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Enhancing Hyrcanian Forest Height and
Aboveground Biomass Predictions:

A Synergistic Use of TanDEM-X InSAR
Coherence, Sentinel-1, and Sentinel-2 Data

Ghasem Ronoud , Ali A. Darvishsefat , Maryam Poorazimy , Erkki Tomppo ,
Oleg Antropov , Member, IEEE, and Jaan Praks , Member, IEEE

Abstract—Forest height (FH) is an important driver for above-
ground biomass (AGB) that can be obtained using interferometric
synthetic aperture radar (InSAR). However, the limited access to
the quad-polarimetric data or high-accuracy terrain model makes
FH retrieval a challenging task. This study aimed to retrieve FH and
further predict AGB by combining TanDEM-X InSAR coherence,
Sentinel-1 (S-1), and Sentinel-2 (S-2) data. A total of 125 sample
plots with a size of 900 m2 were established in a broadleaved
forest of Kheyroud, Iran. The linear and sinc models obtained
by simplification of the random volume over ground model were
used for deriving FHLin and FHSinc. Further investigation was
conducted when S-1 and S-2 features including backscatters and
multispectral information were added to FH predictions. Using
the above-mentioned datasets and FH as an additional predictor,
AGB was also predicted. K-nearest neighbor (k-NN), random forest
(RF), and support vector regression (SVR) were employed for
prediction. Lorey’s mean height and AGB at sample plots were
used in the accuracy assessment. Using the SVR method and
synergy of FHSinc, S-1, and S-2 features, the FH prediction was
improved (FHimp) with RMSE of 3.18 m and R2 = 0.59. The AGB
prediction with RF and the combination of S-1 and S-2 features
resulted in RMSE = 62.88 Mg·ha-1 (19.77%) that was improved
to RMSE = 51.27 Mg·ha-1 (16.12%) when FHimp included. This
study highlighted the capability of TanDEM-X InSAR coherence
with certain geometry for FH prediction. Also, the importance of
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FH in AGB predictions can stimulate further attempts aiming at
higher spatiotemporal accuracies.

Index Terms—Machine learning, multispectral, random volume
over ground (RVoG), sinc model, single-pass.

I. INTRODUCTION

FORESTS are one of the most important terrestrial ecosys-
tems and impact climate change mitigation, the global

carbon cycle, and human life [1], [2], [3]. However, obtain-
ing accurate and up-to-date information about forest structural
attributes, especially forest height (FH), is challenging [4]. FH
can be used in wood volume, form factor, yield tables, and site
index estimation [5], [6], [7]. Moreover, it relates to aboveground
biomass (AGB) via allometric equations [8]. AGB is the largest
carbon pool directly influenced by deforestation and forest
degradation [9], [10]. Moreover, it is needed for the ecological
modeling of forests and productivity [11]. Thus, developing
accurate ways for monitoring and predicting AGB is important.

Field measurements of FH are time-consuming and costly,
and AGB is even impractical [5], [12], [13]. In addition, field
measurements are often insufficient to provide up-to-date infor-
mation on the extent, spatial distribution, and temporal changes
of forest cover over large areas [14], [15], [16]. Therefore, the
implementation of a more economical source of data is needed
[17]. Currently, various space-borne sensors provide an appro-
priate source of information for predicting and mapping forest
attributes [5], [13], [18]. Optical sensors have been intensively
used for AGB prediction across different study areas [19], [20],
[21], [22], [23], [24]. However, the reflectance comes from the
top of the forest canopy while the AGB is concentrated in tree
stems mostly [13]. Synthetic aperture radar (SAR) is a useful
instrument with the ability to penetrate the vertical structure of
forests due to its long wavelength. SAR sensors provide a wall-
to-wall source of data not affected by weather conditions that are
comparable with optical remote sensing [15], [17], [25], [26].
The lack of systematic and consistent field measurements makes
the estimates of large-area AGB maps unreliable. However,
Santoro and Cartus [27] is a known example where Sentinel-1,
Envisat, ALOS-1, and -2 satellites, along with additional infor-
mation from earth observation sources were used in creating
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a global AGB map. Generally, SAR techniques were used for
characterizing forest structures with two different approaches
that are direct interpretation of backscattered SAR signal and in-
terpretation of interferometric SAR (InSAR) measurements [4].
The first approach usually exhibits signal saturation, especially
in a forest with high biomass. The level of observed saturation
depends on the sensor wavelength, polarization, local climate,
weather conditions, and forest structure itself [13]. In the second
method, one interferometric pair of images is used for deriving
FH that can be further used in AGB prediction [28], [29]. This
method has the potential to overcome the saturation problem of
the first one [30].

Many studies have demonstrated the potential of InSAR co-
herence, phase, and their combination in FH prediction [31],
[32], [33], [34]. Also, reliable predictions have been obtained
by model-based methods including the random volume over
ground (RVoG) model at different site conditions [35], [36], [37],
[38]. However, deriving FH from InSAR coherence introduces
challenges. First, temporal decorrelation is caused by current
space-borne systems mostly offering repeat-pass InSAR data.
Second, the poor availability of fully-polarimetric SAR data
and/or high-accuracy digital elevation model (DEM) is another
limiting factor. Finally, the computational complexity of FH
inversion from scattering models makes it complicated [4].
The bistatic terraSAR-X add-on for digital elevation measure-
ment (TanDEM-X) is the only current single-pass space-borne
interferometer allowing to neglect of temporal decorrelation.
Previous studies showed its sensitivity to FH prediction in boreal
and tropical forests [29], [39], [40]. Also, utilizing simplified
semi-empirical models was found useful to avoid some of
the above-mentioned limitations [28], [37], [41], [42], [43].
Olesk et al. [4] proposed four semi-empirical coherence-based
models for FH retrieval prediction using TanDEM-X data in the
Hemiboreal forests of Estonia. All models exhibited a strong
relationship between InSAR coherence and FH following the
RVoG model. Another study investigated the effect of season on
FH prediction in the same study area [4]. Schlund and Boehm
[44] addressed the prediction of FH and AGB using TanDEM-X
coherence data and semi-empirical models in tropical areas.
They found that FH and AGB can be predicted with relative
root mean square error (rRMSE) of 16% and 21% respectively.
In another study, Gómez et al. [42] showed the potential of
TanDEM-X coherence data and semi-empirical models for FH
prediction in the Mediterranean Forests of Spain by R2 of 0.91
and root mean square error (RMSE) of 1.24 m. However, the
mentioned accuracy was limited to slopes below 10°. Chen et
al. [45] indicated that the single-pass X-band interferometric
coherence data and the sinc model were able to predict FH with
R2 > 0.75 and residual errors of approximately 2.9 m in Canada.

In this study, we aimed to enhance FH and AGB predictions by
the synergistic use of single-pass TanDEM-X, Sentinel-1 (S-1),
and Sentinel-2 (S-2) datasets in a highly diverse broadleaved
forest of Iran. The lack of accurate DEM and the unavailability of
fully polarimetric SAR data are the reasons that have stimulated
attempts at FH prediction using InSAR coherence. Accordingly,
two simplified semi-empirical models obtained from RVoG
including the sinc and the linear models were used to show
the dependency of InSAR coherence with FH in the leaf-off

TABLE I
SUMMARY OF PLOT-LEVEL FIELD DATA

conditions. To improve the FH prediction accuracy (FHimp),
Sentinel-1 (S-1) backscatter coefficients and polarization indices
and Sentinel-2 (S-2) multispectral bands, biophysical param-
eters, and vegetation indices were included in the analysis
separately and in combination. The AGB was also predicted
using the extracted features from S-1 and S-2 individually and
in combination, and further improved by including FHimp. We
also compared the accuracy of three machine learning methods
k-nearest neighbor (k-NN), random forest (RF), and support
vector regression (SVR) in predicting FH and AGB. Our results
addressed the potential of TanDEM-X data for FH prediction
and its importance on AGB accuracies.

II. MATERIALS AND METHODS

A. Study Area

This study was conducted in an area of 800 ha of the Gorazbon
and Chelir districts of Kheyruod forest, Northern Iran (see
Fig. 1). The forest has been managed by the University of
Tehran since 1941 and includes broadleaved, mixed, and uneven-
aged structures. Our study area is bounded by the longitude of
51°.32′–51°.43′ E, and latitudes of 36°.27′–36°.40′ N. The mean
elevation ranges from 1200 to 1400 m above sea level. Fagus
orientalis, Carpinus betulus, Acer sp., and Alnus subcordata are
the dominant species in the area.

B. Field Data

To investigate the potential of TanDEM-X data in charac-
terizing forest structure, it is necessary to augment it with
field measurements. We employed a random sampling approach
across the study area; 125 square sample plots with an area of
900 m2 (30 m× 30 m) were established. The field inventory was
carried out in July 2018. Tree species, diameter at breast height
(DBH), and height of all trees with DBH larger than 7.5 cm
were recorded. DBH and height were measured by caliper and
TruPulse 360 laser range finder respectively. The exact location
of each sample plot was recorded by the Trimble R3 differen-
tial global positioning system using postprocessing kinematics.
Table I presents the descriptive statistics of the plot-level field
data.

In this study, Lorey’s mean height was used to calculate FH
predictions at sample plots. It is calculated as the average height
of individual trees weighted by their basal area (1). Many studies
have shown Lorey’s mean height as an appropriate indicator
of height in un-even aged forest stands and relevant to the
volumetric height measured by SAR data [7], [46]. Notably,
Lorey’s mean height is less affected by the thinning and mortality
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Fig. 1. Location of study area in the north of Iran (left) and distribution of in-situ sample plots (right).

of smaller trees [47], [48]

hlorey =

∑n
i gi × hi∑n

i gi
(1)

where gi refers to the basal area of ith tree (m2) and hi is the
height of the tree (m).

The world equation was used to predict AGB based on existing
volume data [49]. We used official multispecies single-entry
volume tables for calculating each individual tree volume [50].
It is denoted as Tariff with DBH being used as the entry to table
(2)–(4)

Fagus orientalis : v = 0.000498d2.215 R2 = 0.996 (2)

Carpinus betulus : v = 0.000023d1.0432 R2 = 0.999
(3)

Other species : v = 0.00133d 1.974 R2 = 0.994 (4)

where v is the stem volume (m3) and d is dbh (cm). Then, the
inventoried tree volume was converted to the AGB (5) by its mul-
tiplication into species-specific wood-critical density (WCD)
[51], [52]. WCD is defined as the oven-dry mass per unit of green
volume [52] that is 0.56, 0.68, 0.57, and 0.57 Mg·m3 for Fagus
orientalis, Carpinus betulus, Acer sp., and Alnus subcordata,
respectively [51], [53].

AGB = Volume× WCD (5)

where AGB is the aboveground tree biomass (Mg), Volume is
the inventoried volume of tree (m3), and WCD refers to wood
critical density (Mg·m-3). It is worth mentioning that plot-level
AGB was obtained by summing up all individual trees AGB
per plot. Table II shows the summary statistics of Lorey’s mean
height and AGB across the sample plots. (For more information,
see Table XII and Fig. 9 in the Appendix).

TABLE II
SUMMARY STATISTICS OF THE FIELD MEASURED LOREY’S MEAN HEIGHT AND

FOREST AGB

TABLE III
GENERAL CHARACTERISTICS OF TANDEM-X DATA

C. TanDEM-X Data and Processing

Interferometric TanDEM-X data was acquired at stripmap
mode with HH polarization in February 2014. The image was
collected during the leaf-off season with the descending pass,
the effective baseline of 102.9 m, and the height of ambiguity
(HoA) of 53.4 m (Table III). The product was delivered in a
co-registered single-look slant range complex (CoSSCs) format
with azimuth and range spacing of 2.16 m and 1.36 m.

The sentinel application platform (SNAP) software was used
for interferogram generation and calculating complex interfero-
metric coherence. The flat-earth and topography-induced phases
were subtracted from the interferogram using an AlOS PALSAR
DEM with a resolution of 12.5 m. Interferometric coherence
explains the degree of similarity between corresponding pixels
of two images and is defined by the absolute value of InSAR
coherence ranges between 0 and 1 representing the weak and
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strong correlation between two images respectively as follows:

γ =
|〈S1S

∗
2〉|√〈S1S∗

1〉 〈S2S∗
2〉
, 0 ≤ γ ≤ 1 (6)

where γ denotes the complex interferometric coherence, S1 and
S2 are signals received at either end of the bassline, ∗ refer to
complex conjugation, | | indicates the magnitude of complex
data, and <... > presents the expected value averaged over a
spatial window [54]. In this study, the boxcar window algorithm
with the size of 10 × 10 pixels was used to predict coherence.
Finally, the range Doppler terrain correction method was applied
by utilizing AlOS PALSAR 12.5 m DEM [55]. The average of
coherence corresponding to each sample plot was extracted for
further analysis.

1) RVoG-Based Semi-Empirical Models: RVoG is one of the
common scattering models defining coherence as a function of
FH [56]. However, it needs more parameters to retrieve FH,
which entails the use of fully polarimetric SAR or high-accuracy
DEM data [57]. The RVoG model simplification proposed by
Olesk et al. [4] can be an alternative in the case of single-
polarized TanDEM-X data. It resulted in a set of semi-empirical
models containing a physical-based framework for the use of
InSAR coherence in FH9 retrieval. Accordingly, two semi-
empirical models of sinc and linear based on the assumptions of
neglecting extinction and ground reflection were used to retrieve
FHSinc and FHLin respectively. The sinc model represents the
trigonometric function sin(x)/x and the FHSinc can be inverted af-
terward (7). Similarly, the linear model was constructed to make
a linear relation between FHLin and interferometric coherence
as (8)

|γ| = 0.95 Sinc

(
CSincπ

FHSinc

HoA

)
(7)

|γ| = 1− FHLin

HoA
Clin (8)

where |γ| is the coherence amplitude, FHSinc and FHLin refer
to the FH (m) derived from sinc and linear models respectively,
and HoA is the height corresponding to an interferometric phase
change of 2π (m). These models introduce empirical parameters
of CSinc and Clin as well.

D. Sentinel Data and Processing

The copernicus open access data including Sentinel-1 (S-1)
and Sentinel-2 (S-2) were used in this study. The C-band S-1 data
was acquired in descending pass on 31 July 2018 corresponding
to the field inventory campaign. It was collected in the Inter-
ferometric Wide Swath mode with two polarization channels
of VV and VH. The acquisition range of incidence angle was
between 30.92° and 46.32°. Similarly, the cloud-free S-2 data
was delivered in Level-1C on 25 September 2018. All the S-1
and S-2 data processing were performed using SNAP software
as described in the following.

S-1 data was processed to obtain radiometrically terrain-
flattened (gamma-naught) backscatter coefficients γ◦ in VV and
VH polarizations. To accomplish this, the VV and VH intensities

were converted to γ◦ using radiometric normalization accord-
ing to the local incidence angle, filtered for speckle noise by
refined Lee algorithm [58], and converted to dB (see Table IV).
Finally, the range-Doppler terrain correction was applied for
the geocoding. For this purpose, the 12.5 m AlOS PALSAR
DEM was utilized [55]. In addition, five polarization indices
of the ratio (VH/VV), the difference (VH-VV), multiplication
(VH×VV), mean ((VH+VV)/2), and square root (

√
VH × VV)

were calculated as predictor features (see Table IV) [23], [59],
[60].

To process S-2 data, a SEN2COR atmospheric processor was
applied to convert the S-2 Level-1C top-of-atmosphere into the
S-2 level-2A bottom-of-atmosphere product [61]. Out of the 13
spectral bands, 4 visible and near-infrared, 3 red edges, and
3 short-wavelength infrared bands were extracted for further
pre-processing (see Table IV) [62]. The existing 12.5 m DEM
of ALOS PALSAR was used to assess the geometric accuracy
of S-2 images. In addition to main spectral bands, twelve veg-
etation indices and five biophysical parameters including leaf
area index (LAI), leaf chlorophyll content (Cab), canopy water
content (CWC), fraction of absorbed photosynthetically active
radiation (FAPAR), and fractional vegetation cover (FCOVER)
were calculated (see Table IV). The computation of biophysical
products using reflectance images of S-2 was performed through
the application of the “L2B biophysical processor” (version
1.1) [59], [63]. It has been developed using a training neural
network algorithm over the PROSAIL radiative transfer model
[64], [65].

E. Machine Learning Methods

In this study, three machine learning methods of k-NN, RF,
and SVR were used to predict FH and AGB. The caret (clas-
sification and regression training) package of R was used to
implement methods [77] described further.

k-NN method is often used for predicting forest structural
characteristics and for small-area estimation with the help of
auxiliary remote sensing data [78], [79], [80]. To predict the
value of the unknown response variable, a linear combination of
k known observations, nearest in the feature space, is calculated.
In this study, a rectangular kernel with k varying between 1
and 20 was tested. Moreover, the capability of four distance
metrics was evaluated, namely Euclidean, Euclidean Squared,
Chebyshev, and Manhattan.

RF method is one of the common nonparametric methods
in forest studies that is based on regression trees [13], [81],
[82]. This method is known for its potential to reduce systematic
errors and overfitting [83]. In other words, the regression trees
continue to grow until a minimum error of response features is
achieved. We determined the optimal k predictors in a range of
the square root of the predictor features number±2. The number
of decision trees was set to 500.

SVR is one of the nonparametric methods that assumes a
unique relationship between each set of predictor and response
features. For grouping among predictor features, the hyperplanes
in multidimensional space will be built from the predictor fea-
tures acting as axes [84]. We considered four different kernels of
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TABLE IV
LIST OF S-1 AND S-2 PREDICTOR FEATURES USED FOR PREDICTING FH AND AGB
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Fig. 2. Flowchart of applied methodology to predict FH and AGB.

linear, polynomials degrees 2 and 3, radial basis function (RBF),
and sigmoid in terms of prediction accuracy.

F. Accuracy Assessment

A repeated K-fold cross-validation approach was used in
model training and validation. The data were randomly split
into K = 5 folds with a size of 25 per iteration where the
training is carried out on K-1 folds while the remaining fold is
used for the validation. The procedure was repeated up to three
times generating K performance scores. The mean of generated
scores defines the performance of the model. The coefficient
of determination (R2), RMSE, rRMSE, mean absolute error
(MAE), and relative MAE (rMAE) were used for evaluating
the predictions (9)–(13)

R2 = 1−
(∑n

i=1 (Oi − Pi)
2∑n

i=1

(
Oi − Ō

)2
)

(9)

RMSE =

[
n−1

n∑
i=1

(Pi −Oi)
2

]1/2
(10)

rRMSE =
RMSE
Ō

× 100 (11)

MAE =

∑n
i=1 |Pi −Oi|

n
(12)

rMAE =
MAE
Ō

× 100 (13)

where n is the number of sample plots, Oi is the observed value,
Pi is the predicted value, and Ō refers to the mean of observed
values. Fig. 2 depicts the methodology flowchart.

III. RESULTS

A. Predicting FH Using TanDEM-X InSAR Coherence

Results of linear and sinc semi-empirical models in FH pre-
diction indicate that the sinc model had better performance in
comparison with the linear model with R2 = 0.45 and rRMSE =
12.39% (see Table V). The scatterplot of observed versus FHSinc

predicted by the sinc model is presented in Fig. 3.



RONOUD et al.: ENHANCING HYRCANIAN FOREST HEIGHT AND ABOVEGROUND BIOMASS PREDICTIONS 8415

TABLE V
RESULT OF FH PREDICTION BASED ON SEMI-EMPIRICAL MODELS

Fig. 3. Observed versus predicted FH using the sinc model (FHSinc).

B. Improved FH Prediction (FHimp) by the Inclusion of S-1
and S-2 Data

To improve the FHSinc predictions, S-1 and S-2 predictor
features were also included separately and in combination.
Tables VI–VIII show the FHimp predictions provided by k-NN,
RF, and SVR machine learning methods, respectively. Here,
the combination of FHSinc and S-2 was more accurate than the
combination with S-1 data for FHimp prediction. The obtained
rRMSE for k-NN, RF, and SVR methods were 10.91%, 10.74%,
and 10.36% respectively.

In general, the combination of FHSinc, S-1, and S-2 achieves
the highest accuracy in FHimp prediction compared to other
combinations of datasets. The SVR method with RBF kernel
produced the best results with R2 of 0.59 and RMSE of 3.18 m
(rRMSE = 9.21%). A scatter plot of observed Lorey’s mean
height against predicted FHimp using the SVR method has been
illustrated in Fig. 4.

C. AGB Prediction and Validation

The AGB prediction was examined using two different ap-
proaches. First, AGB was predicted using S-1 and S-2 predictors
separately and then in combination. Second, the gain in accuracy
was evaluated for a scenario when FHimp was combined with
the abovementioned datasets. Tables IX–XI show the results of
AGB prediction using k-NN, RF, and SVR, respectively. Gen-
erally, S-2 showed more accurate results than S-1 for AGB pre-
diction (RMSE = 65.51 Mg·ha-1, rMAE = 17.03%, R2 = 0.37).
The errors decreased when using both S-1 and S-2 with the RF
method (R2 = 0.40 and RMSE = 62.88 Mg·ha-1).

The RF model, combining FHimp and features from S-1
and S-2 as predictors, reduced errors in AGB predictions with

Fig. 4. Observed versus improved FH (FHimp) predicted by SVR method.

Fig. 5. Scatterplot of measured versus predicted AGB using the RF method
and a combination of S-1, S-2, and FHimp.

R2 = 0.66 and rRMSE of 16.12%. Fig. 5 shows the scatterplot
of measured versus predicted AGB using the best model. The
final AGB map was also created by applying that model to
the whole study area [see Fig. 6(a)]. For comparison reasons,
the global AGB map in 2018 corresponding to our study area
resampled to 30 m is presented in Fig. 6(b) (See Santoro and
Cartus [27]). It was created in a 100 m resolution using S-1
and ALOS-2 as a part of the European Space Agency’s Climate
Change Initiative program. Based on the visual comparison, a
minor spatial agreement existed between our AGB map and the
Santoro and Cartus [27] map, particularly in areas with lower
AGB. While the effect of AGB saturation in the Santoro and
Cartus [27] map was clearly observed (see Fig. 6).

IV. DISCUSSION

This study focused on the syringic use of TanDEM-X single-
polarized, S-1, and S-2 datasets to predict the FH and AGB
of trees. The FH predictions were first obtained using semi-
empirical models of linear and sinc derived from the RVoG



8416 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE VI
RESULTS OF THE K-NN METHOD FOR IMPROVING FH PREDICTIONS (FHimp)

TABLE VII
RESULTS OF THE RF METHOD FOR IMPROVING FH PREDICTIONS (FHimp)

model. We found the sinc model to be more accurate than the lin-
ear model in predicting FH (RMSE of 4.28 m and R2 of 0.45) in
the broadleaved forest of Iran (see Table V), which is in line with
the results obtained by Praks et al. [6] in Hemiboreal forest. It
decreased the rRMSE by 3.24% when compared with the Linear
model (see Table V), although, the acceptable performance of
both linear and sinc models for FH prediction has been reported
in previous studies [4], [47]. It is worth mentioning that the
FH prediction accuracy largely depends on the HoA which is
53.4 m in our case. According to [42] and [45], the sensitivity of
InSAR coherence to FH changes would be optimum when the
FH ranges between 1/3 of HoA and HoA. Praks et al. [6] also
recommended that the HoA should be around twice the height of

forest stands. Hence, further experimental research on the effect
of acquisition geometry like HoA on FH predictions is needed.
Moreover, the local slope is a potential parameter affecting FH
accuracies. Gómez et al. [42] have indicated the higher accuracy
of the sinc model for FH predictions in the areas with a slope of
fewer than 10° in Mediterranean forests. They achieved the best
RMSE of 1.24 m and R2 of 0.91 for FH predictions. Considering
the mountainous condition of the Hyrcanian forest of Iran, the
slope can be a limiting parameter for large-scale FH mapping.
The complexity of the stands and the existence of multispecies
can affect the attention rate of the vegetation layer and ground
reflectivity. Second, FHsinc predictions were improved by its
combination with Sentinel-1 (S-1) and Sentinel-2 (S-2) datasets
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TABLE VIII
RESULTS OF THE SVR METHOD FOR IMPROVING FH PREDICTIONS (FHimp)

TABLE IX
RESULTS OF THE K-NN METHOD FOR AGB PREDICTION

Fig. 6. (a) AGB map of this study predicted by a combination of S-1, S-2, and FHimp predicted by the RF model that was trained with plot-level field data in
2018. (b) Respective global AGB map constructed by Santoro and Cartus [27].
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TABLE X
RESULTS OF RF METHOD FOR AGB PREDICTION

TABLE XI
RESULTS OF SVR METHOD FOR AGB PREDICTION

(FHimp). The RMSE was 4.18 m when FHSinc combined with
the S-1 using RF (k = 3) and 3.58 m when FHSinc combined
with S-2 using SVR (Sigmoid kernel) (see Tables VII and VIII).
This can be attributed to the presence of speckle noise in SAR
backscatters, especially in these dense forests with complex
structures [85]. The presence of speckles can reduce the sen-
sitivity of SAR signals to forest structures. Unlike optical data
that capture the spectral response of the horizontal structure,
SAR backscatters might be insensitive if there is a little height
variation [86]. In addition, optical data provide complementary
information about forest horizontal structure besides the vertical
structure that has been addressed by FHSinc in the modeling
phase [25], [87], [88]. Of importance, the high level of structural
complexity in our study area (see Table I) may cause the weak
performance of the S-1 due to signal saturation [89], [90]. Other
site conditions such as soil moisture and roughness are also

related to signal saturation [13]. Fig. 7 visually demonstrates the
results of different methods and datasets for FHimp prediction
along with FHSinc itself.

The most accurate FHimp prediction was obtained by adding
FHSinc to the combination of S-1, and S-2 datasets using the SVR
method (R2 = 0.59 and RMSE = 3.18 m). Ghosh et al. [88] have
reported an improved FH prediction using S-1 interferometric
coherence and S-2 biophysical parameters in the mangrove
forests. They obtained an RMSE of 1.57 m and R2 of 0.60,
which was superior results compared to the current study. It can
be explained by the relatively flat topography in their study site
with a maximum elevation of 16 m. In another study, Li et al.
[18] upscaled the ICESat-2-derived FH with the Sentinels and
Landsat-8 satellites in the Inner Mongolia Autonomous Region
of China. They showed higher accuracy in upscaling FH assisted
by Sentinel satellites in comparison with Lansat-8 data. Even
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Fig. 7. General overview of the FHimp prediction accuracies using the com-
bination of different datasets including S-1, S-2, and FHSinc itself. The value
on top of the bars indicates the R2.

though the performance of prediction methods was rather similar
in FH predictions in our study, SVR with the RBF kernel was the
most accurate for FH predictions. It has good agreement with
the study conducted by Pourshamsi et al. [91] indicating the
SVR method is the best for FH predictions using a combination
of polarimetric SAR and LiDAR data. SVR takes advantage of
solving small-sample and nonlinear multidimensional problems,
and previous studies confirm its applicability in forest studies
[13], [60], [89], [92]. It is worth mentioning that our results for
FH prediction were in line with other studies in the Hyrcanian
forest. For instance, Pourrahmati et al. [93] resulted in R2 = 0.59
and RMSE = 5.5 m for wall-to-wall mapping of FH using
the synergy of ICESat/GLASS and optical images. Overall, the
workflow demonstrated in this study suggests a possibility for
FH prediction in the absence of highly accurate data sources
such as terrestrial and airborne laser scanning as well as full
polarimetric airborne SAR data.

We additionally studied the AGB prediction using the S-1,
S-2, and their combination. Moreover, the precision gained by
the inclusion of FHimp into Sentinel-derived predictor features
was quantified. We also compared the final AGB map of this
study with the global AGB map generated by Santoro and Cartus
[27]. The synergy of S-1 and S-2 using the RF method led to bet-
ter AGB predictions than using those individually with RMSE
and R2 of 62.88 Mg·ha-1 and 0.40 respectively. Considering the
high level of AGB in our study area, the weak performance of S-1
backscatters than S-2 was observed and can be attributed to the
signal saturation [25], [90], [94]. Prior studies have also proved
the capability of the combination of optical and SAR datasets for
AGB predictions [13], [41], [87], [95], [96], [97]. Antropov et
al. [98] addressed the combination of TanDEM-X-derived height
and Landsat-8 features for predicting growing stock volume in
Boreal forests (R2 = 0.57 and rRMSE = 34%).

By adding FHimp into AGB models based on S-1, S-2, and a
combination of S-1 and S-2 datasets, the accuracy was increased
(see Fig. 8), showing the importance of tree height containing
a large part of woody biomass. The most accurate model was
obtained using the RF method and a combination of FHimp with

Fig. 8. General overview of the AGB prediction accuracies using the combi-
nation of different datasets including S-1, S-2, and FHimp. The value on top of
the bars indicates the R2.

S-1 and S-2. It decreased the AGB prediction error by RMSE of
11.61 Mg·ha-1, rRMSE = 3.65%, and R2 of 0.26 in comparison
with using a combination of S-1 and S-2 only. Generally, the
canopy height obtained from SAR and LiDAR data has been
successfully used in AGB predictions [99], [100], [101]. The sat-
uration level related to the mentioned model combining FHimp

with S-1 and S-2 exceeds 300 Mg·ha-1, which is in line with
Vafaei et al. [102] where a multisensorial study was conducted
in the Hyrcanian forest of Iran. According to the mean decrease
in the Gini index of the RF algorithm, the vegetation index
of MTCI is the most important predictor in AGB prediction
with the highest correlation of 0.51. With increasing MTCI,
the predicted AGB also increases until the signal saturates. It
is worth mentioning that utilizing the S-2 sensor with red-edge
bands is known to effectively improve the saturation tendency in
predictions [103], [104], [105]. Other studies also supported the
primary role of optical datasets in predicting forest attributes
([106], [107]). Followed by MTCI, GNDVI, and IRECI were
two other S-2 features with high relative importance in AGB
predictions.

A comparison of our final AGB map with the respective
global map generated by Santoro and Cartus [27] showed little
correspondence in areas with lower levels of AGB. A similar
conclusion was found by Santoro and Cartus [27] showing the
increased variance but limited bias for AGB up to 250 Mg·ha-1

that caused underestimated AGB predictions. It was attributed
to the limited sensitivity of used datasets and the constraint
of maximum AGB that was lower than reality. Especially, the
Hyrcanian forests of Iran featured as an old highly diverse forest
with a large amount of AGB [25], [102], [107], [108], [109].
Particularly, their model training phase did not require in-situ
observations and used SAR predictors for creating an AGB
map in 2018. Accordingly, we only obtained a correlation of
0.2 between sample plots AGB and the corresponding values
from the global AGB map. However, the mismatch between the
global AGB map and sample plots in terms of spatial resolution
causes the limited possibility of quantifying the local errors and
overall bias of the global AGB map. Hence, any interpretation
needs to be done with caution.
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Upon the obtained results in this study, the FH has been
predicted accurately due to the canopy height dependency on
the interferometric coherence. It is worth mentioning that there
is an approximately four-year temporal difference between
TanDEM-X and field data that might affect the obtained errors.
The inclusion of FHimp into AGB models caused a significant
improvement, however, the other sources of uncertainties might
affect the predictions. These include the forest ecosystems,
topography, S-1 and S-2 data, statistical errors, and propagation
of FH potential errors into the AGB predictions [13], [44].

V. CONCLUSION

In this study, single-polarized TanDEM-X data and freely
available Sentinel satellites were used to predict FH and AGB in
the Hyrcanian forest of Iran. To accomplish this, semi-empirical
linear and sinc models obtained from RVoG were used to predict
FH and it was further improved by the inclusion of S-1 and S-2
datasets (FHimp). The SVR method led to the most accurate
FHimp predictions with an RMSE of 3.18 m and R2 of 0.59
when FHsinc and a combination of S-1 and S-2 were used. The
AGB predictions using a combination of S-1 and S-2 were also
improved when FHimp was included (rRMSE = 16.12% and
R2 = 0.66). Our results confirmed the potential of TanDEM-X
data in predicting FH in the absence of fully polarimetric datasets

and accurate DEM in a highly diverse Hyrcanian forest of Iran.
Also, we addressed the gained precision in AGB models when
FHimp predictions were added to the datasets. However, further
studies are encouraged using data with different acquisition
geometry, and stratified forest stands based on slope and species.

APPENDIX

Fig. 9. Distribution of elevation and AGB at various sample plots.

TABLE XII
LOREY’S MEAN HEIGHT (M) / AGB (MG·HA-1) ACROSS 125 SAMPLE PLOTS
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