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Abstract— Backscatter communication (BC) can enable nar-
rowband radio frequency (RF) sensing with lower power con-
sumption and lower system complexity compared with conven-
tional sensing systems with active transmitter-receiver (TX-RX)
pairs. To integrate sensing in the BC scenario, this paper investi-
gates the impact of human position on the received signal strength
(RSS). We first derive a new RSS model for the BC scenario
based on three states: non-fading, reflection, and shadowing,
depending on the location of the person with respect to line-of-
sight (LoS) link. We validate the model by indoor measurements
and compare it with the three-state model of the active TX-
RX scenario. The measurements show that the proposed model
accurately predicts human-induced RSS changes. Furthermore,
we observe that human-induced RSS variances in the BC scheme
are higher than those in the TX-RX scenario, benefiting variance-
based sensing methods. Therefore, the proposed model can
be implemented in low-power BC-enabled device-free sensing
applications, such as human presence detection and device-free
localization.

Index Terms—Backscatter communication, received signal
strength, human presence detection, device-free localization.

I. INTRODUCTION

Human motion and activities interfere with electromagnetic
(EM) wave propagation of wireless communication systems.
This human-induced variation in the EM field exhibits dif-
ferent patterns depending on human actions. In beyond 5G
(B5G) era, sensing and communication will coexist and be
integrated into one system, known as integrated sensing and
communication (ISAC) [1]. In the ISAC system, by extracting
useful information from captured signals, one can realize
device-free sensing. Available solutions exploit the Wi-Fi
channel state information (CSI) [2], frequency modulated con-
tinuous wave (FMCW) radar [3], radio frequency identification
(RFID) [4], and reconfigurable intelligent surface (RIS) [5] for
device-free localization (DFL) and human presence detection
(HPD). Among the DFL and HPD systems, backscattering
radio methods are gaining prominence thanks to the ubiqui-
tous deployment of ambient Internet-of-Things (AIoT) that is
currently under discussion in the standardization of mobile
networks [6], [7].

The sensing system integrated into conventional wire-
less sensor networks (WSNs) localizes or detects a person
through coherent reception with received signal strength (RSS)
and phase information. For acceptable performance, they
need high-power transmissions and/or multiple active sensor
nodes [8]. Integrating sensing with backscatter communication
(BC) replaces active nodes with nearly passive backscatter tags

and only one active transmitter-receiver (TX-RX) pair [9].
Backscatter tags modulate ambient RF signals transmitted
from the TX. The RX then detects reflected signal from
the tags, extracts RSS information and from there makes
localization inferences. Thus, compared with the conventional
WSN sensing with all active nodes, the BC-enabled ISAC
systems consume orders of magnitude less power.

A moving human body alters radio propagation links and
changes the RSS. The induced RSS variations are widely
employed for sensing systems. In conventional WSNs with
TX-RX pairs, a spatial model of RSS variance [8] is used
for inferring human location. The human position, size, ori-
entation, and movement around the radio link are related to a
multi-body diffraction-based RSS model [10]. Human motions
can be depicted from its induced RSS fading model [11],
and the period of motion or stationary is estimated with a
reciprocal RSS model [12]. These works demonstrate that RSS
models are essential for different sensing problems. However,
the above models were developed for conventional WSNs. In
the BC-enabled ISAC scenario, investigations of RSS models
are needed as the propagation link in BC systems is different.
Moreover, before diving into sensing problems, this paper
accurately models the RSS affected by a person and their
location, which lays the foundation for localization.

The impact of a human body on RSS between an active
TX-RX pair is thoroughly studied in [13] where a three-
state model (3SM) as a function of the distance between the
body and the line-of-sight (LoS) link is presented. We apply
a similar modeling approach. In our proposed BC-enabled
sensing scheme, radio propagation links contain reflectors, i.e.,
backscatter tags, which increase the human-induced multipath
components. We model the human body impact on the BC
propagation links, which is expressed by the RSS variations.

This paper models the impact of a human body on the
RSS in a low-complexity indoor BC scheme. We consider
that different backscatter tags modulate the impinging signal
with different on/off speeds. This shifts the frequencies of
the backscattered signal, resembling frequency modulation.
Consequently, the RX can separate the backscatter signal using
band-pass filters and record their RSS for further analysis.

This work makes the following contributions:
• We propose a BC-enabled ISAC system structure with

experimental demonstration;
• We derive and characterize a human body location-

dependent three-state RSS model (3SM-BC) for the BC



scheme;
• We validate the model by indoor measurement and com-

pare it with the prior model (3SM) of the TX-RX scheme.
The results show that the proposed model accurately predicts
human-induced RSS changes in the BC scenario. Hence, one
can detect and localize the person using the RSS measure-
ments. Moreover, compared with the conventional TX-RX
schemes, extra propagation paths existing in the BC scheme
lead to larger RSS variances, which can improve human
detection and localization accuracy in variance-based sensing
systems.

The rest of the paper is organized as follows. Section II
proposes a BC-enabled ISAC system structure. Section III
derives the spatial RSS model in terms of three different states.
The proposed model is experimentally validated and compared
with the existing model in Section IV. Finally, Section V
concludes and discusses future work.

II. SYSTEM MODEL

Let us consider a BC-enabled sensing system that includes
an ambient carrier wave (CW) source, a receiver (RX), and
several backscatter devices (BDs) composed of backscatter
tags and microcontroller units. The BDs shift the frequency of
the impinging CW and backscatter it to the RX. The RX re-
ceives samples containing both the CW and backscattered (BS)
signals with different frequencies. By switching between two
states of a BD with a certain frequency, the center frequency
of the BS (tag-modulated path) is shifted away from the CW
(direct path) by the amount of switching frequency [14]. The
BS signal from a certain BD can be extracted by band-pass
filtering while the CW signal and BS signals from other BDs
are canceled out. In the following, we consider the scenario
with only one BD to investigate the RSS variation of the
received BS signal.

As shown in Fig. 1, we denote pCW , pBD and pRX as
the positions of the CW source, BD, and RX, respectively.
We consider a common BC configuration, bistatic collocated
BC, where the CW source and RX are collocated. It is
similar to mono-static BC configuration but it avoids using
the complicated full-duplex transceivers. Let the center of
two devices, denoted by po, approximates their positions, i.e.,
p0 ≈ pCW and p0 ≈ pRX . In the following, we use X-Y
to express the radio propagation path from one device X to
another device Y. We first define the LoS link of the BC system
as LoSBC which is composed of LoSCW-BD link and LoSBD-RX
link. The LoSBC has a distance

dLoS = ∥pCW − pBD∥+ ∥pRX − pBD∥ ≈ 2d, (1)

where ∥ · ∥ is Euclidean norm. For the indoor BC scenario,
we assume that the communication system only experiences
slow fading due to the movement of a person, similar to
other indoor DFL systems [15]. When a person appears in
the vicinity of the LoS link, there adds some more reflected
multipath components receiving at the RX. Then, excess path
length caused by the human body, denoted by ∆, describes

Fig. 1. Proposed BC system and its three-state regions.

the signal propagating a longer distance with a time delay and
a phase shift compared with the LoS link. In the BC system,
excess path length exists on both CW-BD and BD-RX links,
denoted by ∆CW and ∆BS , respectively, and are defined as

∆CW = ∥p− pCW ∥+ ∥p− pBD∥ − d,

∆BS = ∥p− pRX∥+ ∥p− pBD∥ − d,
(2)

where p = [px py]
T is the position of the human. Because

the CW and RX are sufficiently close, we approximate both
∆CW and ∆BS to

∆ = ∥p− po∥+ ∥p− pBD∥ − d. (3)

In general, multipath components created by the human
body add constructive or destructive fading to the LoSBC
channel. Hence, the RSS observed by the RX varies depending
on ∆, and in other words, on the person’s location. In order
to investigate human-induced RSS variation in the BC-enabled
sensing system, we only take the BS signal into account. To
do that, we use band-pass filtering to extract the BS signal
from received samples, where the CW and BS signals are
separated in the frequency domain. In addition, we remove
the mean of the RSS so as to remove the parts that depend
on the communication system and environment, and resultant
RSS variations reflect the changes caused by the presented
person. Let R(k) denotes a temporal RSS measurement at
time instance k, and R is the reference or baseline RSS when
no person is present in the monitoring area, shown in Fig.
1. Thus, the mean-removed RSS in the logarithmic scale is
expressed by

r(k) = R(k)−R. (4)

III. THE SPATIAL RSS MODEL

In the proposed BC system, RSS variations of BS signal can
be modeled with three temporal states [13], i.e., non-fading
when the person is far away from the LoSBC link, reflection
when the person is in the vicinity of the link, and shadowing
when the person is blocking the link. The mean-removed RSS
depending on the state s is defined as follows:

r(k) =


N (k) + v(k) s = s1(Non-fading),
R(k) + v(k) s = s2(Reflection),
S(k) + v(k) s = s3(Shadowing),

(5)



(a)

tion

(b)

Fig. 2. Spatial model: (a) reflection, (b) shadowing.

where N (k), R(k), and S(k) are the models in non-fading,
reflection, and shadowing state in their respective order, and
v(k) is the additive-white-Gaussian-noise. In this section, the
spatial RSS models are derived for each state.

A. Non-fading State
This state depicts that a person presents outside of the

sensitivity region of the LoSBC shown in Fig. 1. In this
state, the RSS variation is too weak to be observed in the
propagation medium such that N (k) = 0, and r(k) follows
statistics of v(k).

B. Reflection State
When the person is moving in the vicinity of the LoSBC

shown in Fig. 2a, both CW and BS signals are reflected from
the surface of the dielectric target, creating several clusters
of additional multipath components. In this state, as shown in
Figures 3a to 3d, the channel may experience four propagation
paths. They are: a). the LoSBC with few interference created
by the human body; b). the CW is reflected at the human
body and is captured by the BD, which is then modulated,
backscattered, and received by the RX; c). the CW is first
captured, modulated, and backscattered by the BD, and is then
reflected at the human body, which is finally received by the
RX; d). both the CW and BS signals are reflected at the human
body and are then received by the RX. In the following, we
describe and analyze the four types of channel propagation
individually.

1) LoSBC propagation path: The CW source emits a carrier
wave c(k) = Cej2πfck with an amplitude C and a carrier
frequency fc at the time instance k. Assume the LoSCW-BD
has a constant channel gain hCW,BD = αCW,BDe−jϕCW,BD

with an amplitude αCW,BD and a phase ϕCW,BD, so that the
BD receives

a(k) = hCW,BD ⊛ c(k) = αCW,BDe−jϕCW,BD · c(k), (6)

where the ⊛ denotes convolution. Then, the BD modulates
its baseband signal x(k) on top of its received signal a(k)
yielding the signal backscattered from the BD as b(k) = x(k)·
a(k). Similarly, assume the LoSBD-RX has a constant channel
gain hBD,RX = αBD,RXe−jϕBD,RX . Finally, the RX receives

y(k) = hBD,RX ⊛ b(k) = αBD,RXe−jϕBD,RX · b(k). (7)

(a) (b) (c) (d)

Fig. 3. Propagation paths decomposition: (a) LoSBC channel, (b)-(d) human-
induced reflection channels.

The channel gains of the LoSCW-BD and LoSBD-RX are assumed
to be approximately identical because of the short distance,
i.e., αCW,BD ≈ αBD,RX = αLoS . The BD is assumed to
be synchronized to the LoSCW-BD components and the RX
is assumed to be synchronized to the LoSBD-RX components,
resulting in ϕCW,BD = ϕBD,RX = 0. Thus, the RX received
signal which experiences the LoSBC can be expressed by

y0(k) = α2
LoS · c(k) · x(k). (8)

Further, the channel gain that affects RSS measurements w.r.t.
signal power is expressed by

|h0(k)|2 =
∣∣α2

LoS

∣∣2 , (9)

which indicates the person has few effects on measured RSS,
resembling the non-fading channel. Therefore, the channel is
only depicted by the stochastic noise, shown in Fig. 3a.

2) Human-induced reflection, CW-Person-BD-RX: Assume
the BD received CW signal experiences the reflection channel
with a gain hR1(k) = αR1(k)e

−jϕR1(k). Thus, the RX
received signal is expressed by

y1(k) = αLoS · αR1(k)e
−jϕR1(k) · c(k) · x(k). (10)

The channel gain that affects RSS measurements w.r.t. signal
power can be calculated by

|h1(k)|2 =
∣∣∣αLoS · αR1(k)e

−jϕR1(k)
∣∣∣2 , (11)

which indicates the radio propagation path shown in Fig. 3b.
3) Human-induced reflection, CW-BD-Person-RX: Assume

the RX received BS signal experiences the reflection channel
with a gain hR2(k) = αR2(k)e

−jϕR2(k). Thus, the RX
received signal can be expressed by

y2(k) = αLoS · αR2(k)e
−jϕR2(k) · c(k) · x(k). (12)

The channel gain that affects RSS measurements w.r.t. signal
power can be calculated by

|h2(k)|2 =
∣∣∣αLoS · αR2(k)e

−jϕR2(k)
∣∣∣2 , (13)

which indicates the radio propagation path shown in Fig. 3c.



4) Human-induced reflection, CW-Person-BD-Person-RX:
Similarly, assume the BD received CW signal and the
RX received BS signal experiences the reflection channel
αR3(k)e

−jϕR3(k) and αR4(k)e
−jϕR4(k), respectively. Thus,

the RX received signal can be expressed by

y3(k) = αR3(k)e
−jϕR3(k)·αR4(k)e

−jϕR4(k)·c(k)·x(k). (14)

The channel gain that affects RSS measurements w.r.t. the
signal power can be calculated by

|h3(k)|2 =
∣∣∣αR3(k)e

−jϕR3(k) · αR4(k)e
−jϕR4(k)

∣∣∣2 , (15)

which indicates the radio propagation path shown in Fig. 3d.
Therefore, the received signals listed above can be summed

at the RX side and then become

y(k) = y0(k) + y1(k) + y2(k) + y3(k), (16)

with a total channel gain

|h(k)|2 = |h0(k) + h1(k) + h2(k) + h3(k)|2. (17)

Here, all the reflection channels are assumed to be approxi-
mately identical due to static indoor environment, i.e.,{

αR1(k) ≈ αR2(k) ≈ αR3(k) ≈ αR4(k) = αR(k),

ϕR1(k) ≈ ϕR2(k) ≈ ϕR3(k) ≈ ϕR4(k) = ϕR(k).
(18)

Therefore, the reflected signal can be expressed w.r.t. the LoS
signals with the aforementioned synchronization condition
and slow-fading environment, the total channel gain can be
simplified by

|h(k)|2 =
∣∣∣α2

LoS · (1 + Λe−jϕR(k))2
∣∣∣2 , (19)

where 0 < Λ = αR(k)/αLoS < 1 indicates the rela-
tion between αLoS and αR(k), which is defined by Λ ≜
γ (dLoS/(dLoS +∆))

η/2, where η is experiment dependent
and time-invariant path loss coefficient and γ is time-variant
Fresnel reflection coefficient of vertical electric field polariza-
tion at the boundary of two dielectrics

γ =
sin θi −

√
εr − cos2 θi

sin θi +
√
εr − cos2 θi

, (20)

where εr is relative permittivity, and θi is incident angle of
reflection. The mean of RSS is removed in logarithmic scale
that is equivalent to division in linear scale. Thus, the reflection
model is expressed by

R(k) = 10 log10

(
|h(k)|2

|h0(k)|2

)
= 20 log10(Λ

2 + 2Λ cosϕR(k) + 1).

(21)

C. Shadowing State

When the person is approximately blocking the LoSBC, there
exists reflection, diffraction, and scattering of EM waves which
makes it difficult to accurately model the physical propagation
scheme. Using the Radon transform [13], a simplification can
be implemented by assuming transmission through the human
body predominates the propagation, where the resulting signal

attenuation is expressed by a line integral of the attenuation
area along a straight line from the BD to the center of the CW
source and RX, shown in Fig. 2b, given by y′ = x cos(θ) +
y sin(θ)− x′. The total attenuation is then

ξ (x′) = n

∫ ∞

−∞

∫ ∞

−∞
A(x, y)δ (x cos θ + y sin θ − x′) dxdy,

(22)
where δ(·) is Dirac function, and A(x, y) is attenuation factor.
The human cross section is modeled as an ellipse with uniform
electrical properties, i.e., A(x, y) = A. It is worth noting that
the coefficient n indicates the attenuation caused by the n
blocked LoS paths. In the considered BC scenario, n = 2 due
to attenuation at both the LoSCW-BD and LoSBD-RX. With such
properties, the closed-form solution for Eq.(22) is

ξ (x′) =

{
A 4AB

a2(θ)

√
a2(θ)− (x′)

2 if |x′| ≤ a(θ),

0 otherwise ,
(23)

where A and B are the semi-minor and semi-major axis of
the human ellipse that has a relation a2(θ) = A2 cos2(θ) +
B2 sin2(θ). From the experiments, larger attenuation is ob-
served when the human target walks along the paths that are
closer to the devices, which phenomenon can be explained
by the propagation Fresnel zone that are concentric ellipsoids
with radius dn =

√
(nλdBDdo)/(dBD + do), where n is the

number of the Fresnel zone, λ denotes the wavelength, dBD

and do are the distances from the human body to the BD
and to the center of CW source and RX, respectively. For the
considered scenario, shadowing occurs only inside the first
Fresnel zone, so that the relation can be expressed by the
width of the person divided by the first Fresnel zone radius,
i.e., A/d1. Besides, the motion of the human elliptic model
is defined w.r.t. the radio link so that θ = 0 and x′ = px.
Therefore, the decreasing of RSS measurement is equivalent
to accumulating the attenuation along the LoSBC propagation
path, so that the shadowing model is expressed by

S(k) = − A

d1
ξ(px). (24)

IV. EXPERIMENT AND EMPIRICAL VALIDATION

In this section, the proposed RSS model is validated in
the BC system introduced in Sec. II, and is compared with
the prior three-state model that only considers the TX-RX
transmission scheme. A Rohde & Schwarz SGT100A signal
generator sends 2.4 GHz continuous sine-wave as the CW
source signal, and a software-defined radio receiver USRP
X300 with 1 MHz sampling rate is deployed with a distance of
12.5 cm, whose antennas (CW and RX1) are placed at 1.0 m
height tripods, and are set 3.0 m apart from the BD. We use
the BD introduced in [16]. In order to compare the proposed
model and measurements with those of the prior TX-RX
scenario, another receiving antenna (RX2) is collocated with
the BD to measure the RSS of the TX-RX2 radio link. Both
receiving antennas are connected to the USRP yet separated
ports and channels.



Fig. 4. Experimental setup and measurement collection.

TABLE I
EXPERIMENTAL PARAMETERS

Parameter Value Description
εr 1.5 Relative permittivity
η 2.0 Path loss coefficient
A 0.14 Semi-minor axis of the human model (m)
B 0.16 Semi-major axis of the human model (m)
A 80.0 Attenuation factor (dB/m)

The experimental setup and a demonstration of measure-
ment collections when a person is walking in the monitoring
area are shown in Fig. 4. The space is a 5 × 3 = 15 m2

corridor. The person walks along the trajectory with markers
pasted on the floor, following a metronome with a preset pace
of 0.5 m/s, intersecting the LoSBC with multiple repetitions. In
total, 2.4 · 104 RSS measurements are collected. The model-
related experimental parameters are listed in Tab. I, which
are experiment dependent. The relative permittivity εr of
commonly used textile materials is around 1.5 at 2.4 GHz
band [17]. The semi-minor and -major axes of the human
model are used according to the participant’s body. The path
loss coefficient η and attenuation factor A follow those in our
prior work [13] because of the similar indoor radio propa-
gation environment. In practical applications, online training
algorithms such as expectation maximization can be used to
estimate model parameters, which will not be discussed in this
paper.

In Fig. 5a, the RSS measurements corresponding to the three
states proposed in Sec. III are observed. The RSS recorded
from the RX1 (red circles) indicating the BC scenario, and
from the RX2 (blue circles) indicating the TX-RX scenario,
are shown together for comparison. For each time instance
k, samples from twelve experiment repetitions are shown to-
gether. The time instance k = 0 is mapped to the beginning of
the walking trajectory and k = 1000 is mapped to the ending
of it. The state s1 is observed at samples k = [0, 350] and
k = [670, 1000] which indicates the person is in the non-fading
region. The state s2 is observed at samples k = [350, 480] and
k = [540, 670] which indicates the person is in the reflection
region, and the state s3 is observed at samples k = [480, 540]
which indicates the person is moving in the shadowing region.
Here, boundaries of the regions are manually defined by

(a)

(b)

Fig. 5. Empirical validation and comparison: (a) RSS measurements corre-
sponding to the three states, (b) spatial RSS models and measurements.

observation, which also can be defined using the statistical
hypothesis testing method in [13]. It can be seen that RSS
measurements of the BC scenario follow a similar variation
pattern to that of the TX-RX scenario. Furthermore, for the BC
scenario, RSS measurements have larger variations in terms of
amplitude and have larger fading as the person blocking the
LoS.

The model-predicted RSS variations with the increasing
excess path length ∆ for the derived model (3SM-BC) and
the prior three-state model (3SM) are compared and shown in
Fig. 5b. The proposed model 3SM-BC shows a similar pattern
of RSS variation compared with the 3SM. However, the RSS
in the reflection state of the 3SM-BC is expected to be double
that of the 3SM due to multiple reflections, recalling Eq.(21).
Similarly, the RSS in the shadowing state of the 3SM-BC is
expected to be double that of the 3SM due to the superposition
of attenuation, recalling Eq.(22).

To evaluate the model accuracy, the root-mean-square er-
ror (RMSE) measuring the difference between the model-
predicted and the measured RSS values is used, given by

RMSE =

√√√√ 1

K

K∑
k=1

(r̂(k)− r(k))
2
, (25)



where r̂(k) is the model-predicted RSS at the time instance
k, and r(k) is the measured or observed RSS. For the TX-RX
scheme measurements, the RMSE between the 3SM (blue dash
line) and observations (canyon circles) is 2.17 dB. For the BC
scheme measurements, the RMSE between the 3SM-BC (black
line) and observation (red circles) is 2.94 dB. The relatively
higher RMSE in the BC scenario might result from the more
complicated propagation environment, non-strictly identical
gait speeds and postures of the person in each measurement.
The results indicate that both the 3SM and 3SM-BS can predict
the RSS variations in their respective scenarios.

Moreover, as an essential indicator of human motion, RSS
variance has been widely used by the RTI methods [18], [19]
for device-free localization and tracking. In such cases, larger
human motion-induced RSS variances can benefit localization
accuracy. The RSS variance is expressed by

σ2 =
1

K − 1

K∑
k=1

(r(k)− r)
2
, (26)

where r is the mean of RSS. For the measurements in Fig. 5b,
the human-induced RSS variance in the BC measurements is
29.51, whereas the value is only 9.92 in the TX-RX measure-
ments. Therefore, the proposed BC scheme can benefit the
variance-based RTI methods more than the TX-RX scheme.

The proposed model for the BC scenario is capable of
capturing large RSS losses when the person is blocking the
LoSBC and capturing RSS variations resulting from reflection
when the person is approaching the LoSBC. The model counts
multiple reflections and attenuation caused by the backscatter
propagation instead of the single TX-RX link in the referred
models. Further, excess path lengths and their related human
positions can be inferred from the RSS measurements.

V. CONCLUSION

We model the impact of a human on the RSS measurements
in an indoor BC scenario represented by the three states. The
RSS model 3SM-BC is derived and validated by measurements
in an indoor corridor and is compared with 3SM in the
conventional TX-RX scenario. The measurement shows that
the 3SM-BC well predicts the RSS variation. It also shows that
the human-induced RSS variation has a higher variance in the
BC scenario, implying the advantage of BC-enabled sensing.
The model facilitates BC-enabled sensing systems for human
detection and localization. In a practical ISAC system, one can
deploy multiple BDs at different locations, and hence cover a
large sensitivity area. By applying the proposed RSS model to
measurements from different BDs, as well as commonly used
inference algorithms such as RTI and Bayesian filtering, we
can implement device-free localization and human presence
detection in the future ISAC system.
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[12] O. Kaltiokallio and H. Yiğitler, “Movement detection using a reciprocal
received signal strength model,” in IEEE ICASSP, 2021, pp. 8318–8322.
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