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Bus Rapid Transit (BRT) systems can provide a fast and reliable service to passengers at low investment costs
compared to tram, metro and train systems. Therefore, they can be of great value to attract more passengers
to use public transport. This paper thus focuses on the BRT investment problem: Which segments of a single
bus line should be upgraded such that the number of newly attracted passengers is maximized? Motivated
by the construction of a new BRT line around Copenhagen, we consider a setting in which multiple parties
are responsible for the financing of different segments of the line. As each party has a limited willingness to
invest, we solve a bi-objective problem to quantify the trade-off between the number of attracted passengers
and the investment budget. We model different problem variants: First, we consider two potential passenger
responses to upgrades on the line. Second, to prevent scattered upgrades along the line, we consider different
restrictions on the number of upgraded connected components on the line. We propose an epsilon-constraint-
based algorithm to enumerate the complete set of non-dominated points and investigate the complexity of this
problem. Moreover, we perform extensive numerical experiments on artificial instances and a case study based
on the BRT line around Copenhagen. Our results show that we can generate the full Pareto front for real-life
instances and that the resulting trade-off between investment budget and attracted passengers depends both
on the origin-destination demand and on the passenger response to upgrades. Moreover, we illustrate how the
generated Pareto plots can assist decision makers in selecting from a set of geographical route alternatives in
our case study.
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Network design

Public transport

Bus rapid transit
Bi-objective optimization

1. Introduction

Increasing the modal share of public transportation is widely rec-
ognized as an important path towards reducing greenhouse gas emis-
sions, complementary to efforts to reduce the emissions of private
cars (Messerli et al., 2019). Bus Rapid Transit (BRT) lines can contribute
to this goal, as they can offer an attractive service to passengers at rel-
atively low investment costs compared to rail-based alternatives (Deng
and Nelson, 2011). A BRT line generally uses dedicated lanes for a large
share of its route and is therefore not sensitive to delays as a result of
traffic jams caused by private vehicles. Moreover, BRT lines often get
priority at crossings. Therefore, BRT lines are characterized by higher
speed, higher frequency, and higher reliability of service in comparison
to traditional buses.

This paper concerns the planning of a single BRT line. Specifically,
it poses the question of which segments of the BRT line should be up-
graded to a full BRT standard and which could remain as a traditional
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mixed-traffic bus segment with the objective to maximize ridership
given a limited willingness to invest. An upgrade involves investments
for the establishment of separate bus lanes as well as the upgrading of
intersections and traffic installations to allow for priority of the BRT
line. Thus, the number and location of upgrades have a direct impact
on the quality of a passenger’s journey, and thereby on the expected
ridership of the BRT line. While there is a base amount of ridership
independent of upgrades, we focus on the number of passengers that
can be attracted additionally because of the improvements. Considering
the required investments in new infrastructure and the corresponding
use of urban space, careful planning is needed to choose the final design
of the line. This BRT investment problem can be seen as a substep of
the network design phase in the traditional public transport planning
process described in Lusby et al. (2018).

Our work is specifically motivated by the development of a new
BRT line in the urban area of Copenhagen (Greater Copenhagen), which
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will connect multiple municipalities surrounding the city of Copen-
hagen (Movia, 2020). Each of these municipalities is responsible for the
investments required for the upgrading of segments that are within its
borders. Because these investments come out of their general budgets,
which also cover other municipal expenses, municipalities must weigh
the costs of upgrades against the societal benefits provided. The willing-
ness of the municipalities to work together towards a social optimum
is though shown through the collaboration within the transport agency
Movia, which is described in more detail in Section 6.1. Due to this
conflict of goals, we aim to quantify the impact of investments in this
paper through constructing the Pareto front between the number of
attracted passengers and the investment budget aggregated over all mu-
nicipalities. Moreover, a separate investment budget per municipality
could lead to a bus line that often blends in and out of mixed traffic,
which may not make passengers experience the line as very different
from a traditional bus line. Therefore, the BRT investment problem also
includes a constraint to limit the overall number of upgraded connected
BRT components.

In this paper, we formulate the BRT investment problem as a bi-
objective mixed-integer linear program for two potential passenger
responses to upgrades on the line: a linear and a threshold relation.
While an upgraded segment leads to a proportional number of newly
attracted passengers under the linear passenger response, passengers are
only attracted to the BRT line in the threshold passenger response if a
minimum level of improvement is realized along their journey. The
latter can be interpreted as a mode choice being made by a group of
homogeneous passengers, where the passengers only switch to using
the BRT line when it becomes their fastest alternative. Considering
these two different passenger responses leads to two different versions
of the BRT investment problem, allowing us to analyze the impact of
the passenger response on the trade-off between attracted passengers
and investment budget.

The proposed model is intended to be used as a decision support tool
within the planning process for a new BRT line. While it can be applied
in a setting with a global decision maker without municipalities to find
a social optimum, its main application is the case of municipalities
collaborating through a transport agency. In this setting, a transport
agency suggests solutions that are good for society and regard the
concerns of the municipalities based on the generated Pareto curve.
In an iterative process, the municipalities can evaluate the suggestions
and adjust their available budget until a satisfactory solution is found.
An alternative approach, which integrates a constraint representing
the willingness to invest based on the number of attracted passengers
per municipality within a single-objective setting, has been proposed
in Hoogervorst et al. (2022).

The contributions of this paper are four-fold. First, we propose the
bi-objective BRT investment problem with a BRT component constraint
and multiple investing municipalities for two alternative passenger
responses to upgrades. Second, we propose an e-constraint-based al-
gorithm to solve the BRT investment problem, which can find all
non-dominated points. Third, in a theoretical analysis of this problem,
we give tractable and intractable cases of the BRT investment problem
and identify both NP-hard and polynomially solvable cases for the
single-objective subproblems solved in our e-constraint-based algo-
rithm. Fourth, we perform an extensive computational study on artifi-
cial instances and realistic instances based on the Greater Copenhagen
BRT line.

The remainder of the paper is structured as follows: In Section 2,
we discuss the related literature. In Section 3, we define the problem
formally, introduce the two different passenger responses and give
corresponding bi-objective mixed-integer linear programming formu-
lations. Section 4 introduces the e-constraint-based algorithm used to
solve the problem, and we theoretically analyze its complexity and
the complexity of the single-objective problems solved within the al-
gorithm. We present computational results for artificial instances in
Section 5, where we analyze among others the impact of the passenger
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response, the BRT component constraint, the demand pattern, and the
budget split among the municipalities. In Section 6, we describe the
numerical results of our case study for the Greater Copenhagen BRT
line. The paper is concluded in Section 7.

2. Related literature

The public transportation planning process is traditionally split-
up into a number of sequential planning steps, which range all the
way from the strategic to the operational level (Lusby et al., 2018;
Schiewe and Schobel, 2022). The BRT investment problem is most
closely related to the network design and line planning steps in this
process, in which the public transport network and the lines operated
on this network are determined. An overview on the network design
problem, and the models and solution methods used to solve it, is given
by Laporte et al. (2000), Laporte and Mesa (2019). For an overview
on the line planning problem, which is generally solved after the
stations and infrastructure have been fixed, we refer to Schébel (2012).
Moreover, we refer to Gattermann et al. (2017) for a discussion of the
generation of line pools in line planning.

While the focus in transit network design has traditionally been on
designing a transit network from scratch, recent work has increasingly
focused on the improvement of existing public transport networks.
Specifically relevant for our work is the stream of literature focusing on
adding dedicated bus lines within an existing transport network (Yao
et al., 2012; Khoo et al., 2014; Bayrak and Guler, 2018; Tsitsokas et al.,
2021). These papers focus on the placement of bus lanes along segments
or lines in the network such to minimize the travel time of both bus
and non-bus passengers. This requires the evaluation of the passenger
mode choice and the congestion caused by the placement of dedicated
bus lanes. While the BRT investment problem shares this core theme of
upgrading bus segments, it focuses on a different objective: the trade-
off between investment budget and attracted passengers. Moreover, it
focuses on the context of a single line and considers the effect of a
constraint on the connectedness of upgraded segments.

Another relevant addition to the network design problem is the
consideration of multiple investing parties. While it is typically assumed
that all investment decisions are made by one central authority, Wang
and Zhang (2017) consider local authorities that can only make up-
grade decisions for their own subgraphs, i.e., parts of the network. In
a game-theoretic setting, they formulate the interaction of the local
authorities among others in a cooperative, competitive and chrono-
logical way. Here, the aim of the local authorities is to minimize
the travel time by increasing the capacity of edges under a budget
constraint. In the BRT investment problem, we take into account the
effect of multiple municipalities through separate municipality budgets
and through investigating different budget splits. Our setting differs in
considering a bi-objective problem on a single line and through the
addition of the BRT component constraint.

The underlying mathematical structure of the BRT investment prob-
lem also shows similarities to the more general network improvement
problem. This problem consists of choosing edges (and nodes) in a
network to be upgraded while minimizing costs or satisfying bud-
get constraints (Krumke et al., 1998; Zhang et al., 2004; Baldomero-
Naranjo et al., 2022). The problem has seen applications, e.g., in the
area of road network optimization, where restricted resources can be
used to upgrade edges in order to minimize the travel time between
certain source—destination pairs (Lin and Mouratidis, 2015) or where
roads can be upgraded to all-weather roads to improve the accessibility
of health services (Murawski and Church, 2009). The BRT investment
problem differs from the network improvement problem through being
bi-objective and through the consideration of the BRT component
constraint. Moreover, one of our passenger responses depends in a
non-linear way on the realized improvements.

Summarizing, the BRT investment problem introduced here con-
tributes to the literature by focusing on the simultaneous consideration
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of the number of newly attracted passengers and the investment budget,
separate municipality budgets and a BRT component constraint within
the context of upgrading one bus line. Note that a special case of the
BRT investment problem has been introduced in the ATMOS conference
paper by Hoogervorst et al. (2022), which looked at the single-objective
problem of choosing segments to upgrade under a budget limit per
investing municipality.

3. Problem and model formulation

In this section, we give a formal definition of the BRT investment
problem, in which one objective reflects the passenger response and the
other the investment budget. We introduce two different passenger re-
sponses, namely LiNnear and MinImprov, and show the difference between
the investment budget and the investment costs. Finally, we provide a
bi-objective mixed-integer linear programming formulation and prove
its correctness.

3.1. Problem definition

The BRT investment problem models the selection of upgrades along
a bus line. We denote the bus line by a linear graph (V, E), where the
nodes V represent the stations along the line and the edges E denote the
segments between the stations. Upgrading a segment results in a BRT
segment where the vehicles of the BRT line can operate independent
from other transportation modes. We denote the costs of upgrading a
segment e € E by ¢, € N, which encompasses all costs related to
creating the infrastructure for the BRT segment.

We consider a BRT line that crosses multiple municipalities, each
of them being responsible for investments in their respective parts of
the line. We denote the set of municipalities by M and let E,, C E
denote the set of segments within municipality m € M. We assume
that the sets E,, contain consecutive segments and are pairwise disjoint,
which can often be achieved by splitting the segments at the borders
of the municipalities. Furthermore, we suppose that each municipality
is allocated a fixed budget share b,, of the (total) investment budget.

We additionally include a BRT component constraint that limits the
number of disjoint sequences of upgraded segments. We denote the
maximum number of disjoint sequences by Z € N,;. As a result of the
different municipalities, each having its own budget limit, the upgraded
segments might become spread-out over the BRT line without such
a constraint. Passengers may experience such a line that constantly
mixes in and out of blended traffic as not much different from a
general bus line. Moreover, such mixing into blended traffic might
create delays, reducing the reliability of the BRT line and thus making
connected upgrades more desirable. In addition, it might be easier
from an organizational perspective to realize upgrades along several
consecutive segments than on many (short) scattered segments.

The number of additional passengers that are attracted to the BRT
line depends on the chosen segment upgrades. We refer to this as
the passenger response to upgrades and let p(F) denote the number of
passengers that are newly attracted when the segments in F C E
are upgraded. We evaluate two possible passenger responses: a LINEAR
passenger response in which the number of attracted passengers scales
relatively to the improvement achieved on the passengers’ journeys and
a MinImprov passenger response where passengers are attracted after a
certain minimum improvement is realized along their journey. These
passenger responses are defined in Section 3.2.

We are now able to define the BRT investment problem formally:

Definition 1 (The BRT investment problem). Given are

Infrastructure:

+ a linear graph (V. E), where V' = {1,....n} for n € N, denotes
the set of stations and E = {¢; = {i,i+ 1} : i € {1,....,n—1}} the
set of segments between the stations,
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+ upgrade costs ¢, € N, for all e € E,

+ an upper bound Z € N, on the number of BRT components,
Municipalities:

« a set of municipalities M,

+ a set of consecutive segments E, C E for all m € M such that
Umen En = E and the sets E,, are pairwise disjoint,

+ a budget share b, € R, for all m € M such that )}, _, b, =1,
Passenger response:

+ a function p: 2 — R, that determines the number of newly at-
tracted passengers, i.e_., there are p(F) newly attracted passengers
when upgrading the segments in F C E.

The aim is to determine combinations (F, v) of upgraded segments F
and an investment budget v that

max p(F) (maximize the number of newly attracted passengers)

min v (minimize the investment budget)

and satisfy the following constraints:
+ The budget constraints

c, <byvforallme M
eeFNE,,

restrict the investment of each municipality, where b,v is the
budget of municipality m € M.

The BRT component constraint restricts the subgraph G[F] induced
by the segment set F, i.e., the subgraph of G containing all edges
in F and their incident nodes, to have at most Z connected
components.

In order to simplify notation, we call the connected components of
G|[F] the BRT components of F. Hence, the BRT component constraint
limits the number of BRT components of F to at most Z.

In the remainder of the paper, we are interested in finding the
efficient solutions (F, v) that constitute the Pareto front with respect to
the number of newly attracted passengers and the investment budget:

Definition 2 (Efficient solution, non-dominated point and Pareto front).
Let an instance of the BRT investment problem be given. A feasible
solution F C E, v € Ry, is called efficient and its objective value
(p(F),v) is called non-dominated if there does not exist another feasible
solution F’ C E, v/ € R, with objective value (p(F’),v’) such that

p(F") > p(F), v < v and at least one inequality holding strictly. The set
of all non-dominated points is also called the Pareto front.

3.2. Objective functions reflecting the passenger response

It remains to define the passenger response functions. We model the
passenger demand along the line by a set of origin—destination (OD)
pairs D C {(i,j) : i,j € V,i # j} that start and end at the stations of the
line. As we consider a single line, each OD pair d € D corresponds to a
unique travel path W, C E along the line. We assume that the number
of potential passengers a, € N, who would like to travel along each
OD pair d € D in case the full set of segments is upgraded, is known.
Such an estimate could follow, e.g., from a traffic study in which all
segments are assumed to be upgraded. Moreover, passengers benefit
from the infrastructure improvement u, € R, resulting from upgrading
segment e € E. This improvement encompasses the reduction in travel
time due to upgrading the segment, but it could, e.g., also represent the
improved reliability as a result of the new BRT segment.

The passenger responses Linear and MinImprov determine the num-
ber of newly attracted passengers for each OD pair d € D based on
the passenger potential a,; and the infrastructure improvement realized
along the path W,. These two passenger responses are illustrated in
Fig. 1. The LiNear passenger response leads to a number of attracted
passengers that is proportional to the infrastructure improvement real-
ized, i.e., realizing x% of the potential improvement leads to x% of the
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Fig. 1. Illustration of the passenger responses LiNnear and MiNIMPROV.

potential passengers being attracted. The MinImprov passenger response
instead relies on a threshold L, € R, which represents the point at
which passengers switch over to the BRT line. An infrastructure im-
provement below this threshold leads to no passengers being attracted,
while all potential passengers are attracted if the realized infrastructure
improvement exceeds the threshold.

We now formally define the Linear and MinImprov passenger re-
sponse:

Definition 3 (Objective functions). Given are

+ a set of OD pairs D C {(i,j) : i,j € V,i # j} with unique paths
W, C E from i to j along the line for all d = (i, j) € D,

+ a number of potential passengers a; € N, for all d € D,

+ infrastructure improvements u, € R, for all e € E,

and additionally for the MinImprov passenger response:

+ an improvement threshold level L, for each d € D with L; <
Zeer Ue-

Let F C E be the set of upgraded segments, and let an OD pair d € D
be given.

In LiNear, the number of newly attracted passengers of OD pair
d € D is determined by
ZeeF W, Ye
Ze’ ew, U
In MinImprov, the number of newly attracted passengers of OD pair
d € D is determined by

_Jag L, < ZeanWd U,
py(F) = .
0 otherwise.

py(F) =

Hence, the total number of newly attracted passengers dependent on
the set of upgraded segments is given by

P28 > Ryg, Fro ) py(F).
deD
An example of both passenger responses as well as the notation
introduced in Definition 1 and Definition 3 is given in Example 1.

Example 1. Consider the example instance given in Fig. 2. The
graph (V, E) with five nodes is given at the bottom with costs ¢,
and infrastructure improvements u, below the edges. The red, dashed
segments belong to municipality m; while the blue, solid segments
belong to municipality m,. The bold edges form the set F of segments
to be upgraded. Three OD pairs are given above, where the line width
corresponds to the number of potential passengers a,.

In this example, municipality m; invests 12 and municipality m,
invests 4. Because both upgraded segments in F are next to each other,
F has only one BRT component, i.e., F satisfies the BRT component
constraint for any Z > 1. Table 1 shows the infrastructure improve-
ments for each OD pair as well as the number of newly attracted
passengers p,(F) for LiNear and MINIMPROV.

Computers and Operations Research 167 (2024) 106640
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Fig. 2. Example instance for the BRT investment problem.

Table 1
Infrastructure improvements and number of attracted passengers per OD pair for the
example instance in Example 1.

OD pair > u, > u, L, a, py(F)
eeW, eeFnW,
LiNEAR MiNIMPROV
d, 4 4 3 100 100 100
d, 20 15 15 200 150 200
dy 24 15 18 200 125 0

3.3. Evaluating the investment

An efficient solution (F,v) and its objective value (p(F),v) to the
BRT investment problem represent the set of upgraded segments, the
number of newly attracted passengers and the investment budget. For
a given set of upgraded segments F, the investment budget v is the
minimum budget such that all budget constraints are satisfied, i.e.,

v:min{v'eR: Z ¢, < b,V forallmeM}.
e€eFNE,

For practical applications, however, the investment costs ¢(F) given as

c(F) := Z Cos

eelF

which state the actual costs incurred by upgrading the segments in F,
are another important figure. Because of the budget split among the
municipalities based on the budget shares, for a fixed set of upgraded
segments F, the investment costs ¢(F) can be less than the available
investment budget v.

By solving the BRT investment problem, we obtain the Pareto front
with respect to the investment budget. It is not immediately clear if
this Pareto front overlaps with the one where the investment costs c¢(F)
constitute the second objective function. We show that both Pareto
fronts coincide when there is only a single municipality, i.e., |[M| =1,
see Lemma 2. However, this is generally not the case when there are
multiple municipalities, which we illustrate with a counterexample in
Example 3.

Lemma 2. If |M| = 1, then the BRT investment problem and the problem

max p(F)
min c(F) (€]
s.t. there are at most Z BRT components,

where we minimize the investment costs instead of the investment budget,
are equivalent in the sense that for every efficient solution of one problem
there is an efficient solution of the other problem with the same objective
value. In particular, in this case, the sets of non-dominated points coincide.

Proof. Let (F,v) be an efficient solution to the BRT investment problem
with its corresponding non-dominated point (p(F), v). Because |M| = 1,
the budget constraint reduces to ¢(F) < v. Because (F,v) is efficient,
the constraint needs to hold with equality, i.e., ¢(F) = v. We show
that F is efficient and (p(F), v) = (p(F), ¢(F)) is a non-dominated point
of (1). Assume that it is not efficient. Then there is some F’ such that
p(F") > p(F) and c¢(F') < c(F) and at least one inequality holding
strictly. In both cases, we have a contradiction to (F,v) being efficient
because the solution (F’, ¢(F’)) would dominate (F,v).
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Fig. 3. Instance for Example 3 with municipality m, containing segment e, (red,
dashed) and municipality m, containing segment e, (blue, solid).

Now let F be an efficient solution to (1) with its corresponding non-
dominated point (p(F), c(F)). We set v := ¢(F). Assume that (F, v) is not
an efficient solution to the BRT investment problem. Then there is some
(F’,v") such that p(F’) > p(F) and v/ < v and at least one inequality
holding strictly. Again, we have a contradiction to F being efficient
because the solution F’ would dominate F because c¢(F') < v/ < v =

c(F). O

Example 3. Consider the instance given in Fig. 3 with municipalities
M = {m;,m,} and corresponding segments E, = {e;} (red, dashed)
and E,,, = {e,} (blue, solid). Moreover, consider a budget split in which
municipality m; gets two-third and municipality m, one-third of the
investment budget, i.e., by, = % and b, = %, and in which there can
be arbitrarily many BRT components, i.e., Z = oo.

For the BRT investment problem, the set of non-dominated points
is {(3,3),(0,0)} for the Linear as well as for the MinImprov passenger
response due to the budget constraints. When considering problem (1)
(without the BRT component constraint), it can be found that the non-
dominated points are given by {(3,3),(2,2),(1,1),(0,0)} for the LiNnear
passenger response and by {(3,2),(2,1),(0,0)} for the MinImprov passen-
ger response. Comparing the sets of non-dominated points where the
second objective is once the investment budget and once the investment
costs, we see that they do not coincide, neither for the Linear nor for the
MinImprov passenger response. One does not even need to be contained
in the other.

The idea of the BRT investment problem using the investment
budget v as an objective function is that the municipality budgets are
relative to each other, for example, depending on sociocultural, eco-
nomical or political factors. In the numerical experiments in Section 5
and in the case study in Section 6, we compute the efficient solutions
and the Pareto fronts with respect to the investment budget v. Because
of the practical relevance, we evaluate the results, however, also with
respect to the investment costs c¢(F).

3.4. Problem variants

In this paper, we consider several problem variants. We use a
scheduling-like notation, where each variant of the BRT investment
problem is classified as BRT(4,/4,/43) as follows:

A;: The function chosen to represent the passenger response.

A,: The upper bound on the number of BRT components of the
BRT line.

A3: The number of municipalities that are present.

An overview of the possible values that 1;,4,,4; can take is given
in Table 2. We remark that we use the symbolic notation “Z = ”
to denote the setting in which the BRT component constraint is not
applied, i.e., it indicates a model without a constraint limiting the
number of BRT components. In our solution method, we also encounter
the single-objective version of the problem in which we maximize the
passenger response p(F) given a fixed budget v. These single-objective
variants are classified with an asterix, i.e., as BRT*(4,/4,/43).
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3.5. Mixed-integer linear programming formulations

We now provide a bi-objective mixed-integer linear programming
formulation of the BRT investment problem. This formulation uses the
following variables:

+ a binary variable x, € {0,1} for all ¢ € E that denotes whether
segment e is upgraded,

an auxiliary binary variable z; € {0,1} for all i € {1,...,n -2},
which has value 1 if exactly one of the segments ¢; and e, is
upgraded,

an auxiliary binary variable y, € {0,1} for all 4 € D which
satisfies in each optimal solution that y, = 1 if and only if
Ly £ Yeernw, U for the set F C E of upgraded segments, and

* a continuous variable v € Ry denoting the investment budget.

We obtain the following IP formulation, which differs with respect
to the passenger response:
passenger response

Ay = LINEAR

max Z it,x,

Ay = MiNImPROV

max Z agy,

eeE deD
min v min v
a
with @, :=u, - . s.t. Lyy, < Z u,x, foralldeD
deD: Ze’er Uy eeW,

eeW,

budget constraints

Zcx <b,v forallme M

eXe = Om
e€E,

BRT component constraint

X, =%, <z forallie{l,..,n-2} (2a)

oy X, Sz; forallie(l,...,n-2} (2b)
n—2

X, + z z+x, <2Z (20)
i=1

variable domains

x, €{0,1} foralle€ E

z; €{0,1} forallie{l,...,n—-2}
v, €{0,1} foralld € D

v € Ry,

In these bi-objective formulations of the BRT investment problem,
the objectives are to maximize the number of attracted passengers and
to minimize the investment budget. The number of attracted passengers
is determined either according to the Linear or MinImprov passenger
response. Note that the objective regarding the number of attracted
passengers for A, = LiNeaR is reformulated as

Z <ad . Zeer uexe) _

deD Ze’er Uy

Z Z ad~u—e xe=2ﬁexe.
e€E | deb: Ze’er Uy ecE

eeWy
For A; = MiNImprov a constraint is added to ensure that the variable y,
only takes value 1 in case the minimum improvement L, is realized
for an OD pair d € D. The remaining constraints are the same for both
passenger responses. The budget constraints determine the available
budget for each municipality based on the budget shares b,,. Moreover,
the BRT component constraints (2) ensure that the number of BRT
components is no larger than Z.
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Table 2
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Overview of the allowed values in the classification of the problem variants.

Parameter Value Explanation
LINEAR LINEAR passenger response
A MiNIMPROV MINIMPROV passenger response
* any of the passenger responses
Z>1 any limit on the number of BRT components
Ay Z=k fixed upper bound k on the number of BRT components
Z = no limit on the number of BRT components
; M| >1 any number of municipalities
3 M| =k fixed number k of municipalities
P o . .
o o, dummy 0 ¢ #1 n2 o Tl dummy 4.1. Solution method and tractability

not upgr. not upgr.

Fig. 4. Visualization of the BRT component constraints (2) for Lemma 4.

The BRT component constraints (2) are based on the observation
that it suffices to count the number of times where an upgraded
segment is succeeded by a segment that is not upgraded and vice
versa. We present the idea and its correctness formally in the following
lemma:

Lemma 4. Let an instance of the BRT investment problem be given and
1 ifeeF,

F C E. We reflect F by setting x, := .fe Then F has at
0 ifee E\F.

most Z BRT components if and only if there is a vector z € {0,1}"~2 such
that the BRT component constraints (2) are satisfied.

Proof. Let F C E be given with K BRT components, i.e., G[F] has K
connected components, denoted by Fj,..., Fx. We modify the linear
graph by adding dummy edges ¢, and e, that are not upgradable,
ie., fixed x,, =x, =0, at the front and end as depicted in Fig. 4, and
we add the binary variables z, € {0,1} and z,_, € {0,1}. Based on that,
we define z € {0,1}" by z; := Ixe, = %e,., | forall i € {0,...,n—1}. By
definition, Z is feasible for constraints (2a) and (2b), and it has exactly
2K entries with value 1, namely one for each start and end of a BRT
component F;, i € {1,...,K}. Furthermore, because x,, = x, =0, we
have z,=x, and z,_; =x, .

For the first direction, let F have at most Z BRT components,
i.e., K < Z. Then

n-2 n—1
Xe D EHx, =) Z=2K<2Z.
i=1 i=0

Hence, the constraints (2) are satisfied for the vector (zi, ...
{0,1}"2,

For the second direction, we suppose that there is some z* €
{0, 1}"72 such that constraints (2) hold. Due to the constraints (2a) and
(2b), for all i € {1,...,n — 2}, we have that xe, = X, | =1 implies
zf = 1. Hence, z; < z foralli € {1,...,n—2}. Then K < Z because

,Z,0) €

n—1 n-2
2K =)z <x, + ) z+x, <27 0O
i=0 i=1

4. Solution method and theoretical analysis

In this section, we present an algorithm based on the e-constraint
method to solve the BRT investment problem and analyze it theo-
retically. In particular, we analyze the complexity of the bi-objective
problem, the size of its Pareto front, the impact of the BRT component
constraint and the complexity of the single-objective problems solved
within the e-constraint method.

Solving the BRT investment problem requires computing the set of
non-dominated points of an instance of BRT(x/Z > 1/|M| > 1). To
do so, we employ the well-known e-constraint method for bi-objective
programming (Haimes et al., 1971), in which a series of single-objective
problems is solved by placing a bound on one of the objectives. By
varying the bound ¢ over the iterations, different solutions on the
Pareto front are found.

Our algorithm for solving the BRT investment problem, which is
an adaption of the algorithm presented by Bérubé et al. (2009), is
given in Algorithm 1. In this algorithm, we place an upper bound
on the investment budget objective, meaning that we solve single-
objective problems BRT*(x/Z > 1/|M| > 1) that contain the additional
constraint v < B for varying values of B. We start by finding the budget
B at which all segments can be upgraded, meaning that all passengers
will be attracted. In every iteration of the algorithm, we then reduce B
in such a way that no non-dominated points are missed. This is repeated
as long as the budget B is non-negative.

While it is common to change ¢ with a fixed step size in the e-
constraint method, such a strategy may not find all non-dominated
points. Instead, we use the integrality of the upgrade costs to identify
a step size in each iteration that does not cut-off any non-dominated
point. To do so, we first identify the minimum budget at which the
current solution remains feasible and the municipalities for which this
minimum budget is tight. Due to the integrality of the upgrade costs,
we know that the individual budget for each such tight municipality
can be reduced by 1 without cutting off any non-dominated point.
Similarly, we can reduce the budget to the next integer level for each
non-tight municipality without cutting off any non-dominated point.
We then choose the step size as the minimum value that leads to a
budget satisfying these conditions for each municipality.

We formally prove that our algorithm is able to find the complete
set of non-dominated points in Lemma 5.

Lemma 5. Algorithm 1 computes the set of all non-dominated points for
BRT(x/Z > 1/|M| > D).

Proof. Algorithm 1 is an adaption of the algorithm presented by Bérubé
et al. (2009). We start with p* = Y., a,, which is the upper limit
on the number of attracted passengers that can be realized by all
municipalities m € M upgrading all segments, i.e., investing >,,.; c,.
This investment is possible for each municipality if the budget is set to

B = max,,c bL,,, 2LeeE, cej. The idea of the algorithm is to iteratively

compute all non-dominated points by solving BRT*(x/Z > 1/|M| > 1)
for a budget B and then reducing B by §. Therefore, we have to make
sure that § is small enough to not cut off a non-dominated point (see
Step 1) but not arbitrarily small such that the algorithm terminates after
a finite number of steps (see Step 2). Checking whether a lower budget
yields the same number of attracted passengers eliminates weakly
dominated solutions.
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Algorithm 1 Computing the non-dominated points for BRT(x/Z >
1/|IM| > D.

1: Input: instance I of BRT(x/Z > 1/|M| > 1).

: Output: set I" of all non-dominated points.

: As start values set

I <@,

. 1.

B rrnneaMX{ by, eez,;mce}’
¢ 1

6: U« ’r;éa]a}{ W ~ee§E:m Ce},

7: p* = Yaep -

: while B >0 do

9: Compute BRT*(x/Z > 1/|M| > 1) for instance I with budget B.
Let F be an optimal solution and j be the optimal objective value.

10: Compute the minimum budget & such that F remains feasible
as

_ 1
D « max o Z Co -
meM m  eeFNE,,

11: Determine the set of municipalities M (&) for which the budget &
is tight as

M(E)«—{meM : Z ce=bm-l7}.
eeFNE,

12: Compute step width § as

§ < min{ min — 5, min _ .
meM @) | by meM\M (&) b,

13: if p < p* then

[ N RN

o)

14: Update I « ' U {(p*,v*)}.
15: Update p* < p.
16: end if

17: Update v* « o.

18: Update B « o — .

19: end while

20: Update I' < I' U {(p*,v*)}.
21: return I’

Step 1: No non-dominated point is cut off.

First note that & as computed in line 10 is actually the smallest value
such that F remains feasible. We need to ensure that the step width §
as computed in line 12 does not cut off solutions with v/ < 5. We do
so through showing that if a set of upgrades F’ C E is feasible for a
budget v’ < 7, it is also feasible for the budget & — 5. So let F’ C E be
feasible with a corresponding minimum investment budget v’ < & and
let m € M be arbitrary. It holds that

eeF'nE,,

Because c, € N, for all e € E, we obtain

e€F'NE,

Now let 6 be chosen as in line 12 and update B := 5—§. This means the
right-hand side of the budget constraint of municipality m in the next
iteration is

if me M(b),

c0—1] if me M\ M(©®),
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by choice of . Hence, the solution F’ with investment budget v’ < ¥ is
not cut off. Note that this argument works for any solutions F’, F with
corresponding investment budgets v’ and o, respectively, with v/ < &.

Step 2: The algorithm terminates.
To show that the algorithm terminates, we have to show that §
cannot be arbitrarily small. Remember that § is chosen as

b, -0—[b,-0—1
6=min{ min {i}, min {M}}
meM®@) b, ) meM\M®©) b,

Thus, § > 0 is guaranteed. We additionally show that there are only
finitely many possible values that § can take. First note that there are
only | M| possible values for bL independent of &. Thus, we only have

to consider possible values for [”"L_LA_H By the computation of &

in line 10, we get that M(D) # @ and that there is an m € M (D)
such that 7 € {k - bi : k € Nyj}. As © is bounded from above by

'm

1
max,,e m { E : ZeEEm Ce }’ we get

1 1
ve k-—:keN }n 0, max ¢ — - c .
Ufegrenfofom{s 2o}

Therefore, there are only finitely many values for & in Algorithm 1 and
by extension only finitely many values for M and for 5. [

Note that the algorithm simplifies for the special case in which there
is a global decision maker, i.e., for BRT(x/Z > 1/|M| = 1). In this
special case, line 10 and line 12 in Algorithm 1 simplify to
D« Z Co»

eeF

6« 1.

This means that the minimum investment budget for a given solution
corresponds to the investment costs to realize it and we can always
choose the step size to be equal to 1 because of the integral costs
¢, € N;;. This finding relates to Lemma 2, in which we found that
the Pareto front with respect to the investment costs coincides with the
one for the investment budget.

To analyze the running time of Algorithm 1, we have to consider
both the complexity of the single-objective subproblem solved in line 9
of Algorithm 1 and the number of non-dominated points. Theorem 6
shows that the Pareto front is generally intractable, meaning that it may
contain an exponential number of non-dominated points. We give a
bound on the number of non-dominated points in Lemma 7. Moreover,
we show in Lemma 8 that the number of non-dominated points is
polynomial for the special case where all segment upgrade costs are
equal.

Theorem 6. BRT(x/Z = oo/|M| > 1) is intractable, even if |[M| = 1 and
Z = oo.

Proof. Consider an instance of BRT(x/Z = oo/|M| = 1) with a graph
(V.E), [V|=n D :={d, :=Gi+1D:ie(l,..,.n=1}}, L, =1 for all
d € Dand u, = 1 for all e € E. Set the passenger potential to a; := 2i-1
and the costs to ¢, = 2i=1 forall i € {1,...,n—1}. As the paths of all
OD pairs only contain one segment, upgrading a segment e; € E results
in attracting a,, = 2i-1 passengers both for LiNear and MINIMPROV.

Upgrading any set F C E of segments results in attracting
Zi:eeF 2/~ passengers with investment costs and hence also invest-
ment budget of Y., c»2"!. As each number k € {0,...,2"! - 1}
can be represented b}lr a binary representation k = Y, 2 for some
F’ € {0,...,n— 1}, there is a solution of BRT(x/Z = co/|M| = 1) with
objective value (k, k) for each k € {0,...,2""! — 1}. Starting with the
ideal point (2"~! — 1,2""! — 1), we can easily see that all these points
are non-dominated. Thus the set of non-dominated points has size 2"~!,
which concludes the proof. []
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Lemma 7. The number of non-dominated points for BRT(x/Z = oo/
|M| > 1) is limited by

1+ Z bm~n,1€a])\(4 bL 2 c,
m

meM m' e€E,

Proof. Algorithm 1 computes at most one non-dominated point per
iteration, i.e., per . From the proof of Lemma 5, we know that

1 1
DE k~—:k€NO}n 0, max { — - 4 .

Hence, the number of non-dominated points is bounded from above by
U {k-i:keNZO}n [o,max{i- D c}]
meM bm meM b’" ecE,,

<1+ Y Heen, k<o, max {1
meM

1
=1+ b, - max § — -
2 " m’e]\)il b

meM m! e€E,

Lemma 8. For BRT(x/Z > 1/|M| = 1) with ¢, = ¢ for all e € E, there
are at most n non-dominated points.

Proof. As each solution F C E has investment costs Y, ¢, = |F| -,
there are at most |E| + 1 = n different values of investment costs for
feasible solutions. As the sets of non-dominated points with respect to
the investment costs and with respect to the investment budget coincide
by Lemma 2, there are at most n non-dominated points. []

Next, we identify two cases for Linear with only one municipality
in which the Pareto front can be computed in polynomial time, see
Lemmas 9 and 10. The setting from Lemma 9 occurs for example if
we consider unit infrastructure improvements u, = 1 for all e € E
and a passenger potential that is distributed evenly over all OD pairs,
i.e., a; = ay for all d,d’ € D. A cost pattern as in Lemma 10 occurs for
example if the costs are less expensive in the middle of the line but are
increasingly expensive towards its ends. Recall that p(F) = Y . @, for

all FC E withii, :=u, - Y sep: ——4— forall e € E.
eeW, Ze’er et

Lemma 9. Let an instance of BRT(LINEAR/Z = oo/|M| = 1) with unit
costs ¢, :=1 for all e € E be given. Let e, i € {1,...,n—1} denote a
sorting of the segments such that i, b 2 2l
1 Ifoel0,....n—1}) and F = {eg 1 i € {1,...
efficient solution.
2. Ifthereissomei € {1,...,n—1} such thatﬁej < ﬁej, fordlj<j <i
and i, > ﬁe/’ foralli < j < j', then there is some efficient solution
(F,v) for each non-dominated point (p(F), v) such that all segments
in F are connected.
3. The instance can be solved in polynomial time.

,v}}, then (F,v) is an

Proof.

1. First, (F,v) is feasible because Y, ., c, = v, hence, the budget
constraint is satisfied. Second, suppose it is not efficient. Then
it is dominated by some solution (F’,v’). Assume v’ < v, then
|F'| =¢(F") <V <v=c(F)=|F| and hence

2}

"N — p I P

p(F") = 2 i, < Zuem = Zue = p(F).
ecF’ i=1 ecF

Now assume p(F’) > p(F). In this case |F’| > |F| because F
contains the v segments with the highest value i,. This implies
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V' > ¢(F') > ¢(F) = v. Therefore, there cannot be a solution that
dominates (F,v), and (F,v) is efficient.

2. Let (p(F'),v) be a non-dominated point, i.e., v € {0,...,n—1}
because the budget constraint is satisfied with equality. By as-
sumption, we can suppose that e, = e;. Because 7, increases
monotonically until e; and decreases monotonically afterwards,
we can assume that e, € {e;_;, sy }. Iteratively, we get that if
{eqys et =1le; 1 jE{l,....I1+k}} forsomel € {l,...,n—1},
then e, ) € {e,_y, e/ 411 ). Hence, (F,v) with F = {e; @i €
{1,...,v}} is an efficient solution because of item 1 and thus
p(F) = p(F'). Moreover, the set F is connected.

3. From Lemma 8, we know that there are at most » non-dominated
points, one for each investment budget value v € {0,...,n —1}.
The sorting of the segments with respect to the values i, can be
done in O(n?). Because we can find the optimal set of upgraded
segments F corresponding to a fixed investment budget value v
as shown in item 1, we can find all non-dominated points in
polynomial time by iterating over the investment budget values
vel{0,...,n=1}. O

Lemma 10. Let aninstance of BRT(LINEAR/Z = oo/| M| = 1) with i, := 1
for dll e € E be given. Let e, i € {1,...,n— 1} denote a sorting of the
segments such that Copy S0 S G-

1 Letk € {0, ...,n=1}. If o= 3 ¢, and F = {eg, 1 i € {1,....k}},
then (F,v) is an efficient solution.

2. If thereis somei € {1,...,n—1} such that C, 2 Ce, foralj<j <i
and ¢, <c,, forall i< j < j’, then there is some efficient solution
(F,v) for each non-dominated point (p(F),v) such that all segments
in F are connected.

3. The instance can be solved in polynomial time.

Proof.

1. First, (F,v) is feasible by construction. Second, suppose it is not
efficient. Then it is dominated by some solution (F’, v'). Assume
p(F") > p(F). This implies |F’| > |F| = k, and hence

k
> e(F)= Z Co > Zceu) =v.
eeF’! i=1

Now assume v/ < v. In this case |F’| < |F| because F contains
the k segments with the lowest costs ¢, and ¢(F) = v. This
implies p(F’) < p(F). Therefore, there cannot be a solution that
dominates (F,v), and (F,v) is efficient.

2. The proof is analogous to the proof for Lemma 9, item 2.

3. Because there are n different values for the number of newly
attracted passengers, namely p(F) = |F| € {0,...,n — 1} for all
F C E, and ¢, > 0 for all e € E, there are n non-dominated
points, one per number of segments in F. We can sort the
segments according to their costs in O(n?). Using the formula
in item 1, we can find all non-dominated points in polynomial
time by iterating over the number of upgraded segments k €
0,....n—1}. 0O

4.2. Exploiting the structure of the BRT component constraint

The BRT component constraint limits the number of upgraded con-
nected components and, as a result, also limits the number of feasible
sets of upgraded segments F C E. This can have an impact on both the
number of non-dominated points and the computation time needed to
solve the single-objective problems in Algorithm 1. For that reason, we
further analyze the complexity of the BRT investment problem in the
context of this component constraint.

First, we consider BRT(x/Z = k/|M| > 1), where k is fixed and not
part of the input, and show that all non-dominated points can be found
in polynomial time by an enumeration algorithm, see Theorem 11. This
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means that the problem is “slice-wise polynomial” and, hence, in the
complexity class XP (Downey and Fellows, 2013; Cygan et al., 2015).
We remark that Theorem 11 does not imply that BRT(x/Z > 1/|M| >
1) is in FPT, the set of fixed-parameter tractable problems.

Theorem 11. BRT(%x/Z = k/|M| > 1) can be solved in polynomial time
for a fixed k € N,.

Proof. Let k € N;; be fixed. We consider an instance of BRT(x/Z =
k/|M| > 1). Each BRT component is uniquely defined by a pair
(s,t) € V x V with s < ¢t marking the first and last station of the BRT
component. A feasible set of upgraded segments F C E can have at
most kK BRT components determined by (s;,7,), ..., (s, ;). There are at
most n possible values for each s; and ¢; for all i € {1, ..., k}. Hence, the
number of sets satisfying the BRT component constraint is in O(n?¢). For
each such set F, we can compute the (minimum) investment budget in
O(|E|) and compute the number of attracted passengers in O(|D| - | E|).
Due to Definition 2, a solution (F,v) can only be efficient if v is the
minimum investment budget for which F is feasible. Therefore, the
above procedure gives all potentially efficient solutions of BRT(x/Z =
k/|M| > 1), implying that BRT(x/Z = k/|M| > 1) can be solved in
polynomial time for a fixed k e N,;. [

Note that the result from Theorem 11 is especially useful when find-
ing the set of non-dominated points for instances with a low value k.

We also consider the case with many BRT components. Here,
Lemma 12 shows that the BRT component constraint becomes redun-
dant for values of Z > | £l |. This lemma thus motivates to consider
the case with an arbitrary number of BRT components in more detail.
Furthermore, Lemma 13 shows how we can use BRT*(LINEAR/Z =
o/|M| > 1) to obtain bounds on the optimal objective value for the
single-objective problem BRT*(LiNear/Z = k/|M| > 1) for any fixed k €
N, . Such a bound could, e.g., be used to obtain an approximate Pareto
front for instances in which it is hard to solve the single-objective
problems in Algorithm 1 to optimality.
Lemma 12. Let an instance of BRT(x/Z = k/|M| > 1) be given. The
BRT component constraint is redundant if Z > % .

Proof. Let an arbitrary subset F C E be given. Then G[F] has
the maximum number of connected components if F is a maximum
matching in G, which would be to take every second segment. This

yields at most ['—;ﬂ connected components. Hence, the number of

connected components of G[F] is always less or equal Z if Z > [%w
In this case, the BRT component constraint is satisfied. []

Lemma 13. Let an instance of BRT*(LINEAR/Z = oo/|M | > 1) be given.
Let f and f, be the optimal objective value of BRT*(LINEAR/Z = oo/|M| >
1) with the optimal solution F and of BRT*(LiNearR/Z = k/|M| > 1) for a
fixed k € N, respectively. Let K be the number of BRT components of F.
Then f, = f if k > K, andfszzgfifk<1<.

Proof. Dropping the BRT component constraint is clearly a relaxation,
hence, f > f,.

If k > K, then F is still feasible for the restricted problem
BRT*(LiNeArR/Z = k/|M| > 1). Therefore, f, = f in that case.

So let k < K, and let Fj,..., Fx be the BRT components of F. For
every i € {1,...,K}, we define r; := Zeeﬂ ii, as the gain in passengers
when upgrading the ith BRT component of F. We assume that they are
sorted such that r| > --- > rg > 0. Allowing k BRT components means
that F|U---UF, is a feasible solution as it has exactly k BRT components.
This yields that

k
ez Yz S
i=1

ok
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Here, the last inequality holds because of the following argument:

Assume that it is not true, i.e., Zl’;l r < %f. This implies ZiK=k+l r=
f- Zf.;l rp> % f. We then have that r, < % f because we would
have Y¥ r, > k- % f otherwise, and r;; > % f analogously. This is a

i=1"i =

contradiction to ri > ri . O
4.3. Complexity analysis of the single-objective problem

While we showed in the previous sections that BRT(LiNear/Z =
oo/|M| = 1) with a special structure and BRT(x/Z = k/|M| > 1) for
small values of k can be solved in polynomial time, the time needed to
solve the single-objective subproblems BRT*(x/Z = co/|M| > 1) has a
large impact on the running time of Algorithm 1 in other cases. In this
section, based on the complexity analysis in Hoogervorst et al. (2022),
we show that the single-objective BRT investment problem is related to
the well-known knapsack problem and hence NP-hard in general, see
Theorem 14 and Theorem 15. However, we also identify polynomially
solvable cases in Lemma 17 and Lemma 18.

Theorem 14. BRT*(LiNear/Z > 1/|M| > 1) is NP-hard, even if Z = oo,
IM|=1andu, =1 forall e € E.

Proof. For the sake of simplicity, we call the decision version of a prob-
lem like its optimization version. Given a solution to BRT*(LiNEAR/Z >
1/|IM| > 1), we can check in polynomial time whether the budget
constraints and the BRT component constraint are satisfied and a
certain value in the objective function is reached.

We reduce (the decision version of) 0-1 knapsack to BRT*(LiNEAR/
Z > 1/|M| > 1). Let k elements with rewards r; € N, and weights
w; € Ny, for all i € {1,...,k}, a budget B and a bound S’ be given.
We construct an instance of BRT*(LiNear/Z > 1/|M| > 1) as follows:
Weset S :=S', n:=k+1, thismeans V := {1,...,k+ 1}, E :={e; :
i€ {l....,k}}, D:={Gi+1 ie€{l,...k}}, ¢, = w and Uy, =1
foralli € {1,...,k}, M := {1}, b; := 1, v := B and a; := r; for all
d=(,i+1)withi € {1,...,k} and Z := k. We show that every feasible
solution F’ C {1,...,k} of 0-1 knapsack with an objective value of at
least S’ corresponds to a feasible solution F C E of BRT*(LINEAR/Z >
1/|M| > 1) with an objective value of at least .S. The solutions F’ and
F correspond to each other as follows: i € F’ if and only if ¢; € F.
Then the claim holds because Y, p/ w; = Yicpr Co; = Yoer ¢ and

ZeeFﬂ{e») 1
Z ri= Z Agi+1) = Z <f'ad
d=(i,i+1):

ieF’ e, €F
i€{l....k})

ZeanWd Ue
Sy (L) o
deD Zeer u,

Consider the mixed-integer programming formulation of
BRT*(LINEAR/Z = oo/|M| > 1) with a fixed v € R,,, where the
redundant BRT component constraints are dropped:

max Z i,x,

e€E

s.t. 2 c.X, < b,v

e€E,

forallme M

x, €{0,1} forallee E.

We can see that BRT*(LINEAR/Z = co/|M| > 1) and BRT*(LINEAR/Z =
oo/|M| = 1) are (multidimensional) 0-1 knapsack problems. More-
over, because the sets E,, m € M, are disjoint, BRT*(LINearR/Z =
oo/|M| > 1) can be decomposed into |M| independent knapsack prob-
lems and hence can be solved in pseudo-polynomial time by dynamic
programming.

Theorem 15. BRT*(MwImrrov/Z > 1/|M| > 1) is NP-hard, even if
Z=oo,M=1,u,=1forallec Eand L; =1 forall d € D.
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Proof. As in the proof of Theorem 14, BRT*(MinImprov/Z > 1/|M| > 1)
is in NP.

Further, we apply the same reduction from 0-1 knapsack to
BRT*(MmImprov/Z > 1/|M| > 1) and additionally choose L, := 1 for
all d € D. It remains to show that the objective value is the same for
solutions that correspond to each other. We have that

> w=Xrn

deD: ” ieF'
Li<XeeFnwy °©
because
{deD i L, < Z ue} = {(i,i+1) tiefl,...,k}and 1 < Z 1}
eeFnW, eeFnfe;}

={G,i+1):ie{l,....,k}ande, € F}={G,i+ 1) :ieF'}. O

We conclude the complexity analysis by identifying cases in which

the single-objective BRT investment problem can be solved in poly-
nomial time. To this end, we review the consecutive ones property,
which is well known in the literature (see, e.g., Ruf and Schobel (2004),
Schobel (2005), Dom et al. (2008), Dom (2009)). Lemma 17 uses
this property to show that BRT*(LineaR/Z = oo/|M| > 1) can be
solved in polynomial time in case all segments have unit upgrade costs.
Moreover, Lemma 18 shows that BRT*(MinImMprov/Z = oo/|M| > 1)
can be solved in polynomial time when it holds that all segments have
unit upgrade costs and unit improvements, and at the same time only
a single segment has to be upgraded to attract the passengers for each
OD pair.
Definition 4 (Consecutive ones property). A matrix A € {0, 1}/ satisfies
the consecutive ones property (C1P) on the rows if for all rows i €
{1,...,k} it holds: If A;; =1 and Ajy=1 for some j,j’ € {1,...,1},
j<j'sthen A;;=1forall j <j<j'.

Lemma 16 (Wolsey and Nemhauser, 1999). If a matrix A € {0,1}*
satisfies C1P, then A is totally unimodular.

Lemma 17. BRT*(LiNeArR/Z = oo/|M| > 1) can be solved in polynomial
timeifc,=1foralle € E.

Proof. Consider

max Z i,x,

ecE
st. Y ex,<b,w forallme M 3)
e€kE,
x, €{0,1} foralleeE.

We sort the segments and municipalities from one end of the line
to the other. Let A € RIMIXIEl be the coefficient matrix of the budget
constraints, i.e., for all m € M and e € E, we have 4,, = 1 if
e € E,, and A,, = 0 otherwise. Because of the assumption that
the municipalities contain only consecutive segments, the matrix A
satisfies the consecutive ones property. By Lemma 16, it is totally
unimodular and the linear programming relaxation of IP (3) yields an
integer solution. Therefore, the problem can be solved in polynomial
time (Wolsey and Nemhauser, 1999). [

Lemma 18. BRT*(MmImprov/Z = oo/|M| > 1) can be solved in
polynomial time if ¢, =1, u, =1 forallec Eand L, =1 for all d € D.

Proof. We again sort the segments and municipalities from one end of
the line to the other. The considered special case yields the following
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simplified formulation:

max Z agyq
deD
s.t. Z X, <b,v forallmeM
e€E,
Z (=x,) +ys <0 foralld € D @
eeW,
x, €{0,1} forallee E
ys €1{0,1} forall d € D.
The coefficient matrix of the budget constraints and the constraints for
1
the objective is of the form A = /;2 ME where I € {0, 1}IPXIDI jg

the unit matrix, A' € {0, 1}!MXIE] denotes whether a segment belongs
to a municipality, and A% € {0, 1}IPXIEl denotes whether a segment is
on the path of an OD pair. Formally, we have for all m € M, d € D and
e € E that

1 ifeew,
2 ds
and Ay, = .
0 otherwise.

The matrix A! has C1P because of the assumption that municipalities
contain only consecutive segments, and A> has C1P because the con-
sidered graph is a linear graph. As multiplying a row of a matrix by

—1 only influences the sign of the determinant of the matrix and its
1

. A, . .
submatrices, the matrix 42|18 totally unimodular by Lemma 16. This

| 1 ifeeE,,
me 0 otherwise

yields that the coefficient matrix 4, which we obtain by appending a
part of a unit matrix to the totally unimodular matrix, is also totally
unimodular. Therefore, the linear programming relaxation of IP (4)
yields an integer solution in this special case, and the problem can be
solved in polynomial time (Wolsey and Nemhauser, 1999). []

If we consider a global decision maker in addition to the assump-
tions of Lemma 17 and Lemma 18, these special cases also satisfy
the conditions of Lemma 8 and thus the complete Pareto front of
BRT(%x/Z = co/|M| = 1) can be constructed in polynomial time.

5. Numerical experiments for artificial instances

The Pareto front and the impact of the selected passenger response,
the upper bound on the number of BRT components, and the existence
of municipalities are at the center of our computational analysis. These
are analyzed in the context of a large library of artificial instances
with different interplays between the passenger potential and the up-
grade costs. Moreover, to investigate the impact of municipalities, we
consider different options to split the budget among them.

5.1. Description of instances

All artificial instances consider a line consisting of 25 stations and
have the same infrastructure improvements per segment, which are
drawn at random. The artificial instances differ however in terms of
the graph scenario a = (a;, a,) defining the costs for upgrading each
segment and a demand pattern, respectively, as well as in terms of the
budget scenario f defining the budget split among five municipalities.
The considered values for these parameters are given in Table 3.

The cost pattern «; varies between uniform costs per segment
(UNIT), a pattern with higher costs in the center of the line (MIDDLE),
and an ENDS pattern to contrast with the others by having the segments
with the highest upgrade costs at the ends of the line. The MIDDLE
cost pattern could result, e.g., from upgrades in the inner city being
more complicated, while ENDS could represent outside-city upgrades
involving highway lanes that are very expensive to upgrade. The cost
patterns together with the (fixed) infrastructure improvements are
depicted in Fig. A.15 in the Appendix.
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Fig. 5. Load profiles of all demand patterns for the artificial instances. The horizontal axis contains each of the 24 segments of the BRT line. Each bar represents the number of
potential passengers using the respective segment, and the coloring of a bar depicts the total travel distance of passengers using that segment.

Also the volume and the distribution of the potential passengers
of the line impact the solutions. The three different load profiles
resulting from the three demand patterns a, (EVEN, HUBS, TERMINI)
are depicted in Fig. 5, with the height of the bar indicating the load
per segment, and the colored shading indicating the length of the
boarded passengers’ paths. Thus, HUBS results typically in shorter path
lengths than TERMINI and EVEN, whereas TERMINI has especially
many passengers traveling from one end station to the other one.
Moreover, EVEN has fewer passengers traveling around the terminals of
the line than the other two. For additional information regarding the
locations of stations with high demand along the line and the travel
distances of passengers in these demand patterns, see Fig. A.16 and
Fig. A.17 in the Appendix.

The budget split g describes the distribution of the total available in-
vestment budget among the municipalities. We consider a distribution
according to equal shares (EQUAL), proportional to the costs required
for upgrading all segments in a municipality (COST), and according
to the total passenger volume that flows in and out of the stations
belonging to the municipality (PASS).
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5.2. Computational study design

In our computational study, we compute the Pareto fronts for all
instances, focusing on the part where the investment budget does not
exceed the investment costs for upgrading all segments, i.e., v < ¢(E).
As a consequence, dependent on the budget split, not all municipalities
may have sufficient budget to upgrade all of their segments. In addition
to varying characteristics of the instances (Section 5.1), we consider the
different problem variants BRT(4,/4,/43) from Section 3.4:

Passenger response All instances are evaluated for the objectives
Linear and MinImerov. For MinImprov, we require that a minimum of
75% of the potential infrastructure improvements is achieved through
upgrades before the passengers corresponding to that OD pair are
attracted, i.e.,

L, = {0.75. > ueJ

eeEW,
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Table 3
Parameters for generating artificial instances.
Parameter Value Explanation
UNIT unit costs of ¢, =1 for all e € E
o cost pattern MIDDLE more expensive towards the middle of the line
ENDS more expensive towards the end stations of the line
EVEN same passenger potential for each OD pair
a demand pattern HUBS centered around large stations, passengers distributed according to the gravity model (Rodrigue, 2020)
TERMINI high passenger potential between end stations of the line
EQUAL budget distributed equally among municipalities, i.e., equal budget shares b,
p budget split COST budget shares b,, proportional to the costs of the segments in municipality m
PASS budget shares b,, proportional to the number of potential passengers entering or exiting in municipality m

for all OD pairs d € D.

Number of BRT components We consider upper bounds on the num-
ber of BRT components Z € {1,2,3, «}. Our experiments show that the
difference between Z =3 and Z = oo is generally small, and therefore
including more options for Z than {1, 2,3, co} would not lead to further
insights in our setting.

Municipalities In order to determine the impact of the separate mu-
nicipality budgets, each instance is evaluated both in the context of a
global decision maker with a single budget (|M| = 1) as well as in the
original context where each municipality has its own budget constraint
(M| = 5). In the former setting, the global decision maker can spend
the whole investment budget v, i.e., there is a single municipality with
b, = 1, while in the latter setting, the investment budget is distributed
among the municipalities according to the budget split # (Table 3).

The data of the artificial instances together with the applied upper
bound on the number of BRT components and the municipality sce-
nario, i.e., a total of 32 - 42 = 144 settings that are evaluated regarding
both passenger responses, is available at https://doi.org/10.11583/
DTU.23653893.

5.3. Computation time

All instances are solved by means of the commercial solver CPLEX
22.1 on a computer with an Intel Xeon Gold 6126 processor, using 12
CPU cores and a total of 24 GB of internal memory. The corresponding
running time for computing the non-dominated points for the artificial
instances is shown in Table 4. Here, we give the average time to find
the Pareto front, the average number of points on the Pareto front
and the average time for obtaining a single non-dominated point for
each passenger response, each cost pattern «; and both municipality
scenarios |M| € {1,5}. Note that the reported values are averaged
over all three demand patterns «, and over the considered upper bound
on the number of BRT components Z € {1,2,3, c0}. Additionally, the
results are also averaged over the different budget splits g for the
setting with municipalities (|M| = 5).

The results in Table 4 show that the Pareto fronts can overall
be computed quickly, especially for the LiNnear passenger response.
Moreover, it can be seen that the introduction of separate municipality
budgets (| M| = 5) consistently leads to a lower running time and fewer
points on the Pareto front than the consideration of a global decision
maker (|M| = 1). This is likely a result of the smaller solution space
with separate municipality budgets, where fewer combinations of items
fit within the individual municipality budgets. The longest running
times can be observed for the MIDDLE cost pattern in combination with
the MinImprov passenger response, where especially the long running
time for the setting with a global decision maker (|M| = 1) stands
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out. This might be explained by the middle segments often having the
highest passenger load as well as being the most expensive to upgrade
when considering this cost pattern. Looking at the number of points on
the Pareto front, it can be observed that the number of non-dominated
points is significantly lower than the theoretical bound determined in
Lemma 7. Moreover, in line with Lemma 8, it can be seen that the
number of non-dominated points is often significantly lower for the
UNIT cost pattern than for the other cost patterns.

In addition, Fig. 6 shows the average running time dependent on
the upper limit Z on the number of BRT components. We can see that
the average running time increases with Z, which is mainly because
of the growing number of non-dominated points (see Fig. 7), except
for the case of Linear together with the cost pattern UNIT, in which it
decreases. Lemma 17 showed that this setting together with Z = oo is
a polynomial time special case.

5.4. Analysis of Pareto fronts

In this section, we analyze the influence of the passenger response,
the number of BRT components, the demand pattern and the munici-
palities on the Pareto front. As described in Section 3.3, we compute the
efficient solutions and the Pareto fronts with respect to the investment
budget, but we evaluate the results with respect to the investment
costs. Therefore, the following figures show the investment costs on the
horizontal axis and the newly attracted passengers on the vertical axis.
Both are given as percentage of the total number of potential passengers
and costs for upgrading all segments, respectively. Fig. 8 shows the
evaluation for a global decision maker (|[M| = 1). The red plots
represent the Linear passenger response and the blue plots represent
the MinImprov passenger response, while the line style represents the
number of allowed BRT components Z. All graphs in a row share the
same cost pattern «;, and all graphs in a column share the same demand
pattern a,.

Influence of the passenger response In general, the non-linear objec-
tive MinImprov leads to solutions with less passengers per investment
budget than LiNear, with the exception of high level investments of at
least around 75% of the total budget or more. The cut-off point at
75% correlates with the minimum improvement L, of 75% required
within MinImprov, for (a;,a,) = (ENDS, TERMINI) the cut-off point is
a bit lower. Furthermore, the shape of the curve is typically more
convex for MinImprov, in which the return on investment is generally
increasing and only starts to reduce much later than for the Linear
passenger response. LiNear rather shows a higher return on investments
at the lower investment levels. This can be explained by looking at the
passenger responses. For the LiNeArR passenger response, passengers of
all OD pairs that are affected by upgrades are attracted in proportion to


https://doi.org/10.11583/DTU.23653893
https://doi.org/10.11583/DTU.23653893
https://doi.org/10.11583/DTU.23653893

R. Hoogervorst et al.

Table 4

Computers and Operations Research 167 (2024) 106640

Running time in seconds, number of obtained Pareto points and running time per Pareto point for problem variants BRT(x/Z > 1/|M| = 1)
and BRT(x/Z > 1/|M| = 5). The results have been averaged over artificial instances sharing the same cost pattern «.

Objective a BRT(x/Z > 1/|M| = 1) BRT(x/Z > 1/|M| =5)
All points # points Per point All points # points Per point
LINEAR UNIT 0.17 25.00 0.007 0.09 7.47 0.012
LINEAR MIDDLE 3.53 179.83 0.020 0.52 37.53 0.014
LINEAR ENDS 1.95 107.00 0.016 0.39 28.25 0.014
MinImprOV UNIT 14.96 25.00 0.599 1.12 7.42 0.152
MinImPROV MIDDLE 768.00 105.42 5.098 3.93 26.08 0.139
MinImPROV ENDS 68.65 77.17 0.639 3.02 25.00 0.117
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Fig. 6. Running time of BRT(x/|M|=1/Z > 1) and BRT(x/|M|=5/Z > 1)

budget splits (if applicable).

with a logarithmic scale on the vertical axis. The values are averaged over all demand patterns and
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Fig. 7. Number of non-dominated points of BRT(x/|M| = 1/Z > 1) and BRT(x/|M| =5/Z > 1). The values are averaged over all demand patterns and budget splits (if applicable).

the realized infrastructure improvements. For the MinImprov passenger
response, however, mainly passengers of affected OD pairs with a short
travel distance are attracted at a low investment budget level. Only at
higher investment budget levels, when sufficiently many segments can
be upgraded, long-distance travelers are also attracted. As the demand
pattern TERMINI has around 14% of all passengers traveling along
all 24 segments and the aggregated demand over the other OD pairs
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decreases only slowly in the path length (see Fig. A.17 in the Appendix),
the convexity effect is most strongly pronounced for this demand
pattern. In comparison, the convexity effect is a bit less pronounced
for EVEN and only weakly present for HUBS, for which the demand
of long-distance journeys is generally decreasing. The gap between
the two passenger responses is generally smaller for high investment
budgets. These results indicate that the passenger response has a strong
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Fig. 9. Evaluation of the non-dominated points of BRT(x/Z > 1/|M| = 1) for artificial instances with cost pattern «; = UNIT and Z € {1,o} and all choices for the demand
pattern «,. Both attracted passengers and investment costs are given as percentage of the total number of potential passengers and costs for upgrading all segments, respectively.

impact on the trade-off between attracted passengers and investments.
Investigating the passenger behavior as part of BRT feasibility studies
would thus be important to determine an appropriate investment level.

Influence of the number of BRT components The impact of the upper
bound on the number of BRT components Z diminishes quickly with
size, where the numbers of attracted passengers and the investment
costs of non-dominated solutions for Z = 3 and Z = o are almost
identical. Again, the impact of Z is higher for larger investment bud-
gets and also more prevailing for the MinIMPrOV passenger response.
Additionally, the MIDDLE cost pattern (center row) and the TERMINI
demand pattern (right column) show a large impact of the BRT compo-
nent constraint. In general, we see that restricting the number of BRT
components to a fixed Z > 1 comes at small costs, while it could lead
to lines that may be considered of higher quality from a passenger
perspective. Finally, from a computational perspective fixing Z can
reduce the computational complexity, as shown earlier in Theorem 11
and in Section 5.3.

Influence of the demand pattern Fig. 9 depicts the effect of the de-
mand pattern on the sets of non-dominated points for
BRT(x/Z = oo/|M| = 1) (solid lines) and BRT(x/Z = 1/|M| = 1) (dot-
ted lines) for the cost pattern UNIT (the results for the other cost
patterns are similar and can be seen in Fig. A.18 in the Appendix). For
the passenger response LiNeAR, the demand patterns behave similarly.
The only thing that stands out is that TERMINI leads to slightly fewer
attracted passengers compared to HUBS and EVEN. This can also be
seen for MinImprov. In addition, we see a large jump in attracted
passengers for MinImprov with demand pattern TERMINI when around
75% of the budget is invested. This is due to the relatively high number
of passengers that travel along all 24 segments (about 14% of all pas-
sengers) because realizing 75% of the potential improvement suffices
to attract all those passengers according to the definition of MinImprov.
The influence of restricting the number of connected components to
Z =1 is especially pronounced for the demand pattern TERMINI. Here
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again, the high number of passengers using all 24 segments is affected
most by restricting the set of upgraded segments.

Influence of municipalities The impact of the distribution of the
budget among the municipalities is depicted in Fig. 10, which is similar
in set-up to Fig. 8 with the difference that the line styles now represent
different budget splits among the municipalities, with the solid line
representing the case of a global decision maker. Moreover, all results
in Fig. 10 are obtained without the BRT component constraint (Z = co0).

The introduction of municipalities generally leads to lower numbers
of attracted passengers. Because of the distribution of the investment
budget among the municipalities, compared to the case of a global
decision maker, only a smaller share can be invested and not always
in the segments that would attract the most passengers. Moreover,
considering several municipalities intensifies the findings of the case
with a global decision maker: MiNnImprov requires higher investments
for the same number of passengers until around 75% of investments
and is characterized by a return on investment that follows a more
convex shape compared to the LiNear passenger response, with the same
explanations as for the case of a global decision maker. The impact of
the chosen budget split among the municipalities is typically higher for
MinImprov as well. For budget splits other than COST, the full upgrade
may not be achievable even at an investment budget equal to 100%
of the total upgrade costs because individual municipalities may not
have enough money available to upgrade all segments belonging to
them. This is specifically visible for «; = MIDDLE, a, = TERMINI,
p = PASS, in this case, even only about 30% of the passenger potential
are attracted at 100% investment budget, showing that the investment
costs stagnate at 55% because of the interplay between budget split
and the demand pattern. The results indicate that, especially in case
of a non-linear relationship between BRT upgrades and attracted pas-
sengers, establishing a framework for collaboration and co-commitment
has a large influence on the number of attracted passengers and thereby
on the line potential.
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Fig. 10. Evaluation of the non-dominated points of BRT(LINEAR/Z = oo/|M | > 1) (red) and BRT(MmImprov/Z = oo/|M| > 1) (blue) for artificial instances with |M| € {1,5} and all
choices for parameters a;, @, and p. Both attracted passengers and investment costs are given as percentage of the total number of potential passengers and costs for upgrading all

segments, respectively.
6. Greater Copenhagen case study

We now focus on the case study for the planned BRT line in Greater
Copenhagen. We first describe the case study and the corresponding
instances. Afterwards, we analyze the Pareto plots that are obtained
for these instances.

6.1. Description of the instances

Currently, the Capital Region in Denmark (a regional government) is
planning to build a set of BRT lines within Copenhagen and the urban
area surrounding it, i.e., Greater Copenhagen. One of these new BRT
lines will run foremost along the route of the bus line 400S, which is
currently a traditional mixed traffic line. A pre-assessment study was
conducted for the BRT line that calculated the expected costs, travel
durations and number of passengers per station for five different route
alternatives (Vejdirektoratet et al., 2022). These five route alternatives
are shown in Fig. 11.
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All five route alternatives run through a total of eight municipalities.
These municipalities have authority over their local investments in the
BRT line, and investments in local infrastructure would not be possible
without their involvement. Next to the municipalities, also the Capital
Region, the central Danish government, and Movia are involved in
the planning process. Movia is a public transport agency funded by
the collective of municipalities in the Capital Region, which highlights
the willingness of the municipalities to work together to find socially
optimal solutions for public transport in the region. Moreover, due to
the expertise available within the agency, Movia overall takes a leading
role in the design of the new BRT line and thereby provides suggestions
that then need to be approved by the municipalities. This process can be
iterative: Municipalities discuss solutions and revise their budget levels,
followed by new suggestions from Movia. Hereby, the proposed model
can advise Movia on how sensitively the number of newly attracted
passengers reacts to a reduction in the investment budget. Thereby, it
can illustrate the importance of achieving a high upgrade level and may
aid the transport agency in selecting its strategy.
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We use the data from the pre-assessment study to derive instances
for the BRT investment problem for each of the five route alternatives.
These instances contain between 24 and 32 stations, depending on the
route. The current plan includes connecting the BRT line via Nybrovej
to Lyngby station, even though the responsible municipality has indi-
cated it is not willing to invest in upgrading the infrastructure on their
segments. Therefore, our case includes two segments that cannot be
upgraded. The remaining seven municipalities are willing to partake
in the BRT project. The upgrade costs per segment are derived from
the required infrastructure investments for the line provided in the pre-
assessment. Moreover, the potential benefit of upgrading a segment is
defined by the difference between expected travel time of the current
mixed traffic line and the new expected travel times of the BRT line
as defined in the pre-assessment. The upgrade costs and infrastructure
improvements are depicted in Fig. A.19 in the Appendix.

In addition, we constructed an estimate of the future OD matrix by
combining the estimated passenger demand per station from the pre-
assessment study with the current OD matrix on the existing bus line.
Specifically, the distribution of the forecasted inflow of passengers over
all possible destination stations was scaled by the current fractional
relation between this station and the other stations on the 400S line.
A customized mapping was built for OD pairs that did not exist yet
on the 400S. The resulting load profiles were determined based on
conversations with Movia. The obtained load profiles are shown in
Fig. 12, where the height again indicates the load per segment, and
the coloring indicates the length of the boarded passengers’ paths. We
assume that a fixed percentage of each OD pair can be attributed to
passengers newly attracted by infrastructure improvements.

We consider two potential budget splits between the seven munic-
ipalities that are willing to invest in the line. These are the cost-based
and the passenger-based budget splits, # € {COST, PASS}, as described
in Table 3. Because the actual costs and the number of passengers
per municipality vary strongly, considering the EQUAL budget split is
unrealistic. Also, the impact of the number of allowed BRT components
is evaluated according to the parameters included in Table 3. There
are thus 3 - 4 = 12 instances per route alternative, giving a total of
60 instances for the case study. These instances are available at https:
//doi.org/10.11583/DTU.23664069.

6.2. Analysis of pareto fronts

We now look at the results of our experiments, where our aim is to
analyze and compare the investment trade-offs for the five BRT route
alternatives, taking into account the effect of the different passenger
responses and budget splits over the municipalities. Here, we use a
similar computational set-up as described for the artificial instances
in Section 5.2. Moreover, the investment budget is limited to the
investment costs for upgrading all segments of the most expensive
route alternative. As a consequence, dependent on the budget split, not
all municipalities may have sufficient budget to upgrade all of their
segments. The resulting Pareto fronts for the two passenger responses,
with and without municipalities, evaluated regarding the investment
costs are given in Fig. 13 for the setting without a BRT component
constraint (Z = o). Here, graphs in the top row provide the results
when there is a global decision maker (|M| = 1), and graphs in the
bottom row are for the case with municipalities (|M| = 7). Each
graph indicates the investment costs as a percentage of the costs for
upgrading all segments of the most expensive route alternative on the
horizontal axis. The vertical axis indicates the attracted passengers
relative to the maximum number of potential passengers over all route
alternatives. This scaling on both axes allows to directly compare the
route alternatives to each other.

The obtained Pareto plots show that many of the observations from
the artificial results carry over to the Greater Copenhagen case study.
It can be seen that the number of attracted passengers is generally
again higher for the LiNear passenger response than for the MinImprov
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passenger response, except for investment levels that are above 75% to
80%, and that this effect is more pronounced when including the differ-
ent municipalities. Moreover, the introduction of municipality budgets
has again a significant impact on the number of attracted passengers,
especially under the passenger response MinImprov. However, especially
apparent in these case study results is the ability of the budget split
p = COST to achieve a significantly higher number of passengers at
higher investment levels. This effect can be attributed to the presence
of segments with very high upgrade costs, which are hard to upgrade
for municipalities when they are not awarded a share that is in line
with these upgrade costs.

When focusing on the comparison of the route alternatives, Fig. 13
shows that there is not a universal ordering of the route alternatives
respective to the number of attracted passengers. Instead, this ordering
depends on both the investment level and the passenger response. For
example, it can be seen that route alternatives 4 and 5 lead to the
largest number of attracted passengers for middle to high investment
levels under both passenger responses for |[M| = 1, which can be
explained by the higher total passenger potential for these alternatives.
However, for |[M| = 7 and at an investment level between 30% and
70%, the route alternatives 1 and 2 yield the highest numbers of
attracted passengers for both passenger responses. For low investment
levels, the numbers of attracted passengers deviate less between the
route alternatives, but it depends on the precise investment level, which
route alternative is best.

Our results thus show the importance of obtaining knowledge about
the passenger response and the willingness of municipalities to invest
before a final route alternative is chosen for the BRT line.

Influence of the number of components It remains to analyze the
impact of the BRT component constraint for the Greater Copenhagen
case study. This effect is depicted in Fig. 14, which analyzes the
effect of the number of allowed BRT components Z on the number
of attracted passengers for each of the five route alternatives and for
both passenger responses. These results are computed for the setting
of a global decision maker (|M| = 1). Moreover, to make the impact
of the BRT component constraint more visible, this figure condenses
the Pareto plots to ten budget ranges and shows the solution with the
highest number of attracted passengers within each range.

As for the artificial instances, Fig. 14 shows that restricting the num-
ber of components leads to a reduced number of attracted passengers
for all route alternatives. This effect is strongest for investment levels
that are closer to the middle and lower end. By design, no effect can be
seen for the highest investment level, as all segments will be upgraded.
Comparing the Linear and MinIMpPrOV passenger responses, an interesting
difference is that the impact of restricting the number of components is
stronger for the very low investment levels for Linear. In addition, it can
be seen that it is again especially the restriction to a single component
that leads to a strong reduction in passengers. For these instances,
there is a difference between allowing 2, 3 or arbitrarily many BRT
components for most available budget levels, although the solution for
at most 3 BRT components comes close to that of allowing arbitrarily
many BRT components.

7. Conclusion

We studied the bi-objective BRT investment problem, which focuses
on determining the set of segments to be upgraded for a BRT line
such to balance the number of attracted passengers and the investment
budget. Municipalities are considered in this problem through separate
municipality budgets. Moreover, this problem allows the restriction of
the number of upgraded connected components to prevent frequent
switching between upgraded and non-upgraded segments. Additionally,
we considered two passenger responses to upgrades: a linear and a
threshold relation.

We developed a bi-objective mixed-integer linear programming for-
mulation for the BRT investment problem and an algorithm based on
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Fig. 13. Comparing investment costs and attracted passengers for the five different route alternatives for Z = . The investment costs are given as a percentage of the costs for
upgrading all segments of the most expensive route alternative, and the attracted passengers are given as a percentage of the maximum number of potential passengers over all

route alternatives.

the e-constraint method to find the complete set of non-dominated
points. We proved that the number of non-dominated points grows ex-
ponentially in general but identified special cases in which the problem
becomes tractable. Similarly, we showed that the subproblems that are
solved within the e-constraint-based algorithm are generally NP-hard
but allow polynomially solvable special cases.

Our numerical experiments for artificial instances and the Greater
Copenhagen case study analyzed the impact of the passenger response,
the separate municipality budgets and the BRT component constraint.
The main findings indicate that splitting the budget over municipali-
ties directly reduces the number of attracted passengers, as does the
requirement to have only one BRT component. However, as soon as
two or three BRT components are allowed, the impact is far smaller.
Regarding the artificial instances, for investment costs below 75% of
the total costs for upgrading all segments, the linear passenger response
indicates higher numbers of attracted passengers than the threshold
passenger response. For higher investment costs, it turns, but the values
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are quite close. The Greater Copenhagen case study confirmed many of
these observations, showing that they translate to real-life instances.
Further, the Greater Copenhagen case study showed that the ranking
of the route alternatives is highly dependent on both the passenger
response and the available investment budget. Hence, obtaining a good
estimate on how passengers respond to the upgrades and on the extent
to which municipalities are willing to invest is crucial for selecting the
best route alternative.

In this paper, we have analyzed the two extreme cases of a linear
(Linear) and threshold (MinImprov) passenger response to upgrades.
Considering mixes of these two passenger response functions would,
therefore, be a natural next step. Such a mix could, e.g., be a piecewise
linear response function to upgrades, where the impact of an upgrade
depends on the overall extent to which upgrades are realized. This
would include the special case where the number of passengers grows
linearly as soon as a certain threshold of infrastructure improvements
is reached. Note that piecewise linear objective functions can be easily
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all route alternatives.

integrated into the algorithmic approach suggested in this paper, mean-
ing that the suggested e-constraint-based algorithm can still be used to
find the complete Pareto front.

In addition, the context of this paper assumes an interest in a social
optimum, provided a certain investment level per municipality. As
discussed, such a setting could occur when there is a third party, such
as a transport agency, that makes suggestions to the municipalities as to
which segments should be upgraded. One could imagine that in certain
cases, the interest for a social optimum is challenged by the individual
interests of municipalities, for example, when not all municipalities
benefit equally from the investments to be made. It would therefore
be interesting for future work to focus on a game-theoretic setting
that models this competition, possibly within the context of a central
government searching for the best subsidy scheme to attract the most
passengers at minimum budget subject to the internal competition
between municipalities.

Another interesting direction of future work could be considering
the investment problem in a network context instead of for a single
line, either by including the determination of the route of the BRT line
or by considering that other lines could (be rerouted to) profit from the
upgraded BRT infrastructure as well. In a network setting, other models
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and aspects for passenger behavior could be considered, e.g., including
the travel time (Schiewe and Schobel, 2020) and fares (Schobel and
Urban, 2022) as well as route and mode choice. Also, the inclusion of
operating constraints considering load profiles, e.g., in the setting of
self-driving minibusses with innovative operating modes (Gkiotsalitis
et al., 2022) could be an interesting direction.
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Appendix. Additional instance details and evaluations

In this appendix, additional information about the numerical exper-
iments and the Greater Copenhagen case study is provided. Fig. A.15
and Fig. A.19 show the upgrade costs and the infrastructure improve-
ments per segment as well as which segments belong to the same
municipality for the artificial instances and the case study, respectively.
Fig. A.16 depicts the graphs of the artificial instances, marking the
locations of stations with high demand within the demand patterns
HUBS and TERMINI. Fig. A.17 shows the corresponding histograms of
the travel distances of the passengers. Moreover, as a supplement to
Fig. 9, Fig. A.18 shows the evaluation of the non-dominated points
of BRT(x/Z > 1/|M| = 1) for the artificial instances with the cost
patterns ENDS and MIDDLE. Further plots that depict which segments
are upgraded at certain investment budget levels are provided at https:
//doi.org/10.11583/DTU.c.6805470.
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Fig. A.15. Cost patterns and infrastructure improvements per segment for the artificial instances. Each bar represents a segment. The width of a bar represents the upgrade costs
while the height reflects the infrastructure improvements. The colors indicate to which municipality a segment belongs.
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Fig. A.16. Line graph of the artificial instances. Stations with high demand in the demand patterns HUBS and TERMINI are marked with filled black nodes. There are no large
stations in demand pattern EVEN.
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Fig. A.17. Histogram of the travel distances of passengers. The height of a bar gives the demand of passengers traveling for a certain number of segments.
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Fig. A.19. Cost patterns and infrastructure improvements per segment for the five route alternatives from north (Aldershvilevej) to south (Ishgj St.). Each bar represents a segment.
The width of a bar represents the upgrade costs while the height reflects the infrastructure improvements. The colors indicate to which municipality a segment belongs. Note that
the two non-upgradable segments in Lyngby municipality are excluded.
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