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A B S T R A C T

We present a computational study of network ensembles with two types of coexisting vehicle classes: an
altruistically routing vehicle (ARV) class – potentially automated vehicles that are routed to reduce total
system travel time – and a selfishly routing vehicle (SRV) class, corresponding to human-driven vehicles. We
investigate the performance of these networks when some links are reserved for exclusive use by the ARVs.
The goal of these interventions is to avoid or mitigate the detrimental effects of the SRVs on the costs of
the ARVs. We formulate the problem as a bi-level network design problem, where the upper level deals with
optimising the choice of ARV-exclusive links minimising the statistical dispersion of used-route costs, while the
lower level finds the corresponding traffic equilibrium under static traffic assignment conditions. We tackle the
ARV-exclusive link selection with a genetic algorithm, where the fitness of solutions is based on the dispersion
of the costs of routes used by ARVs. The mixed equilibrium is found by solving a multi-class static traffic
assignment problem, with constraints on the SRV flows on the ARV-exclusive links. SRVs attempt to minimise
their personal travel time, whilst ARVs attempt to drive the flows to system optimal. Our approach is effective
in reducing the per-vehicle travel cost of the ARVs to below that of the SRVs, making altruistic routing a more
attractive option on average. Our results are consistent across networks with different structures and demand
levels.

1. Introduction

Connected and automated vehicles (CAVs) are being presented as
one of the main components of future mobility systems; however,
market projections of their introduction to the vehicle fleet suggest
decades of coexistence with human-driven vehicles (Department for
Transport, 2021; Lavasani et al., 2016). Depending on new vehicle
ownership models that may develop as well as implemented policies,
the impact of automation on urban traffic remains highly uncertain.
Furthermore, technologies such as vehicle-to-infrastructure communi-
cation, may enable novel and much more flexible management strate-
gies of the existing infrastructure; for example, a traffic management
authority may dynamically allocate exclusive right-of-way to different
types of vehicles (whether automated or not) along specific links in the
network.

It has been recognised that CAVs can also be used as actuators in
control strategies to regulate network traffic throughput (Chen et al.,
2020) by enabling adherence to different routing behaviours and strate-
gies. In particular, this could be in the context of managing a fleet of
altruistically routing vehicles (ARVs) that aim to reduce system costs,
or alternately improve emissions or livability (see Vol et al. (2023), for
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other types of altruistic objectives). Thus, in considering the coexistence
of human-driven vehicles with CAVs it is important to also consider
mixed traffic conditions where vehicle fleets with different routing
behaviours interact.

In the 80s and 90s, when route guidance systems were developing
and reaching maturity, the possibility of nudging the system closer to
optimal by providing drivers with routing options that lower system
costs became apparent (Watling and van Vuren, 1993). Even at this
stage, the challenge of adherence to route guidance was clearly iden-
tified (van Vuren et al., 1990) and ways of incentivising adherence to
routes with larger travel times are still not resolved (Vol et al., 2023).

Navigation apps are now ubiquitous and thanks to crowd-sourced
information, can provide real-time travel time estimates as well as
suggest alternative routes. Currently, however, they are mainly used
in conjunction with selfish routing. Also when considering the future
deployment of CAVs, the underlying assumption is frequently that CAVs
will be routed selfishly (Alfaseeh et al., 2018; Huang et al., 2020; Mehr
and Horowitz, 2020; Wang et al., 2019) or at least for the benefit of a
fleet operator.
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In this paper, we investigate a mixed equilibrium (ME) traffic
scenario where connected and automated vehicles are part of a single
fleet that is centrally managed, journeys are routed with the goal of
optimising the average travel time of all vehicles on the network. A
proportion of the vehicles are ARVs, and the remaining human-driven
vehicles are selfishly routing vehicles (SRVs). In order to ameliorate the
travel times of the ARVs and make them an attractive mode choice we
allocate a subset of links in a network for exclusive use by the ARVs.

1.1. Background on mixed traffic equilibrium

Wardrop’s two criteria (Wardrop, 1952) specify two (generally)
different traffic equilibria, sometimes seen as representing opposite
behaviour: user equilibrium (UE) and system optimum (SO). The traffic
pattern reached at UE arises by drivers (selfish) choosing their paths
to minimise their individual travel times, which results in all used
paths between any given origin–destination pair having the same cost.
Conversely, at SO, vehicles are altruistic and seek to minimise the
average travel time of all vehicles in the network. A consequence of the
SO assignment is that used routes can present a wide spread of costs,
making the higher-cost routes particularly unattractive.

A ME can arise when different user classes follow different routing
principles. Considering a multi-class traffic assignment problem, van
Vuren et al. (1990) model a mixed flow system with two classes of
vehicles. One class follows the UE principle, while the other composed
of ARVs attempts to drive the system to SO. This results in a ME; how-
ever, the ARVs experience higher per-vehicle costs. Their main result
is that while system cost improvements happen already at moderate
penetration rates of ARVs (of around 30%), very high penetration rates
(70% and above) are required for the ARVs to experience lower travel
times than at pure UE.

Vehicle classes with different routing behaviours emerge naturally
in route guidance contexts. The types of equilibria used to model
them attempt to capture different aspects of possible scenarios. For
example, van Vuren and Watling (1991) use stochastic assignment to
include perception errors of SRVs, as well as possible estimation errors
by guidance systems. They obtain similar results to van Vuren et al.
(1990).

Yang et al. (2007) developed a more complex model with an ad-
ditional behavioural class, that follows the same core concept. In
addition to the UE and SO classes, a third type of vehicle class is
introduced that seeks to minimise the average cost to the vehicles in
its own fleet. The results of Yang et al. (2007) reiterate findings by van
Vuren et al. (1990); ME can indeed improve costs significantly with
respect to UE. As a caveat, improvements depend on the network and
demand. It is possible to introduce system-optimising vehicles without
any cost improvements to the system until a threshold penetration
rate is reached, since ARVs absorb the cost gains made by the selfish
vehicles. Additionally, ARVs experience an uneven distribution of route
costs.

Whilst UE and SO traffic equilibria are extremely idealised they
serve as boundary cases and illustrate some challenges faced by altru-
istic routing. In order to minimise the total system cost, some vehicles
incur much larger travel times than those on the shortest path.

1.2. Background on management strategies enabled by CAVs

With the advent of CAVs (e.g., at SAE levels 4 or 5) and vehicle-to-
infrastructure communication, more flexible use of the road networks
appears to be possible (Pompigna and Mauro, 2022; Touko Tcheumad-
jeu et al., 2022).

In terms of more dynamic infrastructure control, Ampountolas et al.
(2020) propose a real-time lane control method for managing motor-
ways with reversible lanes. Schemes like this could further be improved
by making use of CAV capabilities, for example by incorporating ramp
metering and lane control (Roncoli et al., 2015). Roncoli et al. (2017)

develop a feedback control strategy that assigns lane changes to CAVs
to maximise throughput at bottlenecks in motorways and redistributes
vehicle density.

Special dedicated links for CAVs in conjunction with platooning
and headway reduction have been proposed (see, for example, Pa-
pamichail et al. (2019)), which avoid the mixture of CAVs and SRVs
that might disrupt the efficiency gains, or simply be unsafe. Con-
versely, Bahrami and Roorda (2020) observe that CAV-exclusive links
can lead to significant improvements.

From the network perspective, dedicated CAV links open up routes
for the CAVs that are unavailable for SRVs. If the CAVs are cen-
trally routed to follow SO, these paths through the network that are
unimpeded by SRVs have the potential of ameliorating the extra cost
absorbed by vehicles attempting to follow a SO assignment. Thus, if
automated ARVs are considered, restricting some links exclusively for
them can provide them with better paths from which they are not
displaced.

However, exclusive right of way for a vehicle class in a network can
result in complex effects. Removing links from a network can improve
system costs, such as the well-known Braess paradox (Braess, 1968),
even in the case where they are still available to a subset of the vehicle
classes (e.g., Acemoglu et al. (2018)).

Choosing the roads in a network to be designated as ARV-exclusive
is a network design problem (NDP) which has received ample study in
transportation research (Farahani et al., 2013). The NDP can be seen
as a bilevel programming problem (Suh and Kim, 1992) where at the
upper level, the network is altered to optimise an objective whose value
is the result of a network equilibrium problem; the lower level problem.

Due to the computational complexity of the problem, usually, a
candidate set of links that can be modified is pre-selected, and how they
are to be modified is also specified. This can range from modifications
to their capacity, in the continuous case, to the complete removal or
addition of the links to the network in the discrete case. Since we are
selecting existing links in the networks to be of exclusive use for one
class of vehicles, we can consider the problem at hand a discrete NDP.
This can be framed as a mixed integer program, and can be solved with,
for example, the algorithms proposed by Gao et al. (2005) and Zhang
et al. (2009). However, in practice, the number of decision variables
used with these methods is small.

Both the NDP and the ME static traffic assignment problem have
received ample study. In recent years, due to the seeming inevitability
of an automated vehicle future, there has been a resurgence in the
study of ME flow in various settings. These range from developing new
capacity models taking into account short headways of CAVs (Lazar
et al., 2020), mixed flows of system-optimising vehicles (Barzegari
et al., 2023), to network control scenarios. For example, Zhang et al.
(2009) investigate the optimal ratio of ARVs to SRVs required per
origin–destination (OD) pair for reducing total network travel time.
Even real-time control schemes are being devised that make use of
machine learning for controlling individual paths of ARVs in order to
optimise network flow (Lazar et al., 2021).

Table 1 shows existing works thematically related to this article, ar-
ranged to show their differences and their scope. In summary, there are
many studies dealing with mixed traffic flow; however, their settings
and methods vary widely and in general simulations tend to cover a
reduced number of networks. CAVs have previously been identified as
possible enablers of altruistic routing and effort has gone into under-
standing how to improve system costs using them. For example, Zhang
and Nie (2018), focus on optimising the ARV ratio; however, they do
so per OD pair, and Lazar et al. (2021) as well as Chen et al. (2020)
attempt to control the paths directly.

In methodological terms, GAs have been shown to be effective in
tackling the NDP, especially when using large numbers of decision
variables. As for the networks that have been used in these studies,
they tend to be small example networks, slightly larger networks with
regular structures, or networks that are used as canonical examples in
the literature such as Sioux Falls. To the best of the authors’ knowledge,
there are no studies similar to this one that cover a large ensemble of
networks.
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Table 1
Existing literature related to the current study. References are loosely organised around the three key themes: ME (with a main focus on altruistic routing), CAVs, and the importance
of the studied Networks.
Theme Focus Key results Networks Refs.

Mixed equilibrium
(altruistic routing)

Co-existing routing classes. UE,
SO, Cournot-Nash, stochastic UE.

High proportion of ARVs (and
Cournot-Nash veh.) needed for SO
costs. Stackelberg equilibrium is
better.

Small/medium test networks.
Sioux falls (Wang et al., 2019).

van Vuren et al.
(1990), van
Vuren and
Watling (1991),
Yang et al.
(2007), Wang
et al. (2019)

Optimal ARV to SRV ratio to
reduce system costs.

Small ARV proportion almost
achieves optimum. Network
topology can dominate demand.

Sioux Falls. Anaheim Zhang and Nie
(2018)

Control of individual ARV paths. Reinforcement learning routing
outperforms other schemes (Lazar
et al., 2021)

Small example networks (Lazar
et al., 2021)

Lazar et al.
(2021), Chen
et al. (2020)

CAVs Road capacity increase Road cost functions for mixed
flows. Bounds on UE costs.

General networks Lazar et al.
(2020)

Traffic flow stability in mixed
flows

CAVs can help stabilise traffic.
But in general specific CAV
densities are needed.

No network (linear flow) Huang et al.
(2020)

Capacity dependent on (Selfish)
CAV proportions.

Capacity function conditions to
decrease total costs

General networks Mehr and
Horowitz (2020)

Capacity with CAVs (mixed
traffic). Exclusive links.

AV exclusive links can improve
system.

Small test network. Sioux Falls Bahrami and
Roorda (2020)

Mixed SO flows Trade-offs between cost and
capacity

Simple networks. Sioux Falls. Barzegari et al.
(2023)

Network level Mixed integer programming for
NDP

Development of algorithms. (few
decision variables).

Lattice test network (Gao et al.,
2005). Small network. Sioux
Falls. Hull.

Gao et al.
(2005), Zhang
et al. (2009)

GAs for NDP GAs are efficient, but require
careful tuning. Useful ranges for
GA parameters.

Melito Porto Salvo. Simplified Los
Angeles

Cantarella et al.
(2006)
Pinninghoff
et al. (2008)

1.3. Objective and contributions

The two contributions of this paper are related to mixed equilibria
and altruistic routing with a focus on the role of the network. The first
contribution is a proposed method to design interventions allocating
existing links in road networks for use by ARVs (which could be
CAVs) that make altruistic routing an attractive choice. The second
contribution consists of empirically showing that having exclusive links
for ARVs can consistently yield lower per-vehicle costs for ARVs rela-
tive to selfishly-routing vehicles in ME scenarios across networks with
different topologies.

We aim for a breadth of scope in covering many networks with di-
verse morphologies. Thus, our approach consists of using simple models
to uncover stylised facts, for which we present results for ensembles
of randomly generated networks. The ensembles differ in the morpho-
logical parameters of the networks they are composed of. We use a
genetic algorithm (GA) to solve the NDP of allocating ARV-exclusive
links and evaluate ensemble performance for different demand values
whilst covering a range of ARV penetration rates for each demand level.
To keep the approach as parsimonious as possible, we consider fixed
demands in order to avoid introducing additional parameters in the
form of demand functions, which necessitate additional specifications
and implicit assumptions.

The remainder of the paper is structured as follows: Section 2
presents the synthetic network model and the methods used in framing
the ME traffic assignment as well as the NDP of selecting exclusive links
for the ARVs; details of the implementation of the GA used in solving
the NDP and the set-up for our computational experiments are given in
Section 3. In Section 4 our results are presented and discussed. Finally,
our conclusions are summarised in Section 5.

2. Methods

As expressed above, the goal of this paper is to understand how
reserving some links for exclusive use by altruistically routing vehicles
can be used as a general traffic management scheme across different
networks. To make our results generalisable to some degree, we per-
form numerical experiments on ensembles of networks with different
morphological features, rather than rely on popular example networks
or exemplar networks of specific morphologies.

Our methodology consists of three components. The first consists
of the generation of the synthetic networks that are used, as well as
selecting parameters for their cost functions and a suitable OD pair. We
aim at generating networks that are comparable amongst themselves
even though they can contain different numbers of links and have
different structures and topologies. The second component consists of
the selection of network links that will be reserved for ARV use. Crucial
in this step, is the need to ensure that all nodes in a network remain
connected and reachable by both classes, regardless of their origin.
The third component covers the calculation of the ME traffic assignment.
We express the Wardrop equilibrium (Wardrop, 1952) of both vehicle
classes (ARVs and SRVs) as the solution to an optimisation problem
with a single objective. Since each vehicle class – when considered
independently – has different equilibrium conditions, we refer to it as
a mixed equilibrium static traffic assignment problem (ME-STAP).

The experimental workflow, from network generation to obtaining
ensemble results for the link-segregated ME is represented in Fig. 1. In
the remainder of this Section, we cover the methodological details and
explain the rationale of the model that we then use for the numerical
experiments presented in Section 4.

2.1. Network model

We use the 𝛼𝛽-network model developed in Espinosa Mireles de
Villafranca et al. (2017) and Espinosa Mireles de Villafranca (2020)
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Fig. 1. Components of the proposed methodology, with input parameters as well as relevant outputs from each step.

to generate synthetic road networks that are directed random planar
graphs, which resemble realistic urban networks to some extent. The
model generates networks according to two structural parameters 𝛼 and
𝛽 that control for the randomness of node distribution and the density
of links, respectively. Fig. 2 shows some network instances for different
values of 𝛼.

The node-placement parameter 𝛼 changes the distribution of the
nodes between a perfect lattice (𝛼 = 0) and a uniformly random
distribution (𝛼 = 1) inside the unit square. Therefore the model can
capture features of networks that have different morphologies, from
very grid-like, to networks that have much more random intersection
distributions. The links of the network are determined by constructing
their 𝛽-skeleton (Jaromczyk and Toussaint, 1992). Broadly speaking,
𝛽 parametrises whether a given pair of nodes are considered ‘closest’
neighbours, and thus connected. More precisely, for every pair of nodes,
𝛽 parametrises a region which must remain empty of any additional
nodes in order for the original pair to be connected with a link.

The networks generated this way are initially obtained as undirected
networks; to obtain the directed networks that we use, we simply
replace each undirected link with two directed links with opposite
orientations. Thus, each link from the 𝛼𝛽-networks models a two-way
street.

2.1.1. Affine cost function parameters
For each link 𝑖 in the network we use flow-dependent affine cost

functions, 𝑐𝑖 of the form

𝑐𝑖(𝑓𝑖) = 𝑎𝑖 + 𝑏𝑖𝑓𝑖, (1)

where 𝑓𝑖 is the vehicular flow on the link, while 𝑎𝑖 and 𝑏𝑖 are link-
specific parameters that represent the free flow travel time and the
sensitivity to congestion, respectively. The free-flow travel time, 𝑎𝑖,
is set proportional to the (euclidean) length of the link, while the 𝑏𝑖
are allocated with a heuristic that ensures that networks with different
amounts of links are comparable. The idea behind the heuristic is that
all networks have the same supply of infrastructure, which can be set
to unity (in the dimensionless units that we are working with), so that
∑

𝑖∈

𝑎𝑖
𝑏𝑖

= 1, (2)

where  is the set of links in the network. Additionally, we require
that all nodes in a network have the same ‘node capacity’ and that this
capacity is shared equally amongst its incoming links, yielding (after
some algebraic manipulation)

𝑏𝑖 = 𝑘𝑖
∑

𝜈∈

1
𝑘𝜈

∑

𝑗∈𝜈

𝑎𝑗 , (3)

where 𝜈 is the set of links that are incoming at node 𝜈 and 𝑘𝜈 is the in-
degree of 𝜈. Note that, with a slight abuse of notation, 𝑘𝑖 is the in-degree
of the node to which link 𝑖 is incident. In simpler words, for a given
road network, all intersections are allocated the same node capacity,
which is then evenly split amongst the incoming links at each node
(for more details of this heuristic see: Espinosa Mireles de Villafranca
et al. (2017), Espinosa Mireles de Villafranca (2020)).

2.2. Mixed assignment

We express the ME-STAP as a single-objective convex optimisation
problem. Since our cost functions are affine, thus polynomial, we can
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Fig. 2. Some examples of 𝛼𝛽-networks composed of 100 nodes each. They are all generated with 𝛽 = 1.5 with (a) �̂� = 0.5, (b) �̂� = 0.75, and (c) �̂� = 1.

follow van Vuren et al. (1990) and combine the different classes’
experienced costs in a single Beckmann-like functional. Details of this
formulation are found in Appendix C.

Since the ARVs are attempting to minimise the total system cost,
their perceived link costs are higher, incorporating the imposed costs
on others due to their presence on the link. Thus, their cost functions
are the marginal cost functions derived from Eq. (1).

The resulting objective function for the mixed equilibrium assign-
ment is

𝑇 (𝐟SRV, 𝐟ARV) =
∑

𝑖∈
∫

𝑓ARV𝑖 +𝑓SRV𝑖

0
𝑏𝑖𝑠 𝑑𝑠 +

∑

𝑖∈
𝑎𝑖𝑓

SRV
𝑖 +

∑

𝑖∈

𝑎𝑖
2
𝑓ARV𝑖 , (4)

where the first term captures the flow-dependent term of the costs,
while the second and third terms capture the (transformed) free flow
costs for the SRVs and ARVs, respectively.

We solve the problem in the link-node formulation (Patriksson,
2015), where the flow conservation constraints are imposed at each
node for each vehicle’s class (ARVs and SRVs). That is

𝐴 𝐟SRV𝑘 = 𝐝SRV𝑘 , ∀𝑘 ∈ SRV

𝐴 𝐟ARV𝑘 = 𝐝ARV𝑘 , ∀𝑘 ∈ ARV,
(5)

where 𝐴 is the link-node incidence matrix of the road network and the
vector 𝐝class𝑘 is a vector that indicates the sink and source demands for
each OD pair, defined as

(𝐝class𝑘 )𝑖 =

⎧

⎪

⎨

⎪

⎩

−𝑑𝑘, if 𝑖 is origin of 𝑘
𝑑𝑘, if 𝑖 is destination of 𝑘
0, otherwise.

(6)

In the case of dealing with multiple ODs, we have that the link flows
are the aggregate link flows for each class,

𝑓 SRV𝑖 =
∑

𝑘∈SRV
𝑓 SRV𝑘𝑖

𝑓ARV𝑖 =
∑

𝑘∈ARV
𝑓ARV𝑘𝑖 , ∀𝑖 ∈ .

(7)

The remaining constraints needing to be enforced pertain to restrict-
ing SRVs from using the ARV-exclusive links. We, therefore, impose
zero SRV flow on the ARV-exclusive links, 𝐴𝑅𝑉 ⊂ ,

𝑓 SRV𝑘𝑖 = 0, 𝑘 ∈ 𝑆𝑅𝑉 , ∀𝑖 ∈ ARV. (8)

In summary, the assignment is found by solving the link-node
formulation of the ME-STAP, where the costs of both classes are encom-
passed by the objective function 𝑇 (𝐟SRV, 𝐟SRV) (Eq. (4)), with constraints

(5), (7), and (8):

min
𝐟SRV , 𝐟ARV

𝑇 (𝐟SRV, 𝐟ARV)

s.t. 𝐟SRV ≥ 𝟎
𝐟ARV ≥ 𝟎
𝐴 𝐟SRV𝑘 = 𝐝SRV𝑘 , ∀𝑘 ∈ SRV

𝐴 𝐟ARV𝑘 = 𝐝ARV𝑘 , ∀𝑘 ∈ ARV

𝑓 SRV𝑖 =
∑

𝑘∈SRV
𝑓 SRV𝑘𝑖 , ∀𝑖 ∈ 

𝑓ARV𝑖 =
∑

𝑘∈ARV
𝑓ARV𝑘𝑖 , ∀𝑖 ∈ ,

𝑓 SRV𝑘𝑖 = 0, 𝑘 ∈ 𝑆𝑅𝑉 , ∀𝑖 ∈ ARV.

(9)

There are two significant differences with the classic formulation of
traffic assignment problems. The first is that the different vehicle classes
have access to different subsets of the network. The second is that the
different classes also experience different costs. A proof that problem
(9) satisfies equilibrium conditions is given in Appendix D.

Since routes that contain ARV-exclusive links remain unused by
SRVs, they can have lower costs than other used routes, which is incon-
sistent with the conditions for traditional UE (Beckmann et al., 1956)
where used routes have lower or equal cost than unused ones. However,
ARV-exclusive links do not actually form part of available routes for the
SRVs. This is standard for capacitated traffic assignment (Patriksson,
2015) and does not prevent the equilibrium from existing or being
unique in terms of route flows. Furthermore Acemoglu et al. (2018)
explicitly consider multiple classes whose difference is the available
subnetwork they can use, and they discuss the equilibrium in detail.
Furthermore, restricting a class from links is equivalent to both the
side constrained traffic assignment problem, and the traffic assignment
problem with generalised costs (an extensive discussion of this can be
found in Patriksson (2015)).

2.3. Selection of ARV-exclusive links

Selection of ARV-exclusive links is a discrete NDP. It can be seen as
a bi-level programme, where the upper-level problem deals with the
selection of ARV-exclusive links – subject to the traffic flow on the
network – and the lower level problem consists of solving the ME-STAP
(9) to find the equilibrium traffic flow (Farahani et al., 2013).

From previous studies (van Vuren et al., 1990; van Vuren and
Watling, 1991; Yang et al., 2007), we know that optimising the to-
tal travel time does not guarantee a positive outcome for the ARVs.
Additionally, in a mixed equilibrium scenario, as the penetration rate
increases ARVs initially start filling routes that are close in cost to UE
cost routes (Espinosa Mireles de Villafranca, 2020). For low demands,
UE and SO costs and flows coincide, however, as UE and SO costs
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diverge the spread of costs along the routes used by ARVs increases.
Even when some ARVs achieve equal per-vehicle costs to SRVs, the
distribution of costs that the ARV fleet experiences can include very
large route costs (Jahn et al., 2005, see for example).

A large cost spread is both indicative of a large deviation from UE
(low per-vehicle costs) as well as travel time unreliability (Pu, 2011;
Taylor, 2013). Thus, reducing the dispersion of the distribution of path
costs reduces the unreliability of ARVs as a transport mode by ensuring
larger proportions of the vehicles have path costs closer to the mean
(and the lowest cost path).

Thus, our proposed objective is to minimise the coefficient of varia-
tion (CV), a measure of statistical dispersion, of the route costs for the
ARVs, CV𝜿 , over the choice set of ARV-exclusive links ARV.

Concisely, the problem can be expressed as

min
ARV

CV𝜿 (𝐡ARV ; 𝐟SRV, 𝐟ARV)

s.t. 𝐟SRV, 𝐟ARV solutions to (9)
𝐡ARV = 𝛬−1𝐟ARV,

(10)

where 𝐡ARV is the vector of route flows of ARVs; as above, 𝐟ARV and 𝐟SRV
are the ARV and SRV link flows; 𝛬 is the route-link incidence matrix,
which encodes the links used by each path through the network. The
coefficient CV𝜿 depends indirectly on the link flows of both ARVs and
HVs, which are the flow vectors obtained from solving problem (9),
since it involves the link travel costs. Thus we have subscripted the CV
with 𝜿 to indicate explicitly that it measures the dispersion of route
costs.

In principle, 𝐡ARV is obtained from the link flows via the inverse of
the route-link incidence matrix 𝛬−1; however, this is a slight abuse of
notation; in general, 𝛬 is not invertible and route flows obtained from
the link-node based formulation of the STAP, which we use, are not
unique (Patriksson, 2015). Nevertheless, the route flows, 𝐡ARV, can be
approximately determined replacing 𝛬−1 with the pseudoinverse of 𝛬
(details in Section 3.1.1).

Our approach to the solving problem (10) is employing a GA (full
details are included in Section 3.1) mainly because we consider large
amounts of candidate ARV-exclusive links. Since we are using the
link-node-based formulation of the STAP, we also approximate (or de-
termine) the ARV route flows from the link flows using a pseudoinverse
of matrix 𝛬.

3. Implementation and experimental set-up

This Section focuses on the computational aspects of this study.
We motivate the use of a GA for solving problem (10) and give an
overview of the details of its implementation (Section 3.1) with special
attention to the fitness calculations in Section 3.1.1. We also describe
the experimental set-up for the network ensembles used (Section 3.2).

3.1. GA implementation

As mentioned above, the NDP has a high degree of complexity
which causes difficulties such as large computational times, especially
when considering large numbers of decision variables. Possel et al.
(2018) have shown that GAs can be more efficient than other meta-
heuristic methods such as simulated annealing methods and Deb et al.
(2002) show that GAs can be very effective at exploring the solution
space.

Since we look to keep a large number of decision variables, as
opposed to pre-defining a small selection of possible links, in addition
to keeping the procedure flexible enough to allow significant changes
to the objective functions (of either Eq. (4) or (10)), a GA fits our
experimental requirements.

In what follows in this section (Section 3.1), we give an overview
of the specific GA we use. Further, more in-depth, details on parameter
choices and values are given in Appendix E.

The main building blocks of a GA are (i) the mapping of the decision
variables to the chromosomes of the individuals in the solution popula-
tion, (ii) the selection procedure for mating pairs, (iii) the reproduction
mechanism, and (iv) the propagation mechanism of the population
of solutions from generation to generation. Underpinning the GA is
the choice of the fitness function, which is in line with the objective
function of the optimisation problem.

The decision variables for a given network are the candidate links
for exclusive use by the ARVs. We seek to keep as many candidate
links as possible as well as to maintain generality in the way they are
chosen in order to allow future modifications and adaptations of the
algorithm. We allow all links to be candidates except those belonging
to a minimum spanning tree (MST) of the network (where the weights
of the links used, 𝑎𝑖, are equivalent to their free-flow travel time). This
ensures that all nodes remain reachable by SRVs. Since 𝛼𝛽-networks
are based on rectangular grids, an MST contains about half of the links,
which leaves the remainder (for our networks, more than 100 links, see
Section 3) as decision variables for the chromosomes.

We use tournament selection to choose reproducing individuals.
Where we choose two individuals uniformly at random and select
the fittest of them for reproduction. A mating pair is obtained by
repeating the procedure twice. Thus each individual in a reproducing
pair has been deemed fitter than an alternative choice. Tournament
selection is not as sensitive to the actual fitness value of the individ-
uals as other methods, such as fitness-proportional selection, but still
ensures that fitter individuals reproduce more than their lower-fitness
counterparts (Sastry et al., 2014).

In terms of genetic operations, we use a one-point crossover which
consists of randomly choosing a point on the mating chromosomes,
splitting both chromosomes in two at the crossover point and swap-
ping the respective ends. The two possible offspring chromosomes
then receive two blocks of the genome of each of the parents; we
keep both resulting new chromosomes in the offspring population,
after allowing each gene to mutate with a non-zero probability. The
one-point crossover is considered an adequate general-purpose genetic
operation (Sastry et al., 2014).

We use an elite-preserving mechanism to improve the performance
of the GA (Rudolph, 1998). The lowest-fitness offspring individuals are
replaced with the fittest individuals of the parent population as long as
they are fitter than the best-performing offspring solutions. This serves
as a ratchet mechanism keeping the maximum fitness of progressive
populations monotonically increasing. To counteract decreases in di-
versity of the population and to increase the search space of the GA a
proportion of the lowest-fitness individuals is replaced with individuals
with random chromosomes. This ensures that in every generation,
there are new individuals with previously nonexistent combinations of
ARV-exclusive links.

3.1.1. Fitness (objective function)
As discussed above (Section 2.3), in order to reduce the average

per-vehicle costs for the ARVs, we minimise the CV of their route
costs, CV𝜿 . In the GA, the objective function of problem (10) has to
correspond to the fitness of the individuals. Correspondingly, we use
the inverse of the CV as the fitness to be maximised,

𝜔 =
𝜇
𝜎
, (11)

where 𝜔 is the fitness of an individual, 𝜇 is the mean, and 𝜎 is the
variance of the ARV path costs under the ME assignment.

We are solving the ME problem in the link-node formulation (Pa-
triksson, 2015), as this avoids having to explicitly specify usable paths.
This means that to calculate 𝜔 for an individual solution we have
to recover the path flows. In general, due to the large number of
possible paths in comparison to network links, route flows are under-
determined and there are multiple path flows that satisfy the ME link
flows. Therefore, to obtain an estimate of the mean path cost we must
first reconstruct a used path set.
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For a given network  = ( , ) with set of ARV-exclusive paths
ARV and ARV flows 𝐟ARV, we find the induced subgraph ̃ = ( , ̃),
where ̃ is the subset of links that carry non-zero ARV flow, ̃ = {𝑎 ∈
 ∣ 𝑓ARV𝑎 > 0}. In practice, we use a tolerance value of 10−8.

ARVs are attempting to solve SO, which means that all the used
paths have equal marginal costs and those of unused paths are equal
or greater (Patriksson, 2015; Roughgarden, 2006). Thus, to reconstruct
the used path set for network ̃ , we use Yen’s algorithm to find the
𝑘-shortest simple paths (Yen, 1971), where the link weights are the
marginal costs of the links, 𝑐′𝑖 (𝑓𝑖). In preliminary experiments, it was
determined that 𝑘 = 20 yielded good path sets.

Once the shortest paths are found, the path flows need to be
determined. The link flows, 𝐟 , can be defined by the following equa-
tion in terms of path flows, 𝐡, via the link-route incidence matrix
𝛬 (Patriksson, 2015),

𝐟 = 𝛬𝐡, (12)

where the elements of 𝛬 are

𝛬𝑖𝑗 =
{

1, if link 𝑖 is in path 𝑗,
0, otherwise. (13)

Since the system is under-determined, we obtain an approximate so-
lution for the path flows for the ARVs �̂�ARV by solving (12) using the
Moore–Penrose pseudoinverse (Ben-Israel and Greville, 2013; Penrose,
1955) of 𝛬,

�̂�ARV = 𝛬†𝐟ARV. (14)

The solution obtained with the pseudoinverse is a least-square
solution (Penrose, 1956), since it does not necessarily satisfy the non-
negativity condition of flows, thus we project it onto the positive
orthant by rounding negative values to zero. Furthermore, we require
that the path flows add up to the ARV demand, which we enforce by
taking the new path estimate �̃�ARV,

ℎ̃ARV𝑗 =
𝑑𝛾

∑

𝑟
[

ℎ̂ARV𝑟
]

+

[

ℎ̂ARV𝑗

]

+
, (15)

where the operation [ ⋅ ]+ = max(0, ⋅ ) rounds negative values to zero,
𝑑 is the total demand, and 𝛾 is the proportion of ARVs. Paths with
zero flow are removed from the path set and the matrix 𝛬 is updated
accordingly.

Finally, the ARV path costs are calculated by adding their respective
link costs, where, for simplicity, the SRV flows from the original
assignment, 𝑓 SRV𝑖 , are kept. Thus, 𝜅𝑝, the cost of path 𝑝 is

𝜅𝑝(𝐟SRV, 𝐟ARV) = 𝜅𝑝(𝐟SRV, 𝛬�̃�ARV) =
∑

𝑖∈𝑝
𝑐𝑖(𝑓 SRV𝑖 + 𝑓ARV𝑖 ), (16)

where index 𝑖 runs over the links that belong to the path (the non-zero
elements in column 𝑝 of 𝛬). The ARV link flows can be once again
obtained using 𝛬.

In preliminary tests, the discrepancy between total travel time for
flows from the original ME assignment and the one with �̃�ARV was less
than 1% for a variety of networks and demand conditions. The links
with the highest flow discrepancy (both relative and absolute) were
links connected to the origin and the destination.

Finally, estimates for the mean and variance of the path costs can
be calculated,

�̂� = 1
𝑑𝛾

∑

𝑝∈
ℎ̃𝑝𝜅𝑝(𝐟SRV, 𝐟ARV), (17)

�̂�2 = 1
𝑑𝛾

∑

𝑝∈
ℎ̃𝑝

[

𝜅𝑝(𝐟SRV, 𝐟ARV) − �̂�
]2 , (18)

from which the fitness 𝜔 = �̂�∕�̂�, follows.

Table 2
Parameters used in numerical experiments. All networks have 100 nodes. �̂� and 𝛽 are
the morphological parameters of the network ensembles. Both 𝑑 and 𝛾 cover low, mid
and high values. || is the number of networks per ensemble.
Nodes �̂� 𝛽 𝑑 𝛾 ||

100 0.5, 0.75, 1 1.5 0.0001, 0.0151, 0.03 0.25, 0.5, 0.75 20

3.2. Experimental set-up

We now specify the details of the numerical experiments performed,
whose results are presented in the following Section. The parameters
chosen are summarised in Table 2 and described below.

In particular, we solve the link segregated ME-STAP, specified in
(9), for three network ensembles with different values of �̂�: 0.5, 0.75,
and 1. The network structure in the different ensembles ranges from
fairly gridded (�̂� = 0.5) to much more random, where the networks
with �̂� = 1.0 have a wider distribution of ‘‘block’’ sizes (see exemplar
networks in Fig. 2). For all the ensembles, we use 𝛽 = 1.5, since this
value matches real-world networks to some extent (Osaragi and Hiraga,
2014).

Each ensemble,  , consists of 20 networks with 100 nodes each,
while the number of links is variable, and depends on the positions of
the nodes, whose randomness is parametrised by �̂�, and more directly
on 𝛽 which is being kept constant at 𝛽 = 1.5.

In our experiments, we use a single OD pair for each network. In
order to have the equilibrium flow pattern utilise as much of each
network as possible, we choose the nodes that are closest to opposing
corners of the unit square in which the networks are defined. The origin
is the node closest to the bottom left corner, while the destination node
is the closest node to the top right corner.

We evaluate nine different demand scenarios which cover all com-
binations of low, medium and high levels of total demand 𝑑, as well as
ARV penetration rate 𝛾. The appropriate values of 𝑑 for the networks
are determined by the procedure outlined in Section 3.2.1, are 𝑑 =
0.0001, 0.0151 0.03. The penetration rate values are 𝛾 = 0.25, 0.5, 0.75.

For each (𝑑, 𝛾)-pair and each ensemble (i.e., 27 experimental ensem-
bles), we run the GA detailed in Section 2.3 for each of the 20 networks,
for 900 generations with a population size of 150 individuals. The GA
parameters are summarised in Table E.4. This means that 540 instances
of the GA are run, which amounts to 72,900,000 individual solutions
being evaluated.

3.2.1. Ensemble demand range
Disregarding the flow constraints on the ARV-exclusive links, the

ME assignment (in terms of both costs and flows) lies between UE and
SO (Espinosa Mireles de Villafranca, 2020; van Vuren et al., 1990).
Thus, the largest benefits from ME are expected when the discrepancy
between the costs of UE and SO is the largest. This can be measured
by the price of anarchy (PoA) (Roughgarden, 2006), which is defined
as the ratio of the costs between the UE and SO assignments,

PoA =
∑

𝑖∈ 𝑓UE𝑖 𝑐𝑖(𝑓UE𝑖 )
∑

𝑖∈ 𝑓 SO𝑖 𝑐𝑖(𝑓 SO𝑖 )
, (19)

where 𝑓UE𝑖 and 𝑓 SO𝑖 are the link flows at UE and SO respectively.
For general cost functions and hard capacities on links, the PoA can

be arbitrarily large; however, for well-behaved cost functions, there is
a theoretical upper bound (Roughgarden, 2006) that depends on the
type of cost functions, which, for affine functions, is known to be 4∕3.

In practice, for polynomial cost functions and feasible flows, the UE
does not differ too much from SO and the PoA remains much lower
than the upper bound (Youn et al., 2008, see for example), which is
what we observe in our networks as well. Furthermore, for low (𝐟 → 𝟎)
and high flows (𝐟 ≫ 𝟎) the PoA tends to unity (Colini-Baldeschi et al.,
2020). That is, for low flows or highly congested networks, the UE cost
approaches or even attains SO values, with a region in between where
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Fig. 3. Demand calibration with PoA profiles for different networks in the same
ensemble (𝑁 = 100, �̂� = 0.75, 𝛽 = 1.5).

the PoA achieves a maximum at ‘medium’ flow levels. What ‘medium’
is, depends on the demand, the network, and the cost functions.

In our case, since we are studying network ensembles and are inter-
ested in the performance of the networks across a range of demands,
the appropriate demand range for use in our numerical experiments
must be determined. The 𝛼𝛽-network model and choice of parameters
for the cost functions are designed to be able to compare assignment
results between networks. However, costs and traffic patterns are still
very sensitive to the network structure, and the maximum peaks of the
PoA – while in the same general demand region – do not exactly line
up.

Therefore, we calibrate the demand range for our ensembles graph-
ically; Fig. 3 shows the PoA as a function of demand for 10 networks
in an ensemble. Both the general overlap due to the choice of 𝑎𝑖 and 𝑏𝑖,
as well as the variation due to network-specific structure, can be seen.
We aim to determine a demand region that captures the PoA peaks of
the networks.

The qualitative behaviour of the PoA is the same for all convex
polynomial cost functions, while the main difference is that the upper
bound increases with the degree 𝑝 of the polynomial (Correa et al.,
2008; Roughgarden, 2006), as well as the empirical PoA values exper-
imentally observed. Thus, affine functions serve the purpose since the
possible gains in efficiency only increase with the polynomial order.

Since the PoA captures the relative difference between SO and UE in
terms of the system costs, it can serve as a measure to see whether there
are possible gains achievable by shifting the traffic equilibrium closer to
SO. By selecting the experimental demands for this study as described
above, we ensure that the demand region where the difference is bigger
between UE and SO is explored by the ME.

3.2.2. Evolution of GA solutions
As with other heuristic methods, GAs require some experimentation

and parameter tuning to be effective at arriving at good solutions.
In particular, it is essential to have a balance between increasing the
fitness of individuals as the generations progress, with maintaining a
diverse set of individuals to effectively explore the search space.

Due to the large number of decision variables we consider, exhaus-
tively exploring combinations of parameters is impracticable, and the
parameters were selected by progressive improvement and iteration. In
this Section, we give some detail on the performance and behaviour of
our GA.

In Fig. 4 we show an example network with its MST and a solution
obtained by the GA within 300 generations. We can compare the fitness
of this solution 𝜔 = 4,746 with the ensemble average of the fitness
of ⟨𝜔⟩ of 1,361.9 after 300 generations. This suggests that to further

increase the fitness, an increase in the number of generations is proba-
bly needed; however, as is shown in Fig. 5 the fitness rarely increases
significantly past 600 generations with the exception of a few outliers
whose fitness keeps increasing. Thus we select 900 generations as
the stopping point, to balance optimisation results with computational
time.

4. Results

For each network in an ensemble, we take the best GA solution after
the 900th generation as the intervention. We calculate the ME-STAP, as
well as the UE and SO assignments. For each assignment, we calculate
the total costs (in terms of their travel times), as well as per-vehicle
costs.

As there can be significant variation in the networks for an en-
semble, to have a more rigorous check whether the sample size is
appropriate, for the most important metric, the ratio of per-vehicle
costs between the classes, we calculate the bootstrap estimate (Davison
and Hinkley, 1997) of the standard error as well as the 95% confidence
intervals (see Appendix F), to check if there is any reason to suspect that
the sample mean is different than the theoretical population mean, or
that the sample size of || = 20 networks per ensemble is too small.

The effectiveness of the interventions can be evaluated by the
relationship between the per-vehicle cost of the ARVs to the per-vehicle
costs of the SRVs, as well as the comparison between the ME costs
before and after adding the ARV-exclusive lanes. For each ensemble,
we calculate the mean ratio between the per-vehicle costs of the ARVs
(𝐶ARV

pv ) and SRVs(𝐶SRV
pv )

⟨

𝐶ARV
pv

𝐶SRV
pv

⟩

=
(

1
𝛾
− 1

)

⟨

∑

𝑖∈ 𝑐𝑖(𝑓𝑖)𝑓ARV
𝑖

∑

𝑖∈ 𝑐𝑖(𝑓𝑖)𝑓SRV
𝑖

⟩

∈

, (20)

where the first term is the simplified quotient of the respective ARV
and SRV demands. We also calculate the mean ratio of ME costs with
and without the ARV-exclusive road intervention,

⟨

𝐶sol
ME∕𝐶

null
ME

⟩

, where
𝐶sol
ME is the total ME cost for the best-performing GA solution, and

𝐶null
ME the total ME cost for the null intervention. In order to compare
our intervention to the null intervention (no ARVs and no changes to
the networks) the ratio of mean costs between these scenarios is also
calculated,

⟨

𝐶sol
ME∕𝐶

null
UE

⟩

.
We also calculate the average cost ratio of the intervention with that

of the null intervention, with the same proportion 𝛾 of ARVs but where
no exclusive links are provided for altruists, ⟨sol 𝐶ME∕null 𝐶ME⟩. For
completeness, we also report the average cost ratio of the intervention
to the cost of the UE assignment, also for the case where no flow con-
straints are imposed on any links in the networks, ⟨sol 𝐶ME∕null 𝐶UE⟩.

To compare the total costs of the interventions with respect to UE
and SO costs in a way that facilitates comparison across the ensembles,
we calculate the normalised costs with respect to the UE-SO cost gap.
From the normalised costs for each network, we obtain the average
ensemble normalised cost by calculating the arithmetic mean of 𝐶norm
of the best-performing solutions in each ensemble. For a single network,
the normalised cost is

𝐶norm =
𝐶ME − 𝐶SO
𝐶UE − 𝐶SO

, (21)

where 𝐶UE is the cost of UE, 𝐶SO is the cost at SO, and 𝐶ME = 𝐶(𝐟ME)
is the cost of the flows resulting from the ME assignment with the
ARV-exclusive links from the best GA solution. It should be emphasised
that 𝐶norm is a relative measure of the ME cost in terms of the size of
the UE-SO cost gap, which in practice, both in this paper and more
widely in the literature (Youn et al., 2008, see for example), is generally
small. Thus, even large values do not necessarily imply particularly
large absolute costs compared to the SO cost. Note that for very low
demands, where the PoA is unity and no cost gap exists 𝐶norm is not
well defined.
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Fig. 4. A 100-node 𝛼𝛽-network (�̂� = 0.5, 𝛽 = 1.5) with (a) its MST and (b) its corresponding GA solution after 300 generations (with a fitness 𝜔 = 4,746) 𝑑 = 0.0151 and 𝛾 = 0.5.
The origin and destination nodes are marked O and D, respectively.

Table 3
Results from ensemble runs, averages are of the best performing GA solution for each network in the ensemble. ⟨𝜔⟩ is the average ensemble fitness,

⟨

𝐶ARV
pv ∕𝐶SRV

pv

⟩

is the average of
the ratio of ARV per-vehicles cost to SRV per-vehicle cost, ⟨sol 𝐶ME∕null 𝐶ME⟩ is the ratio of total ME cost for the solution to the ME cost under no intervention, ⟨sol 𝐶ME∕null 𝐶UE⟩

is the ratio of total ME cost for the best solution to the UE cost with no intervention. The values of 𝐶norm marked with a ‘-’ are undefined due to the denominator of (21) being
zero.

�̂� 𝑑 PoA 𝛾 ⟨𝜔⟩ ⟨𝐴𝑉 𝑙𝑖𝑛𝑘𝑠⟩

⟨

𝐶AV
pv

𝐶SV
pv

⟩

⟨ sol𝐶ME

null𝐶ME

⟩ ⟨ sol 𝐶ME

null 𝐶UE

⟩

⟨𝐶norm⟩

0.5 0.0001 1.0000 0.25 85.720 43.9 0.932 1.072 1.077 –
0.5 104.67 42.7 0.933 1.039 1.045 –
0.75 96.749 51.5 0.913 1.022 1.028 –

0.0151 1.0037 0.25 6399.3 40.6 0.751 1.183 1.180 63.19
0.5 1361.9 45.5 0.801 1.089 1.086 25.88
0.75 646.37 43.65 0.943 1.015 1.012 5.01

0.03 1.0016 0.25 4330.5 41.45 0.640 1.255 1.253 187.7
0.5 1525.0 45.5 0.768 1.113 1.111 84.5
0.75 729.58 48.7 0.942 1.013 1.012 10.29

0.75 0.0001 1.0000 0.25 84.871 31.75 0.956 1.058 1.063 –
0.5 97.013 30.6 0.942 1.043 1.049 –
0.75 95.854 38.2 0.935 1.017 1.023 –

0.0151 1.0052 0.25 1297.4 26.15 0.814 1.110 1.106 20.75
0.5 868.89 31.85 0.867 1.065 1.061 13.08
0.75 341.63 32.95 0.965 1.012 1.009 2.68

0.03 1.0027 0.25 1489.3 29.35 0.739 1.155 1.153 60.73
0.5 771.08 34.65 0.813 1.090 1.088 33.56
0.75 440.55 36.1 0.950 1.013 1.011 5.61

1 0.0001 1.0000 0.25 72.022 24.35 0.960 1.104 1.109 –
0.5 77.818 28.95 0.914 1.051 1.057 –
0.75 80.576 27.1 0.909 1.023 1.029 –

0.0151 1.0052 0.25 651.68 18.75 0.827 1.100 1.095 22.22
0.5 436.24 25.15 0.904 1.040 1.036 8.58
0.75 259.83 24.9 0.968 1.011 1.008 2.75

0.03 1.0027 0.25 776.02 22.5 0.743 1.186 1.183 66.86
0.5 496.43 25.8 0.867 1.053 1.050 19.42
0.75 284.27 27 0.975 1.006 1.005 2.74

The above values along with PoA, the mean fitness ⟨𝜔⟩ of the best
GA solution, and the mean number of ARV-exclusive links are shown
in Table 3.

Fig. 6 shows flows on an exemplar network from the best-performing
ensemble in terms of ARV per-vehicle costs (�̂� = 0.5, 𝑑 = 0.03, and
𝛾 = 0.25). This particular network has 𝐶ARV

pv ∕𝐶SRV
pv = 0.615 which is

below the ensemble mean, in this case, there is a system cost increase
of 20.4% compared to the ME scenario with no intervention.

The emerging traffic patterns show the formation of main corridor
routes (see Fig. 6(c)) used by the ARVs which take roundabout routes
and cut across the network taking advantage of key ARV-exclusive links
near the centre of the network. These main routes carry most of the
flow. It is notable that even though the distribution of ARV-exclusive
links is fragmented due to the protected MST structure, the result is

the formation of a few key routes which take the majority of the ARV
flow. On the other hand, the SRVs show a much more homogeneous
distribution across the road network.

The first point to note is that for all ensembles and demand lev-
els, the intervention results in lower per-vehicle costs for ARVs than
for SRVs. These values can be seen in the 7th column of Table 3
(
⟨

𝐶ARV
pv ∕𝐶SRV

pv

⟩

). Interestingly, this also occurs for low total demands
(𝑑 = 0.0001) where PoA = 1, that is, where the cost gap between UE
(completely selfish routing) and SO (completely altruistic routing) is
negligible. This means that even for uncongested networks, exclusive
lanes for altruists can result in lower per-vehicle costs for SRVs.

It also has to be noted that, in all cases, the total cost after the
interventions is higher than for the null intervention. However, in most
cases, the increase in total cost is less than 10%. The highest cost
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Fig. 5. Fitness evolution. The fitness of the best solution is shown for one graph in
each ensemble as a function of the generation number.

increases for each ensemble happen at low penetration rates (𝛾 = 0.25)
with high total demands, that is, when the network is congested and
the majority of the vehicles follow selfish routing. However, in these
cases, the burden of the increase in cost is mostly carried by the SRVs.
These cases, with the highest total cost increase, are also the ones in
which the ARVs have the lowest per-vehicle cost relative to the SRVs.
For example, for �̂� = 0.5, when the demand is 𝑑 = 0.03 with a 𝛾 = 0.25,
we see the highest increase in total cost post-intervention at 25.5%.
Yet the SRV-to-HV per-vehicle cost ratio is the lowest at 0.640. Fig. 7
compares the per-vehicle cost ratio against the total cost ratio between
the solutions and the null intervention for all experimental ensembles.

As can be seen in Fig. 7, the relationship between the cost ratios is
dominated by the penetration rate 𝛾. In terms of the per-vehicle cost
ratio, unsurprisingly, the best-performing networks are those with low
penetration rates of ARVs. For high penetration rates, we observe that
the total costs of the GA solutions are the most similar to the null
intervention costs. This is also expected, as ARVs are able to use the
whole network, therefore we can expect the actual traffic patterns to
be similar to the unrestricted ME when large proportions of the fleet
are ARVs.

Focusing only on the medium and low penetration rates (𝛾 =
0.25, 0.5), we note that for low demands, the per-vehicle cost ratio is
always above 90%. For medium and high demand values the ARVs
are a considerably more attractive mode choice with most exhibiting
improvements of 15% or greater when compared to SRVs.

Interestingly enough, the morphology of the networks does not seem
to be important in the performance of the ME under this infrastructure
management scheme. The penetration rate and the demand matter
much more in the potential attractiveness of altruistic routing choices.
It should be noted, that when thinking of applying a scheme like this
on actual road networks, the combination of realistic demand patterns
together with the network morphology is expected to play a significant
role in the potential benefits. However, as a first instance, we can
broadly say that networks with high demand and medium to low
penetration rates can expect to see the biggest impact.

In terms of the GA, the solutions are chosen based on their fit-
ness which is calculated based on an estimate of route flows. In our
framework, both the route set and the corresponding flows are approx-
imations: the route set because of how paths are recovered from the link
flows; and the flows themselves, due to how they are calculated with
the pseudoinverse of the link-route incidence matrix. While our results
can be improved upon, for example by using a better approximation
for the path flows, the simple heuristic of selecting solutions with low
dispersion of even approximate route costs (for ARVs) gives consistently
lower per-vehicle costs for altruists than for selfishly routing drivers.

This happens across a range of network morphologies, for different
demand levels, and for different penetration rates of ARVs.

Due to our approach of averaging over ensembles of networks,
we see that minimising path-cost dispersion with the choice of ARV-
exclusive lanes is an effective heuristic for making the altruistic route
choice a better alternative than selfish routing.

In summary, the trade-off is between higher total system costs
and unattractive travel times for altruists. By considering the altruistic
vehicles to be CAVs one distances passengers further from the operation
of the vehicle, and opting to use an automated ARV can be considered a
choice transportation mode. Therefore, ensuring a significant penetra-
tion rate of altruists could arise naturally out of a selfish mode choice
since ARV per-vehicle costs can be made lower than that of SRVs.
Our results indicate that if higher system costs are tolerated initially,
selfish mode choice leading to an increased penetration rate of altruists
could naturally regulate this extra system cost. In this way, CAVs can
provide the mechanism to make altruistic routing a viable strategy
for implementing these types of management strategies: instead of
incentivising users to make altruistic route choices, it can be presented
as a convenient modal choice.

5. Conclusions

In this paper, we have studied the impact that allocating exclusive
links for use by vehicles that choose routes altruistically has on both
the total cost (as measured by travel time) of the system as well as on
the average per-vehicle travel costs of the selfish and altruistic vehicle
classes.

The equilibrium traffic flows were calculated by solving the static
traffic assignment problem in a multiclass setting with two co-existing
vehicle classes following altruistic and selfish routing principles, respec-
tively. We solved the network design problem of selecting the links for
the ARVs with a GA that seeks to minimise the statistical dispersion of
the path costs of the ARVs. The effects of these interventions are studied
on ensembles of synthetic networks to evaluate the performance of
these measures across many networks that have diverse morphologies,
and to explore the generalisability of our strategy to different networks
and different levels of demand.

Our main contribution is that the presented framework is effective
at reducing the per-vehicle average travel cost of the ARVs to below
that of the selfishly-routing vehicles. Although the total system costs in-
crease when compared to not carrying out any intervention, for all our
network ensembles the interventions make the altruistic route choice
(on average) more attractive than the selfish routes. These results are
consistent across networks with significantly different morphologies
and for all the demand levels and penetration rates of ARVs that we
studied. Furthermore, a main finding is that minimising the dispersion
of the path costs of the ARVs as a network design objective is effective
in making it a more attractive routing mode than following selfish
routing. Additionally, we show that even when considering sub-optimal
ARV-exclusive link choices, that are obtained via estimates of the path
flows, this is enough to obtain consistent ARV cost improvements across
diverse network structures.

In our experiments we find that the overall network costs increase
above the original UE costs as improvements are made to the ARVs’
costs, this remains an issue to be addressed in further work. However,
our traffic equilibrium model is conservative by design as we use a
static assignment model due to the speculative nature of this study. We
expect that taking into account the dynamical aspects of both demand
variation and the possibilities that connectivity and digitalisation of
infrastructure will offer in the future, means that greater benefits can
be reaped by extending the core ideas of our framework into more
sophisticated network management schemes.

In terms of implementation, for ARVs to benefit consistently, an
additional mechanism that ensures that ARVs sample the different cost
routes evenly over consecutive trips would be necessary. As stated in
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Fig. 6. Equilibrium flows for (a) SRVs, (b) aggregated SRVs and ARVs, and (c) ARVs on a network from the ensemble with parameters �̂� = 0.5, 𝑑 = 0.03, and 𝛾 = 0.25. Note the
different scales for (c).

Fig. 7. Relationship between the per-vehicle cost ratio of ARVs to SRVs against the proportional increase in total travel cost after exclusive road intervention. The colours group
points with the same 𝛾, while the marker shapes indicate demand levels: circle for 𝑑 = 0.0001, hexagon for 𝑑 = 0.151, and triangle for 𝑑 = 0.03. Error bars show the standard error
calculated with bootstrap re-sampling (see Appendix F).

Section 1, CAVs and a system for digital infrastructure management –
as emerging technologies – can provide a way for schemes like the one
presented in this paper to be applied efficiently. In addition, in possible
future implementations, tailoring the GA to a particular network by
taking into account realistic demand structure as well as variation
across time of day is likely to achieve much better outcomes than the
ensemble average presented here.

Future work stemming from this study can lie in at least two
directions. In terms of implementability and approaching real-world
systems using existing city road networks is an option as well as
replacing the static traffic assignment component in the methodology
for dynamic assignment. In another vein, as sustainability and envi-
ronmental concerns keep growing in importance and urgency, genetic
algorithms can deal with multiple objectives. In addition to travel time,
the sort of objectives that can be considered include CO2 emissions,
fuel consumption, safety, and accessibility metrics. This opens up an
avenue for enriching the altruistic routing model with goals that align
with current transport policy issues.
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Appendix A. Notation

Symbol Description
 Network ( = ( , ))
 Set of nodes in a network
 Set of links in a network
 Set of simple paths in a network
ARV Set of ARV-exclusive links in a network
SRV Set of OD pairs for SRVs
SRV Set of OD pairs for ARVs
𝐴 Link-node incidence matrix
𝛬 Link-route incidence matrix
𝛬† Moore–Penrose pseudoinverse of 𝛬

�̂� Griddedness parameter in 𝛼𝛽-network
𝛽 Link construction parameter in 𝛼𝛽-network (𝛽-skeleton

parameter)
 Ensemble of networks with same morphological

parameters �̂�, 𝛽

𝐝class𝑘 Vector with source and sink demands for OD pair 𝑘,
with class ∈ {SRV, SRV} and 𝑘 ∈ class

𝑓𝑖 Flow on link 𝑖
𝐟 Network flow vector with entries 𝑓𝑖 (𝐟 =

(

𝑓𝑖
)

𝑖∈)
𝑓 SRV𝑖 SRV flow on link 𝑖 ∈ 
𝐟SRV Network SRV flow, 𝐟SRV =

(

𝑓 SRV𝑖
)

𝑖∈
𝐟SRV𝑘 SRV Network flow due to vehicles of OD pair 𝑘, for

𝑘 ∈ SRV
𝑓ARV𝑖 ARV flow on link 𝑖 ∈ 
𝐟ARV Network SRV flow, 𝐟ARV =

(

𝑓ARV𝑖
)

𝑖∈
𝐟ARV𝑘 ARV Network flow due to vehicles of OD pair 𝑘, for

𝑘 ∈ ARV
𝑓UE𝑖 Flow on link 𝑖 ∈  arising from UE assignment
𝑓 SO𝑖 Flow on link 𝑖 ∈  arising from SO assignment
𝐟ME Flow of ME solution: 𝐟SRV = 𝐟SRV + 𝐟ARV
𝐡 Network path flow with entries ℎ𝑝 (𝐡 =

(

ℎ𝑝
)

𝑝∈ ).
Subscripts and superscripts have the same meanings as
for 𝐟

𝑐𝑖 Cost (travel time) on link 𝑖 ∈ 
𝑐′𝑖 Marginal cost of link 𝑖 ∈ 
𝜅𝑝 Cost of path 𝑝 ∈ 
𝑐′𝑖 Transformed marginal cost function for ARVs for use in

objective function 𝑇 (re-scaled so that flow-dependent
term is the same as for SRVs)

𝑎𝑖 Free-flow costs parameter (proportional to link length)
𝑏𝑖 Congestibility parameter for affine travel time function
𝐶 𝐶 = 𝐶(𝐟 ): Total cost for flow 𝐟 , 𝐶(𝐟 ) =

∑

𝑖∈ 𝑐𝑖(𝑓𝑖)𝑓𝑖
𝐶UE Total cost for UE flow: 𝐶UE = 𝐶(𝐟UE)
𝐶SO Total cost for SO flow: 𝐶SO = 𝐶(𝐟SO)
𝐶ME Total cost for ME flow: 𝐶ME = 𝐶(𝐟ME)

𝑇 Beckmann-equivalent objective for ME. Has three
separable terms: one for the flow-dependent terms of
both ARVs and SRVs, and a term each for the free-flow
term for each class (see equation (4))

𝜔 Fitness of individual in GA population
𝜇 Mean ARV path cost for individual (under ME

assignment)
𝜎 Variance of ARV path cost for individual (under ME

assignment)
𝑙gen Length of genome (number of decision variables)
𝑛pop Number of individuals in GA population
𝑝mut Mutation probability for each gene
𝑒prop Proportion of elite individuals to keep (𝑒prop ∈ [0, 1] )
𝑟prop Proportion of individuals to replace with ‘diverse’

individuals

Appendix B. Abbreviations

Abbreviation Meaning
ARV Altruistically routed vehicle
SRV Selfishly routed vehicle
CAV Connected and automated vehicle
ME Mixed equilibrium
UE User equilibrium
SO System optimum
SAE Society of Automotive Engineers
NDP Network design problem
OD Origin–destination
GA Genetic algorithm
STAP Static traffic assignment problem
CV Coefficient of variation
MST Minimum spanning tree
PoA Price of anarchy

Appendix C. Mixed equilibrium objective function

Here we present, for completeness, the derivation of van Vuren et al.
(1990) for the ME cost function (Eq. (4)), where the costs of both classes
of vehicles – ARVs as well as SRVs – are incorporated into a single
objective function. Key to this is that the flow-dependent terms of the
cost functions for the different classes can be normalised to the same
units (van Vliet et al., 1986). For the ARV and SRV classes, this means
that the flow-dependent term of the cost functions for both user classes
should be equal.

C.1. Conditions for equilibrium

The ARVs are attempting to solve for SO, which makes the natural
scaling, the well-known transformation that converts the SO problem to
the UE problem by using the so-called marginal cost functions (Rough-
garden, 2006; Patriksson, 2015). That is, the SO assignment is obtained
if the STAP is solved for UE when considering the transformed cost
functions

𝑐′𝑖 (𝑓𝑖) = 𝑐𝑖(𝑓𝑖) + 𝑓𝑖
𝑑𝑐𝑖(𝑓𝑖)
𝑑𝑓𝑖

. (C.1)

The condition for the solution to be unique is that 𝑐𝑖 is strictly increas-
ing. Which means that it is second derivative must exist, in addition
the marginal cost function must also be increasing,
𝑑𝑐′𝑖 (𝑓𝑖)
𝑑𝑓𝑖

> 0, (C.2)

which requires

𝑑2𝑐𝑖
𝑑𝑓 2

𝑖

> − 2
𝑓𝑖

𝑑𝑐𝑖
𝑑𝑓𝑖

. (C.3)
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C.2. Polynomial cost functions

Polynomial cost functions of order 𝑝 of the form

𝑐𝑖(𝑓𝑖) = 𝑎𝑖 + 𝑏𝑖𝑓
𝑝
𝑖 (C.4)

yield transformed (marginal) cost functions 𝑐′𝑖 whose flow dependent
term differs from 𝑐𝑖 by a (dimensionless) multiplicative factor,

𝑐′𝑖 (𝑓𝑖) = 𝑎𝑖 + 𝑏𝑖(1 + 𝑝)𝑓 𝑝
𝑖 . (C.5)

These marginal cost functions can be further transformed into 𝑐′𝑖 so
that their flow-dependent term is the same as in the actual link cost
functions 𝑐𝑖, resulting in

𝑐′𝑖 (𝑓𝑖) =
𝑎𝑖

1 + 𝑝
+ 𝑏𝑖𝑓

𝑝
𝑖 . (C.6)

Furthermore, polynomial functions of the form of Eq. (C.4) satisfy
condition (C.3), since

𝑑2𝑐𝑖
𝑑𝑓 2

𝑖

=
𝑝 − 1
𝑓𝑖

𝑑𝑐𝑖
𝑑𝑓𝑖

> − 2
𝑝 − 1

𝑑𝑐𝑖
𝑑𝑓𝑖

, (C.7)

which holds for 𝑝 ≥ 0. Therefore SRVs (the UE class) and ARVs (the
SO class), can be modelled to experience the costs from Eqs. (C.4) and
(C.6), respectively.

C.3. Objective function

The mixed equilibrium assignment can now be obtained by min-
imising the following objective function

𝑇 (𝐟SRV, 𝐟ARV) =
∑

𝑖∈
∫

𝑓ARV𝑖 +𝑓SRV𝑖

0
𝑏𝑖𝑠

𝑝 𝑑𝑠 +
∑

𝑖∈
𝑎𝑖𝑓

SRV
𝑖 +

∑

𝑖∈

𝑎𝑖
𝑝 + 1

𝑓ARV𝑖 ,

(C.8)

By having transformed the cost functions so that the flow-dependent
term is the same for both classes it remains unchanged from the
standard Beckmann functional ∑𝑖∈ ∫ 𝑓

0 𝑐𝑖(𝑠)𝑑𝑠 (Beckmann et al., 1956)
(except the upper integral limit in Eq. (C.8) reflects the presence of both
classes). The flow-independent terms are then considered separately for
each class since they are independent of each other and capture the
(transformed) free flow costs for the SRVs and ARVs, respectively.

In our case, 𝑝 = 1, since we consider affine cost functions (Eq. (1)),
form which Eq. (C.8) yields Eq. (4).

Appendix D. Equilibrium conditions

The minimisation problem (considering a single OD) is

min
𝐟SRV , 𝐟ARV

𝑇 (𝐟SRV, 𝐟ARV) (D.1a)

s.t. 𝐟SRV ≥ 𝟎 (D.1b)

𝐟ARV ≥ 𝟎 (D.1c)

𝐴 𝐟SRV = 𝐝SRV (D.1d)

𝐴 𝐟ARV = 𝐝ARV (D.1e)

𝑓 SRV𝑖 = 0, ∀𝑖 ∈ ARV. (D.1f)

We form the Lagrangean function:

𝐿(𝐟SRV, 𝐟ARV,𝝅SRV,𝝅ARV, 𝜷) = 𝑇 (𝐟SRV, 𝐟ARV𝑉 ) (D.2a)

+
∑

𝑗∈𝑉
𝜋SRV𝑗 (

∑

𝑘∈𝑗

𝑓 SRV𝑘 −
∑

𝑘∈𝑗

𝑓 SRV𝑘 − 𝑑SRV𝑗 ) (D.2b)

+
∑

𝑗∈𝑉
𝜋ARV𝑗 (

∑

𝑘∈𝑗

𝑓ARV𝑘 −
∑

𝑘∈𝑗

𝑓ARV𝑘 − 𝑑ARV𝑗 ) (D.2c)

+
∑

𝑙∈ARV
𝛽𝑙𝑓

SRV
𝑙 (D.2d)

Where 𝑗 and 𝑗 are the sets of incoming and outgoing links at
node 𝑗, respectively. The multipliers 𝜋𝑆𝑅𝑉

𝑗 and 𝜋𝐴𝑅𝑉
𝑗 correspond to

the constraints for flow conservation at nodes for the different classes
(D.1d)–(D.1e), and 𝛽𝑙 corresponds to the link-exclusivity constraints
(D.3g), which are a form of capacity constraints.

The first order optimality conditions are,

𝑓 SRV𝑖
𝜕𝐿(𝐟SRV, 𝐟ARV,𝝅, 𝜷)

𝜕𝑓 SRV𝑖

= 0, ∀ 𝑖 ∈ , (D.3a)

𝑓ARV𝑖
𝜕𝐿(𝐟SRV, 𝐟ARV,𝝅, 𝜷)

𝜕𝑓ARV𝑖

= 0, ∀ 𝑖 ∈ , (D.3b)

𝜕𝐿(𝐟SRV, 𝐟ARV,𝝅, 𝜷)
𝜕𝑓 SRV𝑖

≥ 0, ∀ 𝑖 ∈ , (D.3c)

𝜕𝐿(𝐟SRV, 𝐟ARV,𝝅, 𝜷)
𝜕𝑓ARV𝑖

≥ 0, ∀ 𝑖 ∈ , (D.3d)

𝜕𝐿(𝐟SRV, 𝐟ARV,𝝅, 𝜷)
𝜕𝜋SRV𝑗

= 0, (D.3e)

𝜕𝐿(𝐟SRV, 𝐟ARV,𝝅, 𝜷)
𝜕𝜋ARV𝑗

= 0, (D.3f)

𝜕𝐿(𝐟SRV, 𝐟ARV,𝝅, 𝜷)
𝜕𝛽𝑙

= 0, ∀ 𝑙 ∈ ARV (D.3g)

𝑓 SRV𝑖 , 𝑓ARV𝑖 ≥ 0, ∀ 𝑖 ∈ . (D.3h)

Eqs. (D.3e)–(D.3f) and (D.3h) are equivalent to the feasibility con-
straints (D.1b)–(D.1e), which are the non-negativity constraints of the
flows and the flow conservation at nodes, respectively.

Eqs. (D.3a) and (D.3b) yield,

𝑓 SRV𝑖

[

𝑎𝑖 + 𝑏𝑖
(

𝑓 SRV𝑖 + 𝑓ARV𝑖
)

+ 𝜋SRV𝑗 − 𝜋SRV𝑘 + 𝛾𝑖
]

= 0 (D.4a)

and

𝑓ARV𝑖

[𝑎𝑖
2

+ 𝑏𝑖
(

𝑓 SRV𝑖 + 𝑓ARV𝑖
)

+ 𝜋ARV𝑗 − 𝜋ARV𝑘

]

= 0. (D.4b)

where link 𝑖 = (𝑗, 𝑘) ∈  (link 𝑖 goes from node 𝑗 to node 𝑘) and the
variable

𝛾𝑖 =
{

𝛽𝑖, if 𝑖 ∈ ARV

0, otherwise, (D.5)

accounts for the 𝛽𝑖s in the case 𝑖 ∈ ARV.
The conditions on the sign of the derivatives, (D.3c) and (D.3d)

result the following for SRV flows,

𝑏𝑖(𝑓 SRV𝑖 + 𝑓ARV𝑖 ) + 𝑎𝑖 + 𝜋SRV𝑗 − 𝜋SRV𝑘 + 𝛾𝑖 ≥ 0. (D.6a)

Similarly for the ARV flows, we have

𝑏𝑖(𝑓 SRV𝑖 + 𝑓ARV𝑖 ) +
𝑎𝑖
2

+ 𝜋𝑗 − 𝜋𝑘 ≥ 0. (D.6b)

Proposition D.1. The first-order optimality conditions (D.3) guarantee
that equilibrium conditions hold.

Proof. Letting 𝑟 be any utilised route (𝑓 SRV𝑖 > 0, for 𝑖 ∈ 𝑝), with origin
𝑝 and destination 𝑞. We sum (D.4a) over links in 𝑟,
∑

𝑖∈𝑟

[

𝑎𝑖 + 𝑏𝑖
(

𝑓 SRV𝑖 + 𝑓ARV𝑖
)

+ 𝜋SRV𝑗 − 𝜋SRV𝑘

]

= 𝜋SRV𝑝 − 𝜋SRV𝑞 +
∑

𝑖∈𝑟
𝑐𝑖(𝑓𝑖) = 0

(D.7)

note that 𝛾𝑖 = 0, since for 𝑟 has to be used (and by (D.3g)), then
𝑓 SRV𝑖 = 0. Thus used routes cannot have links in ARV. The 𝜋SRV𝑗 for
nodes other than 𝑝 and 𝑞 cancel telescopically. The remaining sum is the
route cost (from the fact that 𝑐𝑖(𝑓𝑖) = 𝑎𝑖 + 𝑏𝑖𝑓𝑖, with 𝑓𝑖 = 𝑓ARV𝑖 + 𝑓 SRV𝑖 ).

Thus, the travel cost for any route used by the SRVs must be equal
since 𝜋SRV𝑞 −𝜋SRV𝑝 is independent of the links used and (D.7) is valid for
any used route.
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Similarly, we can sum (D.6a) over the links of any route 𝑟,
∑

𝑖∈𝑟
𝑏𝑖(𝑓 SRV𝑖 + 𝑓ARV𝑖 ) + 𝑎𝑖 + 𝜋SRV𝑗 − 𝜋SRV𝑘 + 𝛾𝑖 =

𝜋SRV𝑝 − 𝜋SRV𝑞 +
∑

𝑖∈𝑟
𝑐𝑖(𝑓𝑖) +

∑

𝑖∈𝑟∩ARV
𝛽𝑖 ≥ 0 (D.8)

For routes that do not contain ARV exclusive links, the above expression
becomes,
∑

𝑖∈𝑟
𝑐𝑖(𝑓𝑖) ≥ 𝜋SRV𝑞 − 𝜋SRV𝑝 , (D.9)

which means that unused routes in the subnetwork defined by the
links available to them,  ⧵ARV, must cost at least as much as used
routes (by virtue of Eq. (D.7)). This means that the conditions for
(UE) Wardrop equilibrium hold for SRVs, restricted to their available
network.

For routes that contain links in ARV, the term containing the 𝛽𝑖
does not vanish,
∑

𝑖∈𝑟
𝑐𝑖(𝑓𝑖) +

∑

𝑖∈𝑟∩ARV
𝛽𝑖 ≥ 𝜋SRV𝑞 − 𝜋SRV𝑝 . (D.10)

As noted by Patriksson in Patriksson (2015) one cannot relate the actual
travel costs of the unused routes to those of the used ones, however
(D.10) relates the generalised costs of these routes (as formulated in the
capacitated STAP), to the used route’s actual costs (as captured by the
SRV OD potentials). In this sense, the sum of 𝛽𝑖 for an route unavailable
to the SRVs represents the cost gap between these routes and the fastest
available routes (that do not contain exclusive links).

Adding (D.4b) over any given route 𝑟 used by ARVs (considering
𝑓ARV𝑖 > 0) gives
∑

𝑖∈𝑟

[𝑎𝑖
2

+ 𝑏𝑖
(

𝑓 SRV𝑖 + 𝑓ARV𝑖
)

+ 𝜋ARV𝑗 − 𝜋ARV𝑘

]

= 0, (D.11a)

which simplifies to
∑

𝑖∈𝑟
𝑐′𝑖 (𝑓𝑖) = 𝜋ARV𝑞 − 𝜋ARV𝑝 , (D.11b)

where 𝑐′𝑖 (from Eq. (C.6)) is the transformed marginal cost function of
link 𝑖. In terms of the marginal cost functions (Eq. (C.5)),
∑

𝑖∈𝑟
𝑐′𝑖 = 2(𝜋ARV𝑞 − 𝜋ARV𝑝 ). (D.11c)

Eq. (D.11c) shows that the marginal cost of any used route is
independent of the route itself and only depends on 𝜋ARV𝑝 and 𝜋ARV𝑞 .
Thus for the ARVs, the conditions for SO hold,
∑

𝑖∈𝑟
𝑐′𝑖 (𝑓𝑖) =

∑

𝑗∈𝑠
𝑐′𝑗 (𝑓𝑗 ). (D.11d)

For unused routes, we let 𝑟 be any route and sum (D.6b) over its
links, yielding
∑

𝑖∈𝑟
𝑐′𝑖 (𝑓𝑖) ≥ 2(𝜋ARV𝑞 − 𝜋ARV𝑝 ). (D.12)

Thus, routes that remain unused by ARVs have higher or equal marginal
costs than used ones.

Thus we have shown that the first order optimality conditions imply
equilibrium in the sense that:

• SRVs are under UE when considering only their available subnet-
work which is induced by the edge set  ⧵ARV.

• When considering SRVs and routes on the whole network, the
equilibrium conditions of the capacitated problem are met (Pa-
triksson, 2015).

• ARVs are under SO amongst themselves in the sense that the
marginal costs of their used routes are equal (which reduces to
the standard SO conditions of minimum costs in the case where
there are only ARVs). □

Table E.4
Parameter values for the GA described in Section 3.1.
Parameter Value

Generations 900
𝑛pop 150
𝑝mut 0.05
𝑒prop 0.15
𝑟prop 0.2
𝑘 20

Appendix E. Details on the genetic algorithm

Our GA consists of the following steps:

1. Initialise starting population of individual solutions (𝑛pop indi-
viduals).

(i) Map candidate ARV-exclusive links for a network to genes
in the chromosome.

(ii) Generate a ‘diverse’ random starting population.
(iii) Calculate the fitness of individuals.

2. Tournament selection of mating pairs.

(i) Draw two pairs of individuals from the current popula-
tion. For each pair draw uniformly random individuals
without replacement.

(ii) For each pair, compare the fitness of the individuals.
The fittest individuals of each pair (the winners of their
respective tournaments) are matched for reproduction.

(iii) Repeat steps (i) and (ii) to find each reproducing pair
(𝑛pop∕2 times).

3. Reproduction (For each reproducing pair).

(i) Generate two new offspring chromosomes using single-
point crossover.

(ii) Each allele can mutate (flip binary value) with probability
𝑝mut

(iii) Calculate the fitness of each offspring chromosome
(iv) Modify chromosomes (revert alleles to zero) if corre-

sponding ARV-exclusive links carry no ARV flow.

4. Propagation to next generation.

(i) Apply elitism. Replace up to 𝑒prop fraction of lowest-
fitness individuals of the offspring population with the
fittest individuals of the parent population as long as the
elite individuals are fitter than the fittest chromosome of
the offspring population.

(ii) Diversify population. Replace the 𝑟prop least fit fraction
of the population with randomly generated individuals to
preserve ‘diversity’ in the population.

5. Repeat steps 2–4 until the maximum number of desired genera-
tions

A schematic of the population propagation mechanism of our im-
plemented GA, and how the populations propagated to subsequent
generations are structured is shown in Fig. E.8. The parameters we use
are shown in Table E.4.

The population size 𝑛pop is an important parameter, especially in
terms of computational time and convergence. Sastry et al. (2014)
suggests an initial population of 50 individuals is suitable for many
problems. Although for a different formulation of evolutionary algo-
rithms – differential evolution – Storn (1996) proposes that 𝑛pop =
10𝑙gen is reasonable. However, Chen et al. (2012) show that large
population sizes are not necessarily beneficial. Alander (1992) conclude
from empirical results that values between 𝑙gen and 2𝑙gen can be suitable
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Fig. E.8. Depiction of how the population of individuals of the GA are selected from parent and offspring populations to survive into the next generation.

for binary genomes. In light of the above, we use a population of a
similar size to the number of the decision variables, with 𝑛pop = 150 ≈
1.5𝑙gen.

As well as being in line with general considerations regarding GAs,
our chosen parameter values align with applications of GAs to transport
network problems. Cantarella et al. (2006), use smaller populations
than us (40 individuals), although they also have fewer decision vari-
ables (34) by about a factor of four. The mutation rate they use is 0.1.
Pinninghoff et al. (2008), consider the possibility of adding new links
to networks, for which they require more decision variables (around
500), however they still use smaller populations that us (between 25
and 50 individuals) and while they recognise that larger populations
improve results and coverage of the search space, they find their
method converges, or at least settles on good solutions in around 500
generations. Their GA also includes elitism and they use a 𝑝mut between
0.01 and 0.05.

We implemented the GA and ME solver in the Julia programming
language (Bezanson et al., 2017). We solve (9) by using the optimisa-
tion package JuMP (Dunning et al., 2017). The open-source numerical
solver Ipopt (Wächter and Biegler, 2006) is used as the backend which
employs an internal point barrier method to find the solution to the
problem.

Appendix F. Sample size and standard error of ensemble mean

In order to check whether the size of the ensembles used in Sec-
tions 3 and 4 we estimate the standard error of the ratio of per-vehicle
costs, 𝐶ARV

pv ∕𝐶SRV
pv , by bootstrapping the mean for each ensemble and

calculating the standard error of the mean from the bootstrapped
samples.

The basic procedure was to sample with replacement 100 sets of
samples from the 20 networks in order to calculate an estimate for
the standard error of the mean ratio of per-vehicle costs. Table F.5
shows, in addition to

⟨

𝐶ARV
pv ∕𝐶SRV

pv

⟩

(to more significant figures than
in Table 3), the standard error as well as the 95% confidence interval.
The confidence interval is given to show the bounds that would have
to be exceeded to conclude that a better sample is needed. It should be
noted that even for a much narrower bootstrapped confidence interval
(e.g. 10%) most of the ensemble means lie within it, strengthening the
conclusion that we are not observing outliers.

A permutation test is more appropriate than, for example, a 𝑡-test
since fewer assumptions are necessary and the values we are testing
from are derived from a complex process. We present these statistical

Table F.5
Per-vehicle cost ratio with bootstrapped standard error and 95% confidence intervals.

�̂� 𝑑 𝛾

⟨

𝐶AV
pv

𝐶SV
pv

⟩

std error 95% Conf. interval

0.5 0.0001 0.25 0.9325 0.0175 (0.90237, 0.96202)
0.5 0.9327 0.0133 (0.90559, 0.95916)
0.75 0.9129 0.0127 (0.89266, 0.93819)

0.0151 0.25 0.7506 0.024 (0.70998, 0.79903)
0.5 0.8066 0.0193 (0.77178, 0.83785)
0.75 0.943 0.0123 (0.91756, 0.96296)

0.03 0.25 0.6403 0.019 (0.60599, 0.68037)
0.5 0.768 0.0243 (0.72058, 0.81117)
0.75 0.9418 0.0099 (0.92321, 0.95948)

0.75 0.0001 0.25 0.9564 0.0098 (0.93865, 0.97602)
0.5 0.9418 0.0205 (0.90577, 0.987)
0.75 0.9353 0.0128 (0.91412, 0.96126)

0.0151 0.25 0.8139 0.0198 (0.7738, 0.84665)
0.5 0.8665 0.0169 (0.83691, 0.89822)
0.75 0.9647 0.0099 (0.94806, 0.98412)

0.03 0.25 0.7393 0.0267 (0.69604, 0.80733)
0.5 0.8135 0.0209 (0.76783, 0.85151)
0.75 0.9502 0.0114 (0.93353, 0.97785)

1.0 0.0001 0.25 0.9064 0.0217 (0.87033, 0.95142)
0.5 0.9145 0.0173 (0.88538, 0.95226)
0.75 0.9087 0.0141 (0.88324, 0.93896)

0.0151 0.25 0.8268 0.0233 (0.78403, 0.8702)
0.5 0.9041 0.0113 (0.88076, 0.92194)
0.75 0.9677 0.0144 (0.94217, 0.99527)

0.03 0.25 0.7432 0.0358 (0.68203, 0.81604)
0.5 0.8674 0.0143 (0.84242, 0.90097)
0.75 0.9754 0.0082 (0.96259, 0.99128)

details to show that while variance within each experimental ensemble
can be high, care has been taken to ensure enough networks were
considered per ensemble and that the results presented are significant.
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