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New methods for drug synergy prediction:
A mini-review
Fatemeh Abbasi1 and Juho Rousu2

Abstract
In this mini-review, we explore the new prediction methods for
drug combination synergy relying on high-throughput combi-
natorial screens. The fast progress of the field iswitnessed in the
more than thirty original machine learning methods published
since 2021, a clear majority of them based on deep learning
techniques.We aim to put these articles under a unifying lens by
highlighting the core technologies, the data sources, the input
data types and synergy scores used in the methods, as well as
the prediction scenarios and evaluation protocols that the arti-
cles deal with. Our finding is that the best methods accurately
solve the synergy prediction scenarios involving known drugs or
cell lineswhile the scenarios involving newdrugs or cell lines still
fall short of an accurate prediction level.
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Introduction
Combination therapies involving two or more drugs are
nowadays frequently used to treat complex diseases.
Combination therapies can enhance treatment efficacy
while mitigating side-effects and drug resistance, due to
lower required drug doses and drug synergistic effects.
The vast number of potential drug combinations pre-
sents a major bottleneck for developing new combina-
tion therapies, which calls for new computational
approaches to facilitate the exploration of drug combi-
nation spaces.

In recent years, several large high-throughput screening
datasets for drug combination have been published
[1e5] which has fueled the development of a new
generation of predictive models for drug synergy.

In this mini-review we focus on the new prediction
methods based on deep learning, pioneered by the
DeepSynergy method [6], and machine learning devel-

oped in last years. We put these articles under a unifying
lens by first highlighting the prediction setups, included
the prediction scenarios, the data sources, the input data
types and synergy scores used in model output, as well
as the evaluation protocols used. Following that, we
discuss the core technologies, commonly used in the
models, and present an overview of the predictive per-
formance of the models.

We limit our focus to newmethods that have been tested
against large benchmark datasets on pre-clinical synergy

and dose response data, in particular leaving out
drugedrug interaction (DDI) prediction, which has its
own focused literature (see e.g. Ref. [7]), as well as
papers that are using small scale data or lacking com-
parison to alternative prediction methods. In addition,
we do not cover web-based tools, software and libraries
that implement prediction methods (see e.g. Ref. [8] for
a review).

Prediction setups
Synergy scores
The output of a synergy prediction model is either a
real-valued synergy score (a regression task) or a binary
prediction (synergistic/non-synergistic), which is
generally obtained from the synergy scores by thresh-
olding. The most common synergy scores are Bliss in-
dependence, Loewe additivity, zero interaction
potential (ZIP), and Highest single agent (HSA),

ComboScore and S-score [9]. Synergy prediction models
can be trained separately against different synergy
scores or, by using multi-task learning [10], trained
against multiple scores at the same time. Regression
methods generally use the synergy scores as the model
output, while classification methods use some form of
thresholding to classify the combinations as synergistic,
non-synergistic or antagonistic. Alternatively, the
methods can be trained to predict the doseeresponse of
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the combination, and the synergy scores can be
computed in a post-processing step [11].

Input data
Drug combination prediction models utilize diverse data
types to capture the complexity of drug interactions and
their effects. Table 1 lists the most important data
sources for drug synergy prediction, including synergy or
doseeresponse data of drug combinations (top part) and
data sources containing descriptors and profiling data of
drugs and cell lines (bottom part).

Below we explain shortly the most common data types
used by the methods included in this mini-review, to
illustrate the commonalities and differences of the
predictive methods listed in Table 2. We note that there
is a large amount of further detail and variations within
the general datatypes and details should be checked
from the original articles.

� Drug features: These encompass various molecular
descriptors and fingerprints (FP), chemical structures

(CS), pharmacological properties, drug (mono-
therapy) doseeresponse. Such features provide in-
formation about the characteristics and potential
interactions of the drugs. In addition, some methods
include drug combination response in other cell lines
than the one being predicted as an input feature
[11,33,34].

� Genomic and transcriptomic data: Cell line expression
profiles (CLE), miRNA expression, genomic muta-
tions (MUT), copy number variations (CNV), and
other genomic data can be leveraged to identify mo-

lecular signatures associated with drug response.

These multi-omics data sources contribute to a
deeper understanding of the mechanisms underlying
drug combination effects.

� Biological pathways and networks: Proteineprotein
interaction networks (PPI) and drugetarget associa-
tions (DTA), offer valuable insights into the under-
lying mechanisms of drug combinations. They enable
the incorporation of biological knowledge and context
into the prediction models.

The methods in Table 2 generally divide into two types:
(1) narrow input data, relying on one type of drug
feature and one type of cell line feature (usually CLE)
combined with very large training sets, and (2) broad
input data, using multiple drug, genomic and biomedical
pathway data, but with smaller training data sets. The
first category generally allows easier scale-up to large

data better but may be restricted in generalizing in the
more challenging prediction scenarios (LDO, LCO) due
to limited biological context. The second category, on
the other hand, has broader biological context but may
be restricted in training data size.

Prediction scenarios
The difficulty of synergy prediction depends signifi-
cantly on the assumption of which data we expect to be
present at prediction time. Given a triplet (D1, D2, C) of
a pair of drugs (D1,D2) and a cell line (C) to be predicted
in the test set, the following scenarios are
frequently studied:

� Leave-triplet-out (LTO): The triplet (D1,D2, C) does
not occur in the training data. However, the drug pairs

Table 1

Data sources containing combination response data for model training and evaluation (top part) and sources containing additional input
data for drugs and cell lines (bottom part). The data sources marked with ‘“*” are databases integrating multiple studies.

Data source Type of data Size Ref

AZ–SANGER 6-by-6 dose–response matrix 118 drugs, 85 cell lines, 910 pairs, 11 576 triplets [3]
GDSC2 2-by-7 dose–response matrix 65 drugs, 125 cell lines, 2025 pairs, 108 259 triplets [23]
DrugComb* Synergy scores 8397 drugs, 2320 cell lines, 739 964 triplets [4]
DrugCombDB* Synergy scores 2887 drugs, 124 cell lines, 448 555 triplets [5]
Merck2016 4-by-4 dose–response matrix 39 drugs, 38 cancer cell lines, 583 pairs, 22 737 triplets [1]
NSCLC 1-by-5 dose–response 263 drugs, 81 cell lines, 5082 pairs, 369 776 triplets [24]
NCI-ALMANAC 3-by-3 or 5-by-3 dose–response matrix 104 drugs, 5232 pairs, 60 cell lines, 304 549 triplets [2]
SynergXDB* Dose–response matrix, cell line profile 1977 drugs, 151 cell lines, 22 507 pairs, 477 839 triplets [25]
CTD2-NCATS Synergy scores >11 000 drug combinations [26]
CCLE CLE data on the expression levels of genes in

different cell lines
>1000 cell lines [27]

CTRP Multi-omics data of cancer cell lines, dose response
of individual drugs

481 compounds, 860 cancer cell lines [28]

GDSC Genomic, transcriptomic, and drug sensitivity data >1000 cancer cell lines [29]
DepMap Gene dependency data from knockout experiments >1500 cell lines [30]
Drugbank Molecular information about drugs, their

mechanisms, interactions, and targets
>500 000 drugs and drug products [31]

PubChem Chemicals by name, molecular formula and structure >166M compounds [32]
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Table 2

Summary of recent methods in drug synergy prediction.

Method Year Model type Data sources Input data types Synergy scores Ref

AuDNNSynergy 2021 AE,DNN Merck-2016, TCGA FP, MUT, CNV Loewe [35]
CCSynergy 2023 DNN Merck-2016, DrugComb, Chemical Checker FP, multi-omics Loewe [13]
comboLTR 2021 HOFM NCI-ALMANAC MACCS, multi-omics Dose–response [33]
DCE-DForest 2022 BERT, Deep Forest NCI-ALMANAC SMILES, CLE Classification [37]
DeepDDS 2022 GNN, DNN Merck-2016 CS, CLE Loewe [38]
DeepTraSynergy 2023 Multitask, Transformer DrugCombDB, OncologyScreen PPI, SMILES Loewe [39]
DEML 2023 DNN, Ensemble DrugComb FP, CLE Loewe [40]
DFFNDDS 2023 BERT, DNN DrugComb, DrugCombDB SMILES, FP, CLE Loewe [14]
DTSyn 2022 Transformer Merck-2016, AstraZeneca, FLOBAK, ALMANA, FORCINA,

YOHE, CCLE, DeepChem
CLE, SMILES, PPI Loewe [15]

EC-DFR 2022 Deep Forest DrugComb, LINCS, PubChem CLE, FP S score [20]
Forsyn 2023 Deep Forest NCI-ALMANAC, DrugComb, DrugCombDB, AZ–Sanger SMILES, CLE Classification [41]
GraphSynergy 2021 GCN DrugCombDB, OncologyScreen, CCLE PPI, DPA,CPA Loewe [42]
GAECDS 2023 Graph AE, CNN DrugComb, CCLE, PubChem CLE, SMILES Loewe [43]
Hypergraph-Synergy 2022 GNN Merck-2016, NCI-ALMANAC, PubChem, COSMIC SMILES, CLE Loewe [44]
HyperSynergy 2023 GNN, DNN, CNN SYNERGxDB, CCLE, PubChem SMILES, CLE Loewe [45]
KGE-DC 2022 GNN DrugComb, DrugBank FP, CLE, DPA Loewe,

Classification
[46]

Kim et al. 2021 DNN, Transfer learning DrugComb, CCLE FP, CLE Loewe [47]
Ma et al. 2021 PCA,DNN AZ–SANGER, Merck2016 FP, CLE Loewe [48]
MARSY 2023 DNN, Multitask DrugComb CLE ZIP, S-score [10]
MatchMaker 2022 DNN DrugComb CS, CLE Loewe [49]
MGAE-DC 2023 GNN,AE, DNN Merck-2016, NCI-ALMANAC, CLOUD, FORCINA FP Loewe, Bliss, ZIP,

HSA
[16]

Nafshi et al. 2021 PMF NCI-ALMANAC Dose–response Dose–response [50]
NEXGB 2022 XGboost DrugCombDB DPA, PPI, Pathway Classification [51]
PIICM 2023 GP Merck-2016 Dose–response Dose–response [34]
Pinoli et al. 2022 NMTF DrugCombDB CLE, CNV ZIP [22]
PRODeepSyn 2022 GCN Merck-2016 FP, PPI, CLE, MUT Loewe [17]
SDCNet 2022 GCN DrugComb FP Loewe [52]
Shim et al. 2022 Word2vec, DNN NCI-ALMANAC Pubmed ComboScore [53]
SNRMPACDC 2023 Siamese Network Merck-2016 FP, CNV, MUT Loewe [18]
SynPathy 2022 DNN DrugComb Pathway, CS Loewe [54]
SYNPRED 2022 Ensemble NCI-ALMANAC, DrugComb FP, multi-omics Loewe [19]
SynPredict 2023 DNN Merck-2016, NCI-ALMANAC FP, CLE Loewe, Bliss, ZIP,

HSA, S-score
[55]

TranSynergy 2021 DNN, Transformer Merck-2016, Drugbank, Chembel, CCLE, GDSC DepMap CLE, SMILES Loewe [21]
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(D1,D2) may occur in the training set connected to
another cell line C0.

� Leave-pair-out (LPO): The drug pair (D1,D2) does
not occur in the training set in connection to any cell
line. however, the individual drugs may occur in
training set in connection to any cell line.

� Leave-drug-out (LDO): At least one of the drugs in
the pair (D1, D2) does not occur in training set at all.

� Leave-cell line-out (LCO): The cell line C does not
occur in the training set but drugs D1 and D2 may
occur in the training set in conjunction of other cell

lines.

The choice of the scenario has a major effect on the
accuracy of the prediction. However, in the articles
describing the methods (Table 2), the assumed scenario
is often only implicitly given, in the description of the

training-validation-test splitting or the cross-validation
procedure. Table 3 lists the scenarios that we identi-
fied in the articles. By far the most common scenario is

LTO which follows from splitting unique triplets
randomly into training, validation and test sets or cross-
validation folds, followed by LPO [12e15,10,16e19],
while LDO [20,16,18,19,21] and LCO [20,16,22,19,21]
have received less attention, perhaps partly due to the
that each scenario requires its dedicated data splitting
strategy and partly due to their difficulty.

Evaluation protocols and hyperparameter tuning
The most popular cross-validation procedure among the
references is 5-fold cross-validation, where the splits are

chosen to honor the scenario under investigation.
Another common strategy is random train-test-split,
which is repeated a few times. A few articles use in
addition an independent test set that is not used in the
model development [38,39,44,47,49,17].

Most synergy prediction models have some hyper-
parameters that are given as input to the learning algo-
rithm, which typically affects the capacity to the model
to fit the data. However, over half of the articles in this

Table 3

Summary of evaluation methods in the reviewed articles, including the prediction scenarios, validation protocols and hyperparameter
tuning.

Method Scenarios Validation method Hyperparameter tuning

AuDNNSynergy LPO 5-fold CV Validation set
CCSynergy LPO 5-fold CV Not clear
comboLTR LPO 5-fold CV Validation set
DCE-DForest LTO Repeated train-test Validation set
DeepDDS LTO 5-fold CV, independent set Not clear
DeepTraSynergy LTO 5-fold CV, independent set Not clear
DEML LTO 5-fold CV Nested CV
DFFNDDS LPO 5-fold CV Not clear
DTSyn LPO 5-fold CV Not clear
EC-DFR LDO, LCO 5-fold CV Not clear
Forsyn LTO 5-fold CV Not clear
GraphSynergy LTO Not clear Not clear
GAECDS LTO 5-fold CV Not clear
HyperGraphSynergy LCO, LPO, LTO 5-fold CV, independent set Not clear
HyperSynergy LTO Repeated train-test Validation set
KGE-DC LTO 10-fold CV Not clear
Kim et al. LTO 5-fold CV, independent set Not clear
Ma et al. LTO Not clear Not clear
MARSY LPO, LTO 5-fold CV Validation set
MatchMaker LPO 5-fold CV, independent set Nested CV
MGAE-DC LCO, LDO, LPO, LTO 10-fold CV Validation set
Nasfi et al. Custom Train-test split Not clear
NEXGB LTO 5-fold CV Not clear
PIICM LTO Train-test split 5-fold CV
Pinoli et al. LCO Not clear Not clear
PRODeepSyn LPO 5-fold CV, independent set Nested CV
SDCNet LTO 10-fold CV Not clear
Shim et al. LTO 5-fold CV Not clear
SNRMPACDC LPO LDO 5-fold CV Not clear
SynPathy LTO 10-fold CV Validation set
SYNPRED LCO, LDO, LPO, LTO Train-test split 3-fold CV
SynPredict LTO 5-fold CV Not clear
TranSynergy LCO, LDO, LPO 5-fold CV Nested CV
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review did not clearly explain the data splitting strategy
for hyperparameter tuning (Table 3). The use of a
validation set separated from the training and test data
is a sound approach used in several of the articles. A few
articles [40,49,17,21] employ a rigorous nested cross-
validation approach, where the inner loop is used to
tune the hyperparameters and the outer one is used for
obtaining the performance estimates.

Predictive models for drug synergy
Here we provide a short overview of the modeling ap-
proaches used in the reviewed articles. The interested
reader may check the original articles for details.

Neural network models
The majority of the recent drug synergy prediction

models (Table 2) are based on neural networks of
various types, which have become popular in recent
years. Their main benefit is the ability to learn new
representations from large training data while the main
deficiency is the computational complexity of training
the models.

Deep neural networks (DNN) are a widely used neural ar-
chitecture in drug synergy prediction models, either as a
component or a standalone model
[12,13,38,14,45,47,48,10,49,16,53,54,19]. DNNs are

composed of multiple layers of interconnected compu-
tation units that compute a linear transform of the inputs
followed by a non-linear activation function. Myriads of
DNN architectures can be created by using different
types of connection patterns between the units.

Encoder-decoder networks such as auto-encoders (AE) and
transformers are used to learn latent representations of
structured data such as SMILES sequences or molecular
graphs. Transformers learn mappings between general
inputs and outputs. By relying on attention units,

transformers can adaptively focus on different parts of a
structured object. In drug synergy prediction, BERT
transformer has been used to learn latent representations
from SMILES strings [37,14]. More generally, trans-
formers have been used tomap embeddings of input data
sources into intermediate representations [21,39,15]. In
addition, the Word2vec encoder-decoder network has
been used to extract latent representations from text
documents describing drug combinations [53].

Graph neural networks (GNN) specialize in analyzing

relational data represented as graphs or networks. GNNs
are capable of learning embeddings for individual nodes
and edges as well as complete graphs. The main benefit
of GNNs over text (e.g. SMILES) or vectorial repre-
sentations (e.g. molecular fingerprints), is their capa-
bility to learn fine-grained representations that are still
explainable in graphical form. In drug synergy predic-
tion, GNNs are used to model molecular graphs as well

as biological networks of drugs, targets and cell lines
[38,44,56]. Graph Convolutional Network (GCN) is one of
the most widely used type of GNN [52,57,17,42,14,58].
Graph Attention Networks (GAT) combine graph
convolution with attention units for added flexi-
bility [38].

Siamese network share parameters between subnetworks

processing different data items arising from paired ob-
jects, such as pairs of drugs [18]. They are particularly
valuable for assessing the similarity or complementarity
of drug properties, an essential factor in predicting
drug synergy.

Forest-based models
Models based on ensembles of trees such as random
forest, based on bootstrap aggregation, and XGBoost
[51] based on gradient boosting are strong predictors
and frequently used in drug combination prediction.
These methods have been recently extended to deep
forests where several layers of forests are used
[41,37,20] for synergy classification. However, similarly

to neural networks, they can be computationally inten-
sive to build and challenging to interpret.

Factorization models
Factorization approaches in drug combination prediction
involve the decomposition of multi-dimensional tensors
into latent factors to extract latent features and re-
lationships between drugs [22,50]. These models are
powerful in predicting missing values in incomplete data
tensors (e.g. combination response or synergy data) by
learning from the co-occurrences of subsets of variables.
In particular Higher-Order Factorization Machines
(HOFM) [11] and latent tensor reconstruction [33] are

accurate in the LTO scenario as well in completion of
individual doseeresponse matrices. On the other hand,
they are not expected to have an advantage in the LDO
and LCO scenarios, which require extrapolation outside
the known drug or cell line space.

Bayesian models
Bayesian models provide a consistent fully probabilistic
inference approach for modeling drug combination ex-
periments and predicting doseeresponse relationships.
In particular, Gaussian processes have been used to
model drug synergy [36,34]. These models particularly
excel in allowing the prediction uncertainty to be
rigorously addressed. However, the complexity of

Bayesian inference can be computationally demanding
and may require specialized knowledge in statistics,
limiting their accessibility and use in broad-
er applications.

Prediction performance of the models
Figure 1 summarizes the predictive performance of the
models reviewed here. Figure 1a depicts the reported
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AUROC values for each classification method. The
highest values are due to GAECDS (0.98), MatchMaker
(0.97) and Kim et al. (0.96) while nine further methods
reach 0.9 AUROC or more. Methods that report per-
formance over multiple scenarios exhibit a range of
values given by the BoxeWhisker plot. Among regres-
sion models predicting Loewe synergy (Figure 1b),

MARSY obtains the highest Pearson Correlation Coef-
ficient (PCC) of 0.89 on DrugComb, above the second
highest value 0.83 by MGAE-DC on Merck-2016, both
of these obtained in the LTO scenario. Figures 1c and 1d
depict the distributions of AUROC and PCC values in
different scenarios. The LCO and LDO scenarios show
as significantly harder prediction tasks than LPO and

Figure 1

Summary of predictive performance of synergy prediction models: (a) Classification performance by method, (b) Regression performance by method (c)
Classification performance by scenario, (d) Regression performance by scenario (e) Classification performance by dataset.
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LTO: based on Wilcoxon rank-sum test with Bonferroni
correction, LDO has significantly lower AUROC
compared to LPO (p = 0.026), and LTO (p = 0.002).
Similarly, LCO has lower mean AUROC than LTO
(p = 0.015). In regression tasks the difference in PCC
between LCO and LPO is significant (p = 0.018). Due
to the small sample sizes none of the other differences
are statistically significant. Figure 1e shows the reported

AUROC values per dataset. The distributions are rela-
tively similar and no statistically significant differences
can be shown between the datasets.

Discussion
Themajority of the synergy prediction methods focus on
the LTO and LPO tasks, where the performance of the
best methods is already very high, and probably hard to
improve upon. Notably the top performers rely on large
number of training examples combined with ‘“narrow”
input representation, single input data types for drugs
and cell lines. The best results in the LCO and LDO
tasks, on the other hand, are clearly lower, and suggest a
shift of focus is needed for the method developers. In
these scenarios, developing better representations for
broad input data types could be a way forward.

We note that the evaluation setups across papers are not
always clearly reported and easy to compare. Although
some common protocols are in use, e.g. 5-fold cross-
validation, the reporting of hyperparameter tuning is
lacking in many papers, even among top performing
models, which diminishes the confidence in the reported
results. We are nevertheless happy to see the rigorous
nested cross-validation approach in several papers.

Going forward, it seems clear that more unified ap-
proaches are needed for the inter-comparability of the

methods. The standardization of benchmark datasets,
prediction scenarios and evaluation protocols should
help the community to make clearer assessment of the
state-of-the-art and potential points of improvement.
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