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ABSTRACT

Shipping is responsible for over 90% of global trade. Although it is generally considered a safe and 
clean mode of transportation, it still has a significant impact on the environment. Thus, state-of-the-
art models that may contribute to the sustainable management of the life cycle of shipping operations 
without compromising safety standards are urgently needed. This chapter discusses the potential of 
artificial intelligence (AI) based digital twin models to monitor ship safety and efficiency. A paradigm 
shift is introduced in the form of a model that can predict ship motions and fuel consumption under real 
operational conditions using deep learning models. A bi-directional long short-term memory (LSTM) 
network with attention mechanisms is used to predict ship fuel consumption and a transformer neural 
network is employed to capture ship motions in realistic hydrometeorological conditions. By comparing 
the predicted results with available full scale measurement data, it is suggested that following further 
testing and validation, these models could perform satisfactorily in real conditions. Accordingly, they 
could be integrated into a framework for safe and sustainable ship operations.
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INTRODUCTION

Shipping plays a crucial role in global trade, accounting for over 90% of the transportation of goods 
worldwide (UNCTAD, 2022). While it is generally considered a safe and environmentally friendly mode 
of transport, it still has a significant impact on the environment (UNFCCC, 2022). As a result, there is a 
growing need to ensure the safety and sustainability of ship operations by embracing modern technology.

Originally developed by NASA, digital twins involve creating a virtual replica of a physical object or 
system to simulate and analyse its performance in real-time (Allen, 2021; Zhang, Hirdaris, & Tsoulakos, 
2023). They can be described as machines or computer-based models that simulate, emulate, mirror, or 
“twin” the existence of a physical entity. For example, a ship digital twin refers to a virtual replica or 
representation of a real ship. This digital replica can be created by combining real-time data, simulation 
models, and advanced analytics, allowing for visualization, analysis, and optimization that aims to assure 
safe and sustainable operations in real operations (see Figure 1).

It is important to acknowledge that the accuracy of physics-based models may be limited to “as build” 
design or when it comes to dealing with complex operational conditions and extreme events (Kaur et 
al., 2020). Through deep learning algorithms offer the potential to improve the predictive capabilities of 
digital twin models (Huang et al., 2021; Lee et al., 2022; Nielsen et al., 2022). To address the challenges 
associated with predictive analytics and visualisation hybrid methods should be employed. For example, 
digital twin optimal deep learning models are designed to accurately predict ship motions (Nielsen et 
al., 2022; Zhang, Taimuri, Zhang et al, 2023) and fuel consumption (Chen, Lam, & Xiao, 2023; Uyanık 
et al., 2020; Zhang, Tsoulakos, Kujala et al, 2023). They may be combined by utilizing advanced AI 
methods training physics-based idealisations using comprehensive big data sets. Such predictions may 
enable ship operators to make informed decisions and minimize the ecological footprint of fuel-efficient 
shipping operations.

This chapter introduces an AI-based digital twin designed for enhancing the safety and sustainability 
of ship operations. In Section 2, an overview of digital twin models applicable to maritime operations is 
presented. The AI-based digital twin comprises of two layers, with the primary objectives to estimate ship 
fuel consumption and predict ship motions (Section 2 for further details). To evaluate and demonstrate 
the practical application of this approach, full scale measurement data is utilized, focusing specifically 
on a bulk carrier and a RoRo/Passenger ship (RoPax) (see Sections 4 and 5). Section 6, highlights the 
promising prospects of AI-based digital twins in the realm of developing intelligent decision support 
systems and for effectively monitoring ship safety and efficiency.

Figure 1. The ship digital twin for proactive optimization of ship operations
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AN OVERVIEW OF DIGITAL TWIN MODELS FOR 
USE IN MARITIME OPERATIONS

Ship operations relate to seakeeping and ship performance in adverse conditions (Hirdaris & Mikkola, 
2021). Models that may be used for the estimation of ship fuel consumption or seakeeping can be broadly 
classified into two categories namely (a) physics-based models and (b) Artificial Intelligence (AI) models.

In the area of ship efficiency, physics-based models can approximately estimate ship fuel consumption 
based on key assumptions that utilize the relationship between ship resistance and engine power (Kim et 
al., 2023; Tillig & Ringsberg, 2019). The estimation of fuel consumption is achieved via ship - propeller 
- engine performance models (Vitali et al., 2020). To accurately assess the total resistance experienced 
by a ship, both calm water and added resistance are considered (Kim et al., 2023; Lang, 2023). The 
physics-based models entail accounting for various components, including frictional resistance, the re-
sistance of appendages, wave resistance of the bare hull and bulbous bow, as well as additional resistance 
arising from the immersed transom and model-ship correlation (Molland et al., 2017). In most cases, 
physics-based models have been employed to estimate ship resistance in still water. Empirical methods 
proposed by the International Towing Tank Conference (ITTC) have been widely utilized (ITTC, 2002). 
The Holtrop-Mennen model-based methods have also been used at the preliminary design stage (Holtrop 
& Mennen, 1982). In recent years, Computational Fluid Dynamics (CFD) has been utilized in detailed 
design (Campbell et al., 2022). Empirical methods can be utilized to estimate the added wave resistance 
(Hasselmann et al., 1973; Luo et al., 2016). To account for the effects of wave-induced added resistance 
and ship motions, semi-empirical models have been proposed. These models are based on experimental 
data and incorporate empirical equations to estimate added resistance in waves (Liu & Papanikolaou, 
2020; Liu et al., 2016) and added resistance attributed to ship motions (ITTC, 2014; ITTC, 2017). Ship 
propulsion systems are often analysed using ship-propeller-engine performance models or simplified 
models based on the law of resistance transfer (Wang, 2020). However, their accuracy may be limited 
when dealing with complex operational conditions (Fan et al., 2022; Yan et al., 2021).

Artificial Intelligence (AI) methods offer a potential solution to overcome the challenges associated 
with physics-based models by leveraging big data to elucidate the intricate relationship between mea-
sured ship fuel consumption and a multitude of influential parameters (e.g., ship mechanical data and 
dynamics, main engine characteristics, weather conditions, and other relevant factors) (Chen, Lam, & 
Xiao, 2023). Review papers that discussed the potential application of AI methods in predicting ship 
fuel consumption (Fan et al., 2022; Yan et al., 2021), identify three main clusters of commonly utilized 
methods namely: (i) supervised machine learning (Coraddu et al., 2017), (ii) unsupervised machine 
learning (Hu et al., 2019), and (iii) deep learning (Kim et al., 2021). These methods may utilize diverse 
data sources and their combinations, such as voyage reports, Automatic Identification System (AIS), 
meteorological, and sensor data (Du et al., 2022). Diverse data sources enable accurate predictions. 
These algorithms can be used to predict ship fuel consumption based on well-defined scenarios for a 
specific ship. However, they often struggle to accurately predict real-time ship fuel consumption for an 
entire ship voyage under complex operational conditions. This is because traditional machine learning/
deep learning methods may not effectively deal with complex influencing factors and make informed 
predictions of ship fuel consumption.

A digital twin may be utilized to closely monitor seakeeping and maneuvering, especially during 
challenging operational conditions (Lee et al., 2022; Major et al., 2021; Schirmann et al., 2018). For 
example, research in big data science has the potential to predict hydrodynamic derivatives by utilizing 
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results from model tests or full scale measurements data. To date parametric estimation methods have 
been employed to quantify ship motions, relying on available ship mathematical models to train large 
data streams. For example, Wang et al. (2019) utilized the nu-support vector machine to identify hydro-
dynamic derivatives of the 3-DoF Abkowtiz model. Zeng et al. (2021) employed the Extended Kalman 
Filter (EKF) method to determine the hydrodynamic derivatives of an MMG model (Zeng et al., 2021). 
Non-parametric estimation models, such as Artificial Neural Networks (ANN) (Silva & Maki, 2022), 
Long Short-Term Memory (LSTM) 43, Gaussian process regression (Ouyang & Zou, 2021), and lo-
cally weighted learning methods (Woo et al., 2019), utilize simulated free-running tests to predict ship 
motion dynamics. Notably, Lou et al. (2022) developed neural network models to predict the motions of 
unmanned surface vehicles based on results from open seas manoeuvrability tests in 3-DoF.

The critical review of methods for the ship digital twins in ship operations indicates that existing digital 
twin models have their limitations. A common challenge is the accuracy of the digital twin representation. 
While digital twins aim to replicate physical objects or systems, there may still be discrepancies due to 
limitations in data collection, model accuracy, or real-time updates. For example, accuracy in terms of 
visualisation can be compromised because of the limited ability of parametric or non-parametric statistical 
regression models to consider medium to long-term environmental conditions. A high-fidelity digital twin 
requires careful calibration, validation, and continuous improvement to ensure reliability and accuracy.

MULTI-OBJECTIVE AI-BASED DIGITAL TWIN MODELS FOR 
SAFE AND SUSTAINABLE SHIP OPERATIONS

The digital twin presented in this chapter encompasses two essential deep learning layers, each serving 
a distinct purpose in enhancing ship operations. Figure 2 represents the architecture of the digital twin 
models, illustrating the integration of bi-directional Long Short-Term Memory (Bi-LSTM) with an atten-
tion mechanism layer for the prediction of ship efficiency and a transformer layer for the identification 
of ship motions.

Layer 1 focuses on idealizing the ship energy systems and predicting fuel consumption 12. This layer 
can accurately estimate the ship fuel consumption in various operating scenarios. It considers ship opera-
tional characteristics (ship speed, draft, trim, etc.), and the influence of environmental conditions (wind, 
wave, and current, etc.). Predictive analytics may be crucial for ship operators who seek to optimize fuel 
usage, reduce costs, and decarbonise fleet operations.

Layer 2 can be used to understand and optimise seakeeping behaviour in real conditions 9. Ship motions 
may influence ship stability, safety, and cargo integrity. Hence, the transformer integrated into this layer 
is trained using collected datasets that capture the complex relationships between various ship systems 
and operational factors (e.g., rudder angle, propeller rpm, speed, heading, weather condition) that may 
impact ship motions in 6 Degrees of Freedom (DoF) and in real-time. In this case, predictive analytics 
can enable ship operators to proactively respond to potentially hazardous conditions (e.g., ship–ship 
collision and ship grounding), adjust navigation strategies, and ensure ship safety.

Layer One: A Digital Twin Model for Fuel Efficiency Estimation

This section introduces the deep learning model based on Bi-LSTM with attention mechanisms 12, 
depicted in Figure 3. The model combines the strengths of Bi-LSTM, which can capture both past and 
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Figure 2. The overall procedure of AI-based ship digital twin

Figure 3. The schematic of AI based digital twin of ship energy system

Table 1. Algorithm one: Bi-LSTM with attention mechanism for ship fuel consumption prediction

1 Input: Data collection SFC(n), see more in Section 2.1 
2 Output: AI-based ship fuel consumption surrogate model 
3 Select key variables X(n) and ship fuel consumption SFC (n) in the time domain 
4 Split the training data set datatrain and datatest from X(n) using k folds cross-validation method.
5 For batch databatch size in datatrain
6 For L-length data datal in databatch size
7 For i = l to L

8 Using forward LSTM to an encoder ht
��

9 Using backward LSTM to an encoder


ht  
10 End For 
11 Compute Attention score 𝛼i and ct
12 Compute ship fuel consumption SFCt from ct
13 End For 
14 Training the model to identify ship energy system in real operational conditions 
15 End For 
16 Save the prediction model: AI-based ship fuel consumption prediction model



197

A Ship Digital Twin for Safe and Sustainable Ship Operations
﻿

future dependencies, with attention mechanisms that enable the model to focus on relevant parts of the 
input data streams. Table 1 provides a summary of the algorithm, outlining the step-by-step procedure 
followed, including data pre-processing, model architecture setup, training process, and prediction 
generation. The architecture of the system, as illustrated in Figure 4, comprises four main components 
namely: (i) input layers, (ii) Bi-LSTM layers, (iii) attention layers, and (iv) the output layer.

The layers of the deep learning model are summarized as follows:
The input layers accept key variables obtained from navigation data, engine operation data, ship 

condition data, and hydrometeorological conditions from full scale measurements. Then these selected 
variables are pre-processed and fed into the subsequent layers.

Each bi-LSTM layer consists of two LSTM sublayers. Each LSTM unit comprises 4 interconnected 
elements, including the input and control signals for the input, forgotten, and output gates 45. These com-
ponents work together to regulate memory storage, retention, and output. Figure 4 depicts the internal 
structure of the LSTM unit (see red box). The input xtat a time increment t and the output ht–1 of the hid-
den layer neuron at a time increment t-1 represent the joint inputs to the hidden layer. These inputs are 
then multiplied by distinct weight vectors, and upon application of the activation function, the control 
signals ft, it, ot, of the forgotten gate, input gate, and output gate are generated. This process is represented 
by Eqs. (1-3), where the weight vector is denoted by w and the activation amount by b. The biases for 
different connection weights are represented by bf, bi, and bo, and σ(∙)is the sigmoid activation function.

ft= 𝜎(wf[ht–1, xt]+ bf)	 (1)

it= 𝜎(wi[ht–1, xt]+ bi)	 (2)

ot= 𝜎(wo[ht–1, xt]+ bo) o w h x bt o t t o� � ���� ( , )1 	 (3)

The state of a cell Ct  is presented as per Equation (4). The value of the memory unit Ct is updated 
as per Equation (5). Accordingly, the output of hidden layer neurons ht can be presented as per Equation 
(6)

C w h x bt C t t C� � ���tanh( , )1 	 (4)

C f C i Ct t t t t� ��1
 ) 	 (5)

ht = ot tanh(Ct)	 (6)

where tanh(∙)represents a hyperbolic tangent activation function.
Ships are systems of systems that navigate through complex operational conditions (Zhang et al., 

2021). To effectively capture the complexity of ship systems using real operational data for ship fuel 
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consumption prediction, it is essential for the model to learn from both past and future information in 
the data streams. While a standard LSTM model only considers information from past time frames in 
the data stream, the bi-LSTM layer overcomes this limitation by addressing the problem of disregard-
ing relevant past information (Ma et al., 2022). This is because it comprises both forward and backward 
LSTM sublayers, see Figure 4. Forward sublayers process the input stream in a forward direction i.e., 
from the beginning tb to the end te. In a backward direction the sublayers operate from the end te to the 
beginning tb, see more in Figure 5.

A bidirectional LSTM processes input data stream in both forward and backward directions. By 
concatenating the outputs of the forward and backward LSTMs, the model could obtain a representation 
that incorporates both past and future information, as shown in Figure 5. Given an input data stream X= 
[x1,x2,…,xn], a bidirectional LSTM generates hidden states in both forward and backward directions as 
shown in Eqs. (7-8). The hidden states from both directions are concatenated to obtain a comprehensive 
representation at each time step as Equation (9).

Figure 4. The architecture of Bi-LSTM with attention mechanisms

Figure 5. Capturing and utilizing information from both forward and backward directions
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h x ht t t

�� � ���
� � ��LSTM , 1

	 (7)

 

h x ht t t� � ��LSTM , 1
	 (8)

h h ht t t� �� ��
� �
, 	 (9)

where t represents the time step, and ht
��

 is the hidden state in the forward direction. 


ht  is the hidden 
state in the backward direction, [;]denotes the concatenation.

The attention mechanism allows the model to dynamically focus on different parts of the input data 
streams, thus assigning varying levels of importance to different time steps 9. This enhances the ability 
to emphasize critical information from data streams, which is useful to capture extreme scenarios of 
ship operations in real complex operational conditions. The attention layers calculate attention scores 
and weights for each time step based on the hidden representations from the Bi-LSTM layers, as shown 
in Figure 6.

Given a specific time step t, the attention weight 𝛼tj of other hidden layers for the current input for 
xt is calculated as Equation (10). The alignment score etj computed using a trainable alignment model is 
defined as Equation (11). The context vector ct is the weighted sum of the hidden states, which reflects the 
attended information at time step t as Equation (12). The final output SFCt at time step t is generated by 
passing the context vector ct through a linear transformation and an activation function as Equation (13).

Figure 6. Attention mechanism for the prediction of ship fuel consumption
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�tj
tj

j

n
tj

e

e
�

� �
� ���

exp

1
exp

	 (10)

e w tanh w h btj µ
T

w t w� �* ( ) 	 (11)

c ht j

n
tj j�

�� 1
� 	 (12)

SFCt= softmax(Wc∙ct+bc)	 (13)

where, Wc, and bc are parameters (weight matrices or vectors) that are typically trained and determined 
during the process of model training.

(iv) The output layer receives the context vector, which is the weighted combination of the hidden 
representations obtained from the attention layers. The context vector captures the most relevant infor-
mation from the input data stream. The output layer processes the context vectors and predicts the ship 
fuel consumption for the given time step, see Figure 6.

Layer Two: A Digital Twin for the Prediction of Ship Motions

The transformer is an advanced deep learning architecture that utilizes self- and multi-head attention 
mechanisms 9. It enables the differential weighting of input features to determine their importance. This 
section introduces a transformer-based digital twin of the ship motion system. A transformer-based 
deep learning method is employed to train ship trajectory data streams and make long-term ship motion 
predictions in the time domain. Figure 7 illustrates a ship trajectory with time series of ship motions 
influenced by environmental conditions that are used to train the model. Each point on the trajectory 
includes ship control actions, desired inputs, environmental conditions, and 6-DoF ship motions. The 
model can identify and forecast 6-DoF ship motions as shown in Figure 8. The transformer architec-
ture, illustrated in Figure 9, consists of encoder and decoder modules, each containing multiple blocks 
represented by grey areas (Han et al., 2021).

The encoder module incorporates multi-head attention and a feed-forward neural network, enabling 
the mapping of time series data related to operational conditions, control devices, and desired inputs 
(see X in Equation (14)) to a new continuous series (Z in Equation (15)), see Figure 8. This mapping is 
achieved via an “attention mechanism” defined by the SoftMax function in Equation (19). The objective 
is to predict the time series of ship motions (Y in Equation (16)) using an autoregressive method. The 
attention mechanism employed in the digital twin model facilitates the retention of crucial information 
during the training and prediction of significant data streams 49.

X= {x1,x2,x3,…,xn}	 (14)
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Z= {z1,z2,z3,…,zn}	 (15)

Y= {y1,y2,y3,…,yn}	 (16)

where, X denotes the matrix of control devices, conditions, and desired inputs in the time domain; Y 
denotes the matrix of the 6-DoF ship motion in the time domain; Z denotes a matrix after encoding; xn 
denotes the inputs of control devices, conditions, and desired inputs at point n; yn denotes the outputs 
of 6-DoF at point n.

Figure 9 presents a deep learning network consisting of an encoder and decoder, both composed of 
multiple layers of attention. The network aims to process and analyse training data streams of ship mo-
tions. Initially, the ship motion data is fed into an “Input Embedding layer”, which treats the data as a 
lookup table to generate a learned vector representation of ship motions. A feed-forward neural network 
layer then learns the number of lookup tables from the training database, allowing the ship motion data 
streams from different ship trajectories to be organized into vectors. To account for variations over sea 
depth and across a trajectory, a smart positional encoding scheme is employed to incorporate positional 
information of data streams into the vectors from the Input Embedding layer 48,49. This encoding process 
is defined mathematically by Eqs. (17)-(18) (Vaswani et al., 2017). The input vectors, resulting from 
the embedding and positional encoding of ship motion data, are combined and used to train the encoder 
and decoder modules of the model 9.

Figure 7. 6-DoF ship motion dynamics along ship trajectory
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PE pospos i
i d

,

/
sin /

2

2
10000� � � � �model 	 (17)

PE pospos i
i d

,

/
cos /

2 1

2
10000�� � � � �model 	 (18)

where, pos denotes the location of the time series of ship motions, and i presents the dimensionality of 
dmodel.

Figure 8. Transformer architecture for ship motion prediction

Figure 9. Transformer architecture for 6-DoF ship motion prediction
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Once the vector with positional encoding is passed to the encoder and decoder modules (Figure 9), 
the encoder module is employed to map the input time series to a set of new continuous series. The 
decoder module utilizes an auto-regressive technique to generate the output time series for ship motion 
prediction, see Eqs. (14)-(16). Both the encoder and decoder consist of similar sub-layers. As illustrated 
in Figure 9, the encoder and decoder modules encompass the following components: (1) Attention 
mechanism/multi-head attention/marked multi-head attention layer; (2) Add & Norm function layer; (3) 
Feed-forward networks (FFN) layer; and (4) Linear layer 9.

(1) 	 Attention mechanism / multi-head attention layer

The attention mechanism in the deep learning model provides exceptional long-term memory for 
ship motion time series, allowing the model to attend to and focus on the ship motion information during 
the entire voyage. The attention layer and SoftMax functions are defined based on Equation (19) in the 
transformer architecture, as described in Vaswani et al. (2017).

z Attention Q K V SoftMax QK
d

V
T

k

� �
�

�
��

�

�
��( , , ) 	 (19)

where Q, K, and V are query, key and information value vectors, 

Q R K R V Rn d m d m dk k v� � �� � �, , 	

are the matrixes, including query, key, and value of attention; dk denotes the dimensions in blocks. 
Q=X×QW, K=X×KW, V=X×VW. QW, KW, and VW are weight matrices; z denotes an element of the 
matrix Z which is calculated using SoftMax functions.

Each attention process in this model functions as a learning mechanism for ship motions. Multiple 
attention heads can predict output vectors, which are then concatenated into a single output vector. This 
multi-head attention approach enables the learning of more comprehensive information about ship mo-
tions compared to a single attention layer. The multi-head attention layer consists of individual attention 
layers as denoted in Eqs. (20)-(21). The marked multi-head attention layer represents a hidden layer 
within the multi-head attention. The use of a mask indicates a matrix that scales the attention scores of 
the multi-head attention layer, as further detailed in Bhattacharya et al. (2022) 51.

MultiHead(Q,K,V)= Concat(head1,…,headh)W
O	 (20)

head Attention QW KW VWi i
Q

i
K

i
V� � �, , 	 (21)

where, W Ro h d dmodel k� � � , h denotes the number of parallel attention layers. QW, KW, and VW are weight 
matrices, W R W R W Ri

Q d d
i
k d d

i
v d dmodel k model k model k� � �� � �

, , .
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(2) 	 Add & Norm layers

To incorporate the output vector from the hidden multi-head attention layer with the original posi-
tional input embedding of the ship’s time domain motion, Add & Norm layers are utilized. The Add 
layer consists of a residual network or residual connection, which enables the learning of residual func-
tions for the inputs, as shown in Equation (22). The output of the Add layer then passes through a Norm 
layer, which applies layer normalization to enhance performance and training efficiency, as described 
in Eqs. (22)-(25). These layers facilitate the integration and normalization of the input and output vec-
tors in the model.

F(x) = H(x) – x 	 (22)

µ
h

al
i

h
i
l�

��1 1
	 (23)

� �l
i

h
i
l

µ
l

h
a� �

��1 1

2( ) 	 (24)

a
al
l

µ
l

l

 �
�

� � �

�

�
2

µ

	 (25)

In the above equations H(x) is the desired mapping, F(x) denotes the stacked nonlinear layers, and 
the original mapping reconstructed as F(x)+x; h denotes the number of nodes of the hidden layer; l 
denotes the number of layers. The σl and μl are the parameters of layer normalization; σ µ

l  is the mean 

value; al  denotes the results of layer normalization and ε denotes a very small number that can be used 

to avoid � l� � �
2

µ  = 0, see Equation (25).

(3) 	 Feed-forward network

The output from the Add & Norm layers is then passed through feed-forward networks for additional 
processing. The Feed-Forward Network (FFN) is employed to enhance network stability and reduce train-
ing time. It consists of multiple linear layers, with a Rectified Linear Units (ReLU) activation function, 
connecting each sub-layer. Further details can be found in the work by Li et al. (2019).

FFN(x)= max(0, xW1+b1)W2+b2	 (26)
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ReLU x x x
x if x

if x
� � � � � � � � �

�
�

�
�
�

�
max ,0

0

0 0
	 (27)

where, the function max () denotes the ReLU function as per Equation (27); W1, and W2 represent the 
value of slope; b1, and b2 represent the value of intercept.

(4) 	 Linear layer

The decoder is capped off with a linear layer that acts as a classifier to present the predicted outputs. 
The linear function is the linear transformation of data streams 50

y= xAT+b	 (28)

where, AT represents the value of slope; b represents the value of intercept.
The complex architecture of the transformer allows learning different ship motion dynamics in real 

conditions, potentially boosting the predictive ability of the ship manoeuvring features of the selected 
ship, see testing and validation in Sections 4.2 and 5.2. To evaluate the performance and quantify the 
errors between the real and digital twin, Root Mean Square Error (RMSE), Mean Square Error (RMSE), 
and error rate en are used as shown in Eqs. (29-31).

RMSE
N

y y
n

N
n n� �

�

�

�1
1

2( ) 	 (29)

MSE � �
�

�

�1
1

2

N
y y

n

N
n n( ) 	 (30)

e y y yn n n n� �( ) / ( ) 	 (31)

where, yn is the actual value, yn
  denotes the predicted value, yn  is the mean value.

AI-Based Digital Twin Models

This section demonstrates the use of multi-objective AI-based digital twin models 9, 12. Layer 1 of the 
digital twin model is trained by utilising extensive data streams derived from high-frequency full scale 
measurements data of a Kamsarmax bulk carrier owned by Laskaridis Shipping Co. Ltd. (see Table 2). 
Figure 10 illustrates voyages from full scale measurements data collected for this vessel from February 
2021 to February 2023. Layer 2 of the digital twin model was trained using operational data obtained 
from the Ro-Pax ship owned by Viking Line Co. Ltd (see Table 3). Trajectories and hydro-meteorological 
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Table 2. Ship specification of the KAMSARMAX class bulk carrier

Information Real 

IMO 9843405

Vessel Type Bulk Carrier

DWT 81 600.0 t Digital Twin 

Length x Breadth 229.0 x 32.0 m

Year Built 2020

Figure 10. Full scale measurment data of the selected bulk carrier from 02.2021 to 02.2023

Table 3. The ship specification of the selected Ro-Pax ship

Information Real 

IMO 9773064

Vessel Type Ro-Pax ship

DWT 49 134.0 t Digital Twin 

Length x Breadth 212.0 x 30.6 m

Year Built 2017
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conditions were observed between two ports situated in the Gulf of Finland as shown in Figure 11 9. This 
approach was adopted due to the inherent challenge of collecting all the required data from a single ship.

Ship Fuel Consumption Predictive Analytics

A bi-LSTM architecture was employed to train a digital twin of the ship energy systems. Inputs to the 
model encompassed ship navigation data such as ship speed, course and heading, operational condi-
tions (e.g., ship mean draft and trim, main engine shaft power and temperature), and Metocean data 
encompassing wave characteristics, wind conditions, current information, and air temperature. These 
inputs were carefully selected based on their relevance to fuel consumption prediction. The output of the 
model was the ship fuel consumption represented in the time domain. This information was utilized to 
drive the predictions generated by the digital twin A visual representation of the model architecture and 
its components can be found in Figure 12. To train the digital twin of the ship energy system, the digital 
twin of the ship energy system employed an architecture consisting of an input layer, three bi-LSTM 
layers, three attention layers, and an output layer. The bi-LSTM layer had 128 hidden units. The model 
characteristics and the selected hyperparameters are presented in Table 4.

The training loss and validation loss were calculated using the training (80%) and validation (20%) 
datasets, respectively. The curves shown in Figure 13 illustrate that both of those decrease and stabilize 
around the 178th epoch. Therefore, if no improvement in the validation performance is observed beyond 
this point, the training process is terminated early to prevent overfitting. After completing 178 epochs, 
the deep learning model achieves an optimal fitting state, indicating a balanced convergence between 
the model’s performance and the training data. This optimal fitting state implies that the model does not 
suffer from overfitting, characterized by excessive complexity and high accuracy on the training data 
but poor generalization to testing data. It also avoids underfitting, which occurs when the model fails 
to capture underlying patterns in the data, resulting in subpar performance on both training and testing 

Figure 11. Ship voyages from Helsinki to Tallinn
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Figure 12. The digital twin processing of ship fuel consumption prediction for model training, testing 
and application (Zhang, Tsoulakos, Kujala et al, 2023)

Table 4. The model characteristics and the optimal hyperparameters

Model Input variables output variable layers

Bi-LSTM 14 1 7

Hidden units per layer Optimizer Batch Size Early stopping

128 Adam 48 Patience=10

Dropout rate Leaning rate Epochs Regularization param

0.2 5e-05 178 0.1

Figure 13. The model performance evaluation
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data. The digital twin of the ship energy system built using the deep learning model achieves a desirable 
equilibrium by effectively capturing the intricacies of the training data while also generalizing well to 
new data streams.

As depicted in Figure 13, the training process demonstrates that the deep learning model can achieve 
an optimal fit, effectively addressing both overfitting and underfitting. Furthermore, the average valida-
tion loss using Mean Squared Error (MSE) is determined to be 2.04e-2. To further evaluate the trained 
deep learning model, new inputs were selected from the testing database, as illustrated in Figure 12. The 
model was used to predict ship fuel consumption in the time domain, and the resulting error rates were 
calculated using Equation (31), as shown in Figure 14. The results of ship fuel consumption prediction 
are illustrated in the upper figure. The red line represents the real values of ship fuel consumption, while 
the green line represents the predicted results. The alignment and deviation between the two lines indi-
cate the accuracy of the digital twin. In the bottom figure, the blue line represents the error rate in the 
time domain. It shows the magnitude and direction of the errors between the predicted and actual fuel 
consumption values at different points in time. These findings indicate that the trained deep learning 
model can effectively capture the characteristics of the ship energy system under real operational condi-
tions. Further analysis of the prediction errors is presented in Figure 15. Over 90% of errors are below 
4%, with an average error rate of 0.98%. It is important to note that the proposed model has limitations 
in effectively capturing abnormal fluctuations present in the sensor-collected data. This is also reflected 
in the significant errors indicated by the peak values in lower Figure 14.

Figure 14. The comparison of real and predicted ship fuel consumption

Figure 15. The analysis of prediction errors using the proposed model
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Ship Motions Predictive Analytics

For the typical Ro-Pax ship shown in Table 3, ship trajectories were collected during the ice-free period 
between 2018 and 2019. The waterway between Helsinki and Tallinn may freeze during the winter months 
of December, January, and February. However, this aspect is not considered in the present analysis.

A 6-DoF ship dynamics model (Taimuri et al., 2020) was utilized to generate time-domain input 
parameters (rudder angle, propeller rpm) and time-domain output results (6-DoF ship motion dynamics) 
for 500 voyages between Helsinki and Tallinn, see Figure 11. Subsequently, a transformer architecture 
was developed to train a deep-learning model that maps the inputs to the outputs. Inputs {X} encompass 
rudder angle, propeller rpm, speed, heading, wind information, and wave information. Outputs {Y} com-
prise surge, sway, heave, roll, pitch, and yaw. This information was employed to guide the predictions 
produced by the digital twin of the ship motion system. A visual representation of the model architecture 
and its components can be found in Figure 16. To capture the key features of historical ship motion 
dynamics, a complex architecture of the transformer was designed. Model characteristics and selected 
hyperparameters are presented in Table 5.

The total dataset comprised a total of 500 voyages divided into three parts: 80% for training (400 
ship voyages), 10% for validation (50 voyages), and 10% (50 voyages) for testing. The curves shown 
in Figure 17 demonstrate that both the training and validation losses decrease and stabilize at the 38th 
epoch. The results of the training process indicate that the deep learning model achieves an optimal fit, 
indicating that it neither overfits nor underfits the data. To test the digital twin of the ship motion system, 
the future inputs of ship control actions, desired inputs, and environmental conditions were considered. 
The 6-DoF ship motions were then predicted, as depicted in Figure 18. The ground truth represents the 

Figure 16. The digital twin processing of 6-DoF ship motion prediction for the long-term voyage in real 
conditions and turning circle in calm conditions (Zhang, Taimuri, Zhang et al, 2023)
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Table 5. The model characteristics and hyperparameters of the transformer

Model Input variables Output variable Encoder

Transformer 8 6 6 blocks

Decoder Optimizer Batch Size Dimension

6 blocks Adam 8 256

Encoder Encoder module Inner layers Epochs

1 parallel attention layer 3 parallel attention layers 1,024 dimensions 48

Figure 17. The model performance evaluation

Figure 18. The comparison of real and predicted ship motions
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real data in blue. The prediction denotes the predicted results in red. These results demonstrate that the 
digital twin model can effectively capture the ship motion features in real-world conditions.

To accurately evaluate the performance of the trained model, R2 values were calculated and assessed 
(Figure 19). The R2 values for surge, roll, and pitch predictions exceeded 0.9, thus indicating a strong 
correlation between the predicted and real values. The R2 values for sway and heave predictions are 0.62 
and 0.65, respectively. These results suggest that the predicted and real values are in close agreement. The 
model demonstrated good performance in predicting all 6-DoF ship motions. However, the agreement for 
sway and heave predictions is slightly lower as compared to surge, roll, and pitch. This discrepancy may 
be attributed to the adopted method, which is based on an auto-regression model that may underestimate 
certain influential factors in ship sway and heave, such as swell, current, etc.

APPLICATIONS OF MULTI-OBJECTIVE AI-BASED DIGITAL TWIN MODELS

As a first step toward demonstrating the benefits of an AI-based digital twin in this section, the models 
outlined in Section 4 are utilized to predict ship fuel consumption and to estimate ship turning circles 
in calm sea conditions.

Ship Fuel Consumption Prediction

To expand the usage of the trained digital twin model to a subsequent voyage of the ship indicated in 
Table 2, which begins in Canada and ends at Attu Island as shown in Figure 20. The ship is operating in 

Figure 19. The results of the performance evaluation using R2 value
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a loaded condition, with a deadweight tonnage (DWT) of 76,528 metric tons, and the estimated distance 
of the voyage is approximately 3,994 nautical miles.

The error analysis of ship fuel consumption prediction for an entire voyage is presented in Figure 21. 
In the upper figure, the red line represents the real values of ship fuel consumption, while the green line 
represents the predicted results. In the middle figure, the blue line represents the error rate in the time 
domain. The bottom figure displays the prediction error distributions. It provides a visual representation 
of the distribution of errors across different ranges or intervals. Examining the error distributions can 
offer insights into the overall performance and identify any systematic biases or patterns in the predic-
tion errors. The findings, unveil the outcome of the fuel consumption prediction using the trained digital 
twin. They highlight that more than 90% of the prediction errors are below 5%, and the average error 
of the ship fuel consumption of the whole voyage is measured at 2.54%. These results serve to affirm 
the viability of deploying the trained digital twin model as an efficacious tool for forecasting fuel con-
sumption during comparable voyages. Consequently, the application of the model holds the potential to 
furnish valuable insights and facilitate efficient fuel management and optimization endeavours in real 
operational conditions.

Turning Circles Prediction Using the Digital Twin of the Ship Motion System

To demonstrate the generalization capability of the digital twin of the ship motion system, the predic-
tion of ship motion dynamics was conducted by setting stable rudder angles as new inputs to generate 
turning circles. The selected stable rudder angles were set at 1°, 5°, 10°, and 15° (starboard), while the 
propeller revolutions were fixed at 109 rpm. Figure 22 illustrates the predicted turning circles for different 
rudder angles (1°, 5°, 10°, and 15°). The results indicate that the trained digital twin model can capture 
the turning characteristics of the ship accurately, despite not being explicitly trained on ship turning 
circle data. This suggests that the model has effectively “learned” the ship maneuvering features and 
can generalize well to new scenarios. Figure 23 presents an error analysis of turning circle predictions 

Figure 20. Ship fuel consumption prediction by calling the trained digital twin model
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for various rudder angles (1°, 5°, 10°, and 15°). The analysis reveals that the predicted error increases 
as the rudder angle increases. This can be attributed to the fact that a significant majority (96.8%) of 
the rudder angles in the trained datasets fall within the range of -1° to 1°, as depicted in Figure 24. 
Consequently, as the rudder angle deviates from this range, the number of available training data points 
decreases, resulting in lower accuracy for turning circle predictions with higher rudder angles. To further 
improve the accuracy of the digital twin of the ship motion system in predicting turning circles for high 
rudder angles, it is suggested to train the model with more complex voyages that involve ship motion 
dynamics in real conditions. By incorporating such data into the training process, the model can learn 
to handle the complexities and variations associated with higher rudder angles, thereby enhancing its 
accuracy and performance.

Figure 21. The error analysis of ship fuel consumption prediction using the trained digital twin model

Figure 22. The prediction of the ship turning circle using the designed digital twin model
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CONCLUSION

This chapter introduced a ship digital twin model designed to enhance safe and sustainable ship operations. 
The digital twin presented consisted of two distinct layers: (a) Layer 1 that incorporates a bi-directional 
LSTM network with attention mechanisms to replicate the ship’s energy system and estimate ship fuel 
consumption in real operational conditions; (b) Layer 2 that employs a transformer neural network to 

Figure 23. The error analysis of turning circle prediction at different rudder angles

Figure 24. The distribution of the rudder angles of the trained data. The window demonstrates that 
distribution ranges from [-1 to 1]
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construct a digital twin model of the ship’s motion system, thus enabling analysis of ship motions in 
relation to hydro-meteorological conditions. The ship digital twin was trained, validated, and tested 
using bulk carriers and Ro-Pax ships as focal points. Key conclusions derived from the study can be 
summarized as follows:

The innovative use of multi-objective AI-based digital twin models for predicting ship motions and ship 
fuel consumption holds significant promise and utility in ensuring safe and sustainable ship operations.

High-frequency sea tail data streams are invaluable for constructing ship digital twins, and the pro-
posed deep learning methods effectively capture the complex relationships between external conditions, 
internal conditions, and ship performance.

Layer 1 of the AI-based ship digital twin learns the ship’s energy systems and can be utilized to 
estimate long-term ship fuel consumption under real operational conditions.

Layer 2 of the AI-based ship digital twin identifies the ship’s motions accounting for realistic hydro-
meteorological conditions. It can accurately predict dynamics in real conditions between two ports, as 
well as ship turning circles with various rudder angles under calm conditions.

While the preliminary results presented in this chapter are promising, it is important to note that 
they are limited to specific ship types. Extensive testing is necessary to generalise the suitability of the 
methods and with the ultimate goal to develop a comprehensive framework for the appropriate utiliza-
tion of digital twin technology in fleet management.
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