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Recovering Static and Time-Varying Communities
Using Persistent Edges

Konstantin Avrachenkov , Maximilien Dreveton , and Lasse Leskelä

Abstract—This article focuses on spectral methods for recover-
ing communities in temporal networks. In the case of fixed commu-
nities, spectral clustering on the simple time-aggregated graph (i.e.,
the weighted graph formed by the sum of the interactions over all
temporal snapshots) does not always produce satisfying results. To
utilise information carried by temporal correlations, we propose to
employ different weights on freshly appearing and persistent edges.
We show that spectral clustering on such weighted graphs can be
explained as a relaxation of the maximum likelihood estimator
of an extension of the degree-corrected stochastic block model
with Markov interactions. We also study the setting of evolving
communities, for which we use the prediction at time t − 1 as an
oracle for inferring the community labels at time t. We demonstrate
the accuracy of the proposed methods on synthetic and real data
sets.

Index Terms—Graph clustering, temporal networks, spectral
methods, stochastic block model.

I. INTRODUCTION

COMPLEX networks are commonly used to describe and
analyze interactions between entities. A natural problem

arising in complex network analysis consists of identifying
meaningful structures within the network. Community recovery,
i.e., partitioning the set of nodes of a network into commu-
nities based on some common properties of the vertices, is
now a well-established area [1]. In many situations, interactions
between node pairs vary over time, and classical graph-based
models are replaced by temporal network models [2]. Temporal
networks naturally arise in various situations, such as communi-
cation or face-to-face interactions between individuals. In brain
networks, interactions between neurons are also time-varying.
Finally, ecological networks such as food webs experience sea-
sonal changes. The longitudinal dimension of data raises new
challenges to traditional clustering algorithms. Moreover, the
community structure of temporal networks can either be static
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or time-varying, and different clustering algorithms need to be
used in each case. For example, community structures in a brain
network are likely to be static, while the communities in a social
network can vary.

If communities are static, then each additional snapshot
makes clustering easier. Furthermore, when snapshots are tem-
porally uncorrelated, simple time-aggregation of data does not
lose any information and recovers communities optimally [3].
Nonetheless, for time-correlated models, this simple temporal
aggregation of the data might lose important features such as
temporal patterns. As such, [4] describes information-theoretic
recovery criteria for Markov edge evolution dynamics, while [5],
[6] study a spectral algorithm based on the squared adjacency
matrix.

Previous research on community detection in temporal net-
works has also focused on evolving communities, for exam-
ple by generalizing belief-propagation methods [7], developing
variational EM algorithms [8] and introducing new spectral
methods [9], [10], [11] or modularity-based methods [12], [13].
We refer to [14], [15] for an overview. All of the aforementioned
works focus on evolving communities for which the interactions
between nodes are re-sampled at every time step. One can then
treat each layer independently by applying static community
detection and smoothing the community predictions. A more
challenging situation is when the edges at a given time step also
depend on the edges at the previous time step. It is argued in [16]
that link persistence makes the inference of communities harder.

In this work, we first study the case of static commu-
nity memberships. We introduce a temporal extension of the
degree-corrected stochastic block model [17], [18], in which
the community structure is fixed and the interactions between
node pairs follow a Markov evolution which only depends on
the community structure and the degree correction parameters.
We show that maximum likelihood estimation reduces to the
maximisation of a regularized modularity of a time-aggregated
graph, in the limit of a large number of snapshots and sparse
interactions. This weighted graph is not given by a simple sum of
the adjacency matrices over all snapshots. Instead, we show that
the maximum likelihood estimator distinguishes, at each snap-
shot, the newly formed edges from the persistent ones. Indeed,
the information contained in these two types of temporal edges
is different. Thus, we propose a time-aggregation corresponding
to the sum of all snapshots of the signal coming from the newly
formed and persistent edges, but with different weights. This
leads to a weighted graph that better takes into account the
temporal nature of the signal than the vanilla time-aggregation.
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A continuous relaxation of this maximum likelihood estimator
then leads to a normalized spectral clustering algorithm. We
finally extend this study to higher-order temporal correlations.

We also study evolving communities with temporal correla-
tion in the edge formation. In this case, we propose to recover
the community at a given time step by using the prediction of
the previous time step as a noisy oracle. This naturally leads to a
noisy semi-supervised inference problem [15], which we tackle
using spectral methods.

The article is structured as follows. Section II studies the
static communities, while Section III focuses on evolving com-
munities. Numerical experiments are presented in Section IV
and the conclusions and future research directions are given in
Section V.

This article is an extension of [19]. Compared to the con-
ference article, the section on evolving communities is entirely
new. Moreover, the spectral algorithm for fixed communities is
modified (in order not to require any hyper-parameters besides
the number of communities). The extension to higher-order
Markov chains is also new. Finally, we present experiments on
a wider collection of data sets.

II. STATIC COMMUNITIES

This section studies the recovery of static communities in
a temporal network. We introduce in Section II-A a tem-
poral stochastic block model where dynamic interaction pat-
terns between node pairs follow a Markov chain. We render
this model more versatile by adding degree correction pa-
rameters, describing the tendency of each node to start new
interactions. We show that in some cases the likelihood of
this model is approximated by a regularized modularity of a
time-aggregated graph. This time-aggregated graph involves a
trade-off between new edges and persistent edges. A continuous
relaxation reduces the regularized modularity maximisation to
a normalized spectral clustering.

A. Degree-Corrected Temporal Network Model

A degree-corrected temporal stochastic block model with N
nodes, K blocks and T snapshots is a probability distribution

P (A |σ, F, θ) =
∏

1≤i<j≤N

F
θiθj
σiσj

(
A1

ij , . . . , A
T
ij

)
(1)

of a symmetric adjacency tensor A ∈ {0, 1}N×N×T with zero
diagonal entries, defined by At

ij = 1 if nodes i and j interact
at time t, and At

ij = 0 otherwise. Moreover, σ = (σ1, . . . , σN )
is a community assignment with σi ∈ {1, . . . ,K} indicating
the community of node i, F = (F ηθ

k� ) is a collection of prob-
ability distributions on {0, 1}T indexed by community labels
k, � ∈ [K] = {1, . . . ,K} and numbers η, θ ≥ 0 (representing
the degree correction parameters), and θ = (θ1, . . . , θN ) is a
vector of node-specific degree correction parameters θi ≥ 0.

In the following, we will restrict ourselves to homogeneous
models with Markov edge dynamics, in which the nodes’ static

community memberships are sampled independently and uni-
formly at random from [K], and for x ∈ {0, 1}T we have

F
θiθj
σiσj (x) =

{
μ
θiθj
x1

∏T
t=2 P

θiθj
xt−1,xt if σi = σj ,

ν
θiθj
x1

∏T
t=2 Q

θiθj
xt−1,xt otherwise,

(2)

with initial distributions

μθiθj =

(
1− θiθjμ1

θiθjμ1

)
,

νθiθj =

(
1− θiθjν1

θiθjν1

)
, (3)

and transition probability matrices

P θiθj =

(
1− θiθjP01 θiθjP01

1− P11 P11

)
,

Qθiθj =

(
1− θiθjQ01 θiθjQ01

1−Q11 Q11

)
. (4)

The parameters θi account for the fact that some nodes might
be more inclined than others to start new connections, similarly
to the degree-corrected block model of [18]. More precisely,
θiθjμ1 (resp., θiθjν1) is the probability of an interaction between
nodes i and j belonging to the same (resp., different) cluster at
the first snapshot. The first snapshot is therefore an instance
of the degree-corrected block model of [18]. Moreover, the
interaction between i and j is a Markov chain whose transition
matrix is P θiθj (resp., Qθiθj ) if the two nodes belong to the
same (resp., different) cluster. To obtain tractable analytical
expressions for the model likelihood, we do not add degree
correction parameters in front of P11 and Q11. This corre-
sponds to assuming that popularity does not affect the duration
of interactions. Moreover, we assume that maxi,j{θiθjδ} ≤ 1,
where δ = max{μ1, ν1, P01, Q01}. Finally, we normalise the
degree correction parameters so that 1

|Ck |
∑

i∈Ck
θi = 1 for all i,

where Ck = {i : σ(i) = k} indicates community k.

B. Maximum Likelihood Estimator

The following proposition presents a concise formulation of
the model likelihood, with proof presented in Appendix A.

Proposition 2.1: A maximum likelihood estimator for the
Markov block model defined by (1)–(2) is any community
assignment σ ∈ [K]N that maximises

∑
i,j

σi=σj

{
A1

ij

(
ρ
θiθj
1 − ρ

θiθj
0

)
+ ρ

θiθj
0 +

(
A1

ij −AT
ij

)
�
θiθj
10

}

+
∑
i,j

σi=σj

T∑
t=2

{(
�
θiθj
01 + �

θiθj
10

) (
At

ij −At−1
ij At

ij

)

+ �
θiθj
11 At−1

ij At
ij − log

Q
θiθj
00

P
θiθj
00

}
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where ρ
θiθj
a = log μ

θiθj
a

ν
θiθj
a

and �
θiθj
ab = log

P
θiθj
ab

Q
θiθj
ab

− log
P

θiθj
00

Q
θiθj
00

.

The MLE derived in Proposition 2.1 is more complex than
summing all snapshots independently. In particular, the terms
At−1

ij At
ij account for persistent edges over two consecutive

snapshots. Denote by At
pers = At−1 �At the entrywise product

of adjacency matrices At−1 and At. Then At
pers is the adjacency

matrix of the graph containing the persistent edges between t − 1
and t, and At

new = At −At
pers corresponds to the graph contain-

ing the edges freshly appearing at time t.
Assuming that the number of snapshots T is large, we can

ignore the boundary terms, and the MLE expressed in Proposi-
tion 2.1 reduces to maximising

T∑
t=2

∑
i,j:

σi=σj

{(
�
θiθj
01 + �

θiθj
10

) (
At

ij −At−1
ij At

ij

)

+ �
θiθj
11 At−1

ij At
ij − log

Q
θiθj
00

P
θiθj
00

}
.

By utilising (3)–(4), we can further simplify it to express this as
a modularity. Recall that given a weighted graph W , a partition
σ, and a resolution parameter γ, the regularized modularity is
defined as [20], [21]

M (W,σ, γ) =
∑
i,j

δ(σi, σj)

(
Wij − γ

didj
2 m

)
,

where di =
∑

j Wij andm =
∑

i di. Hence, suppose thatP θiθj

and Qθiθj are nondegenerate, and μθiθj (resp. νθiθj ) is the
stationary distribution of P θiθj (resp. Qθiθj ). In a sparse set-
ting, P01 and Q01 are small, and after a Taylor expansion (see
Section A-B for detailed derivations) the previous expression is
approximately equal to M(W,σ, γ), where W is defined by

W =

T∑
t=2

(
αAt

new + βAt
pers

)
, (5)

with

α = log
P01

Q01
+ log

1− P11

1−Q11
,

β = log
P11

Q11
, (6)

γ = (P01 −Q01)
α(μ1+(K−1)ν1)+(β−α)(μ1P11+(K−1)ν1Q11)

K .

C. Comparison With Previous Work on Static Communities

The correspondence between maximum likelihood estimation
and modularity maximisation is known in static block mod-
els [22]. Analogously to the single-layer case, the modularity of
a temporal network, with possibly time-dependent community
structure, was previously defined by Mucha et al. [12] and Pamfil
et al. [13] as

T∑
t=1

M(At, σt, γt) +
T∑

t=1

∑
s �=t

∑
i

ωst
i δ
(
σs
i , σ

t
i

)
(7)

where γt is the resolution parameter for layer t, σt
i is the

community membership of node i at time step t, and wst
i

denotes a coupling between time instants s and t. For a static
community structure, the second term in (7) is irrelevant. When
the resolution is constant over time, the relevant term in (7) can
be written as

T∑
t=1

M(At, σ, γ) = M(Aagg, σ, γ),

where Aagg =
∑T

t=1 A
t is the weighted adjacency matrix of the

time-aggregated data. In contrast, the matrix W in (5) involves
a trade-off between new edges and persistent edges. We notice
that W ∝ Aagg only if α = β. This is the case when freshly
appearing and persistent edges are equally important, and only
in this case using the simple time-aggregated adjacency matrix
provides optimal inference.

D. Temporal Spectral Clustering Combining New and
Persistent Edges

Following our analysis in Section II-B, the community pre-
diction is given by

σ̂ = arg max
σ∈[K]N

M(W,σ, γ),

whereW is defined in (5) and γ is a proper resolution parameter.
This optimisation problem is NP-complete in general [23] but
can be approximately solved by continuous relaxation. We can
choose the relaxation so that the optimisation problem reduces
to normalized spectral clustering on the weighted graph W (we
refer to [24] and to Section A-C for detailed computations).
We note that in order to compute the normalized Laplacian
of W , we should assume α, β ≥ 0, which we observe in all
our experiments.

Since α and β are likely to be unknown in practical situations,
we propose to estimate them as follows. For a, b ∈ {0, 1}, the
empirical probability of observing a transition a → b in the
interaction pattern between nodes i and j is

nab(i, j)

na(i, j)
,

where nab(i, j) =
∑T

t=2 1(A
t−1
ij = a, At

ij = b) is the observed
number of transitions a → b between i and j, and na(i, j) =∑

b nab(i, j). Thus, if σ̂ is an estimator of the community
labelling, then

P̂ab =
1

|{i, j : σ̂i = σ̂j}|
∑

i,j:σ̂i=σ̂j

nab(i, j)

na(i, j)
,

Q̂ab =
1

|{i, j : σ̂i �= σ̂j}|
∑

i,j:σ̂i �=σ̂j

nab(i, j)

na(i, j)
, (8)

are estimators ofP andQ from which one can compute estimates
ofα andβ. These observations motivate the following algorithm.
We start with α = β = 1, and we let σ̂ be the output of spectral
clustering onW =

∑T
t=2 αA

t
new + βAt

pers. Using σ̂ we compute

estimates P̂ and Q̂, which lead to a new value of α and β. We
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Algorithm 1: Spectral Clustering for Temporal Networks
With Markov Edge Dynamics and Static Node Labelling.

iterate the procedure until some convergence criterion is met.
This leads to Algorithm 1.

E. Extension to Higher-Order Markov Chains

Interactions with a longer memory can be modelled using
higher-order Markov chains [25], [26]. We demonstrate below
how Algorithm 1 can be extended to a long-memory context.
Suppose the interactions are Markov chains of orderM . Namely,
the intra- and inter-block interaction connectivity functions,
defined previously by (2), are now given by

Fσiσj
(x) =

{
μ(x1:M )

∏T
t=M+1 P (xt | st) if σi = σj ,

ν(x1:M )
∏T

t=M+1 Q (xt | st) otherwise,

where st = (xt−M , . . . , xt−1). Following a similar reasoning,
we propose to apply spectral clustering on the weighted matrix
W defined by

Wij =

T∑
t=M+1

∑
s∈{0,1}M
b∈{0,1}

αsb 1
(
A

(t−M):(t−1)
ij = s,At

ij = b
)
,

with αsb=log P (b | s)
Q(b | s) and A

(t−M):(t−1)
ij =

(
At−M

ij , . . . , At−1
ij

)
.

Moreover, an estimator of P is given by

P̂ (b | s) =
1

|{i, j : σ̂i = σ̂j}|
∑
i,j

σ̂i=σ̂j

nsb(i, j)

ns(i, j)
,

Q̂(b | s) =
1

|{i, j : σ̂i �= σ̂j}|
∑
i,j

σ̂i �=σ̂j

nsb(i, j)

ns(i, j)
, (9)

where nsb(i, j) =
∑T

t=M 1(A
(t−M):(t−1)
ij = s,At

ij = b) and
ns(i, j) =

∑
b∈{0,1} nsb(i, j). This can be formalised as

Algorithm 2.

Algorithm 2: Spectral Clustering for Temporal Networks
With Higher-Order Markov Edge Dynamics.

III. EVOLVING COMMUNITIES

In this section, we consider a population of N nodes parti-
tioned into K time-evolving communities. At time t, we denote
by σt

i ∈ [K] the community membership of node i and by
At

ij ∈ {0, 1} the observed interaction between nodes i and j.
We investigate methods of recovering the community structure,
denoted by (σ1, . . . , σT ) where σt ∈ [K]N , from an observed
adjacency tensor A = (At

ij).

A. Model Description

Similarly to several articles on dynamic SBM [7], [8], [16],
we first assume that each node community labels σ1:T

i ∈ [K]T

is a Markov chain of length T with initial probability α and
transition probability matrix π. Hence,

P
(
σ1:T

)
=

N∏
i=1

α
(
σ1
i

) T∏
t=2

π
(
σt−1
i , σt

i

)
. (10)

For simplicity, we will assume that the initial labels and the
transitions are uniform, that is

α =
1

K
1K and π = ηIK +

1− η

K
1K1TK .

In other words, a node keeps its label with probability η ∈ [0, 1]
and chooses a label uniformly at random with probability 1− η.

We then assume that the interaction between two nodes i and j
is a Markov chain depending only on the community labelling.1

Hence,

P (A |σ) =
∏

1≤i<j≤N

P
(
A1

ij |σ1
i , σ

1
j

) T∏
t=2

P
(
At

ij |At−1
ij , σt

i , σ
t
j

)
.

1For simplicity, in this section we do not add any degree correction parameters.
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We consider a homogeneous model in which the initial distribu-
tion is given by

P
(
A1

ij |σ1
i , σ

1
j

)
=

{
μ(A1

ij), if σ1
i = σ1

j ,

ν(A1
ij), otherwise,

and the transition probabilities are

P
(
At

ij = b |At−1
ij = a, σt

i , σ
t
j

)
=

{
Pab if σt

i = σt
j ,

Qab otherwise.

B. Community Inference

The inference of the temporal community structure is com-
plicated because interactions observed in a distant past are less
informative for inferring the current community membership of
a node. To mitigate the bias caused by outdated information, we
propose a two-stage online algorithm:

1) at time t = 1, we use a static community detection algo-
rithm to output σ̂1, a prediction of the initial node labels
σ1 from the observation of the first snapshot A1;

2) at time t > 1, we will use the observation of the first t
snapshots A1, . . . , At as well as the previous predictions
σ̂1, · · · σ̂t−1. This will be treated as a semi-supervised
learning problem, where the prediction σ̂t−1 is seen as
a noisy oracle for the true node labelling σt.

From the Markov structure, the prediction at time t > 1
reduces to predicting σt using only the network at time t− 1 and
t and the previous prediction σ̂t−1. This can be interpreted as a
noisy semi-supervised problem, where the previous prediction
σ̂t−1 plays the role of an oracle for the node labels at time t.
This oracle is biased, as it bears two kinds of potential mistakes.
Firstly, σ̂t−1 is not necessarily exactly equal to the perfect
community labelling σt−1. Furthermore, since the node labels
vary through time, σt−1 does not precisely correspond to σt.
Assume that the network data A and community labels σ come
from the model described in Section III-A. We denote the oracle
bias at time t by

ρt = P
(
σt
i �= σ̂t−1

i

)
, (11)

and we will make a simplifying assumption that it does not
depend on node i.

The MAP estimator for the online learning problem is

σ̂t = arg max
z∈[K]N

P
(
z |At, At−1, σ̂t−1

)
= arg max

z∈[K]N
P
(
At |At−1, z, σ̂t−1

)
P
(
z |At−1, σ̂t−1

)
by Bayes’ rule.

Since P (At |At−1, z, σ̂t−1) = P (At |At−1, z), then by pro-
ceeding similarly to the proof of Proposition 2.1, the log-
likelihood term logP (At |At−1, z) can be rewritten as

1

2

∑
i,j

zi=zj

{
�
θiθj
01

(
At

ij −At−1
ij At

ij

)
+ �

θiθj
10

(
At−1

ij −At−1
ij At

ij

)

+ �
θiθj
11 At−1

ij At
ij − log

Q
θiθj
00

P
θiθj
00

}
.

The oracle information is equal to

P
(
z | σ̂t−1

)
=

N∏
i=1

P
(
σ̂t−1
i | zi

)
P
(
σ̂t−1
i

) P (zi)

=

(
ρt

1− ρt

)|{i∈[N ]:zi �=σ̂t−1
i }|

(1− ρt)
N K−N ,

where we used the uniformity of the node labels and where ρt
is defined in (11).

The MAP estimator at time t is therefore any labelling σ that
maximises∑

i,j
zi=zj

{
�
θiθj
01

(
At

ij −At−1
ij At

ij

)
+ �

θiθj
10

(
At−1

ij −At−1
ij At

ij

)

+ �
θiθj
11 At−1

ij At
ij − log

Q
θiθj
00

P
θiθj
00

}
+ 2λt

N∑
i=1

1 (zi = si) ,

where �
θiθj
ab = log

P
θiθj
ab

P
θiθj
ab

− log
P

θiθj
00

P
θiθj
00

and λt = log 1−ρt

ρt
, and

where si = σt−1
i .

C. Continuous Relaxation

Denote byAt
pers = At−1 �At the persistent edges, byAnew =

At −At
pers the freshly formed edges, and by Aold = At−1 −

Apers the disappearing edges between time t− 1 and t. De-
note by Σ ∈ {0, 1}N×K (resp., by S) the one-hot encoding of
σ ∈ [K]N (resp., ofs). In other words, we haveΣik = 1(σi = k)
and Sij = 1(si = k). We observe that

∑
i 1(σi = si) = ΣTS.

Thus, using a Taylor expansion as in Section II-A, we can
approximate the MAP estimator at time t as the maximisation
over Σ ∈ {0, 1}N×K of

Tr
(
ΣT
(
W t − τ1N1TN

)
Σ+ 2λΣTS

)
, (12)

where W t = α01A
t
new + α10A

t
old + α11A

t
pers with αab =

log Pab

Qab
and τ = P01 −Q01 is a resolution parameter, and Σ

verifies the constraints
∑

k∈[K] Σik = 1 for all i ∈ [N ].
We perform a continuous relaxation (mirroring what is com-

monly done for spectral methods [24]) and solve instead

arg max
X∈RN×K

N∑

i=1

κiX
2
ik=

N∑

i=1

κi

Tr
(
XTWτX + 2λXTS

)
, (13)

where κ = (κ1, . . . , κN ) is a vector of positive entries. In what
follows, we choose to constrain X to verify (XTDX)kk = 1
by taking κi =

di

2 m .2 This leads to the optimisation problem

arg max
X∈RN×K

∀k∈[K]:(XTDX)kk=1

Tr
(
XTWτX + 2λXTS

)
. (14)

2Another possible relaxation is to constraint X such that XTDX = IK , so
thatD−1/2X belongs to a Stiefel manifold. The minimisation problem obtained
with this (stronger) constraint is similar to an unbalanced orthogonal Procrustes
problem, for which necessary or sufficient conditions for the local and/or global
minimiser exist, but no closed-form expression of the solution is available [27],
[28].



2092 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 11, NO. 2, MARCH/APRIL 2024

Algorithm 3: Online Clustering of Time-Varying Commu-
nities.

In order to solve (14), let us introduce the eigenvalue decompo-
sition of −D−1/2WτD

−1/2, written as

−D−1/2WτD
−1/2 = QΔQT , (15)

where Δ = diag(δ1, . . . , δN ) with δ1 ≤ · · · ≤ δN and QTQ =
IN .

The following Proposition, whose proof is deferred to
Appendix B, gives an expression for the solution of (14).

Proposition 3.1: Let B = λQTD−1/2S where Q is defined
in (15). The solution X̂ = (X̂·1, . . . , X̂·K) of the optimisation
problem (14) satisfies for all k ∈ [K]

(−Wτ − γ∗
kD) X̂·k = λS·k, (16)

where γ∗
k is the smallest solution of

N∑
i=1

(
Bik

δi − γ

)2

− 1 = 0. (17)

The expression of the solution of (14) given in Proposition 3.1
leads to Algorithm 3.

D. Comparison With Previous Work on Evolving Communities

It is often natural to assume that the pairwise interactions
evolve over time, but the temporal changes in connectivity
patterns occur gradually. Therefore, many works in the literature
propose dynamic extensions of the stochastic block model,
where both community memberships and connections can vary
through time.

To model a smooth evolution of communities across time,
the majority of works describe changes in the memberships
via a Markov evolution. Moreover, previous works almost al-
ways suppose that the interaction at time t depends only on
the block structure at time t. For example, Yang et al. [29]
assume that the community membership of each node forms a
Markov chain independent of the memberships of other nodes.
Xu and Hero [30] extend this model and allow for both the
community memberships and connectivity parameters to vary.
This renders the model unidentifiable. This issue was raised by
Matias and Miele [8], who established identifiability conditions

for models with both community memberships and connectivity
parameters varying over time. Pensky and Zhang [31] assume
that at most s nodes can switch their memberships between two
consecutive time instants, and that the connection probabilities
vary smoothly over time.

All of the aforementioned works suppose that the interactions
at a given snapshot t are conditionally independent of all past
snapshots given the current community memberships. Namely,
it is assumed that the temporal interactions are resampled at
each time instant (i.e., the interaction At

ij between nodes i and
j at time j depends only on the community labels σt

i and σt
j

at time t, and not on the previous interactions At−1
ij between i

and j). Barucca et al. [16] propose a model similar to ours but
assume that the edge persistence is the same for intra- and inter-
community interactions. More precisely, using the notations of
Section III-A, [16] supposes that

P
(
At

ij = b |At−1
ij = a, σt

i , σ
t
j

)
=

{
Pab, if σt

i = σt
j ,

Qab, otherwise,

where the transition matrices P and Q can be written as

P = ξ1T2 12 + (1− ξ)P̃ ,

Q = ξ1T2 12 + (1− ξ)Q̃, (18)

and where P̃ and Q̃ are given transition matrices and ξ ∈ [0, 1] is
an edge persistence parameter. Such a decomposition implicitly
supposes that the Markov chain is positively autocorrelated3

(Cov(X0, X1) ≥ 0) for a stationary Markov chain (Xt)). While
positive autocorrelation can be a reasonable assumption for
social networks, it might not be suitable for other situations
(for example, in biological networks spiking phenomena might
occur).

To generalise the model even further, in addition to time-
varying interactions and community memberships, the Markov
transition matrices describing the persistence of edges may also
evolve over time. An instance of such a model was discussed by
Xu [32], by assuming a Gaussian evolution for log-transformed
transition matrices, and experimenting with an extended Kalman
filter for inferring community memberships and model param-
eters. Further exploration of such more general Markov models
appears an interesting direction for future research.

IV. NUMERICAL EXPERIMENTS

A. Static Communities

We compare the performances of temporal spectral clustering
data sets with static communities. In this section, improved
time-aggregation refers to Algorithm 1, while simple time-
aggregation refers to spectral clustering on the time-aggregated
graph

∑
t A

t.

3This comes from the following Lemma. A 2-by-2 binary stochastic matrix

P �= I2 admits a representation P = ξI2 + (1− ξ)

(
π0 π1

π1 π0

)
for some

ξ ∈ [0, 1] and some probability distribution π = (π0, π1) iff both eigenvalues
of P are non-negative iff Cov(X0,X1) ≥ 0 for a stationary Markov chain
(X0,X1, · · · ) on {0, 1} with transition matrix P .
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Fig. 1. Accuracy of Algorithm 1 with α = 1 and different β, on a degree-corrected temporal SBM with 300 nodes and K = 3 blocks (with a uniform prior),
and a stationary Markov edge evolution μ1 = 0.02, ν1 = 0.01, P11 = 0.7 and Q11 = 0.2, for a different generation of the degree correction parameters θ. The
results are averaged over 25 synthetic graphs, and error bars show the standard error.

Fig. 2. Comparison of accuracy obtained on the SocioPatterns data sets by using spectral clustering with simple time-aggregation versus improved time-aggregation
(Algorithm 1).

In our experiments, we set ε = 0.1 and a maximum number
of iterations = 10. We observed empirically that Algorithm 1
frequently required less than 5 iterations to converge. The only
cases when Algorithm 1 did not stop within 10 iterations were
the cases when the time-aggregated graphs were too sparse (this
may happen when the time horizon T is not enough long).

1) Synthetic Data Sets: We plot in Fig. 1 the averaged ad-
justed rand-index (ARI) obtained on 25 realisations of stochastic
block models with Markov edge dynamics for various degree-
correction parameters θ. More precisely:
� θi = 1 for all i ∈ [N ] in Fig. 1(a);
� in Fig. 1(b), the θi’s are generated θi according to
|N (0, σ2)|+ 1− σ

√
2/π where |N (0, σ2)| denotes the

absolute value of a normal random variable with mean 0
and variance σ2, where σ = 0.25;

� in Fig. 1(c), the θi’s are generated from a Pareto distribution
with density function f(x) = ama

xa+1 1(x ≥ m)with a = 2.5
and m = 2/3.

Note that the sampling of the θi’s enforces Eθi = 1 in all
settings.

While the simple time aggregation works well, it is striking
to notice that Algorithm 1 provides better results. For example,
when the degree-corrected parameters are generated according
to a Gaussian distribution, Fig. 1(b) shows that the simple time-
aggregation requires around 100 snapshots to get a perfect ARI,
while Algorithm 1 only requires 30 snapshots.
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Fig. 3. Comparison of the ARI obtained on workplace 2015 and primary school data sets by using temporal spectral clustering with higher order correlations
(Algorithm 2).

TABLE I
DIMENSIONS OF SIX DATA SETS FROM SOCIOPATTERN LIBRARY

2) Real World Data: We investigate data sets of face-to-face
contacts between individuals, for which ground-truth commu-
nities are known. The data sets are available on SocioPatterns
website.4 Three data sets were collected in a high school [33],
[34], one in a primary school [35] and two in a work environ-
ment [36], [37]. For each data set, nodes correspond to indi-
viduals (students or workers), time-varying network edges cor-
respond to close proximity interactions, measured by wearable
sensors able to sense proximity, and communities correspond to
school classes or work departments. The data set dimensions are
given in Table I.

We plot in Fig. 2 the accuracy obtained by Algorithm 1 on
each of these data sets, compared to the spectral clustering
done on the time aggregated graph

∑T
t=1 A

t. We observe a
clear improvement in the accuracy of most data sets. This
highlights the importance of weighting differently the persistent
edges and the freshly appearing edges. Additionally, we would
like to emphasise that Algorithm 1 estimates the values of α
and β using the network data. Only two data sets (workplace
2015 and primary school) show no improvements. Nonetheless,
we demonstrate in Fig. 3 that we can improve the accuracy
of these two data sets by taking into account higher-order
correlations.

4[Online]. Available: https://www.sociopatterns.org/

Fig. 4. ARI obtained by various clustering algorithms on time-varying Markov
Block Models with 300 nodes and K = 2 blocks (with a uniform prior), and a
stationary Markov edge evolutionμ1 = 0.1, ν1 = 0.05,P11 = 0.6 andQ11 =
0.2. The results are averaged over 25 synthetic graphs, and error bars show
the standard error. We ran Algorithm 3 (online-ssl) with parameters α01 =
1, α10 = 0 and α11 = 2), and we compare with weighted SC (Algorithm 1
with α = 1, β = 2) and an algorithm performing spectral clustering on each
snapshot individually (individual SC).

https://www.sociopatterns.org/
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Fig. 5. ARI of Algorithm 3 with α01 = 1, α10 = 0 and α11 = 2 for various
choices of λ. Simulations are performed on time-varying Markov Block Models
with n = 200, K = 2, μ1 = 0.2, ν1 = 0.1, P11 = 0.7, Q11 = 0.3 and η =
0.8. The results are averaged over 25 synthetic graphs, and error bars show the
standard error.

B. Evolving Communities

In this section, we evaluate the performance of Algorithm 3
on synthetic data sets.

We compare in Fig. 4 the averaged accuracy obtained by
Algorithm 3 with Algorithm 1 (spectral clustering with per-
sistent edges) and an algorithm performing spectral clustering
on each snapshot individually. In particular, we observe that
when η = 1 (i.e., static community structure), Algorithm 1 is
extremely efficient, as expected. Since it takes into account all
previous snapshots, it in particular outperforms Algorithm 3.
On the contrary, when η �= 1, the lagging problem arises, and
Algorithm 1 ends up with a very poor accuracy after a few
snapshots. On the contrary, Algorithm 3 keeps a very high
accuracy over all snapshots.

In Fig. 4, we choose λt to be constant with respect to time
and equal to 0.5, while Fig. 5 explores other constant possible
values of λ. We observe that when λ is in the range [0.1, 1],
the algorithm provides good accuracy. On the other hand, when
λ becomes too large, Algorithm 3 gives too much importance
to the oracle, and the accuracy becomes worse. In practice, the
choice of the parameters λt could be optimised from the data,
e.g. based on η or on the transition matrices P and Q. Moreover,
it would be intuitive to increase λt with t, as the confidence in
the oracle is higher when more temporal data is available. We
leave these research ideas for future work.

Finally, we compare in Fig. 6 the performance of Algorithm 3
with the VEM algorithm of [8].5 The VEM algorithm of [8] is tai-
lored for models with time-varying communities but where the
interactions are resampled at every time step. Thus, we observe
that its performance is excellent when the links are resampled at
every time step (Fig. 6(a)), but the performance decreases when
the time-persistency increases (Fig. 6(b) and (c)). In contrast,

5To implement this VEM algorithm, we used the R package dynsbm provided
by the authors of [8] and at http://lbbe.univ-lyon1.fr/dynsbm.

Fig. 6. Comparison of ARIs obtained by Algorithm 3 and the VEM algorithm
of [8] on time-varying Markov Block Models with 250 nodes and K = 2 blocks
(with a uniform prior), η = 0.75, and a stationary Markov edge evolution μ1 =
0.2, ν1 = 0.1, Q11 = 0.1 and for various P11. Fig. 6(a) is a setting where
links are re-sampled at each time step, while Fig. 6(b) and (c) models medium
and high intra-community link persistency. The results are averaged over 25
synthetic graphs, and error bars show the standard error.

Algorithm 3 performs better than VEM when the correlation in
the edge dynamics is strong.

V. CONCLUSION

In this article, we derived spectral algorithms for clustering
temporal networks, both in the case of static and evolving

http://lbbe.univ-lyon1.fr/dynsbm
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communities. For static communities, the Markov chain as-
sumption for the edge formation implies a difference in the
information carried by persistent and newly formed edges. This
difference is lost by performing a simple time aggregation that
indifferently sums all the interactions. Instead, we proposed to
weigh differently the persistent and the newly formed edges. In
the evolving community setting, we highlighted the possibility
of using a past prediction as a semi-supervised oracle for the
prediction at a current snapshot. Overall, the derived spectral
algorithms for clustering temporal networks provide a valuable
tool for inferring community structure in complex systems, and
the proposed weighing methods for persistent and newly formed
edges offer a refined approach to analyse dynamic networks.

One direction for future research is online/adaptive tuning
of hyperparameters such as estimates of the bias of the noisy
semi-supervised oracle.

Several approximations and relaxations were made in deriving
a weighted similarity matrix used for spectral clustering and for
tuning its weights. Analysing the accuracy of these approxima-
tions, and proving that the proposed algorithms terminate in a
finite time remain topics for future research.
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APPENDIX A
PROOFS FOR SECTION II

A. MLE Computation

Proof of Proposition 2.1: By the temporal Markov
property, the log-likelihood of the model can be written as
logP (A|σ, θ) = logP (A1|σ, θ) +∑T

t=2 logP (At|At−1, σ, θ).

By denoting ρ
θiθj
a = log μ

θiθj
a

ν
θiθj
a

, we find that

logP (A1 |σ, θ)

=
1

2

∑
i,j

∑
a

δ(A1
ij , a)

(
δ(σi, σj)ρ

θiθj
a + log ν

θiθj
a

)
=

1

2

∑
i,j

δ(σi, σj)
∑
a

δ(A1
ij , a)ρ

θiθj
a + c1(A),

where c1(A) = 1
2

∑
i,j

∑
a δ(A

1
ij , a) log ν

θiθj
a does not depend

on the community structure. Similarly, by denoting R
θiθj
ab =

log
P

θiθj
ab

Q
θiθj
ab

, we find that

logP (At |At−1, σ, θ)

=
1

2

∑
i,j

∑
a,b

δ(At−1
ij , a)δ(At

ij , b)
(
δ(σi, σj)R

θiθj
ab +logQ

θiθj
ab

)
=

1

2

∑
i,j

δ(σi, σj)
∑
a,b

δ(At−1
ij , a)δ(At

ij , b)R
θiθj
ab + ct(A),

where ct(A) = 1
2

∑
i,j

∑
a,b δ(A

t−1
ij , a)δ(At

ij , b) logQ
θiθj
ab

does not depend on the community structure. Simple

computations show that∑
a

δ(A1
ij , a)ρ

θiθj
a = A1

ij

(
ρ
θiθj
1 − ρ

θiθj
0

)
+ ρ

θiθj
0

and∑
a,b

δ(At−1
ij , a)δ(At

ij , b)R
θiθj
ab

= R
θiθj
00 +At−1

ij

(
R

θiθj
10 −R

θiθj
00

)
+At

ij

(
R

θiθj
01 −R

θiθj
00

)
+At−1

ij At
ij

(
R

θiθj
11 −R

θiθj
01 −R

θiθj
10 +R

θiθj
00

)
= R

θiθj
00 +At−1

ij �
θiθj
10 +At

ij�
θiθj
01

+At−1
ij At

ij

(
�
θiθj
11 − �

θiθj
01 − �

θiθj
10

)
.

By collecting the above observations, we now find that
logP (A |σ, θ) equals

1

2

∑
i,j

σi=σj

{
A1

ij(ρ
θiθj
1 − ρ

θiθj
0 ) + ρ

θiθj
0 + (A1

ij −AT
ij)�

θiθj
10

}

+
1

2

∑
i,j

σi=σj

T∑
t=2

{
(�

θiθj
01 + �

θiθj
10 )

(
At

ij −At−1
ij At

ij

)

+ �
θiθj
11 At−1

ij At
ij − log

Q
θiθj
00

P
θiθj
00

}
+ c(A),

where c(A) =
∑

t ct(A) does not depend on σ. Hence the claim
follows. �

B. Sparse MLE and Modularity

Recall the structural assumptions (3)–(4) about the degree
correction parameters. Because P01, Q01 = o(1), a first-order
Taylor expansion yields

log
1− θiθjQ01

1− θiθjP01
= θiθj (P01 −Q01) + o (P01 +Q01) ,

as well as �
θiθj
01 ≈ log P01

Q01
, �

θiθj
10 ≈ log 1−P11

1−Q11
and �

θiθj
11 ≈

log P11

Q11
. Using these approximations in the MLE expression

leads to the maximisation of

T∑
t=2

∑
i,j:σi=σj

(
ãtij − θiθj (P01 −Q01)

)
, (19)

where ãtij = α(At
new)ij + β(At

pers)ij . Since μ and ν are station-
ary distributions,

E
(
At

new

)
ij

=

{
θiθjμ1(1− P11) if σi = σj ,
θiθjν1(1−Q11) otherwise,

E
(
At

pers

)
ij

=

{
θiθjμ1P11 if σi = σj ,
θiθjν1Q11 otherwise.
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Therefore, using Wij =
∑T

t=2 ãij , we have

EWij =

{
(T − 1)θiθjμ1 (α(1− P11) + βP11) if σi = σj

(T − 1)θiθjν1 (α(1−Q11) + βQ11) otherwise.

Since the community labelling is sampled uniformly at
random, using the normalization for the θi’s, we obtain d̄i =

(T − 1)θiN
μ1(α(1−P11)+βP11)+(K−1)ν1(α(1−Q11)+βQ11)

K ,
together with m̄ =
(T−1)N2

2
μ1(α(1−P11)+βP11)+(K−1)ν1(α(1−Q11)+βQ11)

K . Hence,
we observe that

θiθj(P01 −Q01) = γ
d̄id̄j
2m̄

,

where γ = (P01 −Q01)(T − 1)
μ1(α(1−P11)+βP11)+(K−1)ν1(α(1−Q11)+βQ11)

K . We end the proof
by employing (19). �

C. Modularity and Spectral Clustering

The regularized modularity of a partition σ ∈ [K]N of the
graph A is defined as

M (A, σ, γ) =
∑
i,j

δ (σi, σj)

(
Aij − γ

didj
2 m

)
,

where d = A1n is a vector of degrees and γ is a resolution
parameter. The above equation can be rewritten as

M (A, σ, γ) = Tr Z̃T

(
A− γ

ddT

2 m

)
Z̃,

where Z̃ ∈ {0, 1}N×K is the membership matrix associated with
the vector σ, that is Z̃ik = 1 for k = σi, and Z̃ik = 0 otherwise.
As maximising the modularity over σ ∈ [K]N is in general
NP-complete [23], it is convenient to perform a continuous
relaxation. Following [24], we transform the problem into

X̂ = arg max
X∈RN×K

XTDX=IK

TrXT

(
A− γ

ddT

2 m

)
X. (20)

The predicted membership matrix Ẑ is then recovered by per-
forming an approximated solution to the following k-means
problem (see [38])(

Ẑ, Ŷ
)

= arg min
Z∈ZN,K ,Y ∈RK×K

∥∥∥ZY − X̂
∥∥∥
F
. (21)

The Lagrangian associated to the optimisation problem (20) is

TrXT

(
A− γ

ddT

2 m

)
X − Tr

(
ΛT
(
XTX − IK

))
,

where Λ ∈ RK×K is a symmetric matrix of Lagrangian multi-
pliers. Up to a change of basis, we can assume thatΛ is diagonal.
The stationarity condition for the solution of (20) becomes(

A− γ
ddT

2 m

)
X = DXΛ and XTDX = IK ,

which is a generalized eigenvalue problem: the columns of X
are the generalized eigenvectors, and the diagonal elements of

Λ are the eigenvalues. In particular, since the constant vector 1n
satisfies

(
A− γ ddT

2 m

)
1n = (1− γ)D1n, we conclude that the

eigenvalues should be larger than 1− γ for the partition to be
meaningful.

Multiplying the first equation by 1Tn leads to (1− γ)dTX =
dTXΛ, and therefore dTX = 0 (using the previous remark on
Λ). The system then simplifies in

AX = DXΛ and XTDX = IK .

Defining a re-scaled vector U = D−1/2X shows that U satisfies
D−1/2AD−1/2U = UΛ and UTU = IK . Thus, the columns of
U are eigenvectors of D−1/2AD−1/2 associated with the K
largest eigenvalues (or equivalently, the eigenvectors of L =
IN −D−1/2AD−1/2 associated to the K smallest eigenvalues).

APPENDIX B
PROOFS FOR SECTION III

Proof of Proposition 3.1: By letting Γ ∈ RK×K be the di-
agonal matrix whose diagonal entries Γkk are the Lagrange
multipliers associated with the constraints (XTDX)kk = 1, the
Lagrangian of the relaxed optimisation problem (14) is

Tr
(
XTWτX + 2λSTX

)
+Tr

((
XTDX − Ik

)
Γ
)
.

This leads to the constrained linear system{
WτX +DXΓ = −λS,
(XTDX)kk = 1,

(22)

whose unknowns are Γ and X .
Firstly, we note that if (Γ1, X1) and (Γ2, X2) are solutions

of the system (22), then (see Lemma B.1 for the computations)

C (X1
)− C (X2

)
= Tr

[
(Γ1 − Γ2)(X1 −X2)TD(X1 −X2)

]
=

∑
k∈[K]

(
Γ2
kk − Γ1

kk

) ∥∥X1
·k −X2

·k
∥∥
D

where C(x) = Tr(XTWτX + 2λSTX) is the cost function
maximised in (14) and ‖x‖D = xTDx. Hence, among the
solution pairs (Γ, X) of the system (22), the solution of the
minimisation problem (14) is the vector X associated with the
diagonal matrix Γ whose entries are the smallest.

Secondly, the eigenvalue decomposition of −D−1/2Wτ

D−1/2 reads as

−D−1/2WτD
−1/2 = QΔQT ,

where Δ = diag(δ1, . . . , δN ) with δ1 ≤ · · · ≤ δN and QTQ =
IN . Therefore, after the change of variables U = QTD1/2X
and B = λQTD−1/2S, the system (22) is transformed to{

ΔU = UΓ +B,
(UTU)kk = 1 ∀k ∈ [K].

Thus, the solution X̂ = (X̂·1, . . . , X̂·K) of the optimisation
problem (14) satisfies

(−Wτ − γ∗
kD) X̂·k = λS·k,
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where for all k ∈ [K], γ∗
k is the smallest solution of the explicit

secular equation [39]

N∑
i=1

(
Bik

δi − γ

)2

− 1 = 0.

�
Lemma B.1: If (Γ1, X1) and (Γ2, X2) are solutions of the

system (22), then

C (X1
)− C (X2

)
=

∑
k∈[K]

(
Γ2
kk − Γ1

kk

) ∥∥X1
·k −X2

·k
∥∥
D
,

where C(X) = Tr(XTWτX + 2λSTX) and ‖x‖D = xTDx.
Proof: Because (Γ1, X1) and (Γ2, X2) are solutions of (22),

it holds that

−WτX
1 −DX1Γ1 = λS,

−WτX
2 −DX2Γ2 = λS. (23)

Using the definition of C(X) and the fact that (Γ1, X1) is
solution of (22), we notice that

C(X1) = Tr
(−(X1)TDX1Γ1 + λ(X1)TS

)
,

and similarly forC(X2). Moreover, multiplying the first equation
of (23) (resp., the second equation) by (X2)T (resp., by (X1)T )
gives

λ(X2)TS = − (X2)TWτX
1 − (X2)TDX1Γ1,

λ(X1)TS = − (X1)TWτX
2 − (X1)TDX2Γ2.

Because (X1)TWτX
2 = (X2)TWτX

1, we have

Tr
(
λST

(
X1 −X2

))
= Tr

(−(X1)TDX2Γ2 + (X2)TDX1Γ1
)
.

Therefore,

C(X1)− C(X2) = Tr
(−(X1)TDX1Γ1 + (X2)

TDX1Γ1
)

−Tr
(−(X2)TDX2Γ2+(X1)TDX2Γ2

)
.

(24)

Moreover, because Γ1 and D are symmetric, we have

Tr
(−(X1)TDX1Γ1 + (X2)

TDX1Γ1
)

=
∑
k∈[K]

Γ1
kk

((−(X1)TDX1
)
kk

+
(
(X2)

TDX1
)
kk

)
=

∑
k∈[K]

Γ1
kk

(−(X1
·k)

TDX1
·k + (X2

·k)
TDX1

·k
)
.

The constraints XT
·kDX·k = 1 verified by both X1 and X2 leads

to

− (X1
·k)

TDX1
·k + (X2

·k)
TDX1

·k

= − (X1
·k)

TDX1
·k + (X2

·k)
TDX2

·k
2

+ (X2
·k)

TDX1
·k

= −‖X1
·k −X2

·k‖D,

where the last equality uses (X2
·k)

TDX1
·k = (X1

·k)
TDX2

·k. This
ensures that

Tr
(−(X1)TDX1Γ1 + (X2)

TDX1Γ1
)

= −
∑
k∈[K]

Γ1
kk‖X1

·k −X2
·k‖D. (25)

Similarly, we can establish that

Tr
(−(X2)TDX2Γ2 + (X1)TDX2Γ2

)
= −

∑
k∈[K]

Γ2
kk‖X1

·k −X2
·k‖D. (26)

We finish the proof by combining (25) and (26) with (24). �
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