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Abstract: Time-varying metamaterials are currently at the forefront of research, offering
immense possibilities for intriguing wave manipulations. Temporal modulations of metamate-
rials have paved the way for unconventional realizations of magnetless nonreciprocity, wave
amplification, frequency conversion, pulse shaping, and much more. Here, we overview the
fundamentals and recent advancements of temporal interfaces in isotropic, anisotropic, and
bianisotropic materials and metamaterials. Delving into the fundamentals of temporal scattering
in media of different material classes, we draw insightful comparisons with phenomena observed
at spatial interfaces. We specifically emphasize the potential of time-switched anisotropic and
bianisotropic metamaterials in unlocking extraordinary temporal scattering phenomena. Further-
more, an overview of possible platforms to realize time-varying bianisotropic metamaterials is
provided. Concluding with a glimpse into the future, we make a research outlook for time-varying
anisotropic and bianisotropic metamaterials, highlighting their potential in obtaining exotic
photonic time crystals and other dynamic electromagnetic structures.

© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Engineering scattering of electromagnetic waves stands as one of the central challenges in applied
physics. Scattering can be controlled by tailoring the shapes of scatterers and adjusting the
electromagnetic properties of materials from which the scatterers are made from. Even limiting
our discussion to engineering linear effects, one may need to use conductors, dielectrics, magnetic
materials, or the most general linear materials that are governed by linear relations between the
four field vectors, bianisotropic materials.

In recent decades, efforts have been dedicated to engineer artificial materials with unusual
electromagnetic properties, metamaterials, and their two-dimensional version, metasurfaces
[1–4]. For some time, metamaterials have been limited to being engineered solely in space.
However, it is evident that the means for controlling scattering by altering the scatterers in space
(for instance, by changing its shape, size or spatial periodicity) are fundamentally limited. For
example, the frequency of a wave scattered from time-invariant and linear object is always
conserved. It became apparent that harnessing the temporal degree of freedom by tailoring some
material properties in time paves the way to intriguing scattering phenomena. For example,
breaking translational and reversal symmetry in time allows various frequency/energy density
transformations and non-reciprocal phenomena, e.g. [5–13].

One of the most straightforward forms of having temporal inhomogeneities in material
properties is rapid switching (faster than one cycle of the incident wave) of certain material
parameters, giving rise to a temporal interface. Scattering of waves at temporal interfaces can be
considered as an analogue to scattering of waves at spatial interfaces. When an electromagnetic
wave approaches an interface that divides the whole space to half-spaces with distinct material
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properties, in the most general case a pair of waves – the transmitted and reflected ones –
are created to satisfy the boundary conditions. The incident and scattered waves undergo
transformation of wavelength and wavevector while preserving frequency and power density, due
to the translational symmetry in time. In analogy, an abrupt change of material parameters in
time creates time-refraction and time-reflection, at which the wavelength and wavevector are
conserved, but the frequency and energy density may be transformed [14,15].

Even though temporal interfaces are intriguing in their own right, their significance is heightened
as they serve as the building blocks for generally time-varying metamaterial [16–18] and photonic
time crystals (PTCs). Specifically, photonic time crystals denote electromagnetic systems that
undergo periodic variations in time while maintaining uniformity in space [19]. Such systems
exhibit unusual properties such as having momentum band gaps [20–22] within which waves
can be amplified exponentially [23]. By breaking down a dynamic electromagnetic system into
multiple temporal interfaces, it is then sufficient to study the temporal interfaces to extrapolate
the electromagnetic response of the dynamic electromagnetic system, as discussed in [24]. In this
context, temporal interfaces serve as temporal meta-atoms of time-varying metamaterials [25].

We overview the current status of research on temporal interfaces in isotropic, anisotropic, and
bianisotrpic metamaterials, along with potential platforms for their realization. It becomes evident
that time-varying metamaterials can facilitate the realization of numerous exciting and practically
useful field effects. Drawing an analogy with phenomena at spatial interfaces, where the use of
more general metamaterials is necessary for complete control over scattering phenomena, we
demonstrate that the full potential of time-varying metamaterials can be realized by exploring
time-varying metamaterials that exhibit the most general properties, such as anisotropy and
bianisotropy. Furthermore, we foresee the potential of time-varying anisotropic and bianisotropic
metamaterials in exploiting exotic photonic time crystals.

2. Motivation: time-invariant bianisotropic slab

To emphasize the significance of contemplating time-varying general bianisotropic metamaterials
and the necessity to understand wave phenomena in metamaterials with temporal inhomogeneities
in all material parameters, we draw an analogy with well-understood spatially inhomogeneous
metamaterials. Let us consider a simple illustrative example of electromagnetic scattering
phenomena at a time invariant uniaxial bianisotropic spatial slab illuminated by a normally
incident plane wave, as illustrated in Fig. 1. The example symmetry is uniaxial, that is, the only
preferred direction is the normal to the slab boundaries, defined by the unit vector n. We assume
that the bianisotropic metamaterial inside the slab is homogenizable, so that we can model it with
macroscopic material relations. Bianisotropic materials are the most general linear materials
whose properties can be modeled by local linear relations between the four field vectors E, H, D,
and B at every point in space. In the frequency domain, these relations can be written as e.g.
[26,27]

D(ω) = ε(ω) · E(ω) +
1
c

(︂
χ(ω) − jκ(ω)

)︂
·H(ω),

B(ω) = µ(ω) ·H(ω) +
1
c

(︂
χ(ω) + jκ(ω)

)︂T
· E(ω),

(1)

in which ε(ω) and µ(ω) represent the permittivity and permeability dyadics, respectively.
Magnetoelectric phenomena caused by weak spatial dispersion are measured by the coupling
dyadic κ(ω) and those due to nonreciprocal effects by χ(ω). T denotes the transpose operation,
and c is the speed of light. In reciprocal media, χ(ω) = 0. Detailed discussions on bianisotropic
media parameters and corresponding effects can be found e.g. in [27–30]. Due to the uniaxial
symmetry, all the dyadic material parameters in the constitutive relations (1) are uniaxial dyadics,
defined by their symmetric and antisymmetric parts as a = acoIt + acrn × It, where It = I − nn
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is the two-dimensional unit dyadic in the transverse plane. Since for waves traveling along the
axis n the longitudinal components of the fields are zero, we do not consider polarizations along
vector n. In this case, the field-matter interactions are governed by eight scalar or pseudoscalar
material parameters. In addition to the symmetric and antisymmetric parts of the permittivity
and permeability, there are also the symmetric part of the reciprocal coupling coefficient κ
(the chirality parameter) and the antisymmetric part Ω (the omega coupling parameter). The
symmetric part of the nonreciprocal coupling dyadic χ is the Tellegen parameter χ, and the
antisymmetric part corresponds to the artificial velocity V , see [27–29].

Fig. 1. A stationary uniaxial bianisotropic slab illuminated by normally incident plane
waves from the right and left half-spaces, respectively. All eight possible transmitted and
reflected waves are illustrated. The complex amplitudes denoted as I, T , and R correspond
to incident, transmitted, and reflected waves. Superscripts co and cr stand for co-polarized
and cross-polarized waves, respectively. Subscripts ± denote the directions of incidence
(“+” for illumination from the right and “–” for illumination from the left). The external
bias field Q can be, for instance, an external magnetic bias B0.

Let us list all possible scattering phenomena at the metamaterial slab. Suppose that there
is a plane wave that illuminates the slab from the right (the incident wavevector is parallel
to n). Obviously, this wave can be partially or fully transmitted in the same polarization or
in the cross-polarized state. Likewise, reflections are possible in the co-polarized and in the
cross-polarized state. This means that we need four parameters to characterize the scattering
phenomena: co-and cross-polarized transmission coefficients Tco,cr

+ and co-and cross-polarized
reflection coefficients Rco,cr

+ . If we now illuminate the opposite side of the slab, so that the
incident wavevector is antiparallel to the unit vector n, the response can be in general different,
and we need four more parameters to describe the scattering phenomena: Tco,cr

− and Rco,cr
− , being

the co-and cross-polarized transmission and reflection coefficients respectively. Thus, in general
we have eight parameters that fully define the response of the slab to plane-wave illuminations.

As we saw above, in the corresponding material relations (1) there are in general four material
dyadics each of which is defined by symmetric and antisymmetric scalar material parameters. That
is, we have exactly the same number of material parameters (eight) as the number of reflection and
transmission coefficients that fully define the scattering phenomena at the metamaterial slab. This
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leads us to an important observation: In order to fully engineer the electromagnetic scattering
at linear and time-invariant spatial inhomogeneities, the use of a bianisotropic material or
metamaterial is imperative. Indeed, without bianisotropy there are only four material parameters
(symmetric and anti-symmetric parts of the permittivity and permeability), so that we obviously
do not have enough degrees of freedom to engineer all eight scattering coefficients. Only using
all four additional material parameters of bianisotropic materials gives us all eight necessary
degrees of freedom for controlling reflection and transmission in the most general way, limited
only by the structure symmetry and fundamental restrictions on material parameter values.

In what concerns electromagnetic wave scattering at spatial inhomogeneities (slabs, metasur-
faces, compact scatterers), the role of all material parameters of general bianisotropic media
are well studied [30]. On the other hand, studies of inhomogeneities in time have been mostly
limited to time-varying permittivity. There are some works on effects due to modulations of also
permeability, but only a few initial studies that consider time-modulated bianisotropic media.
Based on the above simple observations, it can be expected that time-varying bianisotropic
metamaterials are needed to leverage the full richness of electromagnetic wave scattering at
temporal inhomogeneities.

3. Temporal interfaces in isotropic, anisotropic, and bianisotropic metamateri-
als

Desired wave phenomena and transformations are often realized in interactions of electromagnetic
waves with materials and metamaterials having spatial inhomogeneities of material properties,
e.g. [1,31]. As elucidated earlier, the introduction of temporal inhomogeneities in material
parameters expands the range of wave phenomena available for exploitation in wave-matter
interactions [6–8,10,32,33]. In this section, we provide a concise overview of intriguing wave
phenomena that become accessible when different material parameters undergo rapid temporal
changes in isotropic, anisotropic, and bianisotropic media.

3.1. Temporal interfaces in isotropic media

3.1.1. Temporal scattering

Before we delve into complex time-varying metamaterials, we set the ground by reviewing
scattering phenomena at temporal interfaces in simple isotropic materials. Let us consider
a monochromatic plane wave propagating through a spatially homogeneous, unbounded, and
non-dispersive linear material, in the absence of any sources, where permittivity ε(t) and/or
permeability µ(t) undergo a rapid change in time (the rise time is much shorter than the wave
period [34]). The effects of such time discontinuity on a propagating wave depend on what
physical quantities are being conserved and/or continuous while forcing the medium to change in
time. Boundary conditions that dictate conservation of electric charge Q and magnetic flux Φ
were introduced in 1958 by Morgenthaler [14]. These conditions imply continuity of electric
displacement D(t = t−) = D(t = t+) and magnetic flux density B(t = t−) = B(t = t+), where t−
and t+ signify the time instances immediately preceding and following the temporal interface,
respectively. In various scenarios, particularly in cases involving dispersive media [35–42],
plasma [43–46], or non-conserved electric charge Q [8], different boundary conditions apply
leading to slightly different wave phenomena. By imposing the boundary conditions to general
solutions involving two eigenwaves propagating in the opposite directions after the temporal
interface (named time-refracted and time-reflected waves), one can find the time-refraction T and
time-reflection R coefficients with respect to the electric field [14]

T =
1
2

v2
v1

(︃
Z2
Z1
+ 1

)︃
, (2)



Review Vol. 14, No. 5 / 1 May 2024 / Optical Materials Express 1107

R =
1
2

v2
v1

(︃
Z2
Z1
− 1

)︃
, (3)

where subscripts 1, 2 indicate the material before and after the temporal interface, Z1,2 =
√︂

µ1,2
ε1,2

are the wave impedances, and v1,2 =
1√

ε1,2µ1,2
are the phase velocities. These equations show that

temporal scattering can be attributed to two distinct physical processes, temporal alteration of the
wave impedance and temporal switching of the phase velocity [35,47] (see also a comment in
[35]). Contrary to time-refraction, time-reflection diminishes to null when the wave impedance
remains constant at the temporal interface [14,48], similar to reflections from impedance matched
spatial interfaces. It is noteworthy that even when the phase velocity is conserved across the
temporal interface, signifying frequency conservation (as will be demonstrated in the next
subsection), temporal scattering phenomena persist. In cases involving reciprocal and isotropic
media, the time-reflected wave has not only the same frequency, but also the identical polarization
characteristics as the time-refracted wave. While theoretical investigations into time-reflection
date back to 1960s [14,49,50], experimental confirmation of this phenomenon has been achieved
recently. In 2016, experiments utilizing water waves confirmed its existence [51], and, more
recently, in 2023, the phenomenon was observed in electromagnetic waves utilizing dynamic
transmission lines operating at megahertz frequencies [52].

3.1.2. Frequency and wavelength transformations

Here we delve into transformations of the temporal and spatial properties of waves at spa-
tial/temporal interfaces. To gain a comprehensive understanding, it is instructive to start with
transformations at spatial interfaces. Consider a normally incident plane wave that encounters
a flat spatial interface. As a result, a transmitted wave propagates in the second medium at a
phase velocity denoted as v2 while the incident wave propagates in the initial medium at a phase
velocity v1. Due to the translational symmetry of the structure in time, the frequency is conserved.
Consequently, in the second medium the wavelength and the wavenumber undergo transformation
contingent upon the ratio v2/v1 [26]. In contrast, at temporal interfaces the rapid change of the
medium properties takes place uniformly in space (maintaining translational symmetry in space),
leading to conservation of the spatial profile of the wave (e.g., conservation of the wavelength and
wavenumber) [14]. Given the rapid temporal variation of the phase velocity v(t) while preserving
the wavelength, it follows that the frequency undergoes an abrupt change as [14]

ω2 = ±ω1
v2
v1

, (4)

where ω1 is the frequency before the temporal interface. Such frequency/wavelength trans-
formations are illustrated graphically in Fig. 2. It is important to emphasize that when ε(t)
and µ(t) undergo a change that preserves the phase velocity, so that v1 = v2, the frequency
becomes conserved through the interface, even though the wave impedance changes in time
rapidly inducing time-refraction and time-reflection [50]. In this case, both spatial and temporal
wave properties remain conserved, which is a distinctive phenomenon that has received relatively
little attention. It is crucial to note that at temporal interfaces in isotropic metamaterials, the
frequency transformation maintains symmetry with respect to both propagation directions and
both circular polarizations. In Subsection 3.3, we explore the potential of inducing asymmetric
frequency transformations in time-switched bianisotropic metamaterials.

3.1.3. Energy and momentum transformations

Noether’s theorem [53] relates translational symmetries of a physical system with conservation
laws. Continuous translational symmetry means invariance under any translation in space or time
(without rotation). Consequently, in a system characterized by spatial (temporal) translational
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Fig. 2. (a) Scattering phenomena at spatial and temporal interfaces. (b) Illustration of
transformations on the dispersion diagram, where the blue and red lines denote the dispersion
of waves propagating in the two metamaterials with ε1,2 and µ1,2. Angular frequency ω is
conserved at the spatial interface, whereas the wavenumber k is conserved at the temporal
interface.

symmetry, observations become independent of the observation point in space (time). According
to the theorem, temporal translational symmetry results in the conservation of energy, whereas
spatial translational symmetry leads to the conservation of linear momentum (Minkowski’s
momentum). Conservation of momentum at a temporal interface stems from the boundary
conditions, as Minkowski’s definition of linear momentum density is PM = D × B. Since the
vectors D and B are continuous across temporal interfaces, Minkowski’s linear momentum is
conserved by definition. It is noteworthy that Abraham’s linear momentum PA = E ×H is not
generally conserved at a temporal interface. For further details regarding conservation of linear
momentum in time-varying metamaterials the reader is referred to a recent tutorial [54]. On the
other hand, time modulations of media obviously break translational symmetry in time. Thus,
Noether’s theorem predicts that the energy is not conserved at a temporal interface, which has
been theoretically shown in [14].

Let us go back to our temporal interface (involving nondispersive media) and consider the
electric volume energy density we = 1

2εE·E and magnetic volume energy density wm = 1
2 µH·H.

For a plane wave, the total volume energy density before the temporal interface is u1 = we
1 +wm

1 =
ε1E1 ·E1. Assuming that there is a temporal interface at t = 0, the ratio of the total volume energy
density after the interface u2 = we

2 +wm
2 and u1 can be found from (2) and (3): u2 |t=0

u1 |t=0
= 1

2 (
ε1
ε2
+

µ1
µ2
)

[14]. This result can be reformulated in terms of the phase velocities and wave impedances as
[47]

u2 |t=0
u1 |t=0

=
1
2

v2
v1

(︃
Z1
Z2
+

Z2
Z1

)︃
. (5)

We see that the amount of gain or loss in energy density at a temporal interface is determined
by the changes in the phase velocity and the wave impedance. It is noteworthy that the energy
transformation directly stems from the imposed boundary conditions at the temporal interface, as
they determine the scattering coefficients in (2) and (3), which, in turn, are employed to derive
(5). While the common assertion often links the alteration in energy to frequency conversion, it
is apparent from (5) that even if the phase velocity remains constant, preserving the frequency,
there is still a jump in energy density attributable to the abrupt change in the wave impedance.
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In addition, when the phase velocity is preserved at a temporal interface, the energy density
is always greater after the temporal interface, since Z2

1 + Z2
2>2Z1Z2. These observations have

practical significance, showing potential for efficient amplification through time modulation
while avoiding frequency conversion and reversed energy flow. Furthermore, the energy becomes
conserved at the temporal interface when ε1

ε2
+

µ1
µ2
= 2, even though the frequency is transformed

and time-refraction and time-reflection persist. Similar to frequency transformations at temporal
interfaces in isotropic materials, energy transformations are the same for both propagation
directions and both circular polarizations. In Subsection 3.3, we explore the potential of inducing
asymmetric energy transformations in time-switched bianisotropic media.

3.2. Temporal interfaces in anisotropic media

The next step towards exploring more complex time-varying materials is to comprehend
phenomena involving anisotropic features. In particular, let us discuss the case when materials
suddenly change from an isotropic state to an anisotropic one (or vice versa), creating a temporal
discontinuity of such spatial symmetries. The anisotropy can show itself in the electric response
(represented by the permittivity tensor) and/or in the magnetic response (measured by the
permeability tensor). Considering only the electric response, we write the effective permittivity
tensor of an anisotropic material after the discontinuity as

ε = ε0

⎛⎜⎜⎜⎜⎝
εxx εxy 0

εyx εyy 0

0 0 εzz

⎞⎟⎟⎟⎟⎠
, (6)

in which ε0 is the free-space permittivity and εij denotes the elements of the relative permittivity
tensor. In the following, we briefly show the significant difference compared to the isotropic case
that we explained in the previous subsection. For simplicity, we consider fast transitions from
free space to a nondispersive and uniaxially anisotropic dielectric material with εxy = εyx = 0
and εxx = εyy ≠ εzz>0. Eigenwaves of two polarizations exist in such media. Here, we
concentrate on the polarization that possesses an exotic isofrequency surface, which is the
transverse magnetic one. The waves with this polarization obey the following dispersion relation:
k2

z /εxx + k2
x/εzz = ω

2/c2, in which kz and kx are the wavevector components in the z and x
directions, respectively. This dispersion relation defines an elliptic isofrequency contour in the
k-space. However, the isofrequency contour for free space is a circle that corresponds to the
dispersion relation of k2

x + k2
z = ω

2/c2. We already know that at the temporal interface, the
wavevector is conserved. Therefore, due to the difference between the isofrequency contours
associated with the media before and after the temporal jump, it is easy to see that the converted
angular frequency depends on the wavevector components of the wave before the temporal
interface. Indeed, after an algebraic manipulation, we derive that

ω2
2 =

1
εxx
ω2

1 + k2
xc2

(︂ 1
εzz
−

1
εxx

)︂
, (7)

where ω1,2 are the angular frequencies before and after the temporal interface. Equation (7)
explicitly confirms that the new angular frequency is a function of the transverse component
of the wavevector kx, a salient property that is absent in the case of the isotropic scenario (see
Eq. (4)). It is worth noting that since the Poynting vector is normal to the isofrequency contour,
such temporal discontinuity may also drastically affect the direction of the flow of power.

Several research groups have contemplated temporal interfaces in anisotropic media. Probably,
the initial efforts were done about two decades ago in studies of the rapid creation of plasma
media in the presence of a static magnetic field [55]. In that setting, it is assumed that a uniform
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plane wave is traveling in free space, filling the whole space, in the presence of an external static
space-uniform magnetic field. At t = 0, suddenly, the whole space is ionized, and, consequently,
this transforms the medium from free space to a magnetoplasma medium. In consequence,
it is proved that different polarizations (right-handed and left-handed circular polarizations)
will propagate after the temporal discontinuity with different angular frequencies. Therefore,
as a result of such temporal discontinuity, controlling polarization states of electromagnetic
waves is achieved. Recently, following this research direction, in Refs. [56] and [57], it
was shown that temporal interfaces in anisotropic media also provide a possibility of spin-
dependent polarization conversion and analog computing. Besides polarization manipulation,
other interesting phenomena have been uncovered, such as redirecting the energy of propagating
waves which is called temporal aiming [58], temporal equivalent of the Brewster angle [59],
and implementation of an inverse prism [60] where the electromagnetic waves propagating
in different directions but at the same frequency are transformed into waves that propagate at
different frequencies while keeping the same directions. Some of the interesting phenomena
explained above are shown in Fig. 3.

Fig. 3. Different phenomena uncovered by the creation of temporal interfaces in anisotropic
media. (a) Temporal aiming (adapted from [58]). (b) Inverse prism (adapted with permission
from [60]). (c) Spin-controlled photonics via temporal anisotropy (adapted with permission
of De Gruyter, from [57]; permission conveyed through Copyright Clearance Center, Inc.)
(d) Polarization conversion (adapted with permission from [56]).
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3.3. Temporal interfaces in bianisotropic media

In order to achieve full control over electromagnetic waves, it is essential to enable direction-
dependent and polarization-dependent phenomena at temporal interfaces. However, the in-
sensitivity of temporal scattering in isotropic media to the direction of propagation and field
polarization is evident from Eqs. (2), (3), (4), and (5). As conceived from the example in Section
2, introducing anisotropy is not sufficient to obtain general control over scattered fields. In order
to break the symmetry of temporal scattering of waves having different propagation directions
and polarizations, it becomes imperative to utilise bianisotropic media whose wave impedance
and phase velocity depend on the propagation direction and polarization, as these are the two
parameters that govern the temporal scattering phenomena (see Section 3.1.1). Next, we define the
material relations and parameters of general bianisotropic media in time domain. Subsequently,
we furnish an overview of intriguing scattering phenomena attainable at bianisotropic temporal
interfaces.

3.3.1. Bianisotropic material relations in time domain

The time-domain counterparts of Eqs. (1), even for time-invariant media, contain convolution
integrals due to nonlocality in time dubbed as temporal or frequency dispersion [61]. Only if
we neglect such frequency dispersion, the relations become simple enough and allow analytical
solutions for identifying and classifying possible field effects. For nonreciprocal magnetoelectric
coupling material parameters (the Tellegen and the artificial velocity parameters), we can assume
that their frequency dispersion is negligible and use the material relations in the Tellegen form
also in the time domain (see Eqs. (1)). However, this is not possible for the reciprocal coupling
coefficients, because the very nature of these effects is spatial dispersion in the medium as
discussed in [27], Sections 2.9 and 4.2. Therefore, in the frequency domain, these parameters
must depend on the frequency. In particular, in the limit of zero frequency, they always tend to
zero as linear functions of the frequency.

In order to be able to study time-varying bianisotropic media analytically, it is possible to
restrict the analysis to the cases of weakly dispersive media and adopt the Condon model [62,63]
to describe the corresponding coupling effects in the time domain. In this approximation, the
general bianisotropic time-domain material relations are written in the form

D(t) = ε · E(t) +
χ

c
H(t) −

κ

c
∂H(t)
∂t
+

V
c

n ×H(t) +
Ω

c
n ×
∂H(t)
∂t

,

B(t) = µ ·H(t) +
χ

c
E(t) +

κ

c
∂E(t)
∂t
−

V
c

n × E(t) +
Ω

c
n ×
∂E(t)
∂t

.
(8)

For simplicity, we consider only uniaxial structure (the axis is along the unit vector n), in
which case the Tellegen and chirality parameters are scalar quantities. Since in this model of
magnetoelectric coupling we retain only the first-order spatial dispersion effects (proportional to
ω), we should neglect artificial magnetism, as this is a second-order effect [27]. It is worth noting
that since these expressions are applicable at any point in space, for brevity, we do not include
the position vector as an independent variable for the fields (E, H) and the flux densities (D, B).
In Eq. (8), we observe that while the nonreciprocal terms χ and V are dimensionless (similarly to
their frequency-domain counterparts described above), the dimension of the reciprocal terms κ
and Ω in Eq. (8) is seconds. In this model, the assumption is that the field oscillations are at
frequencies that are well below the resonances of material response, where the Condon model
with constant coupling coefficients remains valid. This is a physically valid model that properly
accounts for the inevitable frequency dispersion of chirality and omega coupling. In particular,
for temporally constant fields (∂E/∂t = ∂H/∂t = 0), the reciprocal coupling vanishes, which
corresponds to the fact that there is neither chiral nor omega coupling in statics. In conclusion,
the investigation of temporal interfaces necessitates the use of time-domain material relations,
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prompting the application of the Condon model in the case of temporal interfaces in bianisotropic
media. This model is utilized to retrieve some of the results shown in the next subsection.

As we see from (2) and (3), the reflection and transmission coefficients are determined by the
values of phase velocity and wave impedance before and after a time jump. For this reason, we list
the effective phase velocity for each class of bianisotropic media (expressed for time-harmonic
fields in the frequency domain) [64]:

chiral:v⟳κ =
(︃
√
εµ −

ωκ

c

)︃−1
, v⟲κ =

(︃
√
εµ +

ωκ

c

)︃−1
,

Tellegen:vχ =
(︃√︃
εµ −

χ2
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(9)

and the corresponding wave impedances:
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(10)
Here, n, ⟳, ⟲,→, and← indicate refractive index, right-handed circular polarization, left-

handed circular polarization, positive propagation direction, and negative propagation direction.
We see that the key parameters that govern the scattering phenomena at temporal interfaces
in bianisotropic media depend on the propagation direction and polarization, which shows
possibilities for rather general control of temporal scattering. Some examples are discussed next.

3.3.2. Phenomena at temporal interfaces in bianisotropic media

Consider a harmonic plane wave propagating in a spatially uniform bianisotropic medium, where
the bianisotropy vanishes rapidly at a specific moment in time (homogeneously in space) such
that the bianisotropic coupling coefficient becomes zero. By applying the Condon model, one can
prove that the expressions for the temporal scattering coefficients, the energy balance coefficient
and the frequency transformation at temporal interfaces where bianisotropy is switched off are
the same as the ones shown in (2), (3), (5), and (4) upon substituting the respective bianisotropic
wave impedances and phase velocities into these expressions [64]. It is important to note that at a
temporal interface where the magnetoelectric coupling is being switched on, the expressions
in (2), (3), (5), and (4) do not generally apply, as frequency dispersion leads to excitation of
waves at multiple frequencies, which is fundamentally different from what is studied above.
Next, we review some of the recent results that were presented in [64]. At a chiral temporal
interface, the scattered fields’ amplitude, frequency, and energy exhibit a dependence on the
handedness of the circular polarization. While at an artificial velocity temporal interface, the
scattered fields’ amplitude, frequency, and energy exhibit a dependence on the wave propagation
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direction. On the other hand, at a Tellegen temporal interface, only the phase of the scattered
fields depends on the handedness of the circular polarization. Still, this asymmetric phase shift
induces asymmetric polarization rotations in time-reflected and time-refracted waves. Finally, at
an omega temporal interface, only the phase of the scattered fields depends on the propagation
direction. Such asymmetric temporal scattering [64] is unattainable at temporal interfaces in
isotropic or anisotropic media. Frequency and energy transformations at temporal interfaces in
different bianisotropic media are summarised in Table 1 and illustrated in Fig. 4.

Fig. 4. A schematic illustration of different scattering phenomena at single temporal
interfaces between bianisotropic media of different classes and a magnetodielectric [64].
Different colors indicate different frequencies and energy densities, rotating arrows indicate
handedness of circular polarization, and the complex exponentials indicate the phase shifts
taking place at temporal interfaces. Figures adapted from [64].

Table 1. Classification of different scattering phenomena (in transmission and reflection) at single
spatial and temporal interfaces between different classes of bianisotropic and magnetodielectric

media [64]. The scattering phenomena either depend on the circular polarization of the propagating
wave or its direction of propagation.
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Fig. 4. A schematic illustration of different scattering phenomena at single temporal
interfaces between bianisotropic media of different classes and a magnetodielectric [64].
Different colors indicate different frequencies and energy densities, rotating arrows
indicate handedness of circular polarization, and the complex exponentials indicate the
phase shifts taking place at temporal interfaces. Figures adapted from [64].

Class Phenomena dependance Phenomena at spatial interface Phenomena at temporal interface

Chiral Polarization-dependent Wavelength and momentum conversion Frequency and energy conversion

Moving Direction-dependent Wavelength and momentum conversion Frequency and energy conversion

Tellegen Polarization-dependent Phase shift Phase shift

Omega Direction-dependent Phase shift Phase shift

Table 1. Classification of different scattering phenomena (in transmission and reflection)
at single spatial and temporal interfaces between different classes of bianisotropic and
magnetodielectric media [64]. The scattering phenomena either depend on the circular
polarization of the propagating wave or its direction of propagation.
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This potential of general control over the scattered fields opens avenues for intriguing wave
phenomena. Considering chiral media, it was shown that due to polarization-dependent temporal
scattering at chiral temporal interfaces, a linearly polarized wave splits into its two circularly
polarized components, each distinguished by a unique frequency, as shown in Fig. 5(a) [65]. In
addition, the authors demonstrated that within this phenomenon, the wave of one polarization
experiences amplification, while the wave of the other polarization undergoes attenuation.
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Fig. 5. (a) Polarization dependent frequency and energy transformations at a chiral temporal
interface leading to splitting of linearly polarized light (adapted with permission of De
Gruyter, from [65]; permission conveyed through Copyright Clearance Center, Inc.) (b)
Multi-frequency temporal scattering at a dispersive chiral temporal interface exhibiting optical
activity (adapted with permission from [66]). (c) Investigation of an arbitrary temporally
varying chiral medium (reprinted from [67], with the permission of AIP Publishing).

Fig. 6. (a)-(c) Simulation of a 90◦ polarization rotation in reflection at a time interface
between Tellegen and magnetodielectric media [64], where (a)–incident electric field Ei,
(b)–reflected electric field Er after the time interface, and (c)–transmitted electric field Et

after the time interface. The effective material parameters for the Tellegen medium are
χ = 0.5, ε = 4ϵ0, and µ = µ0 (ε0 and µ0 are the free-space permittivity and permeability,
respectively). The magnetodielectric medium has χ = 0, εm = 3.75ε0, and µm = µ0.
The incident electric field possesses x and y components, while the corresponding plane
wave is propagating in the z direction. We observe a 90◦ polarization rotation in reflection.
Furthermore, the transmitted wave also undergoes a slight polarization rotation. (d)-(f)
Simulation of field evaporation at a time interface between Tellegen and magnetodielectric
media [64], where (d)–temporal evolution of the electric field before and after the time
interface, (e)–spatial distribution of the electric field before the time interface, and (f)–spatial
distribution of the electric field after the time interface. The effective material parameters for
the Tellegen medium are χ = 1.414, ε = 2ε0, and µ = µ0. The magnetodielectric medium
has χ = 0, εm = 2ε0, and µm = µ0. We observe that, after the time interface, the frequency
and amplitude become negligibly small. Figures adapted from [64].
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Furthermore, a Lorentzian dispersive chiral temporal interface was contemplated in [66], where
multi-frequency temporal scattering takes place, including excitation of backward propagating
waves, as illustrated in Fig. 5(b). Lastly, a chiral medium with arbitrary temporal variation is
investigated in [67] (Fig. 5(c)). On the other hand, considering Tellegen media, it was shown
that time-reflected and time-refracted waves undergo asymmetric polarization rotations at time
interfaces between Tellegen and magnetodielectric media [64]. The authors demonstrated a
complete 90-degree rotation in the time-reflected wave, while the time-refracted wave undergoes
slight polarization rotation, as shown Fig. 6(a)-(c). Moreover, it has also been shown that when a
Tellegen medium has zero effective refractive index, and then it is switched to a magnetodielectric
medium, the propagating fields experience evaporation [64], resulting in negligible amplitude
and nearly zero frequency, as shown in Fig. 6(d)-(f). An outlook for time-varying bianisotrpic
media is provided in Section 5.

4. Typical structures of bianisotropic materials and discussion of possible im-
plementations of such time-varying systems

Practical realization of time-varying media poses numerous challenges. However, there have been
multiple successful realizations recently, revealing the richness of possible approaches for time
modulation of material properties. To name a few, time-reflection (time reversal) of water waves
has been demonstrated experimentally in [51]. More recently, time-reflection of electromagnetic
waves has been also demonstrated by utilizing time-modulated transmission lines [52,68]. In
addition, momentum band gaps have been observed in periodically time-varying transmission
lines [69], and periodically time-varying metasurfaces [23]. Finally, recent efforts succeeded
to observe time-refraction at optical frequencies [70,71]. Most of the experimental realizations
leverage phenomena in isotropic media. On the other hand, there are several scenarios that one
may ponder to realize time-varying anisotropic media modeled by Eq. (6). For instance, it is
possible to apply a magnetic bias field at a specific moment in time to a plasma volume [72] or
time modulate magnetic bias of a ferrite sample. Another possibility is to use electronic devices
to control currents in wire metamaterials [73].

Next, we discuss in some detail the possibilities to obtain time-varying bianisotropic media.
First, it is important to examine realizations of usual, non-varying bianisotropic media, to be
able to select most suitable means to modulate bianisotropy in time. While numerous natural
materials exhibit various forms of bianisotropy, their effects are most often negligible [74].
Hence, the use of artificially engineered materials becomes necessary. In this section, we initially
focus on general guidelines for synthesizing bianisotropic materials, considering their time and
space-reversal symmetries. Subsequently, we provide an overview of existing and potential new
material realizations of time-modulated media based on these principles. Some parts of this
section are based on the results presented in [75].

4.1. Time-reversal symmetry

Microscopic Maxwell’s equations obey time-reversal symmetry. Indeed, it is easy to check that
under the swap t → −t, E(t) → E(−t), and B(t) → −B(−t), the form of the equations remains
the same [75] (for brevity, we omit here external sources). In the frequency domain, it translates
to the fact that for each electromagnetic process described by fields E(ω) and B(ω) there is a
reverse process with fields E∗(ω) and −B∗(ω) propagating in the opposite direction. On the
contrary, time-reversal symmetry of macroscopic Maxwell’s equations can be locally broken due
to material dissipation or the presence of an external bias field influencing the material response.
Time-reversal symmetry holds for all known electromagnetic phenomena when applied in the
“global” sense to all the thermodynamic effects (that is, when loss is reversed into corresponding
gain) and to all the external bias sources [76]. For example, conventional wisdom suggests that
when light is transmitted through a lossy medium, resulting in its attenuation, and then sent in
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the opposite direction, it will not return to its original intensity. Conversely, in the case of light
passing through a magneto-optical medium under the influence of a static external magnetic field,
the processes of original and reversed wave propagation will not differ if the external field is
reversed for the opposite propagation scenario.

Depending on how they transform under time-reversal operation, it is convenient to classify the
material tensors into two groups, namely “time-even” (TE) and “time-odd” (TO). Let us rewrite
constitutive relations (1) in a general bianisotropic medium in the following form assuming that
the material tensors are functions of an arbitrary bias vector Q that defines some external physical
quantity (e.g., magnetic field, electric current, velocity, etc.) that affects the response of the
material to light:

D(ω) = ¯̄ε(ω, Q) · E(ω) + ¯̄ξ(ω, Q) ·H(ω),

B(ω) = ¯̄ζ(ω, Q) · E(ω) + ¯̄µ(ω, Q) ·H(ω).
(11)

We can split each material tensor into two parts that constitute linear (higher-order material
parameter dependencies are typically much weaker in strength) dependence on time-even vector
QTE and time-odd vector QTO. In the example of the bianisotropic tensor, this separation would
correspond to ¯̄ξTE(ω, QTE) =

¯̄ξ1(ω) + ¯̄ξ2(ω)QTE and ¯̄ξTO(ω, QTO) =
¯̄ξ3QTO, respectively, where

¯̄ξ1, ¯̄ξ2, and ¯̄ξ3 are arbitrary tensors. The absence of dependence on any external vector is modeled
by assuming QTE = QTO = 0. Applying the global time reversal to constitutive relations °class1,
we obtain the following relation between the bianisotropic tensors in the time-reversed and
original materials [75]:

¯̄ξ ′1(ω) = −
¯̄ξ∗1 (ω),

¯̄ξ ′2(ω, QTE) = −
¯̄ξ∗2 (ω, QTE),

¯̄ξ ′3(ω, QTO) =
¯̄ξ∗3 (ω, QTO),

¯̄ζ ′1(ω) = −
¯̄ζ∗1 (ω),

¯̄ζ ′2(ω, QTE) = −
¯̄ζ∗2 (ω, QTE),

¯̄ζ ′3(ω, QTO) =
¯̄ζ∗3 (ω, QTO),

(12)

where primes denote time-reversed tensors and the negative signs appear due to the fact that QTO
flips its sign under time reversal. Tensors transformed under time reversal as ¯̄ξ1, ¯̄ξ2, ¯̄ζ1, and ¯̄ζ2 are
referred to as time-odd, while tensors like ¯̄ξ3 and ¯̄ζ3 are time-even.

Relations (12) are fairly general and apply to all linear time-invariant materials, both passive
and active material systems. Assuming passivity, we can use the Onsager-Casimir relations to
decompose the bianisotropic tensors and rewrite (12) as

¯̄κ′(ω, QTE) = ¯̄κ∗(ω, QTE), ¯̄χ′(ω, QTO) = ¯̄χ∗(ω, QTO). (13)

Both reciprocal coupling (chirality and omega coupling) ¯̄κ and Tellegen ¯̄χ tensors are time-odd.
The non-zero Tellegen tensor requires the presence of a time-odd bias QTO in a passive material,
while the chirality tensor can appear in materials biased by a time-even field QTE (e.g., external
electric field) or materials without any bias (the special case when QTE = 0).

4.2. Space-inversion symmetry

Next, we delve into how material tensors respond to spatial inversion, focusing on their properties
concerning parity. As previously mentioned, the presence of a nonreciprocal Tellegen effect in a
material hinges on its reaction to an external parameter characterized by time-odd symmetry,
denoted as QTO. Additionally, for a material to exhibit a particular type of bianisotropic response,
it is crucial to examine the spatial symmetry characteristics of its constituents.
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Under spatial inversion (point reflection), all three spatial projections of a polar (true) vector
such as the electric field E flip their signs so that the resultant vector is E [61, p. 268]. Some
vectors, including the magnetic field B and axial rotation _σ, are called axial (pseudovectors)
because they transform under spatial inversion similarly to the polar vectors but with an additional
sign flip [75]. Likewise, one can differentiate true and pseudotensors. A tensor is classified as a
true tensor if it, when dot-multiplied with a true (pseudo) vector, yields a true (pseudo) vector.
Conversely, a tensor is deemed a pseudotensor if its dot product with a pseudo (true) vector results
in a true (pseudo) vector. Considering the parity symmetry characteristics of electromagnetic
field quantities, we revisit the constitutive relations (11). From this analysis, it follows that ¯̄κ and
¯̄χ are pseudotensors. For practical purposes, it is useful to decompose these pseudotensors into

their symmetric and antisymmetric components. Thus, we express ¯̄κ(ω, QTE) and ¯̄χ(ω, QTO) as
the sum of its symmetric and antisymmetric parts

¯̄κ(ω, QTE) = ¯̄κs(ω, QTE) +Ω(ω, |QTE |)QTE ×
¯̄I,

¯̄χ(ω, QTO) = ¯̄χs(ω, QTO) + V(ω, |QTO |)QTO ×
¯̄I.

(14)

Both symmetric and antisymmetric tensor components in (14) are pseudotensors. Importantly,
depending on the spatial inversion symmetry of the bias field QTE/TO (being a true or a
pseudovector), there are two distinct scenarios for achieving each of the material tensors in (14).
For example, material pseudotensor ¯̄κs(ω, QTE) can be generated in a medium with inversion
symmetry if it is biased by a time-even pseudovector QTE. An alternative route is to create a
medium without any bias field (QTE = 0) but with inherently broken inversion symmetry. Both
routes would result in a tensor ¯̄κs of the same type.

4.3. Possible material platforms

It is essential to highlight that satisfying the specified material symmetries is a necessary condition
for achieving bianisotropic phenomena in materials; however, it is not a sufficient condition on
its own. In some cases under consideration, additional symmetry breaking may be necessary, but
delving into this aspect deviates from the primary focus of this study. Moreover, the strength of
the synthesized bianisotropic coupling could be vanishing if the bias field does not effectively
“couple” to the material response to light. Furthermore, for the sake of simplicity, our discussion
on potential material platforms will primarily concentrate on the development of materials
exhibiting a uniaxial bianisotropic response in the plane. We note that the conclusions drawn
in this section are applicable only to material systems with linear, time-invariant, and passive
response.

Chirality-type bianisotropy’s manifestations are fundamentally governed by time- and space-
inversion symmetries, leading to two primary methods of realization. Figure 7(a) (left panel)
illustrates a typical configuration of a symmetric chirality tensor ¯̄κs(ω, QTE) through a uniaxial
blend of metallic or dielectric helices, reminiscent of the Pasteur medium. This approach does
not necessitate an external bias (QTE = 0); however, the medium components must exhibit
shapes lacking space-inversion symmetry. Alternatively, a less conventional method can be
employed, where the meta-atoms themselves are not intrinsically chiral (i.e., they maintain
inversion symmetry), but material chirality is induced through a complex chiral-type external
bias. This concept is depicted in Fig. 7(a) (right panel). The requisite chiral bias should
be a time-even pseudovector, possibly generated by concurrent linear velocity v and angular
velocity σ, as illustrated. This approach aligns with predictions in earlier literature (refer to
Section 1.9.5, Fig. 1.21 in [74]). It is crucial to note that while two general pathways to achieve
chiral bianisotropic response are outlined, their potential realizations are virtually limitless. For
instance, Fig. 7 includes examples of external biases, QTE or QTO, that could facilitate each type
of bianisotropy. Specifically, as depicted in Fig. 7(a) (right panel), employing a bias in the form
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of QTE = B · v is feasible. This corresponds to utilizing a gyrotropic medium, magnetized by
external field B, in linear motion at speed v, as detailed in Section 7.4c of Kong’s book and
Section 5 of Dmitriev’s work [26,77].

Fig. 7. Conceptual material platforms for realizing different bianisotropic responses. Two
characteristic examples are shown for each type of bianisotropy. (a) and (b) Implementation
of symmetric and antisymmetric chirality tensors, respectively. Inside the figure brackets dif-
ferent possible biases are listed. (c) and (d) Implementation of symmetric and antisymmetric
Tellegen tensors, respectively. Vectors je, jm, v, σ, and r stand for electric current, effective
magnetic current, linear velocity, axial rotation velocity, and radius-vector, respectively.
Reprinted with permission from [75].

While various geometrical configurations have been proposed for creating time-invariant
bianisotropic media, not all are practical for achieving rapid, single or periodic temporal shifts in
bianisotropic coupling. Given that these temporal jumps need to occur within extremely brief
time frames, ranging from microseconds to nanoseconds, implementations allowing for electronic
modulation of material properties are deemed most suitable. For instance, a feasible unit cell
design for a material exhibiting chirality-type temporal boundaries is illustrated in Fig. 8(a).
This design incorporates two standard metallic helices [27, p. 128]. One helix is left-handed
and time-invariant, while the handedness of the other oscillates between right and left. This
alternation is achieved through a straightforward circuit comprising four switches, as shown in
the inset. Utilizing this elementary electronic switch setup enables rapid transition between chiral
states (when both helices share the same handedness) and achiral, racemic states (where chirality
is neutralized due to an equal mix of right- and left-handed helices).

Response modelled by an antisymmetric tensor Ω(ω, |QTE |)QTE ×
¯̄I can be generated in

an achiral omega medium, where QTE = r, without necessitating an external field (r is the
radius-vector). This configuration is exemplified in Fig. 7(b) (left panel) [30]. An alternative
approach involves designing a material geometry with disrupted inversion symmetry, as depicted
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Fig. 8. Conceptual unit cells of materials capable of exhibiting temporal jumps of
bianisotropic coupling. (a–b) Chiral and omega unit cells incorporating circuitry of four
switches. (c–d) Unit cells capable of tunable Tellegen and artificial velocity couplings.
When the switch is on, a DC electric current is flowing through the metallic loop, generating
an axial magnetic field that biases the ferrite sphere of the particle. Figures adapted from
[64].

in the right panel of the same figure. However, in this case, to maintain the desired properties, it
becomes necessary to counterbalance the inherent chirality with an added external time-even
pseudovector field (so that in this case Ω(ω, |QTE |)QTE ×

¯̄I in (14) remains a pseudotensor). This
method appears considerably more complex compared to the former. A conceptual model for
a metamaterial unit cell capable of achieving temporal jumps in omega-type bianisotropy is
illustrated in Fig. 8(b). In this design, akin to the previously mentioned chiral scenario, one
metallic particle maintains a constant omega-shaped structure. Conversely, the other particle can
toggle between this standard omega shape and an altered “twisted” omega configuration [78].
When the latter state is active, it results in the neutralization of the overall omega coupling.

We now turn our attention to materials that facilitate nonreciprocal Tellegen and artificial
velocity effects. Intriguingly, these materials exhibit nonreciprocal properties even without
temporal modulation. It is important to note that such effects cannot be solely attributed to spatial
inhomogeneities; an external bias is essential, as seen in Fig. 7. This requirement has led to a
relatively sparse body of research on these material types. For instance, response corresponding
to the symmetric Tellegen tensor ¯̄χs(ω, QTO) can be realized in a medium with broken inversion
symmetry, biased by an external time-odd true vector field such as electric current je, as
depicted in Fig. 7(c) (left panel). A practical example of this would be an electron plasma with
incorporated helical meta-atoms, biased by a DC electric current. Another established approach
employs achiral meta-atoms with ferrite components, biased by a pseudovector external magnetic
field B0 [79,80], as shown in Fig. 7(c) (right panel). Here, the yellow wires atop the ferrite
spheres represent metallic strips. While this design is confined to the microwave frequency
range, recent proposals have introduced a Tellegen optical metamaterial based on spontaneous
magnetization, eliminating the need for an external magnetic field [81,82]. It is also noteworthy
that magnetoelectric properties akin to the Tellegen effect naturally occur in materials such as
topological insulators and multi-ferroic media, but these are typically very weak effects at high
frequencies [83,84]. For temporal modulation of the Tellegen response, a simple meta-atom
design is proposed in Fig. 8(c). In this setup, an external magnetic field is applied to the ferrite



Review Vol. 14, No. 5 / 1 May 2024 / Optical Materials Express 1120

sphere by driving a DC current through a metallic loop. An electronic switch adjusts the bias
field’s amplitude, thereby controlling the Tellegen coupling strength.

Effects due to a non-zero antisymmetric tensor V(ω, |QTO |)QTO ×
¯̄I (velocity or artificial

velocity) can be achieved in an isotropic dielectric medium moving with linear speed v, as
outlined in [26, Section 7.4a] and [85]. An alternative realization involves a medium with broken
inversion symmetry, biased by an external pseudovector like the magnetic flux density B0, as
depicted in Fig. 7(d). Notably, intriguing approaches diverging from the first include using
dielectric scatterers in rotational motion with angular speed v = Ω × r [86–88], synthesizing
motion [89], and leveraging materials biased by orthogonal static electric and magnetic fields,
leading to V being proportional to E × B [90–92]. Structures utilizing the artificial velocity
parameter have been proposed for both optical and microwave regimes [79,93–97] and have seen
experimentally confirmed in [92,98,99]. Additionally, a similar symmetry effect for phonons was
recently considered [100]. Time modulation of the artificial velocity tensor, akin to the Tellegen
response, can be controlled using a switch to modulate the DC current magnetizing meta-atoms,
as shown in Fig. 8(d). An alternative mechanism for dynamic artificial velocity involves a gyrator
circuit, as proposed in [99]. This method operates in a deeply sub-wavelength regime, but so far
has been realized only in the transmission-line environment.

The principles of space and time inversion symmetries offer a fundamental classification of all
possible linear effects in matter. This approach not only simplifies understanding but also draws
parallels between various effects that share a common physical origin. Using these principles
helps to identify realizations that are most amenable for creation of dynamic bianisotropic media.

4.4. Bianisotropic metamaterials based on active systems

In the previous section, we discussed the creation of various bianisotropic materials using linear,
time-invariant, passive systems. Upon removing the constraint of passivity, the limitations (13)
imposed by time-reversal symmetry no longer apply, rendering the symmetry considerations
outlined in Fig. 7 invalid. Specifically, active systems do not necessarily adhere to the Onsager-
Casimir relations, and time-reversal symmetry only provides the general relations detailed in (12).
In particular, these relations indicate that both the symmetric and antisymmetric components
of the ¯̄ξ and ¯̄ζ tensors can be generated using a time-even bias field, such as an electric field
E. Practically speaking, time-even biases are often preferable. For instance, establishing and
maintaining a static voltage bias is more energy-efficient than generating a static magnetic field
bias, which usually requires an electric current and leads to Ohmic dissipation. Pioneering studies
[102–104] demonstrated that Faraday rotation, a gyrotropic nonreciprocal effect, can be achieved
in systems that incorporate common-source field-effect transistors with a time-even (static voltage)
bias. In these systems, active transistors can function as isolators, matched electrical components
that restrict wave propagation to one direction. A recent advancement in this field was the
adaptation of this concept for designing nonreciprocal bianisotropic metasurfaces, as reported
in [101]. Figures 9(a) and (b) show two bianisotropic time-invariant metasurface designs, each
comprising three layers with arrows indicating the positions and current transmission directions
of lumped isolators. In these designs, a static voltage serves as the bias. These meta-atoms
resemble those in earlier passive structures (refer to Figs. 7(c) and (d) (right panels)) and can be
classified as Tellegen and artificial velocity types, respectively. The use of voltage bias in the
meta-atom suggests that these metamaterials could be modulated at electronic speeds, positioning
them as potential candidates for implementing temporal variations in nonreciprocal bianisotropic
media. In contrast, realizations shown in Figs. 7(c) and (d) (right panels) rely on a static magnetic
field produced by an external electromagnet, which exhibits relatively low modulation speeds
owing to the inductance of its coils.
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Fig. 9. Schematics of two nonreciprocal bianisotropic active metasurfaces possessing the
Tellegen (a) and artificial-velocity (b) response. The yellow color denotes metallization and
the arrows depict electronic isolators that could be realized with common-source field-effect
transistors. Figures adapted with permission from [101].

4.5. Bianisotropic metamaterials based on space-time-varying systems

Space-time varying structures can be used for the realization of bianisotropic effects because the
required bias vectors QTE or QTO (see Fig. 7) can be defined by externally imposed space-time
variations of the structure parameters. Let us first discuss such realizations of bianisotropic effects
with antisymmetric nonreciprocal coupling characterized by the artificial velocity parameter
V . We see from Fig. 7(d) that vectors defining the biasing mechanism must be true vectors,
for instance, linear velocity. This is actually expected from the simple fact that the material
relations for fields in a homogeneous unbounded moving medium seen in a reference frame at
rest are the same as the material relations of a stationary bianisotropic medium of this class,
e.g. [26,27]. To create the corresponding effects, it is not necessary to physically move the
material sample. Instead, it is possible to use space-time modulation of its material parameters
in the form of a wave traveling along a certain direction. Such modulations were introduced
probably by Cullen, Tien, and Suhl (1958) [105,106]. In contrast to even earlier developed
traveling-wave tubes where electromagnetic waves interacted with a beam of moving electrons, in
parametric traveling-wave amplifiers electromagnetic waves interact with space-time modulations
of a stationary transmission line. The strongest effects are achieved under the condition of
equality of the phase velocity of the electromagnetic waves and the modulation velocity (the
so-called luminal regime). Equivalence of space-time modulated media (wave-type modulation)
and bianisotropic media exhibiting artificial velocity coupling was discussed in [107–109]. As
was shown in these papers, the equivalence requires that both permittivity and permeability are
modulated in space and time (see illustration in Fig. 10(a)). Importantly, the long-wavelength
regime is assumed, to ensure that inevitable frequency conversions in time-varying media can be
neglected, as the frequency is conserved in stationary linear bianisotropic materials. In these
settings, the phase velocity vector cg of the modulation wave defines the symmetry-breaking
direction in space (the required biasing true vector QTO).

It is also possible to define a time-even bias with space-time modulations. Indeed, in recent
work [110], the space-time modulation mimicked both the linear velocity of the medium and
its rotational motion around the same axis via modulating the anisotropy axis of the medium.
The geometry of the proposed structure is shown in Fig. 10(b). The authors of that work refer to
such material as chiral in the sense of circular-polarization-selective amplification. Importantly,
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Fig. 10. (a) Equivalence of wave propagation in a medium with space–time traveling-
wave–modulated permittivity and permeability (top) with that in a bianisotropic medium
with artificial-velocity coupling ζ̂eff (bottom). Here, g and Ω are the spatial and temporal
frequencies of the space-time modulation, cg = Ω/g, and k and ky are the wave vectors along
the modulation direction and orthogonal to it, respectively. Figure adapted with permission
from [107]. (b) Top: A mechanical analogy of the chiral space-time medium. Archimedes
screw carries fluids from a lower to a higher ground. Bottom: An electromagnetic chiral
space-time medium whose permittivity and permeability tensors are modulated such that the
principal axes δε and δµ of their modulation describe two helices (adapted from [110]). (c)
Schematic of an anisotropic space-time crystal formed by two magneto-electric layers. The
arrow indicates how the material parameters vary in time (adapted with permission from
[111]).

without space-time modulations, the background material has inversion symmetry. The effective
chirality can be induced due to the space-time modulations, which are described by a time-even
pseudovector bias QTE (linear and angular velocities combined). Therefore, this configuration in
the long-wavelength limit appears similar to the material response shown in the right panel of
Fig. 7(a).

Recently, a novel approach for realizing a nonreciprocal Tellegen medium using space-time-
varying systems was proposed in [111]. This approach involves a space-time crystal, featuring
appropriate glide-rotation symmetry and composed of magneto-electric material (see Fig. 10(c))
that can be homogenized in the long-wavelength limit to yield a Tellegen-and/or artificial-velocity-
type material. While the bias field here is represented by space-time modulation emulating only
linear velocity (true time-odd bias vector QTO), the unbiased material itself breaks inversion
symmetry due to its glide-rotational geometry (each unit cell consists of two mutually shifted
anisotropic slabs). Therefore, inside such a material, the Tellegen response in the long-wavelength
limit is similar to that shown in the left panel of Fig. 7(c).

The space-time-modulated schemes discussed above offer viable material platforms for
practically implementing temporal bianisotropy jumps and other time-varying bianisotropic
systems. Interestingly, realizations of time-varying bianisotropic media based on space-time
modulations require time modulating (switching) of an already modulated structure. Perhaps this
approach can be called “metamodulation”. Nevertheless, these schemes present a challenge due
to the dual modulation requirement of both permittivity and permeability, which necessitates
further investigations on material realizations.

5. Discussion and research outlook

In this overview we have highlighted that anisotropic and especially bianisotropic time-varying
media exhibit significant potential for non-trivial temporal scattering wave phenomena. Notably,
functionalities such as polarization manipulation and wave steering can be effectively carried



Review Vol. 14, No. 5 / 1 May 2024 / Optical Materials Express 1123

out at anisotropic temporal interfaces. Moreover, the revealed asymmetric frequency and
energy transformations at bianisotropic temporal interfaces shed light on their capability for
unconventional wave control in various applications. We have reviewed guidelines for synthesizing
bianisotropic metamaterials and presented some possibilities for their time modulation. The
choice of a suitable material platform for exploration of time-varying complex media depends
on the possibilities for external control of the coupling strength. However, some of the possible
platforms for realization of bianisotropic effects need more considerations of possible mechanisms
for tunability or temporal modulation of bianisotropic coupling. In this respect, realizations
based on active systems and on space-time modulations appear to be most promising, and they
are of special interest.

The time-domain material relations of bianisotropic media in (8) assume that all oscillations
are at the frequencies well below all resonances of meta-atoms, and that all spatial dispersion
effects are weak, only up to the first order. Further investigations are needed to develop better
understanding of strongly dispersive, resonant time-varying bianisotropic materials. This research
direction holds significant importance as the exploitation of resonances enables the realization of
strong effects in field-matter interactions.

We have seen that so far only a few initial studies of field effects in time-varying bianisotropic
media have been conducted, basically limited to single time jumps of various coupling coefficients
in isotropic or uniaxial bianisotropic materials. Even these initial works have revealed novel
physical effects, showing possibilities to create direction-dependent and polarization-dependent
temporal scattering. We see significant potential in developing bianisotropic media that are
periodically modulated in time, bianisotropic photonic time crystals. Wave amplification in
conventional photonic time crystals is limited by reciprocity of the modulated material and its
symmetries. In this respect, even anisotropic photonic time crystals (without magnetoelectric
coupling) are of significant interest. For instance, as explained above, a temporal interface
between free space and magnetoplasma provides a possibility to manipulate polarization of
electromagnetic waves. Thus, one can naturally think about anisotropic temporal slabs (creation
and destruction of plasma in the presence of a static magnetic field [112] or time modulation
of the external bias field inside a plasma volume) and eventually about obtaining anisotropic
photonic time crystals. More general bianisotropic photonic time crystals present a promising
avenue for achieving even more complete control over nonreciprocal and polarization-dependent
wave amplification.

Furthermore, it is necessary to develop understanding of bianisotropic spatiotemporal interfaces
and other bianisotropic structures that are nonuniform both in time and space. Of particular
interest are time-modulated bianisotropic metasurfaces that hold the potential of controlling
conversions of not only wavevectors and polarizations but also the frequencies of reflected and
transmitted waves.
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