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Figure 1: Screenshot of VMS comparing four machine learning models. (A) Model performance chart and prediction similarity
matrix; (B) Individual prediction errors and values by the twomodels selected from (A); (C) Instance projection view; (D) Feature
value & importance view on global/local scales; (E) Instance attributes as filters. (F) A tooltip on hovering indicates the feature
information.
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ABSTRACT
To compare and select machine learning models, relying on per-
formance measures alone may not always be sufficient. This is
particularly the case where different subsets, features, and pre-
dicted results may vary in importance relative to the task at hand.
Explanation and visualization techniques are required to support
model sensemaking and informed decision-making. However, a
review shows that existing systems are mostly designed for model
developers and not evaluated with target users in their effective-
ness. To address this issue, this research proposes an interactive
visualization, VMS (Visualization for Model Sensemaking and Se-
lection), for users of the model to compare and select predictive
models. VMS integrates performance-, instance-, and feature-level
analysis to evaluate models from multiple angles. Particularly, a
feature view integrating the value and contribution of hundreds of
features supports model comparison on local and global scales. We
exemplified VMS for comparing models predicting patients’ hospi-
tal length of stay through time-series health records and evaluated
the prototype with 16 participants from the medical field. Results
reveal evidence that VMS supports users to rationalize models in
multiple ways and enables users to select the optimal models with
a small sample size. User feedback suggests future directions on
incorporating domain knowledge in model training, such as for
different patient groups considering different sets of features as
important.

CCS CONCEPTS
• Human-centered computing → Visual analytics; Empirical
studies in visualization.
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1 INTRODUCTION
To compare and select machine learning (ML) models, typical av-
eraging performance measures alone may not be sufficient. This
is particularly the case where different subsets of the data and/or
features, as well as different predicted results, may vary in impor-
tance relative to the task at hand. Incorporating eXplainable AI
(XAI) techniques [31] and visual methods [2, 20] can increase the
transparency and trustworthiness of the models.

This work is licensed under a Creative Commons Attribution International
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Many visual analytics systems are proposed to address the de-
mand for better-informed model comparison and selection (Section
2.2). However, most of these systems are designed for model de-
velopers, requiring extensive ML knowledge to use, and are not
evaluated with target users on the tools’ effectiveness in achieving
the visualization goals (Table 1). This research designs interactive
visualization to support model users to make sense of and select
ML models.

Our target users, model users [14], are those who have some
knowledge about ML and want to use ML to make predictions with
their datasets. Suppose a case derived from practical scenarios [5]
and research endeavors [1]: A person wants to make predictions
using her dataset. Upon uploading the data and specifying the
prediction task, she gets a list of candidate models trained on her
data. How can the model user make sense of and select the optimal
model(s) to use?

The problem can be broadly related to anyone since the knowl-
edge of AI and the practice of open data is spreading rapidly. One
example is the task we focus on in this work, where models are
trained to predict patients’ length of stay (LoS) in the hospital. If
such models were to be used for resource allocation and cost plan-
ning, then it would be important for the model users to evaluate
the models from more perspectives besides performance measures,
such as how sensible the models are at predicting the most resource-
demanding patients, to understand the reason behind the models’
predictions and choose the optimal one(s) to use for the task at
hand.

We propose a model-agnostic visualization to compare and se-
lect ML models with comprehensive instance- and feature-level
analysis utilizing XAI methods. Still, the visualization is accessible
to non-AI experts, i.e., model users, in rationalizing and selecting
models, evidenced by a user study. The contribution of this re-
search is twofold: First, we propose an interactive visualization,
VMS (/'vmz/ Visualization for Model Sensemaking and Selection
[18]), for model users to rationalize and select predictive models. To
do this, we analyzed user needs and distilled six design requirements
through close collaboration between the visualization designer and
model users (Section 3). To address the requirements, VMS enables
performance-, instance-, and feature-level visual analysis of ML
models, allowing users to compare model pairs frommultiple angles
(Section 4). The views in VMS are interlinked, so users can reason
from exploring, e.g., the correlation between instances’ feature and
prediction values and between feature value and importance for
model sensemaking.

Second, we applied the method to compare four regression mod-
els predicting patient’s LoS in the intensive care unit (ICU). A use
case demonstrates the actual use of the application to support
rationalized model selection (Section 5). A user study with 16 par-
ticipants from the medical field (Section 6) reveals that 1) VMS
facilitates the use of domain knowledge and supports model com-
parison and sensemaking in multiple ways, such as identifying fea-
ture interactions through color patterns and relating patient back-
ground information to assess feature importance, and 2) through
the instance- and feature-level analysis with a small dataset, users
tended to select the better performingmodels, validated using larger
datasets. Section 7 discusses the limitations and future directions
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of this work, such as bias in decision-making resulting from model
users, data, and models; Section 8 concludes this research.

2 RELATEDWORK
Involving humans in the ML process and making the models in-
terpretable by humans is essentially the next evolutionary step AI
is moving toward [35], let alone for legal reasons [21]. This sec-
tion introduces interpretable ML methods, reviews existing model-
agnostic visualizations for comparing models, and discusses the
unique characteristics of this work.

2.1 Interpretable ML
Interpretable ML has been acknowledged as one important, arising
field for statisticians [9]. Literature defines model interpretability
as a capability to increase trust for complex models without re-
lying purely on a single metric, such as predictive performance
[8, 31]. Two main approaches exist to get a model interpretable:
intrinsically interpretable models and post hoc interpretation meth-
ods. Intrinsically interpretable models include linear regression,
decision trees, etc. However, complicated models, such as neural
networks, have advantages in many application areas. Making these
black-box models interpretable requires post hoc methods, which
refer to methods that analyze the model after training.

Many post hoc methods have been proposed during the last few
years, which can be generally categorized as model-specific versus
model-agnostic and local versus global explanations. Model-specific
methods, such as Integrated Gradients [37] and Tree SHAP [23],
intend to explain the model through its internals, whereas model-
agnostic methods investigate the relation between model input and
output regardless of its internal structure. Local explanations, such
as LIME [34] and counterfactual explanations, aim to interpret the
prediction of a single instance, whereas global explanations, such
as global surrogate models and permutation feature importance,
attempt to explain the overall model behavior, such as how impor-
tant the feature is to the model overall. The present study focuses
on comparing any regression models; thus, we choose the model-
agnostic explanation method SHAP [24], which also provides both
local and global explanations.

Despite many proposals of such XAI methods, delivering these
methods successfully to end users requires interdisciplinary efforts
involving ML, human-computer interaction, and social science [30].
No universal interpretable system exists; target users with different
roles have different needs for interpretability [41]. For instance,
to interpret a ML system that provides medical advice to clini-
cians, model creators, such as the medical software company’s em-
ployees, model users, clinicians in this case, and decision subjects
– the patients, require different levels/aspects of understanding.
Visualization needs to be carefully designed, addressing the needs
of the target users.

2.2 Visualization to compare ML models
We review articles focusing on devisingmodel-agnostic visual meth-
ods to support model comparison and selection. Table 1 shows the
16 systems we analyzed from their target user, prediction task, re-
sulting views, and evaluation aspects. To categorize target users
of the systems, referring to Hohman et al. [14], we identified two

groups of people: Model developers who use visualization to
refine and improve models at the development stage and Model
users who want to select models to use. This involves different
levels of ML knowledge while users interact with the visualizations.
Four of the systems are designed for model users, and the rest is for
model developers. For instance, three systems [3, 6, 12] visualized
hyperparameters (not shown in Table 1), such as correlating them
to model performance, to enable model developers to understand
model behaviors. Regarding prediction tasks, five systems are for
regression tasks and seven for classification, while four systems
can support both types of tasks with some adjustment, such as
changing the performance measures.

Skimming through the 16 systems, views for performance-,
instance- and feature-level exploration are most common and natu-
rally fall under the radar of our analysis. To provide an overview of
the models, the systems support 1) model ranking on a user-selected
[29] / user-weighted [3, 36] metric or 2) multiple metrics compar-
ison in one or multiple views [10, 12, 29, 36, 40, 45]. For instance,
multiple systems show models as rows and multiple metrics as
columns [10, 12, 36, 45]; columns can be used to sort rows indepen-
dently, similar to parallel coordinates, for performance exploration
and comparison [10, 12].

For classification tasks, adapted confusion matrix [10, 12, 13, 33,
40] or parallel axes [29, 33, 39] are used to compare the models’
class-level performance. Within the confusion matrix, each cell
can contain the performance of multiple models. Depicting classes
as parallel axes, the view can show each model’s performance on
each class linked by a line resembling parallel coordinates [33, 39].
Differently, ConfusionVis [39] proposed a class confusion view that
integrated confusion matrix and parallel coordinates to compare
models’ class confusions.

To support instance-level analysis, several systems [3, 12, 29,
36] projected data using dimension reduction to show instance
similarities. Manifold [43] devised a scatterplot to compare pair-
wise model predictions over a class. Each axis represents one model
depicting the prediction probabilities of the instances over the class,
with each dot denoting an instance. Dots in each quadrant of the
scatterplot indicate the same/different predictions by the models.
The scatterplot could be easily repurposed for pair-wise comparison
of regression models, visualizing prediction errors. To support the
analysis of product demand forecasting, DFSeer [36] enables users
to select a product to see its monthly forecast accuracy and compare
past predictions of similar products to assess the models’ risks.
Generally, on instance-level analysis, users can select instances of
interest to analyze model behavior in other views.

Feature analysis greatly helps model sensemaking. Visualizing
the distribution of feature values [3, 7, 10] and the correlation
of feature pairs [6] or between the feature and the target variable
[6, 7, 45] helps users understand the data better and prepare features
for prediction. Per-class feature distribution for classification tasks
further enables users to identify discriminative features [29, 43].
For instance, with a heatmap showing covariance between the
feature and the target variable, RegressionExplorer [7] allows users
to select essential and optional features to build and compare model
candidates.

As mentioned earlier, projecting high-dimensional features
onto 2-dimensional plots allows users to explore similar instances
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Table 1: A review of visualizations for model comparison and selection. In the target user column, D indicates the model
developer, while U represents model users. For prediction tasks, C is classification, and R denotes regression tasks. In the
analysis of the views, Y indicates the system contains this type of view. In comparison, our system is unique with all aspects
combined as well as in some individual aspects described in Section 2.2.

System Target
user

Prediction
task

Performance/
Class view

Instance
view

Feature
view

XAI
method

Evaluation

Boxer [10] D C Y Y Y — Six case studies
ClaVis [12] D C Y Y — — Three case studies
ComDia+ [33] D C Y Y — — —
ConfusionFlow [13] D C Y — — — Three case studies
ConfusionVis [39] U C Y — — — Two case studies & A user study
DFSeer [36] U R Y Y — — Two case studies & Four interviews
LEGION [6] D R Y Y Y Y Two case studies
Li et al. [22] U R — Y Y Y A case study
LoVis [45] D R Y — Y — A case study & A user study
Manifold [43] D C/R — Y Y — Two case studies & Ten interviews
ML-ModelExplorer [40] U C Y — — — A case study & A user study
ModelWise [29] D C Y Y Y Y Two case studies
Partition-based framework [32] D R Y — Y — A case study & A field study
RegressionExplorer [7] D C/R Y — Y — Two case studies
SliceTeller [44] D C/R Y Y Y — Three case studies & interviews
StackGenVis [3] D C/R Y Y Y Y A case study & Three interviews
Our system U R Y Y Y Y A case study & A user study

[3, 12, 29, 36]. Utilizing XAI methods, projecting the feature im-
portance of all instances onto a 2-dimensional view reveals the
structures in the model behavior, that is, how models treat the in-
stances differently or similarly [4, 22, 29]. Colorcoding the instances
by models, the projection allows users to explore the diversity and
overlap of models’ rationale [22]. With XAI methods, two systems,
StackGenVis [3] and LEGION [6], showed each feature’s overall
contribution to the model prediction for feature selection. Two
systems visualized the distribution of feature importance of se-
lected datasets [22] or models [29]. As an example, ModelWise [29]
devised a violin plot to depict feature importance distribution by
models and classes to, e.g., identify high and low effect features.
Further, Li et al. [22] correlated feature value and contribution in
2D plots to help inspect the consistency in the models.

With a different goal, several systems facilitate performance anal-
ysis under 1- [45], 2- [32], multi-dimensional [44], or hierarchical
[7] data partitions to help users understand models’ local perfor-
mance. Of the 16 systems, only four had a formal study (controlled
lab studies [39, 40, 45] or a field study [32]) to evaluate how well
the system realized its purposes. Others had case studies to demon-
strate the probable use of the systems or conducted interviews with
target users for feedback.

Our system differs from prior systems in various aspects, individ-
ually and collectively: 1) The target users of VMS are model users
who intend to choose a regression model to use for their dataset. Of
the four systems targeting model users, two are application-specific
[22, 36], and the other two are for selecting classification models
[39, 40], while our system is for comparing any regression models.
2) VMS provides model comparison and analysis at all three levels,

supporting performance, instance, and feature analysis. Three of the
surveyed systems [3, 6, 29] support all three levels but are designed
for model developers; the resulting visualization’s effectiveness
is not evaluated with target users. 3) At the instance level, VMS
uses the same scatterplot view as Manifold [43] to compare model
pairs. However, VMS also allows users to select critical features
to color the dots by feature values to examine how feature values
correlate to the predictions to understand model behavior. 4) Utiliz-
ing XAI methods, we devised an integrated view directly relating
feature value and contribution in overlaid layers to facilitate visual
inspection of hundreds of features for model sensemaking. Of the
16 surveyed systems, only one explicitly correlates feature values
and contributions, using 2D charts [22], which can visualize many
cases but not many features at once. Since users understand model
behavior through their features, we prioritize an overview of the
features. 5) A controlled lab study validated VMS’ usefulness in
helping understand the model rationale for model selection.

3 PROBLEM CHARACTERIZATION
To create an interface that enables model users to choose optimal
models, a visualization designer and two ML experts, who are also
authors of this article, closely collaborated and iterated on the
prototype on aweekly basis over the course of fourmonths.We used
ICU monitoring data as the example case when designing, aiming
to help users choose a regression model that predicts patients’ ICU
LoS. The two ML experts created predictive models for the example
case and were considered substitutes for potential end-users during
the visualization design process. We had weekly virtual meetings
to evaluate and iteration on the prototype, discuss requirements as
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Figure 2: Design alternative — Parallel coordinates to com-
pare multiple models’ predictions.

model users with the goal of selecting an optimal model, and draw
alternative designs together with editing tools, such as PowerPoint.
In the end, we distilled the following six design requirements:

R1: Compare the overall model performance. Overviewing
model performance is straightforward yet essential for any inter-
faces that aim to support model comparison. As discussed in Section
2.2, users can, e.g., select a metric [29] or view model ranks under
multiple metrics [12, 36].

R2: Pair-wise comparison of model predictions and their
errors on individual instances. From the model performance
view, when two models have similar performances, we suggest
users proceed to an instance-level analysis to directly compare
individual prediction cases. A model user suggested having a scat-
terplot with the dots representing individual prediction cases and
the axes depicting two models’ predictions. So, we can easily see
where the models disagree, indicated by the dots that deviate from
the diagonal line. Users can select those cases to explore the fea-
ture contribution and assess which one makes more sense. The
visualization designer offered an option to compare more than two
models using parallel coordinates with each axis indicating the pre-
dictions of a model (Figure 2). In this case, horizontal lines indicate
consistent predictions across the models, and bent lines expose
prediction differences among the models. However, the two model
users argued that it looked overly complex and preferred the basic
pair-wise comparison and the ease of use of scatterplots, similar
statements also in Manifold [43], which uses a scatterplot matrix
to compare model pairs’ prediction results.

R3: Select a pair of models for a detailed comparison. To
support an instance-level comparison (R2), the visualization should
support users flexibly selecting any model pairs. To do this, a model
user suggested having a matrix indicating pair-wise model simi-
larities, which could simply be the average prediction differences

Figure 3: Design alternatives of the feature view showing
features in a matrix. Table cells depict feature value and
the two models’ feature contribution differences in overlaid
layers. The two alternatives use the color of the dots and black
bars, respectively, to show the differences between the two
models’ feature contributions. HR and BP denote example
features of heart rate and blood pressure.

between model pairs. Then, users can click on a cell to select a
model pair. As mentioned in Section 2.2, Manifold [43] provides
pair-wise model comparison similar to ours in scatterplots, mean-
while visualizes the predictions of a user-selected model versus
other models in pairs as small multiples. We instead visualize one
selected model pair at a time with the consideration that as humans
process information sequentially, comparing a model pair at a time
avoids information overload.

R4: Inspect the global and local feature importance of the
models. To make sense of model behavior, we found it necessary to
use XAI methods to look at the features used and how the models
weigh these features in making predictions. For instance, when
predicting customer churn, understanding which factors contribute
to customers’ return could help improve the service. In the case of
patients’ LoS prediction, we used 14 measures inspected at each
hour for 24 hours as features. The main idea of the feature view is to
design a compact view that allows users to overview feature values
and their importance at a glance rather than having individual views
for individual features (e.g., [22]). Meanwhile, users can see whether
this feature value affects the prediction negatively or positively. For
instance, the often-used 2D charts for LIME and SHAP feature
importance depict features on the y-axis, feature importance on the
x-axis, and feature values as colors for users to evaluate models’
rationale [19]. However, such charts could not display hundreds of
features at once, nor do they facilitate the pair-wise comparison of
models’ explanations.

Upon brainstorming, we boiled down the ideas to using 1) a
table to show measurements by hours and 2) two layers of visual
encodings in table cells to depict feature value and importance,
supporting direct comparison in the same feature space [15]. Fig-
ure 3 shows design alternatives as a result of our brainstorm, which
encodes the feature value of an instance as color gradients at the
back layer and depicts the difference in the model pair’s feature
contribution as the front layer by color or bar.
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Further, global feature importance could be shown in the same
feature space interactively. In this case, we can show feature value
and importance as averages over the instances, though average
feature values are not directly related to feature importance as
the local feature explanations are. To conclude, the compacted
feature matrix aims to show over 300 features relating the feature
importance of a selectedmodel pair to the feature values; aggregated
feature value and contribution are shown when no instance or
multiple instances are selected.

R5: Show instance similarities based on the features. To
help understand what kind of data space users are exploring, depict-
ing instance similarities on a 2D canvas using dimension reduction
is frequently seen, as discussed in Section 2.2. Using features as
vectors and projecting instances onto a 2D space using such as
UMAP [27] and t-SNE [42] reveal instances’ similarities spatially
and intuitively allow users to select similar cases to inspect.

R6: Enable the above exploration under a subset of the
data. Often, users need to check how models function in minority
yet critical cases. For instance, situations when the models classify
important emails as spam and malignant tumors as benevolent
could have severe consequences. Enabling model reasoning under
a subset of the data allows users to choose models under various
conditions. For example, systems that project instances on 2D charts
using dimension reduction enable users to select similar instances
for detailed exploration [3, 12, 29, 36]. ComDia+ [33] allows users
to select a cell from the confusion matrix to evaluate how other
models do on these instances. We suggest subset selection in a more
semantic structure, such as using feature distributions [10, 29] and
other relevant attributes to explore subsets of interest.

4 DESIGN
To address the design requirements, we propose VMS, a visual-
ization with five interlinked views to support the reasoning and
selection of predictive models (Figure 1).

4.1 Model overview
To overviewmodel performance (R1), we encode the models’ perfor-
mance value in a bar chart referring to Mackinlay’s visual ranking
[25] and visualize the uncertainty for a more informed compari-
son. To simplify the performance ranking for model users, we do
not display/integrate multiple metrics but allow users to choose a
metric to use. The right side of Figure 1A shows models’ overall
performance in blue bars under a user-selected metric with black
lines indicating 95% confidence intervals.

Asmentioned in R3, we decided to use amatrix to show pair-wise
model prediction similarities and enable users to select a model
pair. The left side of Figure 1A depicts pair-wise model similarities
in a matrix. Similarity values are the average prediction differences
betweenmodel pairs, which are encoded as bars as well: The smaller
the values are, the more similar predictions the two models make.
Users can click on a cell to select a pair of models to inspect in
Figure 1B & D (R3).

4.2 Prediction and data view
As argued in R2, we use a scatterplot to depict the prediction consis-
tency between a selected model pair. Model predictions are further

compared to the ground truth to show errors. Upon selecting a
model pair from Figure 1A, Figure 1B shows the two models’ pre-
diction errors and values in two scatterplots. Each axis depicts one
model; each dot represents one prediction case. The more aligned
the dots are on the diagonal line, the more similar predictions the
two models make.

To expose instance similarities (R5), Figure 1C is a 2-dimensional
projection of the instances from all their feature values using dimen-
sion reduction [27]. The three scatterplots are interlinked: Mousing
over / selection of the dots highlights the same instance in the other
two scatterplots. Hovering over an instance shows the instance’s
ground truth and prediction errors and values in a tooltip, the same
for all three scatterplots (Figure 4F). Upon selection of an instance,
Figure 1D & E show the feature information and other relevant
attributes of the instance, respectively; a bar chart at the bottom
left displays the selected case’s predictions and ground truth (Fig-
ure 6c). Dragging to select multiple cases, users can see how the
cases distribute in other scatterplots and inspect their features on
a group level in Figure 1D. The color of the dots in scatterplots is
described next.

4.3 Feature view
To relate feature value and importance in overlaid layers (R4), we
use two distinct visual channels, encoding feature values using
colors and feature importance using position and length as bars.
We show models’ feature importance as two bars next to each
other so that users can inspect the importance of each model as
well as the difference between the two models. Figure 1D shows
the selected model pair’s feature importance relating to feature
values. It arranges features used for prediction in a matrix since
the example case in Figure 1 uses time sequence features. The cells
display feature information in two layers.

The back layer encodes feature values in colors: Red indicates
values above the cohort average, while blue denotes values below
the average. The front layer of two bars in each cell indicates the
feature importance of the two selected models (R4). The top seven
features of each model are highlighted in green; users can adjust
the number of top features to highlight at the bottom left part
of Figure 1. For local feature importance, Figure 6D shows the
features of the instance selected from the scatterplot. Negative
importance indicates the model thinks this feature value decreases
the prediction value, whereas positive importancemeans themodel
thinks the feature value increases the prediction.

When no case is selected, or multiple cases are selected from
the scatterplots, colors represent the average feature values; bars
depict the average feature importance of the current (selected) cases.
Global feature importance is not directly related to the feature value;
that is, we can only say how important this feature is overall to
the model in making predictions. Empty cells have zero feature
importance.

When clicking on a cell in the feature view, users can see a
feature’s value distribution across the cases in scatterplots in the
same red-blue diverging color schema. For instance, Figure 1B has
the feature Glascow Coma Scale (GCS) verbal response at the 22nd
hour selected; models seem to overpredict cases when values of
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this feature are above average in red and underpredict when the
values are below average.

4.4 Filter view
To enable users to explore the dataset in subsets (R6), Figure 1E
shows relevant attributes of the instances in bar charts. Besides
helping users understand the attributional distribution of the in-
stances, the bars can be used as filters for users to explore instances
of interest (R6). The example case of patients’ LoS prediction in
Figure 1 contains attributes including patients’ ICU units, age, eth-
nicity, etc. Users can click on the bars to filter the prediction cases.
Multiple selections in one bar chart indicate OR filtering; multiple
selections in different bar charts compose AND filtering.

The bar charts are linked: Once filtered, the blue bars in all
attribute charts are updated, showing the attribute distribution of
the filtered data, with grey bars at the back showing the cohort
distribution (Figure 4E). Other views (Figure 4A-D) are also updated
to show the information on the filtered data. Additionally, with a
case selected in the scatterplots, red lines in the bar charts highlights
the attributes of the selected case (Figure 6E). Supplemental video
1 demonstrates VMS’ functionalities.

5 CASE STUDY
Healthcare is an area in which ML can be of tremendous help. As an
example, the widespread of electronic health records offers great op-
portunities for planning health resource allocation and forecasting
patients’ hospital LoS to help improve services. However, high-
stakes decision-making, which can impact people’s lives, demands
transparent and trustworthy models. VMS, in this case, can fill in
the gap. For this case study, we exemplify VMS with ICU monitor-
ing data to allow users to rationalize and select models predicting
patients’ ICU LoS.

5.1 Prediction task
We used a well-known, freely available ICU database, MIMIC-IV
(Medical Information Mart for Intensive Care IV [17]), containing
vital data from patients who were admitted to the ICU. Referring to
its available benchmarking tasks [11], we chose to predict patients’
LoS considering its potential use in resource allocation. The LoS
benchmark task uses 17 clinical variables to make predictions. Upon
analysis, we removed three of them: GCS total, which strongly
correlated to the other three GCSs, eye-opening and motor and
verbal response; capillary refill rate, which had plenty of missing
values; and height, as it had little variation throughout patients’
stay. We used the remaining 14 variables for the prediction. Similar
to the benchmark task, we used each patient’s first 24 hours’ hourly
measure of the 14 variables as features, a total of 336 features, to
predict patients’ LoS by hours as a regression task.

As preprocessing, we filtered patients who stayed for at least
24 hours, aged over 18 years old, weighed between 30 and 180
kilograms, and had no missing data regarding the 14 variables.
With 14,753 patients remaining, we used 80% as the training set
and the rest 10% each as validation and test sets. We trained four
regression models: Decision Tree (DT), Random Forest (RF), Long
Short Term Memory (LSTM), and Gated Recurrent Unit (GRU), and
abstracted them as M1-M4 accordingly to ease comparison. For this

case study and user study, we used MIMIC-IV’s publicly available
demo data [16], eliminating the need for user credentials from study
participants, which resulted in 40 patients upon filtering. Models
were tested with the 40-patient data and visualized in VMS. For
each model, we also calculated SHAP feature contributions to be
visualized as local and global feature explanations.

5.2 Views
Figure 4A shows the metrics to rank the models, including percent-
age and absolute errors; the similarity matrix shows the average
absolute prediction difference (in hours) between model pairs. Upon
selecting a model pair from the matrix (M3 & M4 in Figure 4), users
can see instance-level prediction errors and values in Figure 4B.
The x-axis depicts M3, the y-axis encodes M4 predictions, and each
dot represents one patient. Figure 4C projects individual patients
onto a 2D canvas using all 336 features through the widely used
technique UMAP [27]; users can see patient similarities through
their position proximity on the canvas.

The feature view depicts the 14 measures as rows, 24 hours as
columns, and the feature value and importance relations as overlaid
layers in table cells (Figure 4D). For the 14 measures, except for
GCS scores, which are ordinal, ranging from 1 to 5, indicating no
response to normal, others are all quantitative. To display feature
values, they are first normalized to 0 to 1 as different measures can
have different ranges; the normalized feature value is further com-
pared with the normalized cohort average of this measure. We then
encode the processed feature values in red-blue diverging colors
with red indicating values above the cohort average of this mea-
sure and blue denoting values below the measure’s cohort average.
For the front layer, local feature importance directly codes SHAP
feature contributions as bars, which can be negative or positive
(e.g., Figure 6D). Global feature importance uses the feature’s aver-
age absolute SHAP contributions of the cases under exploration,
so there are no negatively valued bars when showing the global
feature importance. Hovering over feature cells displays the cur-
rent measure, hour, feature value (mean for a group of cases), the
average measure of this cohort, and the feature importance in a
tooltip (Figure 4F).

Patient attributes, including their actual LoS, mortality, ICU units,
etc., are used to show patient distributions and filter patients to
explore data in subsets (Figure 4E). The prototype is implemented
using Tableau and accessible at http://tinyurl.com/5ckfuaeu.

5.3 Usage scenario
This usage scenario is adapted from the cases that happened during
the user study. With this tool, a user wants to select a model pre-
dicting ICU patients’ LoS, specifically focusing on cardiac vascular
patients aged between 66 and 70. She filters this dataset by selecting
the corresponding bars from Figure 4E. As a result of the filtering,
there remain five patients who are all male and left the ICU alive
in less than two days; Figure 4A-D now shows the information
relating to the five patients.

The model overview shows that M3 and M4 have the lowest
percentage error. The model similarity matrix also indicates M3
and M4 are most similar in making these predictions among the
model pairs. She selected the two models for comparison. From
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Figure 4: Case study of VMS comparing four ML models (M1-M4) predicting ICU patient’s LoS. Upon filtering (E), focusing
on cardiac vascular patients aged between 66 and 70, the user selects the two best models (M3 & M4) from (A) to compare
their global feature contributions and see which model makes more sense (D). GCS scores transition from blue to red colors,
indicating these patients generally went from coma to normal states (a), which makes sense as these patients’ actual LoSs are
within two days (E). Feature contribution bars indicate how important the features are for the models to predict the current
patient set. M3 (bars on the left side of the table cells) generally has higher importance bars than M4 and highlights GCS scores
three times and respiratory rate twice, whereas M4 includes mean and diastolic blood pressures as top features.

the prediction error chart, she sees the two models have similar
largest errors, around 150-160 hours. The feature chart shows the
five patients’ average feature value and global feature importance
(Figure 4D). GCS scores indicate these patients generally went from
a coma state to completely oriented, from blue to red colors (Fig-
ure 4a). Fraction-inspired oxygen indicates these patients received
high doses of oxygen supply in the first three hours. The user then
adjusts the controller at the left bottom to analyze the top 5 impor-
tant features of the models. The left-side bars represent M3, which
generally has higher importance on all features than M4. While M3
highlights GSC scores three times at different hours, M4 spreads
top important features more diversely, including fraction-inspired
oxygen and blood pressures (green bars on the right side of the
cells). She then lists several reasons to choose M4 over M3 for this
patient group:

• Overall, M4 has a lower percentage error.
• M3 focuses too much on GCS scores, which are highlighted
three times. To cardiac vascular patients, GCS is less relevant
than cardiac features such as heart rate and blood pressure.

• M4 highlights more diverse and relevant features like mean
and diastolic blood pressures. These features are important
to decide this patient group’s LoS.

• Fraction-inspired oxygen at the first three hours indicates
patients were with machine-assisted breathing, which could
affect respiratory rate. In this case, the respiratory rate is
unreliable to predict LoS, which M3 highlights twice.

6 USER STUDY
We conducted a controlled study with 16 subjects from the medical
field, asking users to analyze model behavior and select models
using VMS to investigate the following questions:

Q1 How do users use VMS to understand model rationale?
Q2 How effective is VMS in supporting model selection?
Q3 What do users find positive and negative about the XAI
approach provided in VMS?

6.1 Participants
We recruited 16 participants (Age range: 23-41, median: 26.5; Fe-
male: 7) from the medical field at one university. Upon completing
the study, each one received a 20-euro voucher from a local super-
market chain as compensation. Figure 5 displays their background
information. Consistent with their age distribution, the majority
(75%) were at the beginning of their medical career (e.g., master’s or
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Figure 5: Participants’ background, such as their age distribu-
tion, gender, and number of years experience in the medical
field. We also inquired about their familiarity with ICU data,
ML, and visualization techniques in 5-point Likert scales,
which is depicted from least to most familiar with color gra-
dients; participants who did not answer (unknown) are in
the lightest color category. Except for age, the numbers on
the bars indicate the number of participants in that category.

early-stage doctoral students). We inquired about their familiarity
with the different aspects that appeared in the study on 5-point Lik-
ert scales. Results show they had knowledge about ICU monitoring
data (Median: 3), were not so familiar with ML (Median: 2), but were
familiar with bar charts (Median: 4), scatterplots (Median: 3.5), and
heatmaps (Median: 4). Upon inquiry, 11 of the participants did not
use ML in their work; the rest worked with ML on different levels,
including creating models (2), using models (2), and providing data
(1).

Before the actual study, the experimenter trained the participants
with some ML knowledge so they were empowered to use the tool.
We believe these participants fit well as target users as they knew
about the data and had sufficient ML knowledge for the study tasks.

6.2 Procedure and tasks
The study consists of three stages: an interactive tutorial, three
tasks, and a questionnaire & interview. Participants proceeded to
the tutorial after signing the consent form, being informed about
our data collection and analysis method and agreeing to act as
research participants. The interactive tutorial, created using the
intro.js library [38], introduces the tool in 19 steps in order of the
model overview, filters, feature view, scatterplots, and the interac-
tions between the views. As per instruction, users were prompted
to interact with the charts, such as selecting a certain filter and
dragging to select multiple dots on the scatterplots. After the tu-
torial, they could freely explore the tool and ask questions before
continuing to the tasks.

Table 2 shows the three tasks and answers participants needed
to fill in. The three tasks intended to focus on different parts of the
interface, including the scatterplots and the local and global feature
views, to explore Q1-3. T1 asked users to select an important feature
and see how it relates to models’ predictions by analyzing the scat-
terplot; T2 required users to compare two models by analyzing the
feature view of a case where the model pair made similar errors; T3
was to rank the four models for a subgroup of patients by analyzing

the scatterplots and the feature view. Though VMS is not created to
support model ranking, T3 encourages users to compare multiple
model pairs to enrich our data collection. Participants were asked
to think aloud during the tasks. To prompt users to rely more on
their domain knowledge to reason and select models rather than
following the numbers given by the computation, we hid some
functionalities of the tool for this study (Figure 6a-c).

The study was conducted with a 13.3-inch MacBook Air with
an M1 chip and 16GB memory. The participants had the laptop
in front and an external display in front as well above the laptop
display. We made sure that the external display could show the
whole visualization without the need to scroll. During the tasks,
the laptop display showed the online task sheet; each task came
with a table structuring the answers that needed to be filled. The
experimenter, with another laptop having the same task sheet open,
helped fill in the answers when the participants thought aloud and
asked for more details if the answer was not clear.

Since they were not seasoned in computer science, during the
tasks, the experimenter answered their questions relating to ML
and visualization techniques if they had any. After the tasks, they
completed a questionnaire regarding their background, followed by
an interview on their comments on the tool, the prediction tasks,
and the features used (Table 3). The whole study took around one
hour.

6.3 Data collection and analysis
During the tasks, we recorded the screen to capture participants’
mouse and keyboard interactions and think-aloud voices; the ex-
perimenter also noted their answers to the tasks and interview
questions. To answer Q1, we analyzed user rationale in solving the
tasks. Their answers to model selection/ranking in T2 & T3 were
used to answer Q2; we compared the user selection/ranking of the
models to machine ranking via performance measure with a larger
set of instances. User comments during the tasks and interview
were coded to answer Q3.

To code the answers, the experimenter went through the notes
to generate the coding schema, using the video recordings to help
clarify the notes when necessary. Based on the created coding
schema, the experimenter counted the answers. By analyzing the
video recordings, participants seemed to have different strategies
in answering T3, which were categorized as well. As the coding
is straightforward, requiring little interpretation, we did not seek
inter-rater reliability [26]. For instance, T1 asked users why they se-
lected a feature as important; the mentioning of green bars or high
feature importance implies they replied on machine intelligence,
but if they talked from their own judgments, such as “if systolic
blood pressure is not stable during the first 24 hours without medi-
cation, the patient will stay longer”, we say they used their domain
knowledge to select. As another example, to code user rationale in
model selection for T2 & T3, we count user reasoning such as “M3
has a clear indication on diastolic and systolic blood pressures”, “M3
highlights features correctly”, and “M4 also focuses on respiratory
rate and blood pressure, so M4 is better” as “the model highlights
relevant features”.
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Table 2: Tasks and the structure provided for answers.

T1 For patients who stayed within 24h, select the model pair M3-M4; Explore the color patterns in the three scatterplots by
selecting important measure & hour combinations in predicting patients’ LoS based on your knowledge (Select at least
two features).

A1 • Measure & hour combination you have selected.
• Why do you choose this combination?
• Describe the color pattern (Which view? What discovery?).
• Does this pattern make sense? How?

T2 Select a patient that M3 and M2 have similar prediction errors. Use your domain knowledge to explain and compare their
top 3 important features. Overall, which model do you prefer in this case?

A2 • Case description (patient’s LoS, ICU unit, age, etc.).
• Measure & hour you analyze: Describe the relation between the feature value and importance, e.g., M4 thinks this feature
value (1.0) increases the prediction (6.45).

• Does this relation make sense? How?
• Overall, which model makes more sense in this case? Why?

T3 Rank the four models predicting cardiac vascular patients aged 66-70. To rank the models, use your domain knowledge to
inspect the scatterplots and the feature view, and write down your discoveries exploring the views.

A3 • Model pair, your discovery, and your preference among the two models.
• Overall rank and the rationale.

Figure 6: VMS for the user study. Upon selecting an instance from the scatterplot, users can see the background information
of this patient indicated by red lines in (E) and the instance’s feature values and feature contributions regarding the selected
model pair in (D). The highlighted feature row (d) reveals that the feature value can stay the same for several hours, but the
feature importance can shift between positive and negative, indicating perceived inconsistencies in model behavior. The model
performance metric (a), the scatterplots’ tooltip on hovering (b), and the prediction chart of a selected instance (c) were removed
to stimulate participants’ domain knowledge for model selection.
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Table 3: Interview questions.

(1) Do you use machine learning models in your work? (If yes,
what tasks do the models fulfill?)

(2) What new knowledge have you learned from exploring the
tool?

(3) What are the most important features to predict LoS? In the
first 24 hours’ stay, what period is most important in deciding
LoS?

(4) What functionalities do you want to see but are not in the
tool?

(5) What are your suggestions on the prediction tasks and the
features used in the prediction?

6.4 Results
This section presents the user study results in order of the tasks and
interview comments. Table 4 shows the results of T1. Participants
selected important measure & hour combinations to explore the
color patterns in the scatterplots. GCS scores, blood pressure, and
respiratory rate were the most often selected measures, which is
consistent with their interview answers. The last few hours (22-24h)
and the first couple of hours (1-2h) were most selected among the
first 24 hours, echoing the interview answers as well. Four stated
that the first 1-6 hours were critical for treatment based on their
domain knowledge.

Often, participants made the selection based on their domain
knowledge (9 participants) or the green bars shown in the feature
view (7). Two intended to select something different from the first
choice, such as a quantitative measure after GCS’s ordinal measure.
Interested in the progress of the same measure, two selected the
beginning and end hours of one measure. Based on the color pattern
of the feature values, one selected a red square in the middle of the
blue squares.

Since the number of instances for this task was small (11), the
charts showed either identical colors in the scatterplots or mixed
colors without clear patterns. For instance, one participant selected
fraction-inspired oxygen at the 6th hour; the red and blue dots
seemed scattered in the scatterplots without a clear indication of
the feature’s influence on the predictions. The participant stated that
it made sense, as “this value in the hospital is not very accurate and
can change a lot during 1-6 hours depending on doctors’ experience,
so it is difficult to use this feature to predict.” However, participants
provided valuable suggestions on how models can consider these
features in predictions, which we discuss later with the interview
answers. To conclude T1, VMS enables users to select impor-
tant features from multiple perspectives, combining domain
knowledge,machine intelligence, feature attributes, and time
series exploration to get an overview of how a feature affects
models’ decisions.

For T2, the majority of the participants preferred M3 over M2
through the feature analysis of a selected case (Table 5). Nine stated
the reason that M3 highlights important features, and three ex-
pressed that M2 highlights confusing hours. For example, the fea-
ture value stays the same for hours, but M2 highlights twice (2).
Three preferred M2, and one chose neither of the models with
diverse arguments. For instance, contrary to M3, with M2, the

majority of the features have zero importance; one participant pre-
ferred this selective consideration with the argument that a “specific
combination of features has better predictive power.”

A Wilcoxon Signed Rank test shows that M3 was statistically
significantly ranked higher than M2 (Effect size: 0.58, p = 0.022).
With the 40-patient set we studied, M2 showed less percentage
error than M3 (M2 error: 5.86, M3 error: 8.02). However, percentage
errors with a larger set (1475 instances) showM3 produced less error
instead (M2 error: 8.11, M3 error: 4.10) with statistical significance
(Effect size: 0.27, p < 0.0001). Thus, the feature view enables users
to choose a better model with a small sample size. To conclude
T2, the analysis of the relation between feature value and
importance on an instance helps users rationalize model
behavior and informs model performance on a larger scale
with a small subset of instances.

To answer T3, participants used three different strategies to rank
the models: S1) seven examined the global feature importance,
including the black and green bars of model pairs to select mod-
els, among which two combined the examination with the error
scatterplots, S2) six compared the top global feature importance,
only examining the green bars, among which three also assessed
the error scatterplots, and S3) two evaluated individual patients’
feature views since only five instances remained for this task after
filtering.

Participants exhibited similar reasoning to T2 in ranking the
models. The rationale of model ranking behind S1 & 2 included
using more diverse/relevant features and making less error. When
these two aspects contradicted, two leaned toward the error chart,
and two relied more on the feature importance; one tended to give
equal importance to the feature and error charts, for instance, the
participant opinioned that M3 uses more features while M2 makes
less error, but since the difference in error is small, M3 is better.
Highlighting different hours of a measure is considered positive by
two and negative by another two participants based on the context.
Two adopted S3 and tried to see which value & importance relation
does not make sense in model pairs similar to what they did in T2
to eliminate one of the two models.

Figure 7: Participants’ rank-
ing of the models in T3.

Figure 7 shows the ranks
of the models by the par-
ticipants in boxplots: The
smaller the ranks are, the
better the models were con-
sidered by the participants.
A Friedman test revealed a
small but statistically sig-
nificant difference in the
models’ ranking (Effect size:
0.18, p = 0.045). A pair-wise
comparison using Wilcoxon
Signed Rank tests showed
large and moderate differ-
ences in the ranking of M2-4
compared with M1; the dif-
ferences among M2-4 are small. After the Holm correction, the
differences are not statistically significant. Model performance rank-
ing using their percentage errors with 126 instances of the patient
set is (from the best to the worst): M4 (2.85), M3 (3.39), M1 (4.99),
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Table 4: T1 results, including participants’ selected important features, their rationale behind the selection, and their answers
accordingly during the interview. The number in brackets indicates the number of participants in each item.

Selection Interview Rationale of the selectionMeasure Hour Measure Hour
GCS (12); Blood pressure
(8); Respiratory rate (4);
Fraction-inspired oxygen
(3); Oxygen saturation
(1); Glucose (1)

22-24h (16); 1-2h
(11); 6-7h (4)

GCS (14); Blood pressure
(8); Respiratory rate (7);
Heart rate (3); Oxygen sat-
uration (3)

First few hours (9);
Last few hours (3);
The whole period (1)

Domain knowledge (9); Green bars
(7); Select something different from
the first choice (2); Interested in the
progress within 24h (2); Color pat-
tern (1)

Table 5: T2 results with participants’ overall preference on
the model regarding a selected case and their rationale.

Preference Rationale
M3 (12) M3 highlights important features (9); M2 high-

lights confusing hours (3).
M2 (3); Nei-
ther (1)

The changes of M3’s feature importance are not
consistent with the changes in feature values
(2)(e.g., Figure 6d); M2 highlights GCSs, which
is critical for trauma patients and cannot be in-
tervened while other measures can (1); M2: Spe-
cific combination of features has better predictive
power (1); M2 does not use important features in
prediction (1).

Table 6: T3 results with participants’ strategy and rationale
when ranking the models. For the first two strategies, user
rationale behind model ranking is analyzed together.

Strategy Rationale
All global fea-
tures (7) [+ error
chart (2)]

The model uses more diverse/relevant (top)
features (11); the model has less error (5); the
model highlights different hours of the
measure (positive) (2); For the same feature
value, the model highlights multiple hours
(negative) (2).

Top global fea-
tures (6) [+ error
chart (3)]

Individual
instances (2)

Feature value & importance relation makes
sense or not.

and M2 (5.15). Except for M3 & M4, the differences in errors be-
tween other model pairs are statistically significant after the Holm
correction. Users generally choose the better model conforming to
the performance analysis, except for M2, which is ranked the lowest
based on performance measures but the second lowest by the users.
We discuss the complexity of the analysis in the next section. To
conclude T3, three strategies were used to compare models,
analyzing global (top) feature importance or local feature
importance relating to (average) feature values. User rank-
ing of the models generally conforms to model performance

ranking with a larger set of instances, but not without ex-
ceptions. The complexity of the analysis needs to be further
considered (See Section 7.2).

During the tasks and interview, participants provided valuable
comments on the tool regarding the learning models, features used,
and the interface, which we summarize in Table 7. Three applauded
the interface as well-integrated. Seven mentioned the usefulness of
the feature view, either good to see the changes of lots of vital data
(5) or the view highlighted the importance of the features (3). Five
requested more training to get familiar with VMS’ functionalities
before the tasks. As the interface was new to them, nine had no
suggestions on the functionalities; others’ suggestions centered
around the feature view, such as more explanation (2) and manual
reordering (1) of the measures.

We categorized user feedback on the models and features. Most
feedback requests user control on the weights of the features to
improve model predictions. Experts’ domain knowledge can be
applied by tuning the weights of specific measures, such as lowering
the importance of diastolic blood pressure, if one considers this
shall contribute less to the prediction, or by conditional settings.
For instance, based on user feedback, the tool can allow users to
set a condition lowering the weight of mean blood pressure if the
value is in the normal range. If fraction-inspired oxygen is higher
than 0.7, models can lower the weights of oxygen saturation and
respiratory rate in making the prediction; as patients were with
machine-assisted breathing, some users consider these values, in
this case, not reliable to make the predictions.

However, there could be the potential overuse of domain knowl-
edge, which can hinder models’ assumptions about the data. The
counter feedback from ML experts is that modeling the data can
result in some unrealistic assumptions as a simplification of the
complex interactions among features; it is reasonable to accept
this unrealisticness, especially if the observed false assumption is
not that critical in reality. To conclude user feedback, VMS well
integrates the functionalities to help evaluate models but
exhibits a learning curve. As a next step, VMS can allow users
to set critical assumptions about the data to improve predic-
tions, but a balance between the use of domain knowledge
and machine intelligence shall be promoted.

7 DISCUSSION
We proposed an interactive visualization, VMS, to support model
users to make sense of and select ML models from performance-,
instance-, and feature-level analysis. Particularly, 1) in the scatter-
plots, which compare a model pair’s predictions, instances could be
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Table 7: Participants’ comments regarding the model, fea-
tures, and the interface collected during the tasks and inter-
view.

M
od

el

• Feature values in the normal range shall not be important, and
abnormal values are more important (6), as feature values
could be controlled by treatment, such as blood pressure,
respiratory rate, and pH, which makes them unreliable to
make predictions (2), especially when the values are normal
under control.

• Value change should indicate importance (6); unstable values,
such as local minima, are unimportant (1).

• Inconsistency exists between feature value and importance
(4). For instance, when the verbal response value stays the
same for hours, M3 feature importance can be negative or
positive (Figure 6d).

• Different patient groups need to consider different features
as important (2).

• If the value is consistently low, highlighting the last as im-
portant makes sense (1).

• Two cases can be close in the projection view but have very
different predictions; why? (1)

Fe
at
ur
e

• Whether the patient is intubated or not is important to con-
sider in prediction, which may affect verbal response, respi-
ratory rate, etc. (3)

• Mean/Systolic blood pressure is more important than the
diastolic one (3).

• Fraction-inspired oxygen, respiratory rate, and oxygen sat-
uration are interlinked (2). For instance, when the patient
is with machine-assisted breathing, indicated by the high
values of fraction-inspired oxygen, this can affect the respi-
ratory rate and oxygen saturation.

• Fraction-inspired oxygen is inaccurate and can change a lot
during 1-6 hours based on doctors’ experience (1).

• Participants recommended many other features to incorpo-
rate, such as C-reactive protein concentration (1), natural
killer cells (1), blood sodium (1), and cigarettes & alcohol
history (1).

In
te
rfa

ce

• There is a learning curve; more training is required (5).
• The interface is well-integrated and can handle lots of vital
data in a short time (3).

• More explanation could be provided on the measures, such
as how they are measured (2).

• It is useful to select a range of hours or combine all hours for
the color pattern exploration in scatterplots (2).

• It is good to customize the order of the measures considering
cultural differences and users’ recognition of their impor-
tance levels (1).

color-coded by feature values to overview the correlation between
the feature and model prediction; 2) the feature view correlating
the values and contributions of hundreds of features on either local
or global scales allows users to understand and compare the model

rationale. We exemplified this method to compare four regression
models predicting ICU patients’ LoS. A controlled study with 16
participants from the medical field answers the following questions
and reveals the significance of VMS:
Q1 How do users use VMS to understand model rationale?
The study witnessed various ways VMS was used to help make
sense of the models. First, users can select important features from
multiple perspectives, such as using their domain knowledge or
machine intelligence, to explore how the feature value relates to
model predictions in scatterplots. Then, with the feature view, the
analysis of feature importance relating to the feature values in
the measure and hour dimensions supports model sensemaking.
Example cases are 1) the feature value changes reflected in the
color patterns inform users about the interactions among features
to help assess feature contributions (An example elaborated in
Section 5.3) and 2) the visualized background information of the
patient (Figure 6E) facilitates users to use their domain knowledge
to identify important features of this patient to evaluate models.
Q2 How effective is VMS in supporting model selection?
Study results provide evidence that reasoning at the instance and
feature levels using VMS, users could select the better-performant
models without knowing the models’ performance with only a
small subset of test data, validated by model performance under a
larger test set. However, there are uncertainties in rationalization,
inviting support to help users make sense of the models in a more
systematic and holistic way, which we discuss later.
Q3 What do users find positive and negative about the XAI approach
provided in VMS?
Several users considered VMS as well integrated but had a learning
curve. Particularly, the usefulness of the feature view stands out
from user feedback. Interface suggestions include more explanation
on the measures and manual re-ordering of the feature rows to
prioritize certain measures. User feedback on models and features
suggests the next steps of this research on how to apply users’
knowledge of the data to improve model predictions, balancing
with machine intelligence, such as adjusting the weights of critical
features and conditional settings specifying the interactions among
features to steer predictions.

7.1 Implication
With the increased number of open-sourced models, tools allowing
non-AI experts to make sense of and select models are in great
demand. We expect VMS to be useful in various scenarios: ML
developers can use VMS to assess model behaviors with model
users, such as domain experts, to gain feedback on how to improve
model performance. Model users can custom model selection for
decision subjects, such as for cardiac vascular patients. Using VMS
requires test samples, including their predictions and feature values
& contributions; that is, models need to be pre-trained and their
feature importance pre-computed. Next, we discuss limitations and
future extensions of this work.

7.2 Model sensemaking with VMS
In T3, users’ choice of a better model is not so explicit, as the dif-
ference among the models’ rankings is not statistically significant.
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Moreover, users did not foresee the worse performance of M2 tested
with a larger dataset. We give some thoughts on this. Kaur et al.
[18] pointed out that in model sensemaking with feature expla-
nations, users might have an unstructured way of exploration to
search for plausible rather than accurate explanations that support
their personal beliefs. We noticed this type of behavior from users.
First, users rationalized in different ways, using varied strategies
discussed earlier. Some defects of a model discovered by some users,
which lowered their trust in the model, could be overlooked by oth-
ers. Also, ambiguity could happen in rationalization, which can
leave model selection to chances. For instance, M3 & M4 use more
features than M1 & M2, which also makes them prone to criticism,
such as inconsistency in feature value and importance variations.
Facilitating model comparison and selection in a more systematic
and holistic manner with increased confidence requires extra de-
sign considerations. For instance, we can use computational power
to assist rationalization, asking users to input their assumptions
with varied weights so the machine can look for visual patterns
systematically to help evaluate the models.

On the other hand, bias in ML can occur in various situations
[28]. For instance, if a model is trained with a dataset dominated by
white males, the model can exhibit bias toward predicting other sex
or ethnic groups. ICU data could be biased toward older populations,
certain ICU units, etc., which leads to bias in predicting the less
represented groups. The design of VMS did not particularly take bias
diagnoses into account. Instead, VMS helps users understand model
behavior, allowing them to evaluate using their prior knowledge
whether the logic of the model makes sense or not. User study
results show that VMS triggered user thoughts on model fairness:
Several participants suggested that different ICU units need to be
trained separately to improve results (group fairness [28]); a user
found that instances close in the projection view can have very
different predictions (individual fairness [28]).

However, as discussed, users’ prior knowledge and their explo-
ration patterns can also induce bias in model selection. We need to
consider model sensemaking not as an individualized process but as
a process involving social and organizational contexts [18]. For ex-
ample, different cultures can have different practices and standards
in ICU. Moreover, decision subjects’ feedback after the adoption
of model predictions can change users’ view of the prediction and
the explanations [18]. Involving multiple users viewing model ex-
planations in different contexts can help model sensemaking with
increased resilience.

7.3 Classification
VMS can be relatively easily applied to binary classification tasks;
applying to multi-label or multi-class classification tasks requires
more adjustments. The model overview would show performance
on a metric for classification models, such as accuracy and F1 scores;
the similarity matrix can display the percentage of agreements be-
tween two models. Upon selecting a model pair, the instance view
can adopt the scatterplot design inManifold [43], depicting instance
prediction probabilities by the model pair; each class requires one
scatterplot. Upon selecting an instance, the local feature view can
remain the same to compare model pairs’ feature contribution
weights to the predicted class relating to the feature values. The

global feature view can have segments on each feature correspond-
ing to the number of classes. Feature values in the segments would
show the average (the predominant category for categorical fea-
tures) of the instances whose ground truth equals the corresponding
class, whereas feature contributions aggregate the contribution on
the probability of the model predicting the corresponding class,
whether true positive or false negative. Users can see how models
weigh features differently for predicting the corresponding class.
Extending VMS to handle such models is a direction for future
work.

7.4 Scalability & Generality
With the increased number of models, Figure 1A will expand: the
performance chart will increase linearly, while the similarity ma-
trix will be polynomial. We suggest that VMS can support up to
ten models. With more models, there could already be filtering
before entering the system, so users only need to compare the best-
performing models. For the features, we used time-series data in the
case study, visualizing 14 measures assessed hourly for 24 hours,
a total of 336 features. If the models have more features, VMS can
choose to visualize the features that best differentiate the selected
model pair, that is, the features that show the most difference in
the model pair’s feature contributions.

We believe VMS can be best applied to compare regression mod-
els using time-series features, such as forecasting energy consump-
tion using weather data and predicting crop productivity using data
from the sensors in the soil. The user study demonstrates how VMS
could be used in a real-world case. However, due to the limited
number of participants and their background, mostly as junior re-
searchers from one university, results can represent several typical
use cases but cannot be generalized to the general population or
other application cases. We leave the application and evaluation of
VMS in other areas as future work.

8 CONCLUSION
To enable model users to compare and select ML models, this re-
search proposes VMS, a model-agnostic visualization approach that
supports performance-, instance- and feature-level model analysis.
VMS addresses six design requirements distilled through the close
collaboration between the visualization designer and model users.
We exemplified VMS to compare four regression models predicting
patients’ ICU LoS using 14 measures assessed hourly during the
first 24-hour stay as features. A user study with 16 model users 1)
indicates that VMS allows users to understand the model rationale
in various ways, linking predictions, feature values & contributions,
and instances’ background information, 2) provides promising evi-
dence that through instance and feature analysis with a few test
samples, users can select the optimal models, and 3) validates that
VMS is accessible to non-AI experts, though several reported a learn-
ing curve. Users suggest utilizing domain knowledge in training
to improve performance. Research results also showed that biases
could emerge in the VDE process resulting from users, data, and
models. From the interface design viewpoint, we need to help users
uncover bias in the data & models and support model comparison
systematically and holistically involving social and organizational
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contexts. Future work also includes the extension of VMS to classi-
fication models and other application areas.

9 SUPPLEMENTAL MATERIAL
Supplemental video 1 is a video that demonstrates VMS comparing
four regression models predicting patients’ ICU LoS. (MP4 74,571
kb)

ACKNOWLEDGMENTS
This research is funded by the Strategic Research Council at the
Research Council of Finland [Grant Number 358247]

REFERENCES
[1] Dylan Cashman, Shah Rukh Humayoun, Florian Heimerl, Kendall Park, Subhajit

Das, John Thompson, Bahador Saket, Abigail Mosca, John T. Stasko, Alex En-
dert, Michael Gleicher, and Remco Chang. 2019. A User-based Visual Analytics
Workflow for Exploratory Model Analysis. Comput. Graph. Forum 38, 3 (2019),
185–199. https://doi.org/10.1111/cgf.13681

[2] Angelos Chatzimparmpas, Rafael Messias Martins, Ilir Jusufi, and Andreas Ker-
ren. 2020. A survey of surveys on the use of visualization for interpreting
machine learning models. Inf. Vis. 19, 3 (2020), 207–233. https://doi.org/10.1177/
1473871620904671

[3] Angelos Chatzimparmpas, Rafael Messias Martins, Kostiantyn Kucher, and An-
dreas Kerren. 2021. StackGenVis: Alignment of Data, Algorithms, and Models for
Stacking Ensemble Learning Using Performance Metrics. IEEE Trans. Vis. Comput.
Graph. 27, 2 (2021), 1547–1557. https://doi.org/10.1109/TVCG.2020.3030352

[4] Dennis Collaris and Jarke J. van Wijk. 2023. StrategyAtlas: Strategy Analysis for
Machine Learning Interpretability. IEEE Trans. Vis. Comput. Graph. 29, 6 (2023),
2996–3008. https://doi.org/10.1109/TVCG.2022.3146806

[5] The Hugging Face Company. 2016. AutoTrain – Hugging Face. https://
huggingface.co/autotrain.

[6] Subhajit Das and Alex Endert. 2020. LEGION: Visually compare modeling tech-
niques for regression. In Visualization in Data Science (VDS). 12–21. https:
//doi.org/10.1109/VDS51726.2020.00006

[7] Dennis Dingen, Marcel van ’t Veer, Patrick Houthuizen, Eveline H. J. Mestrom,
Hendrikus H. M. Korsten, R. Arthur Bouwman, and Jarke J. van Wijk. 2019.
RegressionExplorer: Interactive Exploration of Logistic Regression Models with
Subgroup Analysis. IEEE Trans. Vis. Comput. Graph. 25, 1 (2019), 246–255. https:
//doi.org/10.1109/TVCG.2018.2865043

[8] Finale Doshi-Velez and Been Kim. 2017. Towards A Rigorous Science of Inter-
pretable Machine Learning. arXiv:1702.08608 [stat.ML]

[9] Andrew Gelman and Aki Vehtari. 2021. What are the most important statistical
ideas of the past 50 years? J. Amer. Statist. Assoc. 116, 536 (2021), 2087–2097.

[10] Michael Gleicher, Aditya Barve, Xinyi Yu, and Florian Heimerl. 2020. Boxer:
Interactive Comparison of Classifier Results. Comput. Graph. Forum 39, 3 (2020),
181–193. https://doi.org/10.1111/cgf.13972

[11] Hrayr Harutyunyan, Hrant Khachatrian, David C. Kale, and Aram Galstyan. 2019.
Multitask Learning and Benchmarking with Clinical Time Series Data. Scientific
Data 6, 1 (2019). https://doi.org/10.1038/s41597-019-0103-9

[12] Frank Heyen, Tanja Munz, Michael Neumann, Daniel Ortega, Ngoc Thang Vu,
Daniel Weiskopf, and Michael Sedlmair. 2020. ClaVis: An Interactive Visual
Comparison System for Classifiers. In International Conference on Advanced
Visual Interfaces. ACM, 9:1–9:9. https://doi.org/10.1145/3399715.3399814

[13] Andreas P. Hinterreiter, Peter Ruch, Holger Stitz, Martin Ennemoser, Jürgen
Bernard, Hendrik Strobelt, and Marc Streit. 2022. ConfusionFlow: A Model-
Agnostic Visualization for Temporal Analysis of Classifier Confusion. IEEE Trans.
Vis. Comput. Graph. 28, 2 (2022), 1222–1236. https://doi.org/10.1109/TVCG.2020.
3012063

[14] Fred Hohman, Minsuk Kahng, Robert S. Pienta, and Duen Horng Chau. 2019.
Visual Analytics in Deep Learning: An Interrogative Survey for the Next Frontiers.
IEEE Trans. Vis. Comput. Graph. 25, 8 (2019), 2674–2693. https://doi.org/10.1109/
TVCG.2018.2843369

[15] Waqas Javed and Niklas Elmqvist. 2012. Exploring the design space of composite
visualization. In IEEE Pacific Visualization Symposium, Helwig Hauser, Stephen G.
Kobourov, and Huamin Qu (Eds.). IEEE Computer Society, 1–8. https://doi.org/
10.1109/PacificVis.2012.6183556

[16] Alistair Johnson, Lucas. Bulgarelli, Tom Pollard, Steven Horng, Leo Anthony
Celi, and Roger Mark. 2022. MIMIC-IV Clinical Database Demo (version 1.0).
(2022). https://doi.org/10.13026/jwtp-v091

[17] Alistair EW Johnson, Lucas Bulgarelli, Lu Shen, Alvin Gayles, Ayad Shammout,
Steven Horng, Tom J Pollard, Sicheng Hao, Benjamin Moody, Brian Gow, et al.

2023. MIMIC-IV, a freely accessible electronic health record dataset. Scientific
data 10, 1 (2023), 1.

[18] Harmanpreet Kaur, Eytan Adar, Eric Gilbert, and Cliff Lampe. 2022. Sensible AI:
Re-Imagining Interpretability and Explainability Using Sensemaking Theory. In
ACM Conference on Fairness, Accountability, and Transparency (Seoul, Republic of
Korea) (FAccT ’22). Association for Computing Machinery, New York, NY, USA,
702–714. https://doi.org/10.1145/3531146.3533135

[19] Zoumana Keita. 2023. Explainable AI - Understanding and Trusting Ma-
chine Learning Models. https://www.datacamp.com/tutorial/explainable-ai-
understanding-and-trusting-machine-learning-models.

[20] Biagio La Rosa, Graziano Blasilli, Romain Bourqui, David Auber, Giuseppe San-
tucci, Roberto Capobianco, Enrico Bertini, Romain Giot, andMarco Angelini. 2023.
State of the Art of Visual Analytics for eXplainable Deep Learning. Computer
Graphics Forum 42, 1 (2023). https://doi.org/10.1111/cgf.14733

[21] Francesca Lagioia and Giovanni Sartor. 2020. The impact of the General Data
Protection Regulation (GDPR) on artificial intelligence. (2020).

[22] Yiran Li, Takanori Fujiwara, Yong K. Choi, Katherine K. Kim, and Kwan-Liu Ma.
2020. A visual analytics system for multi-model comparison on clinical data
predictions. Visual Informatics 4, 2 (2020), 122–131. https://doi.org/10.1016/j.
visinf.2020.04.005 PacificVis 2020 Workshop on Visualization Meets AI.

[23] Scott M Lundberg, Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M Prutkin,
Bala Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. 2020.
From local explanations to global understanding with explainable AI for trees.
Nature machine intelligence 2, 1 (2020), 56–67.

[24] Scott M Lundberg and Su-In Lee. 2017. A unified approach to interpreting model
predictions. Advances in neural information processing systems 30 (2017).

[25] Jock D. Mackinlay. 1986. Automating the Design of Graphical Presentations
of Relational Information. ACM Trans. Graph. 5, 2 (1986), 110–141. https:
//doi.org/10.1145/22949.22950

[26] Nora McDonald, Sarita Schoenebeck, and Andrea Forte. 2019. Reliability and
Inter-rater Reliability in Qualitative Research: Norms and Guidelines for CSCW
and HCI Practice. Proc. ACM Hum. Comput. Interact. 3, CSCW (2019), 72:1–72:23.
https://doi.org/10.1145/3359174

[27] Leland McInnes, John Healy, Nathaniel Saul, and Lukas Großberger. 2018. UMAP:
UniformManifold Approximation and Projection. Journal of Open Source Software
3, 29 (2018), 861. https://doi.org/10.21105/joss.00861

[28] Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. 2022. A Survey on Bias and Fairness in Machine Learning. ACM
Comput. Surv. 54, 6 (2022), 115:1–115:35. https://doi.org/10.1145/3457607

[29] Linhao Meng, Stef van den Elzen, and Anna Vilanova. 2022. ModelWise: In-
teractive Model Comparison for Model Diagnosis, Improvement and Selection.
Comput. Graph. Forum 41, 3 (2022), 97–108. https://doi.org/10.1111/cgf.14525

[30] Tim Miller. 2019. Explanation in artificial intelligence: Insights from the social
sciences. Artificial Intelligence 267 (2019), 1–38. https://doi.org/10.1016/j.artint.
2018.07.007

[31] Christoph Molnar. 2022. Interpretable Machine Learning (2 ed.). https://
christophm.github.io/interpretable-ml-book

[32] Thomas Mühlbacher and Harald Piringer. 2013. A Partition-Based Framework
for Building and Validating Regression Models. IEEE Trans. Vis. Comput. Graph.
19, 12 (2013), 1962–1971. https://doi.org/10.1109/TVCG.2013.125

[33] Chanhee Park, Jina Lee, Hyunwoo Han, and Kyungwon Lee. 2019. ComDia+: An
Interactive Visual Analytics System for Comparing, Diagnosing, and Improving
Multiclass Classifiers. In IEEE Pacific Visualization Symposium. IEEE, 313–317.
https://doi.org/10.1109/PacificVis.2019.00044

[34] Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. 2016. “Why should I trust
you?” Explaining the predictions of any classifier. In ACM SIGKDD international
conference on knowledge discovery and data mining. 1135–1144.

[35] Ben Shneiderman. 2022. Human-centered AI. Oxford University Press.
[36] Dong Sun, Zezheng Feng, Yuanzhe Chen, Yong Wang, Jia Zeng, Mingxuan Yuan,

Ting-Chuen Pong, and Huamin Qu. 2020. DFSeer: A Visual Analytics Approach to
Facilitate Model Selection for Demand Forecasting. In CHI Conference on Human
Factors in Computing Systems. ACM, 1–13. https://doi.org/10.1145/3313831.
3376866

[37] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. 2017. Axiomatic attribution
for deep networks. In International conference on machine learning. PMLR, 3319–
3328.

[38] Intro.js team. 2020. Intro.js. https://introjs.com/.
[39] Andreas Theissler, Mark Thomas, Michael Burch, and Felix Gerschner. 2022.

ConfusionVis: Comparative evaluation and selection of multi-class classifiers
based on confusion matrices. Knowledge-Based Systems 247 (2022), 108651. https:
//doi.org/10.1016/j.knosys.2022.108651

[40] Andreas Theissler, Simon Vollert, Patrick Benz, Laurentius Antonius Meerhoff,
and Marc Fernandes. 2020. ML-ModelExplorer: An Explorative Model-Agnostic
Approach to Evaluate and Compare Multi-class Classifiers. In Machine Learning
and Knowledge Extraction (Lecture Notes in Computer Science, Vol. 12279), Andreas
Holzinger, Peter Kieseberg, A Min Tjoa, and Edgar R. Weippl (Eds.). Springer,
281–300. https://doi.org/10.1007/978-3-030-57321-8_16

243

https://doi.org/10.1111/cgf.13681
https://doi.org/10.1177/1473871620904671
https://doi.org/10.1177/1473871620904671
https://doi.org/10.1109/TVCG.2020.3030352
https://doi.org/10.1109/TVCG.2022.3146806
https://huggingface.co/autotrain
https://huggingface.co/autotrain
https://doi.org/10.1109/VDS51726.2020.00006
https://doi.org/10.1109/VDS51726.2020.00006
https://doi.org/10.1109/TVCG.2018.2865043
https://doi.org/10.1109/TVCG.2018.2865043
https://arxiv.org/abs/1702.08608
https://doi.org/10.1111/cgf.13972
https://doi.org/10.1038/s41597-019-0103-9
https://doi.org/10.1145/3399715.3399814
https://doi.org/10.1109/TVCG.2020.3012063
https://doi.org/10.1109/TVCG.2020.3012063
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/TVCG.2018.2843369
https://doi.org/10.1109/PacificVis.2012.6183556
https://doi.org/10.1109/PacificVis.2012.6183556
https://doi.org/10.13026/jwtp-v091
https://doi.org/10.1145/3531146.3533135
https://www.datacamp.com/tutorial/explainable-ai-understanding-and-trusting-machine-learning-models
https://www.datacamp.com/tutorial/explainable-ai-understanding-and-trusting-machine-learning-models
https://doi.org/10.1111/cgf.14733
https://doi.org/10.1016/j.visinf.2020.04.005
https://doi.org/10.1016/j.visinf.2020.04.005
https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/22949.22950
https://doi.org/10.1145/3359174
https://doi.org/10.21105/joss.00861
https://doi.org/10.1145/3457607
https://doi.org/10.1111/cgf.14525
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/j.artint.2018.07.007
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://doi.org/10.1109/TVCG.2013.125
https://doi.org/10.1109/PacificVis.2019.00044
https://doi.org/10.1145/3313831.3376866
https://doi.org/10.1145/3313831.3376866
https://introjs.com/
https://doi.org/10.1016/j.knosys.2022.108651
https://doi.org/10.1016/j.knosys.2022.108651
https://doi.org/10.1007/978-3-030-57321-8_16


IUI ’24, March 18–21, 2024, Greenville, SC, USA He et al.

[41] Richard Tomsett, Dave Braines, Dan Harborne, Alun Preece, and Supriyo
Chakraborty. 2018. Interpretable to whom? A role-based model for analyzing
interpretable machine learning systems. In ICML Workshop on Human Inter-
pretability in Machine Learning.

[42] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9, 86 (2008), 2579–2605. http:
//jmlr.org/papers/v9/vandermaaten08a.html

[43] Jiawei Zhang, Yang Wang, Piero Molino, Lezhi Li, and David S. Ebert. 2019.
Manifold: A Model-Agnostic Framework for Interpretation and Diagnosis of

Machine Learning Models. IEEE Trans. Vis. Comput. Graph. 25, 1 (2019), 364–373.
https://doi.org/10.1109/TVCG.2018.2864499

[44] Xiaoyu Zhang, Jorge Piazentin Ono, Huan Song, Liang Gou, Kwan-Liu Ma, and
Liu Ren. 2023. SliceTeller: A Data Slice-Driven Approach for Machine Learning
Model Validation. IEEE Trans. Vis. Comput. Graph. 29, 1 (2023), 842–852. https:
//doi.org/10.1109/TVCG.2022.3209465

[45] Kaiyu Zhao, Matthew O. Ward, Elke A. Rundensteiner, and Huong Ngo Higgins.
2014. LoVis: Local Pattern Visualization for Model Refinement. Comput. Graph.
Forum 33, 3 (2014), 331–340. https://doi.org/10.1111/cgf.12389

244

http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1109/TVCG.2018.2864499
https://doi.org/10.1109/TVCG.2022.3209465
https://doi.org/10.1109/TVCG.2022.3209465
https://doi.org/10.1111/cgf.12389

