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A B S T R A C T

A common approach to modeling project interactions in multiattribute project portfolio selection is to augment
the additive portfolio utility function, in which portfolio utility is the sum of the included projects’ utilities,
with additional terms representing the synergy/cannibalization effects triggered by selecting specific subsets
of projects. In this paper we develop a set of sufficient and necessary assumptions for representing preferences
among multiattribute project portfolios with a quasi-symmetric multilinear utility function and show how
this function gives rise to interpreting interaction effects as additional terms in the additive portfolio utility
function. To foster practical applicability of these theoretical contributions, we also develop techniques to elicit
such portfolio utility functions as well as optimization models to identify the feasible portfolio that satisfies
relevant resource and other constraints with the maximal expected utility. In recognition that incorporating
project interactions necessitates increased involvement of decision makers in assessing the interaction effects
and results in computationally more challenging portfolio optimization problems, we analyze the importance
of modeling interactions through series of simulation studies based on randomly generated and real-world data
sets. Specifically, we examine the impact that omitting project interactions has on the project-level decision
recommendations and on the expected utility of the recommended portfolio.

1. Introduction

Organizations typically seek to achieve their objectives through
selecting and implementing a portfolio of projects such as investments,
actions, or initiatives. These portfolio decisions are often made in the
presence of multiple objectives and limited availability of monetary,
human, and other resources to carry-out the projects (see, e.g., Barbati
et al. 2018, Grushka-Cockayne et al. 2008, Kleinmuntz 2007, Lopes and
de Almeida 2015, Mavrotas and Makryvelios 2021, Montibeller et al.
2009, Phillips and Bana e Costa 2007). This has motivated the develop-
ment theory, methods, and practices commonly referred to as portfolio
decision analysis (PDA; Liesiö et al. 2021, Morton et al. 2016, Salo
et al. 2010) to (i) capture projects’ multiattribute outcomes, (ii) model
decision makers’ preferences among uncertain multiattribute outcomes,
and (iii) produce decision recommendations as to the optimal project
portfolio composition through the use of mathematical optimization.
Perhaps the most common approach is to use the additive portfolio
value/utility function (see, e.g., Golabi et al. 1981, Mild et al. 2015,
Parnell et al. 2002), in which portfolio utility/value is modeled as the
sum of the multi-attribute utilities/values of those projects that are
included in the portfolio. Such an additive model does not require any
additional preference elicitation on top of specifying the multiattribute
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project value/utility function and makes it possible to identify the
optimal project portfolio through standard integer linear programming
(ILP). Moreover, such additive portfolio preference models are well-
motivated from the decision-theoretic perspective because they have
rigorous axiomatic foundations both in the case of deterministic and
uncertain outcomes (Clemen and Smith 2009, Golabi et al. 1981, Liesiö
2014, Liesiö and Punkka 2014, Liesiö and Vilkkumaa 2021, Morton
2015).

A significant shortcoming with the additive portfolio preference
models is that they do not allow for interactions among the projects.
Specifically, the preference model does not provide mechanisms through
which the utility/value of a specific combination of projects could be
higher or lower than the sum of the individual projects’ utilities/values
if these projects have synergy or cannibalization effects. The lack of
such mechanisms has motivated the development of ad hoc approaches
to handle interactions. Usually this involves addition of dummy projects
whose utility/value captures the magnitude of the interaction effect.
These dummy projects do not require any resources to be implemented,
but additional portfolio feasibility constraints are used to ensure that
they are included in the portfolio if and only if the combination of
actual projects that triggers the interactions is also included (see,
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e.g., Liesiö et al. 2008, Stummer and Heidenberger 2003). By utiliz-
ing this approach, the optimization model remains linear, although
one additional binary decision variable and generally two additional
constraints are required for each project interaction. Moreover, if the
interaction affects only attributes with natural measurement scales
(e.g., monetary value) and its effects can be quantified on these scales
(e.g., implementing a pair of projects increases the monetary value by
an additional $100k), then this approach is also theoretically sound
since the interactions are related to the (objective) outcomes rather
than the (subjective) preferences.

This notwithstanding, PDA applications often utilize attributes that
capture less tangible qualities of projects such as their strategic fit or
the competencies of the project team (see, e.g., Abbassi et al. 2014, Eilat
et al. 2006). In such cases, it can be difficult to estimate the interaction
effects on the constructed scales, let alone assign the total synergy effect
to some specific (subset of) attributes. Thus, it is more common to
rely on holistic estimates of what the effects would be on the level
of overall project utilities/values. From a computational perspective,
such holistic estimates can be handled in exactly the same manner as
those related to specific attribute outcomes. However, from a decision-
theoretic perspective such holistic estimates of the magnitude of the
interaction effects are problematic as there is no axiomatic foundation
that would justify introduction of interaction effects as additional terms
to an additive portfolio utility/value function. Thus, it is unknown what
are the sufficient and necessary assumptions that the decision maker’s
preferences must satisfy for them to be representable with such an
augmented additive portfolio value/utility function. Moreover, without
a solid decision-theoretic foundations, it is difficult to develop prefer-
ence assessment techniques and processes to quantify the interaction
parameters since it is not clear how these parameters are linked to
preferences between portfolios.

This paper lays out an axiomatic foundation for the commonly
used approach of adding project interaction terms to additive portfolio
preferences models. In particular, we first develop a set of preference
assumption such that preferences among uncertain portfolio outcomes
satisfy these assumptions if and only if they are represented by a
quasi-symmetric multilinear portfolio utility function. We then show
that this quasi-symmetric multilinear portfolio utility function can be
interpreted as an additive portfolio utility function with extra terms
capturing the effects of project interactions.

In addition to these theoretical contributions, we also study the
practical implications of the quasi-symmetric multilinear portfolio util-
ity function. In particular, we develop preference assessment approaches
that enable the theoretically sound quantification of synergy and can-
nibalization effects based on the decision maker’s preference between
(uncertain) portfolio outcomes. We also develop stochastic ILP models
to maximize the expected quasi-symmetric multilinear portfolio utility
subject to linear portfolio feasibility constraints, which can also be
utilized if the projects’ outcomes are not stochastically independent.

As the third contribution this paper examines the project interac-
tions’ influence on the composition and expected utility of the most pre-
ferred portfolio. In particular, as the identification and quantification
of the interactions in most applications requires intensive involvement
from the decision makers, it seems unrealistic to assume all interactions
can always be included in the portfolio model, especially since the
number of possible interaction grows exponentially with the number
of projects. Therefore, we present computational experiments based on
randomly generated and real-world problem instances to analyze how
the true optimal portfolio obtained when one considers all interaction
effects differs from those portfolios obtained when only the largest
interaction effects are considered. The results from these experiments
suggest that the prevailing practice of using an additive portfolio
utility/value function augmented with extra terms capturing the ex
ante most significant interactions can in some cases offer a reasonable
approximate approach for the real-world applications in which the time

and effort that can be devoted to estimating the project interactions is
limited.

Our research links to several strands of literature that are impor-
tant to recognize here. First, our theoretical development utilizes the
work of Fishburn (1974) and Fishburn and Keeney (1975) on multiat-
tribute utility theory, or MAUT. This work examines the implications
of relaxing commonly deployed utility independence assumptions and
replacing them with the less restrictive assumption of generalized
utility independence. Second, Liesiö (2014) and Liesiö and Vilkkumaa
(2021) develop axiomatic preference models for multiattribute project
portfolios under deterministic and uncertain outcomes, respectively.
However, these models assume that preferences are fully symmetric
among the projects, which prohibits the existence of the types of
project interactions studied in this paper. Third, our computational
experiments are motivated partly by the research of Durbach et al.
(2020) into the performance of behavioral decision heuristics in project
portfolio selection under project interactions. Finally, this paper adds
to the growing literature on the applications of multilinear preference
models (Abbas 2009, Bordley and Kirkwood 2004, Keller and Simon
2019, Montiel and Bickel 2014).

The rest of the paper is structured as follows. Section 2 introduces
the use of the additive portfolio utility function in decision support
and the standard approach of augmenting this function to incorpo-
rate project interactions. Section 3 develops the axiomatic basis for
the quasi-symmetric multilinear portfolio utility function. Section 4
describes approaches for assessing the parameters of this portfolio
utility function to quantify project interactions. Section 5 formulates
optimization models to identify the most preferred portfolio when pref-
erences are captured by the quasi-symmetric portfolio utility function.
Section 6 reports on computational experiments to analyze the effect
of interactions on the utility and composition of the optimal portfolio.
Section 7 concludes.

2. The additive portfolio utility function and its extension to cap-
ture project interactions

We consider a decision setting in which a portfolio is selected from
𝑚 project candidates, with indices 𝑗 ∈ 𝐽 = {1,… , 𝑚}, and each project
candidate is evaluated with regard to 𝑛 attributes. The measurement
scales for these attributes, denoted by 𝑌1,… , 𝑌𝑛, can correspond to
quantitative measures (e.g., present value or sales; see, e.g., Solak et al.
2010) or qualitative evaluations (e.g., expertise of the project team
or quality of the proposal; see, e.g., Chowdhury and Quaddus 2015,
Clemen and Smith 2009, Kleinmuntz 2007). The uncertain outcome of
the 𝑗th project is denoted by 𝑥̃𝑗 , which is a random variable whose
vector-valued realizations 𝑦 = (𝑦1,… , 𝑦𝑛) belong to the set

𝑌 = 𝑌1 ×⋯ × 𝑌𝑛. (1)

This set is assumed to include the baseline outcome 𝑦𝐵 ∈ 𝑌 that is
obtained if a project is not selected (Clemen and Smith 2009, Liesiö
and Punkka 2014).

Each portfolio thereby corresponds to a random variable 𝑥̃ =
(𝑥̃1,… , 𝑥̃𝑚) with realizations 𝑥 = (𝑥1,… , 𝑥𝑚) in the set

𝑋 = 𝑌 ×⋯ × 𝑌
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝑚 sets

, (2)

where 𝑌 is given by (1) and we use  to denote the set of all such
random variables 𝑥̃, i.e., portfolios. The notation 𝑥 ∈  is used for
portfolios that have a single deterministic outcome 𝑥 ∈ 𝑋 (cf. a
degenerate random variable) and notation 𝑥𝑗 to highlight that the
outcome of the 𝑗th project is deterministic. As an example, the portfolio
𝑥̃ = (𝑥1, 𝑦𝐵 , 𝑥̃3, 𝑦𝐵 ,… , 𝑦𝐵) ∈  consists of the first and third project
candidates, where the outcome of the first project is equal to 𝑥1 ∈ 𝑌
with probability of one.
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If preferences among the portfolios  satisfy specific assumption
(for details, see Liesiö and Vilkkumaa 2021), they can be represented
by the additive portfolio utility function

𝑈 (𝑥) = 𝑈 (𝑥1,… , 𝑥𝑚) =
𝑚
∑

𝑗=1
𝑢(𝑥𝑗 ), (3)

where 𝑢 ∶ 𝑌 → R is the project-level utility function that maps
multiattribute project outcomes in 𝑌 to a single-dimensional utility. For
instance, the additive multiattribute utility function 𝑢(𝑦) =

∑𝑛
𝑖=1 𝑤𝑖𝑢𝑖(𝑦𝑖)

is often deployed in practice as it requires assessing only the marginal
utility function 𝑢𝑖 ∶ 𝑌𝑖 → R and the importance weight 𝑤𝑖 for each
attribute 𝑖 ∈ {1,… , 𝑛}. If the projects’ outcomes are deterministic, an
additive portfolio value function (Golabi et al. 1981, Liesiö 2014) can
be used, which has a functional form equivalent to (3).

The portfolio that maximizes expected additive utility can be iden-
tified through integer linear programming (ILP) as long as the relevant
portfolio constraints, such as budget, are linear. This requires introduc-
ing a vector of binary decision variables 𝑧 = (𝑧1,… , 𝑧𝑚), where 𝑧𝑗 = 1 if
the 𝑗th project is included in the portfolio and 𝑧𝑗 = 0 otherwise. Then
the most preferred portfolio corresponds to the optimal solution to the
ILP problem

max
𝑧∈{0,1}𝑚

{ 𝑚
∑

𝑗=1

(

𝑧𝑗E[𝑢(𝑥̃𝑗 )] + (1 − 𝑧𝑗 )𝑢(𝑦𝐵)
)|

|

|

|

𝐴𝑧 ≤ 𝐵
}

, (4)

where the elements of matrix 𝐴 ∈ R𝑞×𝑚 and vector 𝐵 ∈ R𝑞 code the
parameters of the 𝑞 portfolio feasibility constraints.

To illustrate the notation consider an environmental agency that
is selecting projects to restore a recreational area closer to its natural
state.1 Suppose there are 𝑚 = 10 project candidates with implementa-
tion costs 𝑐1,… , 𝑐10 and a limited budget 𝑏 to fund the projects. The
agency uses 𝑛 = 3 attributes that capture the projects’ impacts on
greenhouse gas emissions (𝑖 = 1), biodiversity (𝑖 = 2) and recreational
use (𝑖 = 3). Specifically, the attributes measure the reduced annual
greenhouse gas emissions in CO2 equivalent tons (𝑌1 = [0, 100]),
the number of new species for which the habitat would become
favorable (𝑌2 = {0, 1,… , 50}) and the increase in recreational use
potential (𝑌3 = {‘none’, ‘modest’, ‘high’}). An additive multiattribute
utility function 𝑢(𝑦) =

∑3
𝑖=1 𝑤𝑖𝑢𝑖(𝑦𝑖) is specified by utilizing stan-

dard decision analysis techniques to assesses attribute-specific utility
functions 𝑢1 ∶ [0, 100] → [0, 1], 𝑢2 ∶ {0, 1,… , 50} → [0, 1] and
𝑢3 ∶ {‘none’, ‘modest’, ‘high’} → [0, 1] as well as attribute weights
(𝑤1, 𝑤2, 𝑤3) ∈ [0, 1]3 such that ∑3

𝑖=1 𝑤𝑖 = 1. Moreover, the utility
function is scaled so that 𝑢(0, 0, ‘none’) = 0 and 𝑢(100, 50, ‘high’) = 1.
Estimating the outcomes of the 𝑗th project candidate thus yields a
vector 𝑥𝑗 ∈ 𝑌1 × 𝑌2 × 𝑌3 in the case of deterministic outcomes, or,
in the general case, a vector-valued random variable 𝑥̃𝑗 characterized
by a probability distribution over 𝑌1 × 𝑌2 × 𝑌3. The baseline outcome,
𝑦𝐵 = (0, 0, ‘none’), is obtained if a project is not implemented. The
project portfolio that maximizes the expected additive portfolio utility
is identified by solving the ILP problem max𝑧∈{0,1}10{

∑10
𝑗=1 E[𝑢(𝑥̃𝑗 )]𝑧𝑗 ∣

∑10
𝑗=1 𝑐𝑗𝑧𝑗 ≤ 𝑏}, where E[𝑢(𝑥̃𝑗 )] = E[𝑢(𝑥̃𝑗1,… , 𝑥̃𝑗3)] =

∑3
𝑖=1 𝑤𝑖E[𝑢𝑖(𝑥̃𝑗𝑖)].

The simpler form of the objective function is a result of scaling the
utility function such that the utility of the baseline outcome is zero,
i.e., 𝑢(𝑦𝐵) = 0.

Clearly, the additive portfolio utility function (3) implicitly assumes
that there are no project interactions. This is evident also in optimiza-
tion problem (4), where the added utility of including the 𝑗th project
into the portfolio (i.e., changing the value of 𝑧𝑗 from zero to one) is
always equal to E[𝑢(𝑥̃𝑗 )] − 𝑢(𝑦𝐵) irrespective of which other projects
are included in the portfolio (i.e., the values of 𝑧𝑘, 𝑘 ≠ 𝑗). Commonly,
project interactions are handled by directly extending optimization

1 This illustrative example is loosely based on the real-world application
of Marttunen et al. (2023).

problem (4) rather than replacing the additive portfolio utility function
(3) with a suitable non-additive utility function (see, e.g., Carazo et al.
2010, Li et al. 2020, Perez and Gomez 2016, Stummer and Heiden-
berger 2003). To illustrate this approach, let us suppose there are 𝐾
interactions in total and that the 𝑘th interaction is triggered if all the
projects with indexes in the set 𝐽𝑘 ⊆ {1,… , 𝑚} are included in the
portfolio. Furthermore, suppose that the 𝑘th interaction, if triggered,
changes the additive portfolio utility by 𝑠𝑘 utility units. Extending the
optimization problem (4) to incorporate such interactions yields the ILP
problem

max
𝑧∈{0,1}𝑚
𝜁∈{0,1}𝐾

𝑚
∑

𝑗=1

(

𝑧𝑗E[𝑢(𝑥̃𝑗 )] + (1 − 𝑧𝑗 )𝑢(𝑦𝐵)
)

+
𝐾
∑

𝑘=1
𝜁𝑘𝑠𝑘 (5)

𝐴𝑧 ≤ 𝐵 (6)
𝑚𝜁𝑘 ≤

∑

𝑗∈𝐽𝑘

𝑧𝑗 − |𝐽𝑘| + 𝑚 ∀ 𝑘 ∈ {1,… , 𝐾} (7)

𝑚𝜁𝑘 ≥
∑

𝑗∈𝐽𝑘

𝑧𝑗 − |𝐽𝑘| + 1 ∀ 𝑘 ∈ {1,… , 𝐾}. (8)

This optimization problem introduces one additional binary decision
variable 𝜁𝑘 for each of the 𝐾 interactions and 2𝐾 additional constraints
which ensure that 𝜁𝑘 = 1 if and only if all the projects with indexes
in 𝐽𝑘 are selected. Specifically, if 𝜁𝑘 = 1, then for constraint (7) to
hold all projects with indexes in 𝐽𝐾 must be included in the portfolio
(i.e., ∑𝑗∈𝐽𝐾 𝑧𝑗 = |𝐽𝑘|). In turn, if 𝑧𝑗 = 1 for all 𝑗 ∈ 𝐽𝑘, then constraint
(8) is equivalent to 𝑚𝜁𝑘 ≥ 1, which holds only if the 𝑘th interaction is
included in the objective function (i.e., 𝜁𝑘 = 1).

To demonstrate the application of this approach in handling inter-
actions we revisit the environmental management example. Suppose
that projects 𝑗 = 5, 𝑗 = 8, and 𝑗 = 9 affect areas that are geographically
close to each other and the agency predicts that implementing all three
projects would thus increase the recreational value even more than
suggested by the outcomes of the individual projects’ outcomes with
regard to attribute 𝑖 = 3. To quantify this effect, the agency estimates
that implementing these three projects would increase the portfolio
utility by an amount equal to the utility of a hypothetical project with
the outcome 𝑦 = (0, 0, ‘high’). In this case, the project portfolio that
maximizes the expected portfolio utility corresponds to the optimal
solution of the ILP problem

max
𝑧∈{0,1}10
𝜁1∈{0,1}

10
∑

𝑗=1
E[𝑢(𝑥̃𝑗 )]𝑧𝑗 + 𝜁1𝑠1

10
∑

𝑗=1
𝑐𝑗𝑧𝑗 ≤ 𝑏

𝑧5 + 𝑧8 + 𝑧9 − 2 ≤ 10𝜁1 ≤ 𝑧5 + 𝑧8 + 𝑧9 + 7,

where 𝑠1 = 𝑢(0, 0, ‘high’).
Although this approach is relatively straightforward in terms of

implementing the model as an ILP problem, from a decision analytic
viewpoint it has both theoretical and practical shortcomings. First,
it is not clear what is the functional form of the portfolio utility
function whose expectation optimization model (5)–(8) seeks to max-
imize. Second, without a precisely determined functional form it is
not possible to specify the preference assumptions under which the
most preferred portfolio actually corresponds to the optimal solution of
optimization model (5)–(8). Third, the lack of theoretical foundations,
which link a particular set of preference assumptions to a family of
portfolio utility functions representing preferences that satisfy these
assumptions, makes it difficult to interpret the parameters 𝑠𝑘 that
quantify the interaction effects. Such an interpretation is required for
developing rigorous techniques to assess these parameters based on
the decision makers’ preference statements. To address these shortcom-
ings the following sections offer an axiomatic foundation for portfolio
utility functions that incorporate project interactions and utilize this
foundation to develop approaches for preference assessment and the
identification of the most preferred portfolio.
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3. An axiomatic basis for portfolio utility functions capturing
project interactions

Decision maker’s preferences among portfolios in  are captured by
a complete and transitive relation ⪰. Specifically, 𝑥̃ ⪰ 𝑥̃′ denotes that
portfolio 𝑥̃ is (weakly) preferred to portfolio 𝑥̃′. Strict preference ≻ and
indifference ∼ are defined in the usual manner. Assuming that relation
⪰ satisfies a set of standard axioms, such as those developed by von
Neumann et al. (1944) or (Savage, 1972), there exists a utility function
𝑈 ∶  → R that represents the decision maker’s preferences ⪰ in the
sense that

E[𝑈 (𝑥̃)] ≥ E[𝑈 (𝑥̃′)] ⇔ 𝑥̃ ⪰ 𝑥̃′ ∀𝑥̃, 𝑥̃′ ∈  . (9)

This utility function is unique up to positive affine transformations,
and hence it can be scaled by fixing the utility of any two portfolios
that are not equally preferred. Here we will use a scaling in which
an empty portfolio (i.e., all projects have the baseline outcomes 𝑦𝐵)
receives the zero utility and a portfolio consisting of a single project
with a specific outcome 𝑦+ ∈ 𝑌 receives a unit utility. However,
the standard utility axioms cannot rule out the possibility that these
two portfolios are equally preferred or that preference for the latter
portfolio depends on the index of the project that receives the outcome
𝑦+. Hence, before formally fixing the scaling we need to introduce three
preference assumptions.

The first preference assumption is motivated by the fact that in
portfolio decision analysis the decision alternatives are combinations
of projects and hence the preference model should provide equal treat-
ment for all project candidates. Specifically, preference for a particular
project should not be contingent on which index the project candidate
receives in the preference model. To illustrate this assumption suppose
that the environmental management example includes a project can-
didate with the outcome 𝑦 = (30, 40, ‘high’). In this case, a portfolio 𝑥
consisting of this project alone, i.e., 𝑥 = (𝑦𝐵 ,… , 𝑦𝐵 , 𝑦, 𝑦𝐵 ,… , 𝑦𝐵), should
be equally preferred regardless of the index 𝑗 ∈ {1,… , 10} assigned to
the project.

Assumption 1. Single project preferences are independent from
project indexing in the sense that portfolios 𝑥 = (𝑦, 𝑦𝐵 ,… , 𝑦𝐵) and
𝑥′ = (𝑦𝐵 ,… , 𝑦𝐵 , 𝑦, 𝑦𝐵 ,… , 𝑦𝐵) are equally preferred for any 𝑦 ∈ 𝑌 .

Note that the index of the project that receives outcome 𝑦 in
portfolio 𝑥′ is arbitrary and the assumption explicitly restricts only
preferences among deterministic project outcomes. Assumption 1 is
a weaker version of Assumption 1 in Liesiö and Vilkkumaa (2021),
which requires that any portfolio remains equally preferred if the
outcomes of its projects are permuted. This stronger assumption is
also implied by the additive portfolio utility function (3). Here, we
assume only that such permutations do not affect the preferability
of portfolios consisting of a single project, which does not rule out
the possibility of interactions between projects. In the environmental
management example, for instance, Assumption 1 allows the portfolio
(𝑦, 𝑦, 𝑦𝐵 , 𝑦𝐵 … , 𝑦𝐵) to be preferred to the portfolio (𝑦, 𝑦𝐵 , 𝑦, 𝑦𝐵 ,… , 𝑦𝐵),
thereby allowing synergistic interactions between projects 𝑗 = 1 and
𝑗 = 2.

The second preference assumption can be seen as a requirement that
projects yield utility as independent entities. More specifically, it rules
out the possibility that a single project would be entirely worthless itself
and produce utility only if combined with some other projects. Obvi-
ously, this assumption does not rule out interactions (i.e., that more
utility is produced if the project is a part of such combinations), but it
ensures that evaluating preferences among outcomes of an individual
project makes sense.

Assumption 2. There exists a project outcome that is preferred to the
baseline, i.e.,

(𝑦+, 𝑦𝐵 ,… , 𝑦𝐵) ≻ (𝑦𝐵 , 𝑦𝐵 ,… , 𝑦𝐵).

Note that it is sufficient to require that an outcome preferred to
the baseline exists only for the first project, as Assumption 1 then
implies that the same outcome is preferred to the baseline for any
project. In the environmental management example, for Assumption 2
to hold, there must be a project outcome 𝑦 ∈ [0, 100] × {0, 1,… , 50} ×
{‘none’, ‘modest’, ‘high’} such that a portfolio consisting of a single
project with this outcome (i.e., 𝑥 = (𝑦, 𝑦𝐵 ,… , 𝑦𝐵)) is preferred to an
empty portfolio (i.e., 𝑥 = (𝑦𝐵 , 𝑦𝐵 ,… , 𝑦𝐵)).

Instead of Assumption 2 one could require that the portfolios
(𝑦+, 𝑦𝐵 ,… , 𝑦𝐵) and (𝑦𝐵 , 𝑦𝐵 ,… , 𝑦𝐵) are not equally preferred for some 𝑦+

and obtain a functional form for the portfolio utility function equivalent
to the one being developed here. However, this would require working
with two alternative ways of scaling the portfolio utility function
(i.e., 𝑈 (𝑦+, 𝑦𝐵 ,… , 𝑦𝐵) = ±1), which we want to avoid here for the sake
of clarity.

The final assumption restricts the way in which preferences among
portfolios that differ with regard to the uncertain outcome of a single
project are affected by changes in the project outcomes that are com-
mon to all portfolios. In particular, suppose that, given two pairs of
alternative uncertain outcomes for the 𝑗th project (e.g., 𝑥̃𝑎𝑗 , 𝑥̃

𝑏
𝑗 and 𝑥̃𝑐𝑗 ,

𝑥̃𝑑𝑗 ) there is a strict preference for one of the outcomes in both pairs
(e.g., 𝑥̃𝑎𝑗 and 𝑥̃𝑐𝑗 ) when all the other projects in the portfolio have some
fixed deterministic outcomes (𝑥𝑘, 𝑘 ≠ 𝑗). Now, if these fixed outcomes
are changed, we require that (i) the preferred outcome in both pairs
remain the same, (ii) the preferred outcome is changed in both pairs, or
(iii) all outcomes become equally preferred. Essentially, this assumption
forbids a situation where a change in the fixed outcomes reverses the
preference order in one pair but not in the other.

Assumption 3. The preference order of uncertain project outcomes
remains the same, it is fully reversed, or all of these outcomes become
equally preferred when the outcomes of other projects are changed,
i.e., if

(… , 𝑥𝑗−1, 𝑥̃
𝑎
𝑗 , 𝑥𝑗+1,…) ≻ (… , 𝑥𝑗−1, 𝑥̃

𝑏
𝑗 , 𝑥𝑗+1,…) and

(… , 𝑥𝑗−1, 𝑥̃
𝑐
𝑗 , 𝑥𝑗+1,…) ≻ (… , 𝑥𝑗−1, 𝑥̃

𝑑
𝑗 , 𝑥𝑗+1,…),

then for any 𝑥′𝑘 ∈ 𝑌 , 𝑘 ≠ 𝑗, one of the following holds:

(𝑖) (… , 𝑥′𝑗−1, 𝑥̃
𝑎
𝑗 , 𝑥

′
𝑗+1,…) ≻ (… , 𝑥′𝑗−1, 𝑥̃

𝑏
𝑗 , 𝑥

′
𝑗+1,…) and

(… , 𝑥′𝑗−1, 𝑥̃
𝑐
𝑗 , 𝑥

′
𝑗+1,…) ≻ (… , 𝑥′𝑗−1, 𝑥̃

𝑑
𝑗 , 𝑥

′
𝑗+1,…),

(𝑖𝑖) (… , 𝑥′𝑗−1, 𝑥̃
𝑎
𝑗 , 𝑥

′
𝑗+1,…) ≺ (… , 𝑥′𝑗−1, 𝑥̃

𝑏
𝑗 , 𝑥

′
𝑗+1,…) and

(… , 𝑥′𝑗−1, 𝑥̃
𝑐
𝑗 , 𝑥

′
𝑗+1,…) ≺ (… , 𝑥′𝑗−1, 𝑥̃

𝑑
𝑗 , 𝑥

′
𝑗+1,…),

(𝑖𝑖𝑖) (… , 𝑥′𝑗−1, 𝑥̃
𝑎
𝑗 , 𝑥

′
𝑗+1,…) ∼ (… , 𝑥′𝑗−1, 𝑥̃

′′
𝑗 , 𝑥

′
𝑗+1,…) for any 𝑥̃′′𝑗 .

Assumption 3 is less restrictive than the standard assumption of
each project being utility independent of the others, which is required
by the additive portfolio utility function (3) and the non-additive port-
folio utility functions developed by Liesiö and Vilkkumaa (2021). These
earlier utility models represent preferences that always satisfy condi-
tion (i). Thus, Assumption 3 should be acceptable in most real-world
applications of multiattribute portfolio decision analysis.

To demonstrate the types of preferences allowed by Assumption 3,
we revisit the environmental management example. Suppose the en-
vironmental agency prefers adding a project with the outcome 𝑥1 =
(80, 30, ‘high’) into an empty portfolio rather than a project with the
outcome 𝑥′1 = (50, 40, ‘high’) (i.e., (𝑥1, 𝑦𝐵 ,… , 𝑦𝐵) ≻ (𝑥′1, 𝑦

𝐵 ,… , 𝑦𝐵) ≻
(𝑦𝐵 , 𝑦𝐵 ,… , 𝑦𝐵)). If the agency also prefers adding 𝑥1 into a non-
empty portfolio with project outcomes 𝑥2,… , 𝑥10 (i.e., (𝑥1, 𝑥2,… , 𝑥10) ≻
(𝑦𝐵 , 𝑥2,… , 𝑥10)), then condition (i) implies that adding 𝑥′1 would also be
preferred, although not as strongly as adding 𝑥1 (i.e., (𝑥1, 𝑥2,… , 𝑥10) ≻
(𝑥′1, 𝑥2,… , 𝑥10) ≻ (𝑦𝐵 , 𝑥2,… , 𝑥10)). In turn, if there are interaction effects
such that the agency would not prefer to include 𝑥1 into this non-empty
portfolio, then condition (ii) implies also preference for not including
𝑥′1 (i.e., (𝑦𝐵 , 𝑥2,… , 𝑥10) ≻ (𝑥′1, 𝑥2,… , 𝑥10) ≻ (𝑥1, 𝑥2,… , 𝑥10)). Thus,
Assumption 3 allows for interactions among projects but prohibits these



European Journal of Operational Research 316 (2024) 988–1000

992

J. Liesiö et al.

interactions from making arbitrary changes to the preference order of
single project outcomes.

Preferences among portfolios that satisfy Assumptions 1–3 are rep-
resented by an multilinear quasi-symmetric portfolio utility function as
formally established by the following theorem.

Theorem 1. Assumption 1, 2, and 3 hold if and only if the portfolio utility
function 𝑈 ∶ 𝑋 → R is multilinear and quasi-symmetric, i.e.,

𝑈 (𝑥1,… , 𝑥𝑚) =
∑

𝐽⊆{1,…,𝑚}
𝜅(𝐽 )

∏

𝑗∈𝐽
𝑢(𝑥𝑗 ), (10)

where 𝑢 ∶ 𝑌 → R is the project utility function

𝑢(𝑦) = 𝑈 (𝑦𝐵 ,… , 𝑦𝐵 , 𝑦, 𝑦𝐵 ,… , 𝑦𝐵) (11)

and 𝜅 ∶ 2{1,…,𝑚} → R satisfies
∑

𝐽 ′⊆𝐽
𝜅(𝐽 ′) = 𝑈 (𝜒(𝐽 )) ∀ 𝐽 ⊆ {1,… , 𝑚}, (12)

where 𝜒(𝐽 ) = 𝑥 ∈ 𝑋 is a portfolio outcome such that 𝑥𝑗 = 𝑦+ if 𝑗 ∈ 𝐽
and 𝑥𝑗 = 𝑦𝐵 otherwise. Thus, 𝜅(∅) = 𝑈 (𝑦𝐵 ,… , 𝑦𝐵) = 𝑢(𝑦𝐵) = 0 and
𝜅({𝑗}) = 𝑈 (𝑦𝐵 ,… , 𝑦𝐵 , 𝑦+, 𝑦𝐵 ,… , 𝑦𝐵) = 𝑢(𝑦+) = 1.

The detailed proof for the theorem is provided in the appendix,
but the overall proof strategy can be summarized as follows. To es-
tablish the sufficiency of the preference assumptions, the first step is
to interpret each project outcome as an attribute. Then Assumption 3
implies that each of these attributes is generalized utility independent
of the others, which in turn implies that preferences across the at-
tributes are represented by a quasi-additive utility function (Fishburn
and Keeney 1975, Theorem 4). Assumption 2 forbids the case where
all outcomes of a single-project portfolio are equally preferred and
thus the utility function must be multilinear. Finally, Assumption 1
implies that the multilinear utility function must be symmetric with
regard to project-specific outcomes, i.e., quasi-symmetric. In turn, the
necessity of Assumptions 1–3 requires lengthy but relatively straightfor-
ward algebraic manipulations of the quasi-symmetric multilinear utility
function, which are detailed in the appendix.

The quasi-symmetric multilinear portfolio utility function (10) cap-
tures preferences through two parameters: the project utility function
𝑢 that maps the space of multiattribute project outcomes 𝑌 to real
values and the interaction function 𝜅 that associates a real number
with every project subset 𝐽 ⊆ {1,… , 𝑚}. Intuitively, the project utility
function captures the utilities of project outcomes when there are no
other projects in the portfolio (i.e., all other projects have the baseline
outcome 𝑦𝐵). The chosen scaling thus fixes the utilities of two project
outcomes 𝑦𝐵 and 𝑦+, since 𝑢(𝑦𝐵) = 𝑈 (𝑦𝐵 ,… , 𝑦𝐵) = 0 and 𝑢(𝑦+) =
𝑈 (𝑦+, 𝑦𝐵 ,… , 𝑦𝐵) = 1.

The interpretation for the project interaction function 𝜅 can be
established through Eq. (12). Evaluating this equation for 𝐽 = ∅ yields
∑

𝐽 ′⊆∅ 𝜅(𝐽 ′) = 𝜅(∅) = 𝑈 (𝑦𝐵 ,… , 𝑦𝐵) = 0, where the last equality follows
from the chosen scaling of the utility function. In turn, evaluating
Eq. (12) for set 𝐽 = {𝑗}, where 𝑗 ∈ {1,… , 𝑚}, gives ∑

𝐽 ′⊆{𝑗} 𝜅(𝐽 ′) =
𝜅(∅) + 𝜅({𝑗}) = 𝑈 (𝑦𝐵 ,… , 𝑦𝐵 , 𝑦+, 𝑦𝐵 ,… , 𝑦𝐵), which, together with the
fact that 𝜅(∅) = 0 and the chosen scaling, implies 𝜅({𝑗}) = 1. Thus,
𝜅(∅) corresponds to the utility of an empty portfolio and 𝜅(𝐽 ), where
|𝐽 | = 1, to the utility of a portfolio with a single project having the
deterministic outcome 𝑦+. When 𝑥𝑗 = 𝑥𝑗′ = 𝑦+, evaluating (12) for set
𝐽 = {𝑗, 𝑗′} results in
∑

𝐽 ′⊆{𝑗,𝑗′}
𝜅(𝐽 ′) = 𝜅({𝑗, 𝑗′}) + 𝜅({𝑗}) + 𝜅({𝑗′}) + 𝜅(∅)

⏟⏟⏟
=0

= 𝑈 (𝑦𝐵 ,… , 𝑦𝐵 , 𝑥𝑗 , 𝑦
𝐵 ,… ., 𝑦𝐵 , 𝑥𝑗′ , 𝑦

𝐵 ,… , 𝑦𝐵)

⇔ 𝜅({𝑗, 𝑗′}) = 𝑈 (𝑦𝐵 ,… , 𝑦𝐵 , 𝑥𝑗 , 𝑦
𝐵 ,… ., 𝑦𝐵 , 𝑥𝑗′ , 𝑦

𝐵 ,… , 𝑦𝐵) − (𝜅({𝑗}) + 𝜅({𝑗′}))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=1+1=2

.

This intuitively shows that 𝜅({𝑗, 𝑗′}) captures the synergy/
cannibalization effect that needs to be added to the sum of the project

utilities 𝜅({𝑗})+𝜅({𝑗′}) = 2 to obtain the portfolio utility 𝑈 (𝑦𝐵 ,… , 𝑦𝐵 , 𝑥𝑗 ,
𝑦𝐵 ,… , 𝑦𝐵 , 𝑥𝑗′ , 𝑦𝐵 ,… , 𝑦𝐵). In general, consider the portfolio 𝜒(𝐽 ) con-
sisting of projects with indexes 𝐽 ⊆ {1,… , 𝑚}, each having the
outcome 𝑦+. Then 𝜅(𝐽 ) captures the synergy/cannibalization effect that
is obtained only if all projects in the set 𝐽 are included in the portfolio,
i.e., it would not be realized if any projects were removed from the
portfolio. Formally, this can be seen from rewriting Eq. (12) in the form

𝜅(𝐽 ) = 𝑈 (𝜒(𝐽 )) −
∑

𝐽 ′⊂𝐽
𝜅(𝐽 ′).

The quasi-symmetric portfolio utility function provides theoretical
justification for the commonly suggested approach of extending the
sum of project utilities with additional terms to capture interaction
effects (cf. ILP problem (5)–(8)). In particular, utilizing the fact that
𝜅({𝑗}) = 1 for all 𝑗 ∈ {1,… , 𝑚} makes it possible to write the
quasi-symmetric multilinear portfolio utility function as

𝑈 (𝑥1,… , 𝑥𝑚) =
𝑚
∑

𝑗=1
𝑢(𝑥𝑗 ) +

∑

𝐽⊆{1,…,𝑚}
|𝐽 |≥2

𝜅(𝐽 )
∏

𝑗∈𝐽
𝑢(𝑥𝑗 ). (13)

For those non-singleton project subsets 𝐽 ⊆ {1,… , 𝑚} that do not
yield any interaction effects it holds that 𝜅(𝐽 ) = 0 and, hence, the
corresponding term in (13) would be equal to zero. Moreover, if the 𝑗th
project is not included in the portfolio, then 𝑥𝑗 = 𝑦𝐵 , and thus each term
that corresponds to a project subset 𝐽 that includes 𝑗 would evaluate
to zero because one of the multipliers is 𝑢(𝑦𝐵) = 0.

4. Assessment of quasi-symmetric multilinear portfolio utility func-
tions

Specification of the quasi-symmetric multilinear portfolio utility
function ( Theorem 1) requires assessment of the multiattribute project
utility function 𝑢 and the interaction function 𝜅. The project utility
function 𝑢 can be assessed with standard approaches (see, e.g., Keeney
and Raiffa 1976) by assuming that all other projects in the portfolio are
fixed to some specified levels. Perhaps the most intuitive choice is to
assume that the portfolio does not contain any other projects, i.e., the
outcomes of all other projects are equal to 𝑦𝐵 .

Specification of the interaction parameters 𝜅(𝐽 ), 𝐽 ⊆ {1,… , 𝑚}, can
be carried out by asking the decision maker to state her preferences
between specific pairs of portfolios. We develop here preference elic-
itation processes in which the values of 𝜅(⋅) are specified iteratively
by starting from parameters capturing interactions between pairs of
projects, then moving on to interactions involving three projects, four
projects, etc. At each stage, the elicitation questions involve portfolios
consisting of projects with indexes in specific subsets of {1,… , 𝑚}, but
these questions do not require that the deterministic outcomes of the
projects take specific values (e.g., 𝑥𝑗 = 𝑦+). Instead, the project out-
comes of the portfolios being compared can be freely chosen from the
outcomes of the actual project candidates in the application. Arguably,
it is more convenient for the decision maker to compare portfolios with
realistic project outcomes rather than be forced to consider hypothet-
ical portfolio outcomes where each project included obtains the same
fixed outcome 𝑦+, for instance.

To formalize such a preference elicitation process, we use 𝑋𝐽 to
denote the set of outcomes of portfolios that consist of projects with
indexes in the set 𝐽 , or

𝑋𝐽 = {𝑥 ∈ 𝑋 ∣ 𝑥𝑗 = 𝑦𝐵 ∀ 𝑗 ∉ 𝐽}. (14)

Moreover, we use (𝑥′, 𝑥′′; 𝑝, 1 − 𝑝) ∈  to denote an uncertain binary
portfolio outcome that yields outcome 𝑥′ ∈ 𝑋 with probability 𝑝 and
outcome 𝑥′′ ∈ 𝑋 with probability (1 − 𝑝), or, more formally,

(𝑥′, 𝑥′′; 𝑝, 1 − 𝑝) =

{

𝑥′′, with probability 1 − 𝑝
𝑥′, with probability 𝑝.

(15)

Assessment of 𝜅(𝐽 ) for some 𝐽 ⊆ {1,… , 𝑚} such that |𝐽 | ≥ 2 (recall
that 𝜅({𝑗}) = 1) can be operationalized by choosing two subsets of
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projects 𝐽 ′, 𝐽 ′′ ⊂ 𝐽 , such that |𝐽 ′
| = |𝐽 ′′

| = |𝐽 | − 1, and deterministic
outcomes of three portfolios that consist of projects in these subsets,
denoted by 𝑥 ∈ 𝑋𝐽 , 𝑥′ ∈ 𝑋𝐽 ′ , and 𝑥′′ ∈ 𝑋𝐽 ′′ such that 𝑥′ ≁ 𝑥′′.
The decision maker is then asked to provide a preference ranking of
these three portfolio outcomes and to consider an uncertain binary
portfolio outcome that yields either the least or most preferred of these
ranked outcomes (see Eq. (15)). Finally, the decision maker adjusts
the probability 𝑝 in this binary outcome until it is equally preferred to
the portfolio outcome ranked second. This preference statement can be
used to solve for the value of parameter 𝜅(𝐽 ) for any ranking of original
three portfolio outcomes as established by the following theorem.

Theorem 2. Take any 𝐽 ⊆ {1,… , 𝑚}, |𝐽 | ≥ 2, and 𝐽 ′, 𝐽 ′′ ⊂ 𝐽 , 𝐽 ′ ≠ 𝐽 ′′,
such that 𝐽 = 𝐽 ′ ∪ {𝑗′} = 𝐽 ′′ ∪ {𝑗′′}, and consider portfolios 𝑥 ∈ 𝑋𝐽 ,
𝑥′ ∈ 𝑋𝐽 ′ , and 𝑥′′ ∈ 𝑋𝐽 ′′ . Then the following equivalences hold:

(i) 𝑥 ⪰ 𝑥′ ≻ 𝑥′′ and 𝑥′ ∼ (𝑥, 𝑥′′; 𝑝, 1 − 𝑝) for some 𝑝 ∈ (0, 1] if and only
if

𝜅(𝐽 )

=
−
∑

𝐼⊆𝐽 ′′
𝑗′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 ) + (1 − 𝑝)
∑

𝐼⊆𝐽 ′
𝑗′′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 ) − 𝑝
∑

𝐼⊂𝐽
𝑗′ ,𝑗′′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 )

𝑝
∏

𝑗∈𝐽 𝑢(𝑥𝑗 )
,

(16)

(ii) 𝑥′ ≻ 𝑥 ≻ 𝑥′′ and 𝑥 ∼ (𝑥′, 𝑥′′; 𝑝, 1 − 𝑝) for some 𝑝 ∈ (0, 1) if and only
if

𝜅(𝐽 )

=
(𝑝 − 1)

∑

𝐼⊆𝐽 ′
𝑗′′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 ) − 𝑝
∑

𝐼⊆𝐽 ′′
𝑗′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 ) −
∑

𝐼⊂𝐽
𝑗′ ,𝑗′′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 )
∏

𝑗∈𝐽 𝑢(𝑥𝑗 )
,

(17)

(iii) 𝑥′ ≻ 𝑥′′ ⪰ 𝑥 and 𝑥′′ ∼ (𝑥′, 𝑥; 𝑝, 1 − 𝑝) for some 𝑝 ∈ [0, 1) if and only
if

𝜅(𝐽 )

=
−
∑

𝐼⊆𝐽 ′
𝑗′′ ∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 ) + 𝑝
∑

𝐼⊆𝐽 ′′
𝑗′ ∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 ) − (1 − 𝑝)
∑

𝐼⊂𝐽
𝑗′ ,𝑗′′ ∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 )

(1 − 𝑝)
∏

𝑗∈𝐽 𝑢(𝑥𝑗 )
.

(18)

Eqs. (16)–(18) are linear in parameters 𝜅(⋅). Thus, a collection of
these types of preference statements would result in a system of linear
constraints that could be solved with appropriate techniques to specify
the values of these parameters. However, note that the right-hand
sides of Eqs. (16)–(18) contain only parameters 𝜅(𝐼) in which 𝐼 is a
proper subset of 𝐽 . Thus, if 𝜅(𝐼) has been assessed for each 𝐼 ⊂ 𝐽 ,
then these equations provide a formula for directly computing the
value of 𝜅(𝐽 ). Therefore, an elicitation process that starts with the
assessment of interactions between all pairs of projects and then at each
stage increases the size of the considered interaction subsets by one
project, avoids the need to actually solve a system of linear equations
to estimate the values of parameters 𝜅(⋅).

To illustrate this preference assessment process, let us consider a
portfolio selection problem with 𝑚 = 4 candidate projects with utilities
𝑢(𝑥1) = 0.7, 𝑢(𝑥2) = 0.5, 𝑢(𝑥3) = 0.3, and 𝑢(𝑥4) = 0.6. The decision
maker is first asked to rank the three portfolio outcomes (𝑥1, 𝑥2, 𝑦𝐵 , 𝑦𝐵),
(𝑥1, 𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵), and (𝑦𝐵 , 𝑥2, 𝑦𝐵 , 𝑦𝐵). Suppose the decision maker states
that (𝑥1, 𝑥2, 𝑦𝐵 , 𝑦𝐵) ≻ (𝑥1, 𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵) ≻ (𝑦𝐵 , 𝑥2, 𝑦𝐵 , 𝑦𝐵). The decision
maker is then asked to adjust probability 𝑝 until the portfolios

(𝑥1, 𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵) and 𝑥̃ =

{

(𝑦𝐵 , 𝑥2, 𝑦𝐵 , 𝑦𝐵), with probability 𝑝
(𝑥1, 𝑥2, 𝑦𝐵 , 𝑦𝐵), with probability 1 − 𝑝

are equally preferred. If the decision maker states that 𝑝 = 0.8, then

𝜅({1, 2}) =
0.2𝑢(𝑥1) − 𝑢(𝑥2)
0.8𝑢(𝑥1)𝑢(𝑥2)

≈ −1.29

according to Eq. (16) with 𝐽 = {1, 2}, 𝐽 ′ = {1}, 𝐽 ′′ = {2}, 𝑗′ = 2, and
𝑗′′ = 1.

Suppose the values 𝜅({1, 3}) = 0.9 and 𝜅({2, 3}) = 1.1 for the
remaining project pairs are obtained through similar questions, after
which the process proceeds by determining 𝜅(𝐽 ) for subsets of three
projects (|𝐽 | = 3). Specifically, the decision maker is asked to con-
sider a preference ranking of three deterministic portfolio outcomes
(𝑥1, 𝑥2, 𝑦𝐵 , 𝑦𝐵), (𝑥1, 𝑦𝐵 , 𝑥3, 𝑦𝐵), and (𝑥1, 𝑥2, 𝑥3, 𝑦𝐵) and the decision maker
states that (𝑥1, 𝑥2, 𝑦𝐵 , 𝑦𝐵) ≻ (𝑥1, 𝑥2, 𝑥3, 𝑦𝐵) ≻ (𝑥1, 𝑦𝐵 , 𝑥3, 𝑦𝐵). The decision
maker is then asked to choose a probability 𝑝 such that she would be
indifferent between the portfolios

(𝑥1, 𝑥2, 𝑥3, 𝑦𝐵) and 𝑥̃ =

{

(𝑥1, 𝑥2, 𝑦𝐵 , 𝑦𝐵), with probability 𝑝
(𝑥1, 𝑦𝐵 , 𝑥3, 𝑦𝐵), with probability 1 − 𝑝.

If the decision maker states that 𝑝 = 0.7, then Eq. (17) with 𝐽 = {1, 2, 3},
𝐽 ′ = {1, 2}, 𝐽 ′′ = {1, 3}, 𝑗′ = 3, and 𝑗′′ = 2 yields

𝜅({1, 2, 3}) =
−0.3(𝑢(𝑥2) + 𝜅({1, 2})𝑢(𝑥1)𝑢(𝑥2)) − 0.7(𝑢(𝑥3) + 𝜅({1, 3})𝑢(𝑥1)𝑢(𝑥3)) − 𝜅({2, 3})𝑢(𝑥2)𝑢(𝑥3)

𝑢(𝑥1)𝑢(𝑥2)𝑢(𝑥3)
≈ −4.97,

where the values of 𝜅(𝐽 ′) and 𝜅(𝐽 ′′) are known because they were
assessed on the previous stage in the assessment process. Continuing
in this vein can determine all values of 𝜅(𝐽 ), 𝐽 ⊂ {1,… , 4}, without the
need to solve systems of linear equations.

The preference assessment process outlined above requires the de-
cision maker to consider three portfolios, two of which are obtained
from the third via removal of a single project. There might be a smaller
cognitive burden, however, if the comparison involved three portfolios
such that the first is a subset of the second, which in turn is a subset of
the third. We thus develop an alternative process in which the decision
maker is asked to consider three portfolios that consist of projects with
indexes in the subsets 𝐽 ′′ ⊂ 𝐽 ′ ⊂ 𝐽 and each subset differs from
its superset with regard to a single project, i.e., 𝐽 ′′ ∪ {𝑗′′} = 𝐽 ′, and
𝐽 ′ ∪ {𝑗′} = 𝐽 . Again the decision maker first determines a preference
ranking of the three portfolios outcomes denoted by 𝑥 ∈ 𝑋𝐽 , 𝑥′ ∈ 𝑋𝐽 ′ ,
and 𝑥′′ ∈ 𝑋𝐽 ′′ (cf. Eq. (14)) and then adjusts the probabilities of a bi-
nary outcome (cf. Eq. (15)) that yields either the least or most preferred
outcome until it is equally preferred to the second-ranked portfolio
outcome. The value of 𝜅(𝐽 ) can then be determined for any preference
ranking of the three portfolio outcomes via the following theorem.

Theorem 3. Take any 𝐽 ⊆ {1,… , 𝑚} and 𝐽 ′′ ⊂ 𝐽 ′ ⊂ 𝐽 , such that
𝐽 ′′∪{𝑗′′} = 𝐽 ′, and 𝐽 ′∪{𝑗′} = 𝐽 . Consider portfolios 𝑥′′ ∈ 𝑋𝐽 ′′ , 𝑥′ ∈ 𝑋𝐽 ′ ,
and 𝑥 ∈ 𝑋𝐽 . Then the following equivalences hold:

(i) 𝑥 ⪰ 𝑥′ ≻ 𝑥′′ and 𝑥′ ∼ (𝑥, 𝑥′′; 𝑝, 1 − 𝑝) for some 𝑝 ∈ (0, 1] if and only
if

𝜅(𝐽 ) =
(1 − 𝑝)

∑

𝐼⊆𝐽 ′
𝑗′′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 ) − 𝑝
∑

𝐼⊂𝐽
𝑗′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 )

𝑝
∏

𝑗∈𝐽 𝑢(𝑥𝑗 )
,

(19)

(ii) 𝑥′ ≻ 𝑥 ≻ 𝑥′′ and 𝑥 ∼ (𝑥′, 𝑥′′; 𝑝, 1 − 𝑝) for some 𝑝 ∈ (0, 1) if and only
if

𝜅(𝐽 ) =
(𝑝 − 1)

∑

𝐼⊆𝐽 ′
𝑗′′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 ) −
∑

𝐼⊂𝐽
𝑗′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 )
∏

𝑗∈𝐽 𝑢(𝑥𝑗 )
,

(20)

(iii) 𝑥′ ≻ 𝑥′′ ⪰ 𝑥 and 𝑥′′ ∼ (𝑥′, 𝑥; 𝑝, 1 − 𝑝) for some 𝑝 ∈ [0, 1) if and only
if

𝜅(𝐽 ) =

∑

𝐼⊆𝐽 ′
𝑗′′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 ) + (1 − 𝑝)
∑

𝐼⊂𝐽
𝑗′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 )

(𝑝 − 1)
∏

𝑗∈𝐽 𝑢(𝑥𝑗 )
, (21)
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(iv) 𝑥 ⪰ 𝑥′′ ≻ 𝑥′ and 𝑥′′ ∼ (𝑥, 𝑥′; 𝑝, 1 − 𝑝) for some 𝑝 ∈ (0, 1] if and only
if

𝜅(𝐽 ) =

∑

𝐼⊆𝐽 ′
𝑗′′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 ) − 𝑝
∑

𝐼⊂𝐽
𝑗′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 )

𝑝
∏

𝑗∈𝐽 𝑢(𝑥𝑗 )
, (22)

(v) 𝑥′′ ≻ 𝑥 ≻ 𝑥′ and 𝑥 ∼ (𝑥′′, 𝑥′; 𝑝, 1 − 𝑝) for some 𝑝 ∈ (0, 1) if and only
if

𝜅(𝐽 ) =
−
∑

𝐼⊂𝐽
𝑗′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 ) − 𝑝
∑

𝐼⊆𝐽 ′
𝑗′′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 )
∏

𝑗∈𝐽 𝑢(𝑥𝑗 )
, (23)

(vi) 𝑥′′ ≻ 𝑥′ ⪰ 𝑥 and 𝑥′ ∼ (𝑥′′, 𝑥; 𝑝, 1 − 𝑝) for some 𝑝 ∈ [0, 1) if and only
if

𝜅(𝐽 ) =
(1 − 𝑝)

∑

𝐼⊂𝐽
𝑗′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 ) − 𝑝
∑

𝐼⊆𝐽 ′
𝑗′′∈𝐼

𝜅(𝐼)
∏

𝑗∈𝐼 𝑢(𝑥𝑗 )

(𝑝 − 1)
∏

𝑗∈𝐽 𝑢(𝑥𝑗 )
.

(24)

To illustrate the second assessment process, we revisit the portfolio
selection problem with 𝑚 = 4 projects, with utilities 𝑢(𝑥1) = 0.7,
𝑢(𝑥2) = 0.5, 𝑢(𝑥3) = 0.3, and 𝑢(𝑥4) = 0.6. The decision maker is first
asked to consider a preference ranking of three portfolio outcomes,
(𝑥1, 𝑥2, 𝑦𝐵 , 𝑦𝐵), (𝑥1, 𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵), and (𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵). Suppose the decision
maker states (𝑥1, 𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵) ≻ (𝑥1, 𝑥2, 𝑦𝐵 , 𝑦𝐵) ≻ (𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵). Next, the
decision maker is asked to set probability 𝑝 such that portfolios

(𝑥1, 𝑥2, 𝑦𝐵 , 𝑦𝐵) and 𝑥̃ =

{

(𝑥1, 𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵), with probability 𝑝
(𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵), with probability 1 − 𝑝

are equally preferred. If the decision maker states that 𝑝 = 0.6, then
Eq. (20) with 𝐽 = {1, 2}, 𝐽 ′ = {1}, 𝐽 ′′ = {2}, 𝑗′ = 2, and 𝑗′′ = 1 yields

𝜅({1, 2}) =
−0.4𝑢(𝑥1) − 𝑢(𝑥2)

𝑢(𝑥1)𝑢(𝑥2)
=

(−0.4)(0.7) − 0.5
(0.7)(0.5)

≈ −2.23.

After the values of 𝜅({1, 3}) = 0.9, 𝜅({2, 3}) = 1.1 have been ob-
tained through similar elicitation questions, the decision maker can
move on to assessing 𝜅(𝐽 ) for subsets that contain three projects.
Suppose, for instance, that when considering the portfolio outcomes
(𝑥1, 𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵), (𝑥1, 𝑥2, 𝑦𝐵 , 𝑦𝐵), and (𝑥1, 𝑥2, 𝑥3, 𝑦𝐵) the decision maker
states that (𝑥1, 𝑥2, 𝑥3, 𝑦𝐵) ≻ (𝑥1, 𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵) ≻ (𝑥1, 𝑥2, 𝑦𝐵 , 𝑦𝐵). The deci-
sion maker is then asked to adjust probability 𝑝 until she is indifferent
between portfolios

(𝑥1, 𝑦𝐵 , 𝑦𝐵 , 𝑦𝐵) and 𝑥̃ =

{

(𝑥1, 𝑥2, 𝑥3, 𝑦𝐵), with probability 𝑝
(𝑥1, 𝑥2, 𝑦𝐵 , 𝑦𝐵), with probability 1 − 𝑝.

The probability 𝑝 = 0.3 would yield

𝜅({1, 2, 3})

=
𝑢(𝑥2) + 𝜅({1, 2})𝑢(𝑥1)𝑢(𝑥2) − 0.3(𝑢(𝑥3) + 𝜅({1, 3})𝑢(𝑥1)𝑢(𝑥3) + 𝜅({2, 3})𝑢(𝑥2)𝑢(𝑥3))

0.3𝑢(𝑥1)𝑢(𝑥2)𝑢(𝑥3)
≈ −15.13,

by Eq. (22). The process can be continued in a similar manner until the
rest of the 𝜅 values have been elicited.

5. Optimization models for maximizing expected quasi-symmetric
multilinear portfolio utility

In general, the most preferred project portfolio that maximizes
expected utility can be identified by solving a stochastic optimization
problem. Specifically, if the uncertain outcomes of the 𝑚 project candi-
dates are captured by the random variables 𝑥̃1,… , 𝑥̃𝑚, then this problem
can be formulated as

max
𝑧∈{0,1}𝑚

E[𝑈 (𝑥̂1,… , 𝑥̂𝑚)] (25)

𝑥̂𝑗 =

{

𝑥̃𝑗 , if 𝑧𝑗 = 1
𝑦𝐵 , if 𝑧𝑗 = 0

𝐴𝑧 ≤ 𝐵,

where binary decision variables 𝑧 = (𝑧1,… , 𝑧𝑚) ∈ {0, 1}𝑚 indicate which
projects are included in the portfolio, while matrix 𝐴 and vector 𝐵
encode the parameters of the relevant constraints (e.g., budget).

In principle, optimization problem (25) can be solved by enumerat-
ing all possible portfolios (i.e., binary vectors 𝑧 ∈ {0, 1}𝑚), checking
which ones are feasible (i.e., satisfy 𝐴𝑧 ≤ 𝐵), and then evaluating
the expected utility of each feasible portfolio. However, in applica-
tions the number of projects 𝑚 is often is high enough to make this
approach impossible in practice. Hence, the practical applicability of
portfolio decision analysis models is enhanced if the general prob-
lem (25) can be formulated as a type of optimization problem for
which standard solvers are readily available. With the quasi-symmetric
multilinear portfolio utility function (Theorem 1), such a formulation
exists as demonstrated by the following lemma for the special case of
stochastically independent project outcomes.

Lemma 1. Assume the project outcomes 𝑥̃1,… , 𝑥̃𝑚 are stochastically
independent. Then 𝑧∗ is an optimal solution to optimization problem (25)
if and only if there exists 𝜁∗ such that (𝑧∗, 𝜁∗) is an optimal solution to the
ILP problem

max
𝑧∈{0,1}𝑚
𝜁∈{0,1}𝐾

𝑚
∑

𝑗=1
𝑧𝑗E[𝑢(𝑥̃𝑗 )] +

𝐾
∑

𝑘=1
𝜁𝑘𝜅(𝐽𝑘)

∏

𝑗∈𝐽𝑘

E[𝑢(𝑥̃𝑗 )] (26)

𝑚𝜁𝑘 ≤
∑

𝑗∈𝐽𝑘

𝑧𝑗 − |𝐽𝑘| + 𝑚 ∀ 𝑘 ∈ {1,… , 𝐾}

𝑚𝜁𝑘 ≥
∑

𝑗∈𝐽𝑘

𝑧𝑗 − |𝐽𝑘| + 1 ∀ 𝑘 ∈ {1,… , 𝐾}

𝐴𝑧 ≤ 𝐵,

where {𝐽1,… , 𝐽𝐾} = {𝐽 ⊆ {1,… , 𝑚} ∣ |𝐽 | ≥ 2, 𝜅(𝐽 ) ≠ 0}.

Note that, since 𝑢(𝑦𝐵) = 0, denoting 𝑠𝑘 = 𝜅(𝐽𝑘)
∏

𝑗∈𝐽𝑘 E[𝑢(𝑥̃𝑗 )]
renders the optimization problem of Lemma 1 equivalent to the ILP
problem (5)–(8), which represents the standard approach for handling
project interactions. This observation suggests that in the standard
approach uncertain project outcomes need to be stochastically indepen-
dent and that the interaction effect coefficients 𝑠𝑘 should be contingent
on the utilities of the projects involved in each interaction. Specifically,
if the projects’ outcomes and, thereby, their utilities change, the values
of the interaction coefficients 𝑠𝑘 should be updated accordingly.

Stochastic dependencies among project outcomes can be incor-
porated into the optimization model (26) by constructing a finite
state-space such that the project outcomes are conditionally inde-
pendent given these states. Formally, if 𝜔̃ denotes the integer-valued
random variable indicating which of the 𝑑 states is realized, then the
probability distributions of the project outcomes must satisfy P(𝑥̃𝑗 =
𝑥𝑗 |𝑥̃𝑗′ = 𝑥𝑗′ , 𝜔̃ = 𝜔) = P(𝑥̃𝑗 = 𝑥𝑗 |𝜔̃ = 𝜔) to be conditionally
independent. The resulting optimization problem, which is formalized
by the following theorem, includes as input parameters the conditional
expected project utilities in each of the states (E[𝑢(𝑥̃𝑗 )|𝜔̃ = 𝜔], 𝜔 ∈
{1,… , 𝑑}, 𝑗 ∈ {1,… , 𝑚}) as well as the state probabilities (P(𝜔̃ = 𝜔), 𝜔 ∈
{1,… , 𝑑}).

Theorem 4. Assume the project outcomes 𝑥̃1,… , 𝑥̃𝑚 are conditionally
independent given the state 𝜔̃. Then 𝑧∗ is an optimal solution to the
optimization problem (25) if and only if there exists 𝜁∗ such that (𝑧∗, 𝜁∗) is
an optimal solution to the ILP problem

max
𝑧∈{0,1}𝑚
𝜁∈{0,1}𝐾

𝑚
∑

𝑗=1
𝑧𝑗E[𝑢(𝑥̃𝑗 )] +

𝐾
∑

𝑘=1
𝜁𝑘𝜅(𝐽𝑘)

( 𝑑
∑

𝜔=1
P(𝜔̃ = 𝜔)

∏

𝑗∈𝐽𝑘

E[𝑢(𝑥̃𝑗 )|𝜔̃ = 𝜔]
)

(27)

𝑚𝜁𝑘 ≤
∑

𝑗∈𝐽𝑘

𝑧𝑗 − |𝐽𝑘| + 𝑚 ∀ 𝑘 ∈ {1,… , 𝐾}

𝑚𝜁𝑘 ≥
∑

𝑗∈𝐽𝑘

𝑧𝑗 − |𝐽𝑘| + 1 ∀ 𝑘 ∈ {1,… , 𝐾}

𝐴𝑧 ≤ 𝐵,
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Fig. 1. Probability distribution of the number of projects |𝐽𝑘| involved in the 𝑘th interaction.

where {𝐽1,… , 𝐽𝐾} = {𝐽 ⊆ {1,… , 𝑚} ∣ |𝐽 | ≥ 2, 𝜅(𝐽 ) ≠ 0}.

From a computational perspective the ILP problems (26) and (27)
are equivalent since they have an equal number of decision variables
and an equal number of constraints, and they differ only with regard
to the values of the objective function coefficients. The computational
effort required to solve these ILP problems is contingent mainly on the
number of binary decision variables, which itself depends not only on
the number of project candidates 𝑚 but also on the number of project
interactions, i.e., project subsets 𝐽 ⊆ {1,… , 𝑚} for which 𝜅(𝐽 ) ≠ 0.

6. Impacts of modeling project interactions to decision recom-
mendations

Although the quasi-symmetric multilinear portfolio utility function
can be used to identify optimal portfolio decisions that account for
interactions among all project subsets, in real-world applications it
might not often be possible to quantify all existing interactions, since
the assessment process is likely to require heavy involvement of the
decision makers or other experts (see Section 4). Moreover, each ad-
ditional project interaction increases the computational effort required
to identify the portfolio that maximizes expected utility (see Section 5).
Thus, it is important to examine how the true optimal portfolio that ac-
counts for all project interactions differs from portfolios recommended
by approximate models in which only a subset of the interactions is
considered. In this section we compare the project compositions and
expected utilities of the true optimal portfolio to those recommended by
the approximate models by using problem instance based on randomly
generated and real-world data.

6.1. Simulation setup

The analysis is based on randomly generated samples each consist-
ing of 100 project portfolio selection problem instances. Each problem
instance has 𝑚 = 30 project candidates with project interactions and
a single budget constraint that limits the total cost for the portfolio
to be no more than 50% of the sum of all candidate project costs 𝑐𝑗 ,
i.e., ∑30

𝑗=1 𝑧𝑗𝑐𝑗 ≤ 0.5
∑30

𝑗=1 𝑐𝑗 . The joint distribution of each project’s cost
𝑐𝑗 and utility E[𝑢(𝑥̃𝑗 )] follows a Gaussian copula with correlation co-
efficient 𝜌 and uniform marginal distributions. The samples generated
will be varied in terms of four dimensions: (i) the correlation between
project utilities and costs (𝜌), (ii) the number of project interactions
(𝐾), (iii) the sizes of the interaction subsets (|𝐽𝑘|, 𝑘 ∈ {1,… , 𝐾}), and
(iv) the magnitude of the interaction effects (𝜅(𝐽𝑘), 𝑘 ∈ {1,… , 𝐾}).

For the sizes of the interaction subsets |𝐽𝑘| we will consider two
cases. The first includes only pairwise interactions, i.e., |𝐽𝑘| = 2 for all
𝑘 ∈ {1,… , 𝐾}. In the second case, the size of each interaction subset
|𝐽𝑘| follows a shifted beta-binomial distribution such that |𝐽𝑘| = 𝛽 + 2,
where 𝛽 ∼ BetaBin(𝑛∗, 𝛼, 𝛽) with parameter values 𝑛∗ = 4, 𝛼 = 0.3,
and 𝛽 = 1 (see Fig. 1). The parameter values are chosen to represent
a realistic setting in which small-sized interaction subsets are more
frequent than larger ones. The projects included in each subset 𝐽𝑘 are
randomly sampled from the set {1,… , 𝑚}.

The values for the parameters 𝜅(𝐽𝑘), 𝑘 ∈ {1,… , 𝐾}, capturing the
magnitudes of the interaction effects are generated by using the follow-
ing approach. First, note that in case there is no interaction associated
with the project subset 𝐽𝑘 (i.e., 𝜅(𝐽𝑘) = 0), the utility of a portfolio
𝑥 ∈ 𝑋𝐽𝑘 consisting of only projects in subset 𝐽𝑘 (Eq. (14)) is

𝑈 (𝑥) =
∑

𝐽⊆{1,…,𝑚}
𝜅(𝐽 )

∏

𝑗∈𝐽
𝑢(𝑥𝑗 ) =

∑

𝐽⊂𝐽𝑘

𝜅(𝐽 )
∏

𝑗∈𝐽
𝑢(𝑥𝑗 ),

since 𝑢(𝑦𝐵) = 0. Now suppose that the relative change in the utility of
portfolio 𝑥 due to interaction 𝐽𝑘 is captured by the coefficient 𝜙 > 0 in
the sense that

𝑈 (𝑥) =
∑

𝐽⊆{1,…,𝑚}
𝜅(𝐽 )

∏

𝑗∈𝐽
𝑢(𝑥𝑗 ) = 𝜙

∑

𝐽⊂𝐽𝑘

𝜅(𝐽 )
∏

𝑗∈𝐽
𝑢(𝑥𝑗 ), (28)

where a value 𝜙 ∈ [0, 1) yields a cannibalization effect and a value 𝜙 > 1
yields a synergy effect. Solving the parameter 𝜅(𝐽𝑘) from this equation
yields

𝜅(𝐽𝑘) =
(𝜙 − 1)

∑

𝐽⊂𝐽𝑘
𝜅(𝐽 )

∏

𝑗∈𝐽 𝑢(𝑥𝑗 )
∏

𝑗∈𝐽𝑘 𝑢(𝑥𝑗 )
, (29)

which specifies the magnitude of each interaction effect as a function of
𝜙. By varying the distribution from which the value of 𝜙 is drawn for
each subset 𝜅(𝐽𝑘), we can control which types of project interactions
are present in the problem instances. Specifically, instances with both
synergies and cannibalization effects are generated by drawing values
𝜙 ∈ [0,∞) from a log-normal distribution with median value equal
to one. In turn, in problem instances having only synergies values
𝜙 ∈ [1,∞) follow unit-shifted exponential distribution (i.e., 𝜙−1 follows
an exponential distribution). Finally, problem instances having only
cannibalization effects are generated by drawing values 𝜙 ∈ [0, 1] from
a beta distribution.

For each problem instance the following computations are carried
out. First, for each 𝑘 ∈ {0,… , 𝐾}, we use Lemma 1 to solve for a
portfolio 𝑧𝑘 that maximizes the quasi-symmetric multilinear portfolio
utility function when the 𝑘 interactions with the largest magnitude
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Fig. 2. The share of changed project decisions (𝛥(𝑘), black) and the achieved relative utility (𝛥′(𝑘), gray) when the 𝑘 largest interactions are considered. Interaction magnitude
𝜙 ∈ [0,∞) (Eq. (28)) follows a log-normal distribution with unit median.

Fig. 3. The share of changed project decisions (𝛥(𝑘), black) and the achieved relative utility (𝛥′(𝑘), gray) when the 𝑘 largest interactions are considered. Interaction magnitude
𝜙 ∈ [1,∞) (Eq. (28)) follows a unit-shifted exponential distribution.

|𝜅(𝐽𝑘)
∏

𝑗∈𝐽𝑘 𝑢(𝑥𝑗 )| are considered. Specifically, 𝑧0 thus denotes the
portfolio maximizing the additive portfolio utility function that does
not include any interactions (Eq. (3)), while 𝑧𝐾 denotes the true optimal
portfolio that maximizes the quasi-symmetric multilinear portfolio util-
ity function with all interactions taken into account. Next, we calculate
two measures to analyze the differences between the true optimal port-
folio 𝑧𝐾 and the portfolio 𝑧𝑘 for 𝑘 ∈ {0,… , 𝐾}: (i) the share of different
project decisions between the two portfolios, i.e., 𝛥(𝑘) =

∑𝑚
𝑗=1 |𝑧

𝑘
𝑗 −

𝑧𝐾𝑗 |∕𝑚, and (ii) the utility achieved by the portfolios 𝑧𝑘 relative to that
of the true optimal portfolio 𝑧𝐾 , i.e., 𝛥′(𝑘) = 𝐸𝑈 (𝑧𝑘)∕𝐸𝑈 (𝑧𝐾 ). Here
𝐸𝑈 (𝑧) denotes the expected utility of portfolio 𝑧 when evaluated with
the utility function including all the interaction terms, which implies
that 𝐸𝑈 (𝑧𝐾 ) ≥ 𝐸𝑈 (𝑧𝑘) for all 𝑘 ∈ {0,… , 𝐾}. Thus, it holds that
𝛥(𝐾) = 0 and 𝛥′(𝐾) = 1.

6.2. Simulation results

Figs. 2–6 illustrate the differences between the optimal portfolio
accounting for all project interactions and those portfolios that are
optimal when only 𝑘 interactions with the largest magnitudes are con-
sidered. In particular, the figures’ black lines show the share of different
project decisions (𝛥(𝑘)), with the solid line corresponding to the mean
and the dashed lines corresponding to the 5th and 95th percentiles. The
gray lines show the share of true optimal expected utility achieved by
the portfolios that consider only the 𝑘 largest interactions (𝛥′(𝑘)) with
the solid line representing the mean and the dashed lines the 5th and
95th percentiles.

Fig. 2 shows the results for 𝐾 = 30 project interactions including
both synergy and cannibalization effects. The correlation coefficient
between project utilities and costs is 𝜌 = 0.3, and the parameter 𝜙
capturing interaction magnitude follows a log-normal distribution with
unit median and varying standard deviation (std[𝜙]). Note that the
realization 𝜙 = 1 implies a zero interaction effect 𝜅(𝐽𝑘) = 0 (see
Eq. (29)), while realizations 𝜙 ≠ 1 imply non-zero effects. Conse-
quently, increasing the standard deviation of 𝜙 increases the average
absolute magnitude of the interaction effects and thus amplifies the im-
pacts of considering only the 𝑘 largest interactions. For instance, when
std[𝜙] = 1, the portfolio obtained when no interactions are considered
(𝑘 = 0) yields on average only half of the true optimal expected utility
(𝑘 = 𝐾 = 30). Moreover, the average share of project decisions changed
is nearly 40%, which corresponds to some 12 out of 30 projects. In turn,
when std[𝜙] = 0.1, the average loss in expected utility and the average
share of changed project decisions are significantly lower.

Figs. 3 and 4 show the results when all project interactions have
either synergy or cannibalization effects, respectively, while other pa-
rameters of the problem instances remain unchanged. Specifically, in
Fig. 3 parameter 𝜙 ∈ [1,∞) specifying the interaction magnitudes
(see (29)) follows a unit-shifted exponential distribution with varying
mean value. Because greater values of 𝜙 correspond to larger synergy
effects, increasing this mean value results in larger differences between
the true optimal portfolio 𝑧30 and portfolios 𝑧𝑘 accounting only for
the 𝑘 largest interactions. In Fig. 4 the values of 𝜙 ∈ [0, 1] follow
a beta distribution with varying mean value. Since small values of 𝜙
result in large cannibalization effects, decreasing this mean amplifies



European Journal of Operational Research 316 (2024) 988–1000

997

J. Liesiö et al.

Fig. 4. The share of changed project decisions (𝛥(𝑘), black) and the achieved relative utility (𝛥′(𝑘), gray) when the 𝑘 largest interactions are considered. Interaction magnitude
𝜙 ∈ [0, 1] (Eq. (28)) follows a beta distribution.

Fig. 5. The share of changed project decisions (𝛥(𝑘), black) and the achieved relative utility (𝛥′(𝑘), gray) when the 𝑘 largest interactions are considered for different correlations
between projects’ utilities and costs (𝜌).

the differences between the optimal portfolio and those in which only
some of the cannibalization effects are considered. In fact, with the
mean equal to 0.25, the portfolio obtained when no interactions are
considered (𝑧0) is actually less preferred than the empty portfolio in
some of the problem instances. This leads to the 5th percentile of the
relative utility dropping below zero.

Fig. 5 illustrates the effect that the correlation between project costs
and utilities (𝜌) has on the importance of capturing project interac-
tions. Again, each problem instance has 𝐾 = 30 interactions and the
parameter 𝜙 follows a log-normal distribution (std[𝜙] = 0.5) generating
both synergy and cannibalization effects. The results suggest that the
increased correlation between projects utilities and costs increases the
importance of considering project interactions. This can be explained
by the observation that in cases of low correlation there likely exists
a subset of low-cost, high-utility projects that form at least the core of
the optimal portfolio. In this case taking into account cannibalization
effects among these projects, or synergies between them and other
projects, would likely not result in major changes in the composition of
the optimal portfolio. In turn, if the correlation between project utilities
and costs is high, then the existence of several low-cost and high-utility
projects is less likely and, therefore, interactions have a greater impact
on the composition of the optimal portfolio.

The last results (Fig. 6) focus on problem instance involving only
pairwise interactions the number of which takes values 𝐾 ∈ {1, 50, 100}.
The problem instances were generated with the correlation coefficient
𝜌 = 0.3 and by using the same log-normal distribution for 𝜙 as in Fig. 5.
Notably, regardless of the total number of interactions 𝐾, it seems that
increasing the number of interactions considered from 𝑘 = 0 to some

𝑘 = 𝐾∕5, results in a sharp decrease in the differences between the
true optimal portfolio 𝑧𝐾 and the optimal portfolios 𝑧𝑘 in terms of
expected utility. This indicates that by considering only the largest 20%
interactions it is possible to obtain the majority of the total expected
utility achieved by considering all the interactions.

6.3. Application to R&D project portfolio selection

In this section, we analyze the impact of not modeling all the
project interactions by using a problem instance based on a real-world
application in R&D (de Almeida & Duarte, 2011). In this application, a
decision maker selects a portfolio of R&D projects to maximize the mul-
tiattribute portfolio utility subject to multiple constraints. In particular,
𝑚 = 10 project candidates are evaluated with regard to 𝑛 = 4 attributes:
expected return, success probability, strategic impact, and operational
impact. The deterministic attribute-specific evaluations are aggregated
with an additive multiattribute utility function to obtain project utilities
𝑢(𝑥1),… , 𝑢(𝑥10) and the utility of not selecting a project is 𝑢(𝑦𝐵) = 0.
Moreover, there are four resource constraints, limiting the labor (𝑙 = 1),
equipment (𝑙 = 2) and energy (𝑙 = 3) usage of the selected projects and
their total cost (𝑙 = 4). Let 𝑎𝑙𝑗 denote the 𝑗th project’s consumption
of the 𝑙th resource and 𝐵𝑙 the availability of the 𝑙th resource. Table 1
shows the projects’ utilities, resource consumption, and the resource
availability. Finally, out of the 9 ⋅ 10∕2 = 45 project pairs, 32 pairs
have synergies (see Table 2). Note that de Almeida and Duarte (2011)
have quantified the synergy effect obtained if both the 𝑗th and the 𝑗′th
project are included in the portfolio in terms of the resulting increase
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Fig. 6. The share of changed project decisions (𝛥(𝑘), black) and the achieved relative utility (𝛥′(𝑘), gray) when there are 𝐾 pairwise interactions of which 𝑘 are considered.

Table 1
Projects’ utilities, resource consumption, and resource availability.

Project
𝑗

Utility
𝑢(𝑥𝑗 )

Labor
(# of people)
𝑎1𝑗

Equipment
usage
(h)
𝑎2𝑗

Energy
(MW)
𝑎3𝑗

Cost
(k$)
𝑎4𝑗

1 0.485 10 39 65 190
2 0.5425 15 30 70 166
3 0.49 18 38 63 205
4 0.645 35 45 80 250
5 0.4025 8 20 53 107
6 0.435 8 18 58 112
7 0.43 5 20 58 97
8 0.455 5 12 60 83
9 0.43 3 16 54 85
10 0.4025 3 12 55 40

𝐵𝑙 60 160 380 1000

in portfolio utility, which in our framework corresponds to the term
𝜅({𝑗, 𝑗′})𝑢(𝑥𝑗 )𝑢(𝑥𝑗′ ).

The resulting project portfolio selection problem corresponds to the
non-linear binary optimization problem

max
𝑧∈{0,1}10

𝑚
∑

𝑗=1
𝑧𝑗𝑢(𝑥𝑗 ) +

∑

𝐽⊆{1,…,10}
𝜅(𝐽 )

∏

𝑗∈𝐽
𝑧𝑗𝑢(𝑥𝑗 ) (30)

10
∑

𝑗=1
𝑎𝑙𝑗𝑧𝑗 ≤ 𝐵𝑙 ∀ 𝑙 ∈ {1,… , 4},

where 𝑢(𝑥𝑗 ), 𝑎𝑙𝑗 , and 𝐵𝑙 are specified in Table 1 and each non-zero
𝜅(𝐽 )

∏

𝑗∈𝐽 𝑧𝑗𝑢(𝑥𝑗 ) in Table 2. This problem can be formulated as an ILP
problem per Lemma 1.

Similarly to the analysis of the randomly generated problem in-
stances (Sections 6.1 and 6.2), we solve problem (30) by considering
the 𝑘 largest synergy effects for 𝑘 ∈ {1,… , 32}. The resulting portfolios
𝑧𝑘, 𝑘 ∈ {1,… , 32}, are then compared to the optimal portfolio 𝑧32

obtained when all 𝐾 = 32 synergies are taken into account in terms of
both the relative expected utility (𝛥′(𝑘)) and changed project decisions
(𝛥(𝑘)). However, since the magnitudes of the synergy effects are now
based on a real application, it is also of interest to analyze how robust
the decision recommendations are to variations in these estimates.
Thus, we carry out the aforementioned comparisons also for cases
in which all the interaction magnitudes are tenfold and hundredfold.
Technically, this corresponds to replacing each parameter 𝜅(𝐽 ) in (30)
with 𝜃𝜅(𝐽 ), where 𝜃 = 1 (the base-case), 𝜃 = 10, or 𝜃 = 100.

Fig. 7 shows the share of changed project decisions (𝛥(𝑘), black)
and the achieved relative expected utility (𝛥′(𝑘), gray) as a function of
the number of interactions considered (𝑘) when different multipliers
(𝜃) are applied for the magnitudes of the synergy effects. For the case

Fig. 7. The share of changed project decisions (𝛥(𝑘), black) and the achieved relative
utility (𝛥′(𝑘), gray) when the 𝑘 largest interactions are considered with base case (𝜃 = 1,
squares), tenfold (𝜃 = 10, triangles), and hundredfold (𝜃 = 100, crosses) synergy effects.

in which 𝜃 = 100, decision recommendations differ from the optimal
ones even when 𝑘 = 28 out of the 𝐾 = 32 synergy effects are
considered. Moreover, the optimal portfolio from the additive portfolio
utility function (i.e., 𝑧0) yields less than half of the optimal expected
utility. However, as 𝑘 increases from 0 to 7, the expected utility from
portfolio 𝑧𝑘 increases rapidly and becomes very close to that of the
optimal portfolio. For the cases in which 𝜃 = 1 and 𝜃 = 10, correct
project decision recommendations are obtained when at least half of
the interactions are considered (i.e., 𝑘 ≥ 14).

Fig. 8 shows which projects are included in portfolios 𝑧𝑘 for differ-
ent values of 𝜃. For instance, project 2 is included in 𝑧𝑘 for all 𝜃 when
𝑘 > 2. Hence, the model would recommend selecting project 2 even
if the magnitudes of the synergies were significantly overestimated as
long as the two largest synergies are included in the model. In turn,
project 7 jumps in and out of the portfolios 𝑧𝑘 for all values of 𝜃, which
means its selection is sensitive to identification of the synergies as well
as quantification of their magnitude.

The correct specification of synergy effects’ magnitudes affects the
decision recommendations in general. The composition of the optimal
portfolio 𝑧32 is not exactly the same for all values of 𝜃. In particular,
the optimal portfolio always contains projects 1, 2, 5, 8, and 10, but the
choice of including project 3 or project 7 depends on the value of 𝜃. In
fact, the composition of the portfolios 𝑧𝑘 is the same across the values
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Table 2
Non-zero synergy effects 𝜅({𝑗, 𝑗′})𝑢(𝑥𝑗 )𝑢(𝑥𝑗′ ).

Project 𝑗/
project 𝑗′

2 3 4 5 6 7 8 9 10

1 0.0133 0.0046 0.0206 0.0178 0.0037 0.0075 0.0152
2 0.019 0.0162 0.0028 0.0014 0.0182 0.0079
3 0.0141 0.0128 0.0085 0.0102
4 0.0147 0.0066 0.0005 0.0041 0.0044
5 0.0049 0.0077 0.005 0.0138
6 0.0057 0.0063
7 0.0174
8 0.0059 0.016
9 0.0152
10

Fig. 8. Portfolio composition when 𝑘 synergy effects are considered with the base case (𝜃 = 1), tenfold (𝜃 = 10), and hundredfold (𝜃 = 100) synergy effects.

of 𝜃 only when 𝑘 = 15, 16, 17 or when no interactions are considered
(𝑘 = 0).

Greater magnitude of the synergy effects makes the project decision
recommendations more sensitive to the number of interactions consid-
ered. When 𝜃 = 1 or 𝜃 = 10, the composition of 𝑧𝑘 changes as 𝑘 increases
from 0 to 14, it but remains unchanged for larger values of 𝑘. However,
when 𝜃 = 100, the composition of portfolio 𝑧𝑘 changes for almost all
unit increases of 𝑘 until 𝑘 = 7 and the optimal portfolio is obtained only
when at least 𝑘 = 29 of the 𝐾 = 32 interactions are considered.

7. Discussion and conclusions

We have shown that if preferences among multiattribute project
portfolios satisfy three specific assumptions, then these preferences are
represented by a quasi-symmetric multilinear portfolio utility function.
In particular, such a representation assumes that preferences among
portfolios consisting of a single project are independent of the indexing
of that project and that for some project outcome such a portfolio
would be preferred to an empty portfolio. The third assumption restricts
preferences among portfolios that differ with regard to one project
when the outcomes of the identical projects are changed: under any
such changes, the preference ranking of the portfolios stays the same,
it is fully reversed, or all portfolios become equally preferred.

This quasi-symmetric multilinear portfolio utility function is par-
ticularly interesting from the standpoint of applications as it can be
written as the sum of a standard additive portfolio utility function
and a set of additional terms each capturing the interaction effect of
a specific subset of the project candidates. Hence, this portfolio utility
function offers a decision-theoretic foundation for the ad hoc approach
commonly used in application of PDA, in which the portfolio utility is
modeled as the sum of the included projects’ utilities augmented with

additional terms in case the portfolio’s project composition triggers a
synergy or a cannibalization effect.

The computational experiments on problem instances based on
randomly generated and real-world data highlight the importance of
modeling project interactions. Indeed, neglecting to account for inter-
actions can lead to erroneous decision recommendations for project
selection and to losses in expected portfolio utility. However, incorpo-
rating project interactions into the portfolio model adds challenges to
decision support. First, each interaction requires an additional binary
variable in the portfolio optimization model, thus making it compu-
tationally more demanding. This becomes an issue especially if the
number of interactions is in the hundreds. Second, and perhaps more
importantly, a large number of interactions necessitates the assessment
of a large number of interaction effects, which requires involving the
decision makers or other experts. Furthermore, the types of questions
that can be utilized to assess these effects are cognitively more de-
manding than, for instance, the preference elicitation questions used to
specify the project-level multiattribute utility function. As the number
of interactions can, in the worst case, increase exponentially as a func-
tion of the number of project candidates, these assessment processes
can quickly become very demanding. However, the computational
experiments also show that, generally, incorporating at least some
of the most significant interaction into the portfolio model reduces
the average number of erroneous project decisions and decreases the
resulting loss in portfolios’ expected utility.

The results point to several avenues for future research. From a
theoretical perspective it would be interesting to examine whether
an axiomatic foundation similar to the one developed here could be
built based on measurable value functions instead of utility functions
(Dyer and Sarin 1979, Liesiö 2014). Such foundations could offer a
platform to develop alternative techniques for assessing interaction
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effects that would not require the decision makers to state preferences
between uncertain outcomes but would allow comparing changes in
deterministic outcomes. The practice of portfolio decision analysis
would benefit from case studies based on real applications to evaluate
the effectiveness of various techniques and processes for assessing
project interactions. Such studies would also serve building a larger
data set of real-world project portfolio selection instances in which
synergy and cannibalization effects have been quantified.
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