσσ ′cσ ′ by a SU (2)

matrix U changes the tunneling coefficients t↑ and t↓ in the
same way: tσ → ∑

σ ′ Uσσ ′ tσ ′ . Choosing the matrix Ũ such
that∑

σ ′
Ũσσ ′ tσ ′ =

(
t
0

)
, Ũ = i

t

(
t∗↑ t∗↓
t↓ −t↑

)
∈ SU (2), (B2)

where t = √|t↑|2 + |t↓|2 ∈ Re > 0, we can eliminate the
tunneling in one channel and make the tunneling amplitude
real in the other one.

The closest analogy to this gauge freedom can be found
in the tunnel coupling for two normal subsystems 1 and 2.
Then, the tunneling Hamiltonian looks like tψ+

1 ψ2 + H.c.
where ψ1(2) are the annihilation operators of the subsystems
1(2). If t = |t|eiθ one can perform a U (1) charge gauge
transformation ψ1 → ψ1e

iθ0+iθ and ψ2 → ψ2e
iθ0 , which will

make the tunneling amplitude real.
Let us now explicitly show how the gauge transformation

works in the Fock subspace with odd fermion parity defined
in the main text, and how one obtains the Hamiltonian in the
form of Eq. (14). The total Hamiltonian, in the initial (arbitrary)
gauge, is

H =

⎛⎜⎜⎜⎝
|↑↓,1〉 |↑,0〉 |↓,0〉 |0,1〉

〈↑↓,1| δ −t↓ t↑ −
�

2 eiφ

〈↑,0| −t∗↓ ε + B ′
z

2
B ′

⊥
2 e−iθ ′ −t↑

〈↓,0| t∗↑
B ′

⊥
2 eiθ ′

ε − B ′
z

2 −t↓
〈0,1| −
�

2 e−iφ −t∗↑ −t∗↓ 0

⎞⎟⎟⎟⎠,

(B3)

where we displayed the corresponding basis, for clarity, next to
the matrix. Using the block-diagonal matrix VU = diag(1,U,1)
corresponding to the SU (2) rotation in second quantization,
we can eliminate t↓ and set t↑ to t, which is real and positive,
resulting in

V +
U HVU

=

⎛⎜⎜⎜⎜⎝
δ 0 t −
�

2 eiφ

0 ε + Bz

2
B⊥
2 e−iθ −t

t B⊥
2 eiθ ε − Bz

2 0

−
�

2 e−iφ −t 0 0

⎞⎟⎟⎟⎟⎠

= Vθ

⎛⎜⎜⎜⎜⎝
δ 0 t −
�

2 eiφ−iθ

0 ε+Bz

2
B⊥
2 −t

t B⊥
2 ε−Bz

2 0

−
�

2 e−iφ+iθ −t 0 0

⎞⎟⎟⎟⎟⎠V +
θ .

In the second step, we have used the matrix Vθ =
diag(eiθ ,1,eiθ ,1), which is a combination of the rotation by an
angle θ around the z axis [SU(2) by diag(1,e−iθ/2,eiθ/2,1)], and
a charge gauge change by θ/2 [U(1) by diag(eiθ ,eiθ/2,eiθ/2,1)].

APPENDIX C: FORMULA FOR THE SUPERCURRENT
IN THE SC-QD-MBS SETUP

This subsection is devoted to the derivation of the expres-
sion for the current in Eq. (15) of the manuscript. We will

show that this formula is equivalent to Eq. (5). Starting from
the definition of the current operator, given in the Eq. (4), and
writing down the ladder operators γ c(†)

σ in the Fock space,
specified in Eq. (B3), we obtain for the current operator

Î = i
e

h̄

∑
σ

(
tσ γ cσ − t∗σ c†σ γ

)
, (C1)

which in the matrix representation is

Î = i
e

h̄

⎛⎜⎜⎜⎝
0 t↓ −t↑ 0

−t∗↓ 0 0 t↑
t∗↑ 0 0 t↓
0 −t∗↑ −t∗↓ 0

⎞⎟⎟⎟⎠. (C2)

The superconducting phase dependence in the Hamiltonian
(B3) can be moved from the order parameter to the tunneling
coefficients using the U (1) charge gauge transformation Vφ =
diag(eiφ,eiφ/2,eiφ/2,1). As a result, we find

V +
φ HVφ

=

⎛⎜⎜⎜⎜⎝
δ −t↓e−iφ/2 t↑e−iφ/2 −
�

2

−t∗↓eiφ/2 ε + Bz

2
B⊥
2 e−iθ −t↑e−iφ/2

t∗↑eiφ/2 B⊥
2 eiθ ε − Bz

2 −t↓e−iφ/2

−
�

2 −t∗↑eiφ/2 −t∗↓eiφ/2 0

⎞⎟⎟⎟⎟⎠,

which provides the relation

2
e

h̄
∂φ(V +

φ HVφ) = V +
φ ÎVφ. (C3)

This is not a coincidence, but a relation reflecting the fact that
the electromagnetic gauge field A changes the amplitude t12 of

the tunneling matrix element from 1 to 2 as t12 → t12e
i e

c

∫ 2
1 Adr.

Since the current is j = δH/δA, we then obtain Eq. (C3).
Starting from Eq. (15) for the current defined in the manuscript,
we find

I = −2
e

h̄
β−1∂φ ln Z = −2

e

h̄
β−1Z−1∂φTr e−βH

= −2
e

h̄
β−1Z−1Tr ∂φe−βV +

φ HVφ , (C4)

where Z = Tr e−βH = ∑
α e−Eα/T , and Eα are the energies of

the Andreev levels defined in the main text after Eq. (10). Using
the standard formula for the derivative of the exponential map
[45], ∂eX = ∫ 1

0 esX(∂X)e(1−s)Xds, and the relation between
current and Hamiltonian in Eq. (C3), we get

I = Z−1Tr
∫ 1

0
e−sβV +

φ HVφ V +
φ ÎVφe−(1−s)βV +

φ HVφ ds

= Z−1Tr V +
φ ÎVφe−βV +

φ HVφ = Z−1Tr Î e−βH . (C5)

This result corresponds to the expectation value of the current
I = 〈Î 〉 where the angle brackets denote the averaging over
the thermodynamic equilibrium state of the system. This latter
equation is precisely Eq. (5).
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