
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Barai, P.; Nukala, Phani Kumar V. V.; Alava, M.J.; Zapperi, S.
Role of the sample thickness in planar crack propagation

Published in:
Physical Review E

DOI:
10.1103/PhysRevE.88.042411

Published: 01/01/2013

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Barai, P., Nukala, P. K. V. V., Alava, M. J., & Zapperi, S. (2013). Role of the sample thickness in planar crack
propagation. Physical Review E, 88(4), 1-7. Article 042411. https://doi.org/10.1103/PhysRevE.88.042411

https://doi.org/10.1103/PhysRevE.88.042411
https://doi.org/10.1103/PhysRevE.88.042411


PHYSICAL REVIEW E 88, 042411 (2013)

Role of the sample thickness in planar crack propagation

Pallab Barai
Department of Mechanical Engineering, Texas A & M University, College Station, Texas 77843, USA

Phani K. V. V. Nukala
Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6359, USA

Mikko J. Alava
COMP Center of Excellence, Department of Applied Physics, Aalto University, P.O. Box 14100, FIN-00076, Aalto, Espoo, Finland

Stefano Zapperi
CNR - Consiglio Nazionale delle Ricerche, IENI, Via R. Cozzi 53, 20125, Milano, Italy

and ISI Foundation, Via Alassio 11/c 10126, Torino, Italy
(Received 4 July 2013; published 28 October 2013)

We study the effect of the sample thickness in planar crack front propagation in a disordered elastic medium
using the random fuse model. We employ different loading conditions and we test their stability with respect to
crack growth. We show that the thickness induces characteristic lengths in the stress enhancement factor in front
of the crack and in the stress transfer function parallel to the crack. This is reflected by a thickness-dependent
crossover scale in the crack front morphology that goes from from multiscaling to self-affine with exponents, in
agreement with line depinning models and experiments. Finally, we compute the distribution of crack avalanches,
which is shown to depend on the thickness and the loading mode.
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I. INTRODUCTION

Understanding the failure of disordered media still rep-
resents an open problem for basic science and engineering.
From the point of view of statistical mechanics, the problems
represent an interesting example of the interplay between
disorder and long-range interactions and has thus attracted
a wide interest in past years [1]. Fracture typically displays
intriguing size effects and it is not easy to formulate a general
law that can predict the the dependence of the failure strength
on the relevant length scales of the problem, such as the size
of the notch, of the fracture process zone, and of the sample
width and thickness [2–4].

Scale and size dependence also permeate the analysis of
crack morphologies, which have been originally characterized
by self-affine scaling [5,6], but a complete understanding
of the universality classes of the roughens exponent is
still a debated issue (for a review see [7]). The prevalent
interpretation of experimental measurements for out-of-plane
three-dimensional cracks suggests a roughness exponent
value ζ � 0.8 for rupture processes occurring inside the
fracture process zone (FPZ), where elastic interactions would
be screened, crossing over at large scales to ζ � 0.4 when
elastic interaction would dominate [8,9]. Furthermore, the
fracture surface has been shown to be anisotropic with different
scaling exponents in the directions parallel or perpendicular to
the crack [8].

A particularly interesting and conceptually simpler example
of crack roughening is represented by the propagation of a
planar crack. This case appears to be the ideal candidate to test
the theory that envisages the crack as a line moving through a
disordered medium [10,11]. For planar cracks, the problem
can be mapped into a model for interface depinning with
long-range forces [12–17], implying a self-affine front with

a roughness exponent close to ζ = 1/3 [18,19] and avalanche
propagation of the front between pinned configurations with
scaling exponents predicted by the theory [14–16]. Such results
are also of importance for applications such as the failure of
the interface between a substrate and a coating, or an adhesive
layer, and the propagation of indentation cracks [20].

Despite that the theoretical understanding is clear, inter-
preting the experimental results as proven to be a challenging
task [21–27]. Initial results indicated a roughness exponent
in the range of ζ = 0.5–0.6 [21,22] that was definitely at
odds with theoretical predictions. Only recently was it shown
that the early measurements focused on short length scales
where the crack front is not self-affine but instead obeys
multiscaling, while the predicted universal roughness exponent
was recovered on larger length scales [27]. Similarly, early
measurements of the avalanche distribution did not agree
with theoretical predictions based on elastic line models
[15,25]. It was later realized that due to long-range interac-
tions along the crack front, avalanches are decomposed in
disconnected clusters whose scaling may differ from that of the
avalanches [16].

Numerical simulations of discrete lattice models for frac-
ture have been used in the past to investigate the short-scale
disorder-dominated regime of planar crack front propagation
focusing either on quasi-two-dimensional, small-thickness
samples [28,29] or on large-thickness bulk, three-dimensional
samples [30,31]. He we perform three-dimensional simula-
tions of the random fuse model [32] to better understand the
role of thickness in a regime intermediate between two and
three dimensions. We find that the thickness introduces a char-
acteristic length scale that cuts off the long-range interactions
along the crack front. As a consequence of this we find a
thickness-dependent roughening behavior with multiscaling
observed at low thickness and self-affinity at large thickness.

042411-11539-3755/2013/88(4)/042411(7) ©2013 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.88.042411


BARAI, NUKALA, ALAVA, AND ZAPPERI PHYSICAL REVIEW E 88, 042411 (2013)

Furthermore, the sample thickness influences the stability of
crack propagation, which also depends on the way loading is
applied. This is reflected also in the avalanche behavior that
in the stable propagation regime follows the predictions of
the interface depinning model [15,16]. Besides the theoretical
implications, understanding the role of thickness in planar
cracks could be interesting in view of applications for the
delamination of coatings [20].

II. THE MODEL

Here we consider crack propagation under antiplane defor-
mation, a scalar problem that can be mapped to an electrical
analog: the random fuse model (RFM). In the RFM [32] a
set of conducting bonds, with unit conductivity σ0 = 1, are
arranged on a cubic lattice of size L × L × H . See Fig. 1 for an
illustration of the geometry. To simulate the presence of a weak
plane, the vertical bonds crossing the central horizontal plane
are replaced by fuses. When the local current ij overcomes
a randomly chosen threshold tj , the fuse burns irreversibly.
The thresholds are randomly distributed based on a thresholds
probability distribution, p(t). In addition, an edge notch is
placed on the left side of the weak plane. To reduce edge
effects, we impose periodic boundary conditions along the y

direction and we use open boundary conditions on the other
directions. A constant voltage difference V is applied between
the top and the bottom plates of the lattice (plane loading)
or between two edges (line loading). The second loading
condition resembles the one used in experiments, although here
we consider mode III (antiplane shear) while the experiments
were performed under mode I (tension) [21–27].

Numerically, we set a unit voltage difference, V = 1, and
solve the Kirchhoff equations to determine the current flowing
in each of the fuses. Subsequently, for each fuse j , the
ratio between the current ij and the breaking threshold tj is
evaluated and the bond jc having the largest value maxj

ij
tj

is irreversibly removed (burnt). The current is redistributed

FIG. 1. (Color online) The geometry of the model. We consider
a cubic lattice of size L × L × H made of conducting bonds with a
weak plane in the middle where we place fuses with random breaking
threshold. A notch is placed in the weak plane at the beginning of the
simulation. The voltage drop is either applied between the top and
bottom planes (plane loading) or at the left edges of the plates, along
the dashed lines (line loading).

instantaneously after a fuse is burnt, implying that the current
relaxation in the lattice system is much faster than the breaking
of a fuse. Each time a fuse is burnt, it is necessary to recalculate
the current redistribution in the lattice to determine the
subsequent breaking of a bond. The process of breaking a bond,
one at a time, is repeated until the lattice system falls apart.
In this work, we assume that the bond-breaking thresholds are
distributed based on a uniform probability distribution, which
is constant between 0 and 1. An alternative would be to study
power law distribution exponents and control the disorder
strength by varying the exponent, as done in Ref. [33]. Since
the robustness of the model behavior with respect to disorder
has been extensively studied in the literature, we concentrate
our effort on a single type of disorder, extending the statistical
sampling and the range of lattice sizes.

Numerical simulation of fracture using large fuse networks
is often hampered due to the high computational cost asso-
ciated with solving a new large set of linear equations every
time a new lattice bond is broken. Although the sparse direct
solvers presented in [34] are superior to iterative solvers
in two-dimensional lattice systems, for 3D lattice systems,
the memory demands brought about by the amount of fill-
in during the sparse Cholesky factorization favor iterative
solvers. The authors have developed an algorithm based
on a block-circulant preconditioned conjugate gradient (CG)
iterative scheme [35] for simulating 3D random fuse networks.
The block-circulant preconditioner was shown to be superior
compared with the optimal point-circulant preconditioner
for simulating 3D random fuse networks [35]. Since these
block-circulant and optimal point-circulant preconditioners
achieve favorable clustering of eigenvalues, these algorithms
significantly reduced the computational time required for
solving large lattice systems in comparison with the Fourier
accelerated iterative schemes used for modeling lattice break-
down [33,36]. Using the algorithm presented in [35], we have
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FIG. 2. (Color online) The factor K as a function of the crack
length, computed numerically for systems with different thickness
H . Here, K is defined as the voltage drop in the bonds ahead of
the crack tip for unit applied voltage. In the top panel, the system is
loaded by imposing a constant voltage at the left edges of the system
(line loading). In the bottom panel, the constant voltage is imposed
on the entire top plate (plane loading).
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performed numerical simulations on 3D cube lattice networks
with L = 100 and H varying from 6 to 100.

III. ELASTIC INTERACTIONS AND CRACK
FRONT STABILITY

Before studying planar crack propagation, it is instructive
to study how the stress is distributed in the presence of a
crack of length a in a sample of thickness H considering
the two boundary conditions employed. An analysis of the
stress concentration is useful to assess the stability of the
crack under a constant applied voltage. To this end we define
an enhancement factor K ≡ Va/V , where Va is the voltage
drop across the vertical bonds just ahead of a straight crack of
length a under an applied voltage V . In these conditions, due
to symmetry all the vertical bonds with the same x coordinate
have the same voltage drop. To define K , we consider intact
bonds that are nearest neighbors of bonds belonging to the
crack. These are the bonds where the current is highest and
therefore more likely to fail. Notice that the enhancement
factor K is a discrete version of the stress intensity factor
usually defined in the continuum to quantify the divergence
of the stress ahead of the crack tip. Here, we are working
with a discrete lattice and therefore do not have to worry
about singularities. Another important difference is that since
we are simulating the system by imposing a voltage drop (or
displacement), we define K in terms of voltages rather than
currents.

To link K to the crack stability, we consider its variation
as a function of the crack length a. If K increases with
a, we expect, on average, an unstable crack growth. This
is because as the crack advances by one step the voltage
drop ahead of it increases, making a further failure more
likely. This is, of course, rigorously true only for very weak
disorder and occasionally one can find a stable crack even
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FIG. 3. The phase diagram of the crack under line loading. The
stable region is defined by a decrease of K as a is increased, implying
that the stress in front of the crack decreases as the crack advances.
Under plane loading the crack is always unstable or at most marginally
stable (i.e., K = const).

when K increases, due to a particular combination of the
random thresholds. In Fig. 2 we report K as a function of
a for different values of the relative thickness H/L using
the two different boundary conditions. From this graph one
can define the regions of crack stability by considering the
conditions for which K decreases with a. In this way, we see
that under plane loading cracks are never stable, although for
small H/L, we observe a region of marginal stability where K

is roughly constant. On the other hand, under line loading K

decreases exponentially for small H/L, leading to stable crack
propagation. Notice, however, that for larger H/L, at small
and large a we would still expect unstable crack growth. The
observations can be summarized in a phase diagram, Fig. 3,
where we report the stable and unstable crack growth regions
for line loading.

According to continuum theory in the limit H → ∞, the
current ahead of the crack should decay as 1/

√
r . For finite

thickness we expect that a characteristic length emerges [28].
As shown in Fig. 4, the current is found to decay exponentially,
defining a characteristic length ξ . Under line loading, the
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FIG. 4. (Color online) The vertical current across the weak plane
decays exponentially as a function of the distance from the crack tip
for different thicknesses for both line and plane loading. (a) For line
loading, the current decays exponentially to zero. A characteristic
length ξ can be extracted from the decay of the currents. As shown
in the inset, ξ is a linear function of the thickness H , but it is larger
for line loading (i.e., ξline � 3ξplane). (b) For plane loading, the current
decays exponentially until it reaches a constant value, which decreases
as 1/H (inset).
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current decays to zero, while for plane loading it decays to
a value i∞ that decreases as 1/H , vanishing as H → ∞ [see
the inset of Fig. 4(b)]. For line loading, deviations from the
exponential behavior can be seen at short distances and large
H , showing that the decay is crossing over to the expected
1/

√
r behavior [see Fig. 4(a)].

Since we are interested in planar crack propagation in
the presence of disorder, we study the variations in the
enhancement factor due to a small variation in the crack
profile. We consider a straight planar crack of length a = 8
and remove a single fuse ahead of the crack. We then compute
the increment J (y) of the enhancement factor K as a function
of the distance from the removed fuse. This function is closely
related to the first-order variation of the stress intensity factors,
computed by Gao and Rice [37] and commonly employed in
line models for planar crack front propagation [12–14]. Based
on this analogy, we can expect that in the limit H → ∞
it should be J (y) ∝ y−2 [37]. This result is confirmed by
our simulations, reported in Fig. 5, showing that the finite
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FIG. 5. (Color online) The variations in the stress intensity factor
following the failure of one bond ahead of the crack as a function
of the distance from the bond parallel to the crack direction. This is
equivalent to a self-interaction kernel, scaling as 1/y2 up to a cutoff
length ξ‖. Data for different thicknesses are collapsed by rescaling
the distance by a characteristic length ξ‖ whose values are reported
in the insets. Results for line loading (a) and plane loading (b).

FIG. 6. (Color online) The avalanche progression as a function
of the loading model and the sample thickness. Different avalanches
are identified by random colors.

thickness H induces again a characteristic length ξ||. The
data obtained for different H can be collapsed according to
the scaling form J (y) = ξ

β

|| y
−2f (y/ξ||), where f (y) decays

exponentially, β = −0.71 and ξ|| increases with H (see
Fig. 6). We have also found that the characteristic length
ξ|| depends also on the crack size a in the condition of line
loading.

IV. CRACK FRONT ROUGHNESS AND AVALANCHES

As we load the system, the crack advances, but due to the
presence of disorder in the breaking thresholds, the crack front
roughens and the dynamics is composed by a sequence of
avalanches (Fig. 6), in close analogy to what is observed in
experiments [21–25,27].

To quantify the fluctuations in the crack morphology as a
function of the sample thickness, we follow the multiscal-
ing analysis commonly employed to study fracture fronts
[27,38–40] and compute the q moments of the correlation
function,

Cq(y) = [〈h(y ′ + y)h(y ′)〉]1/q, (1)

where h(y) is the position of the front. We perform the
average over different realizations of disorder and consider
only cracks located in the central part of the lattice to avoid
boundary effects. The results are illustrated in Fig. 7, where
we show that for large thickness (i.e., a cubic system with
H = L) all the moments scale as yζ , with ζ � 0.33 on large
length scales and an indication of multiscaling behavior at
small length scales [Fig. 7(a)]. This is very similar to what
is found in experiments [27]. At low thicknesses, however,
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FIG. 7. (Color online) The q moments of the correlation functions
for cracks under plane loading for (a) H = 10 and (b) H = 100. The
dashed line indicates a power law with exponent ζ = 0.33.

we observe a wide multiscaling regime over all the available
length scales [Fig. 7(b)]. This result indicates that the sample
thickness controls the crossover scale between the short-scale
multiscaling regime and the large-scale interface depinning
scaling.

In our quasistatic dynamics we break fuses one by one,
but the same breaking sequence would be obtained by raising
the voltage difference at an infinitesimal rate. We can thus
identify an avalanche as the set of fuses breaking between
two successive increases of the voltage, as discussed in
Ref. [1]. In Fig. 6, we report a visual representation of the
avalanches for different values of H and different loading
conditions. Each color in Fig. 6 corresponds to the fuses that
break between two voltage increases. Under line loading and
for a small thickness, crack line motion is hindered by a
strong restoring force which limits the avalanche size. For
a large thickness and for plane loading, the front dynamics is
unstable and therefore we observe large avalanches that span a
considerable fraction of the system together with other smaller
avalanches.

The progression of the avalanches can be observed in
Fig. 8, where we report the total lattice damage D, defined
as the number of broken bonds, for typical realizations of
the simulations. D illustrates nicely the effect of the stability
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FIG. 8. (Color online) The accumulated damage as a function
of the applied voltage for (a) line loading and (b) plane loading.
The staircase character of the curve is a signature of avalanche
behavior.

analysis from above on avalanches. Under line loading and low
thickness, we observe a sequence of random avalanches with
wide size distribution. For larger thickness, we observed the
nucleation of large avalanches which correspond to unstable
crack growth [see Fig. 8(a)]. The role of instability is even
more apparent under plane loading, where we see large
system-spanning avalanches [see Fig. 8(b)]. The distribution
of avalanche sizes for line loading is reported in Fig. 9.
For small and intermediate thickness we observe a power
law distribution with exponent τ � 1.25 and a cutoff that
increases with the thickness. The measured exponent is in
agreement with the result expected for the crack line depinning
model [15,16]. For larger thicknesses, we see a deviation
from this result and the power law exponent becomes much
larger (τ � 2), the distribution displaying a peak at large
avalanches, which is a signature again of the large, unstable
avalanches.

V. STRENGTH DISTRIBUTION AND
SIZE EFFECTS

In Fig. 10 we report the voltage-current curves obtained
in the model under planar loading for different thickness
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FIG. 9. (Color online) The avalanche size distribution measured
under line loading for different values of sample thickness.

values. These curves are related to the stress-strain curves
by defining shear stress as σ ≡ I/L2 and shear strain as
ε ≡ V/H . The inset of Fig. 10 displays the size effect in
the peak current Ic reached before failure for plane and line
loading. While for plane loading the strength decreases with
the thickness, for line loading the strength increases at large
thickness. This crossover is due to the fact that the planar
crack becomes unstable at larger H , as also illustrated in
Fig. 8.

We also measure the stress survival distribution S(σ )
defined as the probability that the sample does not fracture
at stress σ . In both cases the distribution is well described by
Gaussian statistics, as it is shown in Fig. 11, by using reduced
variables (σ − 〈σ 〉)/S, where 〈σ 〉 and S are the average and
standard deviation of σ . The presence of Gaussian statistics
is expected in systems that have one dominating crack so that
statistical size effects described by extreme value theory are
not present [41].
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FIG. 10. (Color online) The voltage-current curve for the model
under plane loading. The inset shows the peak current Ic as a function
of the thickness H for plane and line loading.
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FIG. 11. (Color online) The stress survival distribution for
(a) plane and (b) line loading as a function of the sample
thickness. Data are plotted as a function of reduced variables
(σ − 〈σ 〉)/S and the corresponding Gaussian distribution is reported
for comparison.

VI. CONCLUSIONS

For some time planar crack propagation has been a test
ground for theories of depinning in the context of fracture,
and much progress has been made. For understanding the
connections between the paradigm of a nonequilibrium critical
point for a driven crack and actual behavior in an experiment,
it is necessary to investigate in a general manner the effects
of loading conditions and sample geometry. Usual theory
accounts for the distance the crack propagates and for the
finite length of the crack line, and provides predictions. Here
we have added the effect of the finite sample thickness, which
influences, among others, the effective form of the interactions
along the crack (“elastic kernel”).

The loading has also been found to be of importance, and
the comparison between the line and plane loading cases,
where the former is close to most recent experiments, in
fact shows major differences. The coarse-grained stability
properties of the “experiment” are decisive for the presence
of the collective phenomena, i.e., avalanches. We would
think that this hints of a need for further investigations of
other possible loading protocols. Generally, we also find the
signatures of the universality class of long-range elastic line
depinning: avalanches with the expected size distribution, and
line roughening with a roughness exponent as expected. These
observations should have also an impact on understanding
the design of interfacial layers for adhesive properties or for
fracture toughness.
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