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Abstract Water scarcity has become a major constraint to socio-economic development and a threat
to livelihood in increasing parts of the world. Since the late 1980s, water scarcity research has attracted
much political and public attention. We here review a variety of indicators that have been developed to
capture different characteristics of water scarcity. Population, water availability, and water use are the key
elements of these indicators. Most of the progress made in the last few decades has been on the quantifi-
cation of water availability and use by applying spatially explicit models. However, challenges remain on
appropriate incorporation of green water (soil moisture), water quality, environmental flow requirements,
globalization, and virtual water trade in water scarcity assessment. Meanwhile, inter- and intra-annual
variability of water availability and use also calls for assessing the temporal dimension of water scarcity.
It requires concerted efforts of hydrologists, economists, social scientists, and environmental scientists to
develop integrated approaches to capture the multi-faceted nature of water scarcity.

1. Introduction

Population growth, economic development, and dietary shift (toward more animal products) have resulted
in ever increasing water demand, and consequently pressures on water resources. Many parts of the world
are enduring water scarcity, which generally refers to the condition wherein demand for water by all sectors,
including the environment, cannot be satisfied fully due to the impact of water use on supply or quality of
water [Falkenmark et al., 1989; Alcamo et al., 2000; Vörösmarty et al., 2000]. In the Global Risks 2015 Report of
the World Economic Forum, water supply crisis was identified as the top 1 high-impact risk for our current
times [World Economic Forum, 2015].

Understanding water scarcity is important for formulating policies at global, regional, national, and local
scales. “Addressing water scarcity and quality” is one of the six themes of the Eighth Phase of the Inter-
national Hydrological Programme (IHP-VIII) that focuses on “Water Security: Responses to Local, Regional
and Global Challenges (2014–2021).” Similarly, it is a key focus of the scientific decade 2013–2022 of the
International Association of Hydrological Sciences (IAHS), named “Panta Rhei –Everything Flows,” which is
dedicated to research activities on changes in hydrology and society [Montanari et al., 2013]. A targeted
working group on “Water Scarcity Assessment: methodology and application” was established in the Panta
Rhei program to develop innovative methodology and conduct water scarcity assessment (http://iahs
.info/Commissions--W-Groups/Working-Groups/Panta-Rhei/Working-Groups.do). “Substantially reduce
the number of people suffering from water scarcity” is also one of the targets set in the Sustainable
Development Goals recently adopted by the United Nations [2015].
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Table 1. Summary of the Characteristics of Water Scarcity Indicators

Indicator Name Measurement

Water Quantity

(Blue Water)

Green

Water

Water

Quality EFR

Main

References

Falkenmark indicator (water
shortage)

Per capita water
availability

Y N N N Falkenmark et al. [1989];
Ohlsson and Appelgren
[1998]; Falkenmark et al.
[2009]

Criticality ratio (water stress) Ratio of water use to
availability

Y N N Yb Falkenmark [1997];
Raskin et al. [1997];
Alcamo et al. [2000];
Vörösmarty et al. [2000];
Oki and Kanae [2006]

IWMI indicator (physical and
economic water scarcity)

Proportion of water
supply that is water
availability,
accounting for water
infrastructure

Y N N N Seckler et al. [1998]

Water poverty index Weighted average of
five components
(water availability,
access, capacity, use,
and environment)

Y N N Y Sullivan [2002]; Sullivan
et al. [2003]

Green-blue water scarcity Requirement versus
availability of
green-blue water
resources

Y Y N Yb Rockström et al. [2009];
Gerten et al. [2011]

Water footprint-based
assessment

The ratio of water
footprint to water
availability

Y Y N Y Hoekstra et al. [2011]

Cumulative abstraction to
demand ratio

Cumulative
abstraction to
demand ratio

Y N N N Hanasaki et al. [2008]

LCA-based water stress
indicator

The ratio of water use
of water footprint to
availability

Y Y Y N Frischknecht et al.
[2009]; Pfister et al.
[2009]

Quantity–quality-
environmental flow
requirement (QQE) indicator

Incorporating water
quantity, quality, and
EFR

Y N Y Y Zeng et al. [2013]; Liu
et al. [2016]

EFR, environmental flow requirements; IWMI, International Water Management Institute; LCA, life cycle assessment.
bEFR is included but constant 30% requirement assumed.

Since the late 1980s, when water scarcity became an issue, many indicators have been developed to facil-
itate the assessment of status of water scarcity across the world (Table 1). Publications on water scarcity
assessment have increased dramatically in the last two decades (Figure 1) amid the intensification of the
problem in increasing parts of the worlds. Rather straightforward water scarcity indicators were developed
in the late 1980s throughout the beginning of the 2000s, which were criticized for their focus on surface
water and groundwater (so called blue water) only, neglecting the important role of green water (soil mois-
ture fed by rainfall) and spatial and temporal variations [Savenije, 2000; Rijsberman, 2006].

Entering the 2000s, more sophisticated approaches with high spatial resolution have been developed,
attempting to incorporate more aspects of water, such as water quality, green water (soil moisture),
and environmental flow requirements (EFR). In recent years, explicit representation of water quality and
environmental flow requirement have been taken into account, through a multiple-value water scarcity
indicator [Zeng et al., 2013; Liu et al., 2016]. Although this development has increased understanding of
the multi-faceted nature of water scarcity, these attempts usually focused on merely one aspect of water
scarcity. In contrast to the wide use of the classical water scarcity indicators developed in the early years,
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Figure 1. The number of publications based on the keyword “water scarcity” from
Scopus as of January 17, 2016. The years of publication of specific water scarcity indicators
are marked.

the more integrated indi-
cators have rarely been
applied beyond the
research groups where
they were developed.

It is worth mentioning
that most approaches
for water scarcity assess-
ment have used single
indicators to quantify
water scarcity. A few have
combined two indicators.
For example, Falkenmark
[1997] assessed blue water
scarcity with two indica-
tors, water shortage and
water stress (see Table 1),
together using “Falken-
mark matrix.” Kummu
et al. [2016] used similar
approach to Falkenmark
[1997] for water scarcity

assessment on the global level for the whole 20th century. According to Kummu et al. [2016], areas under
both water shortage and stress have very limited adaptation options to alleviate the scarcity compared to
areas under sole stress or shortage.

In this paper, we provide a comprehensive review of existing water scarcity indicators and reflect on their
relevance in a rapidly changing world. Based on which, we highlight some major challenges faced in the
future research and propose ways forward.

2. An Overview of Classical Water Scarcity Indicators

2.1. The Falkenmark Indicator

The Falkenmark indicator [Falkenmark et al., 1989], measuring water scarcity is a simple yet widely used
method for calculating water scarcity. It requires: the number of people living within a given spatial domain
and the volume of water (termed blue water by Falkenmark) available within that domain. The volume of
water available per person is then calculated in m3/cap/year. The indicator’s reliance on population leads
to the Water Crowding Index (WCI), which measures the number of people per unit of available water, e.g.,
persons/million m3/year. A value of 1,700 m3/cap/year of renewable freshwater was proposed as the thresh-
old for water scarcity [Falkenmark et al., 1989], below which social stress and a high level of competition for
water emerges [Falkenmark and Rockström, 2004]. If water availability falls below 1,000 m3/cap/year, then
the area experiences high water scarcity, and below 500 m3/cap/year, absolute scarcity.

However, its ease of application is tempered by an important caveat: the index is only an indication of supply
side effects on global water scarcity [Schewe et al., 2014]. The indicator overlooks temporal variability and
the important drivers of demand, related to economic growth, lifestyle, and technological developments
[Savenije, 2000]. Management practices and infrastructure are not considered by the index and the simple
threshold does not reflect the true spatial distribution of demand within and between the domains over
which the index is calculated.

2.2. Water Use to Availability Ratio

The water use to availability ratio, or criticality ratio, is another widely used indicator to assess water scarcity.
The advantage of this ratio is that it measures the amount of water used, and relates it to the available
renewable water resources [Alcamo and Henrichs, 2002]. Over the past decades, the development of water
use models has been fast, and water availability and use can now be modeled spatially explicitly on global
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scale with high spatial resolutions [Alcamo et al., 2003a; Hanasaki et al., 2008; Flörke et al., 2013; Wada et al.,
2014].

Water use can refer to either water consumption or water withdrawals. Water consumption measures the
amount that is removed from rivers, lakes, or groundwater sources and evaporated to the atmosphere.
Water withdrawal refers to the amount of water that is withdrawn from these sources, of which part returns
to the system by leakage or return flows. The majority of the existing water scarcity studies use withdrawal
to indicate water use [Alcamo et al., 2003b; Oki and Kanae, 2006; Wada et al., 2011]. Recent work by Munia
et al. [2016] uses consumption and withdrawals as a minimum and maximum levels of scarcity, respectively.
However, since consumption is normally much smaller than withdrawal, the ratio of consumption to aver-
age available renewable water resources usually indicates an unrealistically low level of water scarcity.

Based on the water criticality ratio, high water stress occurs if water withdrawal exceeds 40% of the avail-
able water resources [Alcamo and Henrichs, 2002]. However, as part of the withdrawal water returns back
to water bodies and the actual proportion of the return flow vary across regions depending on natural and
social-economic and technical conditions, using 40% as a water scarcity threshold may not be consistent in
reflecting the status of water scarcity across regions.

2.3. Physical and Economic Water Scarcity—The IWMI Indicator

The International Water Management Institute (IWMI) developed a more complex indicator for assessing
water scarcity [Seckler et al., 1998], combining the physical and economic water scarcities. Indicator takes
into account the proportion of water supply, of a country in question, from renewable freshwater resource
available for human requirements, while accounting for existing water infrastructure such as desalinization
plants and water stored in reservoirs. A novel element of the index is that it considers an individual country’s
potential to develop water infrastructure and to improve irrigational water use efficiency.

Their analysis yielded five country groupings. The country groupings were in turn used to define whether
countries are either “physically water scarce” or “economically water scarce” [Rijsberman, 2006]. The former
is where countries are unable to meet estimated water demand in 2025, even after accounting for national
adaptive capacity. The latter is where countries have a sufficient renewable water resource but would have
to invest significantly in water infrastructure to make the resources available for consumption in 2025.

The index is available as a Microsoft Excel model [Seckler et al., 1998] yet it has not been used as much as
other indicators to assess global water scarcity, with exception to an assessment conducted by Cosgrove
and Rijsberman [2000]. One reason for this is that it is considerably more complex than many other indices
reviewed here and thus more time-consuming to compute. Another is perhaps that its interpretation is
less intuitive than other indices and therefore less attractive for presentation to the public and/or a policy
audience [Rijsberman, 2006].

2.4. Water Poverty Index

The Water Poverty Index (WPI) proposes a relationship between the physical extent of water availability, its
ease of abstraction, and the level of community welfare [Sullivan, 2001]. It considers five factors: resources
or water availability; access to water for human use; effectiveness of people’s ability to manage water; water
use for different purposes; environmental integrity related to water and of ecosystem goods and services
from aquatic habitats in the area. The WPI is mainly designed for assessing the situation facing poor water
endowments and poor adaptive capacity.

The WPI is calculated with the weighted average of the five components, each of which is first standardized
so that it falls in the range 0–100; thus the resulting WPI value is also between 0 and 100, representing
the lowest and the highest level of water poverty [Sullivan et al., 2003]. The indicator has the advantage
of comprehensiveness. However, its application is hampered by its complexity and lack of information for
some of the factors required for building the indicator on large scale [Rijsberman, 2006]. It has so far only
been applied at the community level for pilot sites in a few countries.

3. Progress in Water Scarcity Assessment

Since the beginning of the 2000s, water scarcity assessment has entered an era characterized by the appli-
cations of more sophisticated models supported with spatial analytical tools. The water use to availability
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ratio has been the basis of many water scarcity assessment approaches developed during this period. The
main efforts made in these assessments have been in the measurements of water “use” and “availability.”

3.1. Green-Blue Water Scarcity

Green water refers to soil moisture in the unsaturated zone recharged by precipitation. It is a crucial water
resource for agricultural production, responsible for about 90% of total water use of agriculture and 60% of
the global food is produced without additional irrigation (i.e., blue water use) [Rockström et al., 2009].

The development of the green-blue water indicator has attempted to incorporate green water in the assess-
ment. The pioneer work was done by Rockström et al. [2009] who developed the first indicator to assess
scarcity where both blue and green water resources are included. They measured the scarcity by comparing
global average green-blue water consumption of 1,300 m3/cap/year for a healthy diet (3,000 kcal/cap/day
of which 20% originates from animal sources) and locally available green-blue water resources. The area is
under scarcity if available water resources are less than the average requirement of 1,300 m3/cap/year. This
was further developed by Gerten et al. [2011] who incorporated the local water requirements for a healthy
diet to the calculations and thus taking into account spatial variations of the water needed to produce the
actually grown food in different locations. These vary from less than 650 m3/cap/year in Europe and North
America to over 2,000 m3/cap/year in large parts of Africa [Gerten et al., 2011; Kummu et al., 2014].

Despite the merit of incorporating green water in water scarcity assessment, the attempts so far suffer
from a drawback of inconsistency. The blue water resources are generally quantified as the total run-off
of renewable freshwater on the earth surface or given geographical locations/river basins, regardless of
their accessibility. The green water resources, on the other hand, are quantified as the evapotranspiration
of vegetation on croplands (and grazing land). This greatly underrepresents the quantity of green water
resources because a large (if not larger) amount of evapotranspiration occurs on non-croplands.

3.2. Water Footprint-Based Water Scarcity Assessment

The water footprint measures the amount of water used to produce the goods and services human uses
[Hoekstra et al., 2011]. Noting the problem of ignoring the return flow in using water withdrawal to refer to
water use in the water scarcity assessment, Hoekstra et al. [2012] developed a water footprint-based assess-
ment for global blue water scarcity assessment. Three alternatives are used in measuring water use and
availability. First, water use refers to consumptive use of ground- and surface water flows—i.e., the blue
water footprint. Second, the flows needed to sustain critical ecological functions are subtracted from water
availability. A presumptive standard of 20% depletion rate is used as a threshold, beyond which, risks to eco-
logical health and ecosystem services increase. Third, water use and availability are measured on a monthly
rather than annual basis to account for seasonal water scarcity. The water scarcity indicator derived from
this approach provides a picture of where and when current levels of water use are likely to cause water
shortages and ecological harm within river basins around the world [Hoekstra et al., 2012]. However, the
assumption of EFR to be 80% of the total water resources across all the river basins in the assessment, as
suggested by Richter et al. [2011], is too simplistic, as it did not consider the complexity of EFR in individual
river regimes. This may also overestimate EFR as well as water scarcity because the 80% EFR is set unrealis-
tically too high for most of the regions of the world [Liu et al., 2016]. Many studies found that appropriate
levels of EFR vary across the river regimes considerably [Pastor et al., 2014].

3.3. Cumulative Abstraction to Demand Ratio—Considering Temporal Variations

In many areas of the world, water scarcity is seasonal, i.e., it only occurs in some months of the year, while
there may be enough water on an annual basis. Given this situation, some water scarcity assessments have
attempted to take the seasonality into consideration. For example, Alcamo and Henrichs [2002] took into
account low river flows in computing a version of the criticality ratio. Another example is the cumulative
abstraction to demand (CAD) ratio devised by Hanasaki et al. [2008]. The index was intended to apply the
results of global hydrological models, which are able to simulate river discharge and water abstraction at a
daily time step. This index is expressed as the ratio of the cumulated daily water abstraction from rivers to
the cumulated daily potential water demand (i.e., consumptive water requirement for agricultural, indus-
trial, and domestic use) for a specific year. Recent studies have also been conducted on monthly scale [Wada
et al., 2011; Hoekstra et al., 2012; Brauman et al., 2016]. It is assumed that if the ratio falls below unity, water
scarcity can occur. Hanasaki et al. [2008] demonstrated that CAD is low in Southeast Asia and the Sahel due
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to periodic, severe water shortage in the dry season, which is often overlooked in the assessments adopting
classical water scarcity indicators. CAD provides useful insights for assessing the impact of climate change
on water resources. In some areas, annual total run-off is projected to increase due to global warming water
scarcity may appear to diminish when the withdrawal to availability ratio is used, which may be misleading.
In this case, CAD presents a more realistic view of water scarcity because it takes into account the increase in
water scarce conditions during the dry months [Hanasaki et al., 2013; Haddeland et al., 2014]. However, the
high demand for data and complex computational tasks have limited the use of this water scarcity assess-
ment approach.

3.4. LCA-Based Water Stress Indicators

Water scarcity assessment has been introduced in life cycle assessment (LCA) to address water consump-
tion and its environmental impact since 2008 [Frischknecht et al., 2009; Pfister et al., 2009; Berger et al., 2014]
and is continuously expanded. The main methods used in LCA can be grouped into midpoint and end-
point indicators and address scarcity on watershed level [Kounina et al., 2013]. Midpoint indicators address
water scarcity as a water resource problem, while endpoint methods try to quantify potential impacts on
human health or ecosystem quality, which goes beyond scarcity but includes vulnerability and resilience.
LCA methods address water scarcity at the midpoint level.

In LCA, water consumptive use to availability ratios are used to derive an indicator based on various func-
tions, such as logistic or exponential [Kounina et al., 2013]. The most widely used indicator is the water stress
index (WSI) [Pfister et al., 2009]. Recognizing that both monthly and annual variability of precipitation may
lead to increased water stress during a specific period, a variation factor is introduced to calculate the ratio,
which differentiates watersheds with strongly regulated flows. Considering water stress is not linear with
regards to water consumptive use and water availability ratio, an adjusted WSI is calculated with a logistic
function to achieve continuous values between 0 and 1, while 0.1, 0.5, and 0.9 are assigned as thresholds
for moderate, severe, and extreme water scarcity. The WSI is served as a general screening indicator or char-
acterization factor for water consumption in life cycle impact assessment. As the LCA-based water scarcity
assessment focuses on impact assessment of water use, the indicator has not been separately used for water
scarcity assessment.

3.5. Integrated Water Quantity–Quality Environment Flow in the Water Scarcity Assessment

The water scarcity indicators developed have mainly considered water quantity. Zeng et al. [2013] developed
an integrated indicator, which is expressed as the sum of a quantity-induced indicator and a quality-induced
indicator. The quantity-induced water scarcity indicator follows the criticality ratio approach, and is defined
as the ratio of the water withdrawal to freshwater resources in a specific region during a certain period.
The quality-induced water scarcity indicator is defined as the ratio of grey water footprint to freshwater
resources. Here, grey water footprint is defined as the volume of freshwater that is required to assimilate
the load of pollutants based on natural background concentrations and existing ambient water quality
standards [Hoekstra et al., 2011]. It does not have the same meaning as the terms used in urban water man-
agement, for which grey water refers to the water comes out of the shower or sink. This indicator combining
quantity- and quality-induced water scarcity was illustrated by analyzing the water scarcity in China. The
result shows that the northern parts of the country are suffering from both quantity- and quality-induced
water scarcity (Figure 2). In southeast, quality-induced water scarcity is dominant due to the heavy water
pollution. The results imply that northern China has a much bigger burden to deal with the water scarcity
problems, while for other provinces, quality-induced water scarcity is a grand challenge.

On the basis of Zeng’s indicator, EFR was further added in the water scarcity assessment, resulting in a
quantity–quality-EFR (QQE) approach [Liu et al., 2016]. It is structured with multi-components in the indica-
tor: Squantity(EFR)|Squality. The QQE approach was first used for the Huangqihai River Basin in Inner Mongolia,
China. The QQE water scarcity indicator in this river basin is 1.3 (26%)|14.2, indicating that the basin was
suffering from scarcity problems related to both water quantity (1.3 is larger than the threshold of 1.0) and
water quality (14.2 is far larger than the threshold of 1.0, indicating a serious water pollution condition) for
a given rate of 26% of EFR.

The QQE water scarcity indicator provides an easy to obtain and to understand measurement that contains
the information of water quantity and quality status, as well as EFR. The procedure can be adapted to any
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Figure 2. Water scarcity assessment for different provinces with the quantity–quality indicator approach. This map was generated by
Liu based on the approach of Zeng et al. [2013].

other areas in the world to provide a comprehensive assessment on water scarcity. By specification, one can
also use the percentage of EFR to indicate any other levels of ecological habitat status. However, the QQE
indicator has some limitations. The indicator is not as straight forward as the existing indicators, which use a
single value to indicate the status of water scarcity. It requires some professional knowledge to understand
the indicator and interpret the information contained.

4. Where Are We Now?

Many global assessments of water scarcity have been conducted so far (Figure 3). The spatial resolution
ranges from country, region to grid cell. In general, all the indicators pointed out that the areas in the middle
to low latitudes of the northern hemisphere have a high level of water scarcity. It is noticed that the physical
and economic water stress (Figure 3c) and water poverty index (Figure 3d) also identified the severe water
scarcity problem in almost all African countries. This is attributed to the lack of economic capacity to build
water infrastructure as well as poverty, which have hindered these countries to access their water resources
that are often physically abundant. Despite the relevance of concerning economic factors in water scarcity
assessment, the complexity such concern brought to the assessment increases greatly. There is no con-
sensus on which social and economic factors should be included, and for different countries and regions,
these factors can be different. To keep the objectivity and simplicity, all the other water scarcity indicators
developed so far have been based solely on physical quantity of water availability and use.

One of the main outcomes of water scarcity assessments is estimates of number of people affected by water
scarcity. Results differ when different indicators are used, even for the same indicator from different refer-
ence sources (Figure 4). For example, estimates using the criticality ratio with a threshold of 40% tend to
be higher than those based on the Falkenmark indicator with a threshold of 1,000 m3/person/year. Varia-
tions in number of people living in water scarcity with the same indicator are partially related to different
spatial resolutions in the assessment. In general, the higher spatial resolution results in larger number of
people suffering from water scarcity (Figure 3). This is because the high spatial resolution can better reflect
the water scarcity situation in urban areas with high population concentration [Vörösmarty et al., 2010].
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Figure 3. Spatial distribution of water scarcity from different assessments. Below is a list of references for (a)–(h) and the indicator used
in relation to Table 1. (a) Water shortage [modified from Kummu et al., 2010]; (b) water stress [modified from Wada et al., 2011]; (c) Physical
and economic water scarcity [modified from Seckler et al. 1998]; (d) Water poverty index [modified from World Resources Institute 2006;
Sullivan et al., 2002]; (e) Green-blue water scarcity [modified from Kummu et al., 2014]; (f ) monthly blue water stress [modified from
Mekonnen and Hoekstra, 2016]; (g) cumulative abstraction to demand ratio [modified from Hanasaki et al. 2013]; (h) LCA-based water
stress indicator [modified from Pfister et al. 2009]. Note: all maps were redrawn by authors based on original data from the sources given
above, except water poverty index, which was modified from a softcopy map. Further, legend colors in some maps are modified for
consistency.

However, high spatial resolution tends to underestimate human capacity to bring water from outside into
cities. Also, including green water will enlarge the quantity of water availability for a geographical unit (e.g.,
country, region), resulting in smaller estimates of people living in water scarcity. Respecting the EFR by
leaving sufficient water in steams, on the other hand, results in larger estimates, because it reduces the
water resources available for humans. Furthermore, including water quality can lead to substantial increase
in the magnitude of water scarcity, as the poor water quality can make available water not usable. Overall,
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the estimated numbers from different indicators suggest that between 1.5 and 2.5 billion people were living
within areas exposed to water scarcity around the year 2000 (Figure 4), but water footprint-based water
scarcity assessment increases the number to 4 billion [Mekonnen and Hoekstra, 2016]. When water stress
and water shortage are assessed in a combined manner, altogether 3.8 billion lived under some degree of
water scarcity in 2005 [Kummu et al., 2016]. The numbers are projected to increase substantially up to at
least 2050 in association with the peak of world population. Current analyses suggest that thereafter the
numbers may decline.

5. Future Research Challenges and Directions

5.1. Validating Water Scarcity Indicators

The indicators presented in this paper have been used by scientists to compare their values in one region
versus another in order to estimate the relative level of water scarcity. However, so far very little efforts have

Figure 4. Number of people suffering from water scarcity assessed with the average annual water
availability per capita (1,000 m3/capita/year) and water use to availability ratio (40%). The marks
show the estimates from different studies. Specific estimates include: 1.2 billion [Hayashi et al.,
2010], 1.4 billion [Arnell, 2004], 1.6 billion [Alcamo et al., 2007; Arnell et al., 2011; Gosling and Arnell,
2016], 1.7 billion [Revenga et al., 2000], and 2.3 billion [Kummu et al., 2010]. But the number may be
quite different when other indicators are used, e.g., Mekonnen and Hoekstra [2016] estimated that
4 billion people live under conditions of severe water scarcity at least 1 month of the year between
1996 and 2005.

been made to prove how
these indicators appro-
priately reflects the water
scarcity quantitatively,
and how the thresholds
reasonably classify water
scarcity. All the indica-
tors and their thresholds
have been determined
based on expert judg-
ments. The expression
“to validate indicators”
generally means to sup-
port or corroborate on
a sound or authorita-
tive basis [Bockstaller and
Girardin, 2003; Dauvin
et al., 2016]. An essential
problem in validating
these indicators has been
the difficulty in identifying
an independent variable
for water scarcity. Alcamo
et al. [2008] used the “fre-
quency of occurrence of
drought-related crises” in
three large river basins
as an independent vari-
able. Values of this metric
were determined from
media-content analysis by

Taenzler et al. [2008]. With estimates of this variable, it was possible to test the validity of various water
scarcity indicators. Using modeling data from a 15-year period, it was found that 6 out of 14 different
tested water scarcity indicators were statistically related to the occurrence of drought-related crises
[Alcamo et al., 2008]. This initial work indicates that it may be possible to validate indicators, identify their
appropriate range of application, and test scarcity thresholds. Research in this direction would strengthen
the scientific basis of estimating water scarcity and perhaps accelerate the development of more useful
indicators.

5.2. Incorporating Water Quality in Water Scarcity Assessment

As poor water quality has intensified the pressure on water resources [Bayart et al., 2010], including more
specific water quality classes for ecosystem and human uses is necessary to enhance the pertinence of water
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scarcity assessments. Water quality is typically expressed as concentration of certain pollutants. The most
considered pollutants influencing water quality have been nutrient emissions, typically nitrogen and phos-
phorous, and to a lesser extent, chemical oxygen demand (COD) [Björklund et al., 2009; Liu et al., 2012]. The
assessment of water quality-induced water scarcity is sensitive to the pollutant selected. In order to include
water quality data in water scarcity assessments, suitable data need to be collected covering a range of
water quality parameters. Often, the list of parameters to be considered may be guided by the objectives
of a study, i.e., specific requirements for drinking water are different from that for irrigation water. For an
aggregated water scarcity assessment, it would be ideal to use an aggregated water quality indicator that
can reflect the overall water quality status. Building such an indicator with a broad applicability is a challenge
faced in the future water scarcity assessment.

Another challenge in incorporating water quality is that the availability of water quality data is very het-
erogeneously distributed over the world and varies tremendously between regions with huge data gaps
in developing countries. The United Nations Environment Programme Global Environment Monitoring Sys-
tem (GEMS) Water Programme is a multi-faceted water science center oriented towards building knowledge
on inland quality issues worldwide (http://www.unep.org/gemswater/), which is still very limited consider-
ing the large surface of the earth. The GEMS/Water Programme, established in 1978, is the primary source
for global water quality data. The related water quality database, GEMStat, is designed to share surface and
ground water quality data sets collected from the GEMS/Water Global Network, so far including more than
3,000 stations (http://gemstat.org/). For Africa, data found in scientific literature were very dissimilar and
disparate, most published data were aggregated over long time periods and/or over several sampling sta-
tions [United Nations Environment Programme, 2016]. Furthermore, specific locations of sampling stations
were usually not available and the selection of parameters was restricted. In this context, global scale water
quality models could be used as a complementary approach to fill data gaps of relevant parameters in time
series and in regions where no reliable data exist. Since a model is a simplified representation of the real
world system, its credibility is ensured by its model performance in terms of validation and testing against
measured data. It is worth mentioning that the WaterGAP3 modeling framework has been enhanced by a
large-scale water quality model WorldQual in order to estimate pollution loadings and in-stream concen-
tration for a variety of parameters [e.g., Voß et al., 2012; Reder et al., 2013, 2015]. Many crop models, such as
GEPIC, have both components of hydrology and pollution loading [Liu and Yang, 2010; Liu et al., 2013a].
With their ability to calculate water availability, water use, and water quality parameters, the modeling
framework is promising for simultaneously considering water quantity and water quality in water scarcity
assessment.

5.3. Incorporating Environmental Flow Requirements in Water Scarcity Assessment

Rudimentarily, EFRs has been incorporated in water scarcity assessment by assuming a fixed percentage
of river flow for EFR, ranging from 80% of the annual flow uniformly all over the globe [Hoekstra et al.,
2012] to specific proportions in given locations [Smakhtin et al., 2004; Rockström et al., 2009; Gerten et al.,
2011; Liu et al., 2016]. However, in the natural system, EFRs vary across flow regimes and seasons. For
example, Pastor et al. [2014] found that EFRs ranged between 25% and 46% of mean annual flow. This
suggests an importance to incorporate locally pertinent EFR for a proper assessment of water scarcity
status.

The future studies that estimate EFRs should consider a range of methodologies that account for seasonal
variations and flow regimes in different parts of the globe [Gerten et al., 2013]. Different approaches
have been developed for assessing the EFRs for different river regimes. For example, Laize et al. [2014]
and Schneider et al. [2013] presented a comprehensive approach to quantify ecological risk as a result
of flow alterations in terms of the deviation from natural flow conditions. They assessed hydrological
alterations from natural flow dynamics caused by anthropogenic water use and dam operations and
by using a subset of 12 different parameters chosen from the list of Indicators of Hydrological Alter-
ation [Richter et al., 1996, 1997]. This approach considers different flow characteristics and describes
non-redundant departures from the natural flow regime. In addition, changes in average magnitude
and variability of each parameter are considered, and therefore, in total 24 sub-indicators are taken
into account. This indicator system could be used to account for EFRs across regions in water scarcity
assessment.
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5.4. Temporal and Spatial Scales of Water Scarcity With Consideration of Green Water and Virtual
Water

In water scarcity assessments, the selection of spatial scale (or unit of analysis) is important, and difficult
too. It has considerable impacts on results, as shown earlier (Figure 3) and by other studies [Perveen and
James, 2011; Salmivaara et al., 2015]. Most of the water scarcity assessments are conducted on a grid scale
(30 arc-min, i.e., 50 km resolution near the equator), while for addressing water scarcity, country, basin or
sub-basin (e.g., food production unit) scales are more policy relevant. A detailed study of the impact of
different spatial scale on water scarcity assessment would be needed.

Most water scarcity indicators are measured on annual time scale. With significant intra-annual variations
in water use and availability, it is important to understand when water is available and when it is needed
within a year. Thus, the introduction of a monthly scale assessment could provide information whether there
is enough water for each month to fulfill the requirements.

Other relevant aspect to temporal scale is the impact of inter-annual variability of water availability and
water requirements on scarcity measures. Veldkamp et al. [2015] found that on the shorter time scales (up
to 6–10 years) the climate variability is the dominant factor influencing water scarcity while on the longer
time scales the socio-economic development is more important factor. Brauman et al. [2016] found that
watersheds that appear to be moderately depleted on an annual time scale are almost uniformly heav-
ily depleted at seasonal time scales or in dry years. Hence, the assessment of inter-annual variability adds
important insights on the understanding of water scarcity.

It also needs to be pointed out that the whole population living in a region (e.g., country, watershed) are
often not equally been impacted by water scarcity. For example, people with a higher income may be less
affected by water scarcity than people with a lower income. Also, the rural and urban population may be
affected differently. For this reason, it would be more indicative to consider the possibly different effects
of socio-economic conditions on the people residing in a water-scarcity region. Adopting a probabilis-
tic approach could reduce the scaling effects. This, however, requires more detailed information on the
socio-economic conditions of people in the region.

Green water is an important component of water resources. However, in the water scarcity assessment, it
has been rarely considered due mainly to different measurements of green and blue water resources, the
former is in storage (in unsaturated soil) and the latter is flow measured on annual basis. The work which
did consider green water only accounted for the portion that has been actually used by crops [Rockström
et al., 2009; Gerten et al., 2011]. This greatly underestimates green water resources. One possible approach
to remedy the problem is to count for accumulated soil moisture on an annual basis on the land surface
regardless of if it is used or not by crops or other plants. It needs to be pointed out that the validity to
incorporate green water is sometime questioned in water resources management [Bogardi et al., 2013]. One
major reason is that green water is not part of the water budget that could be easily reallocated to other
use. Our opinion is that soil moisture (green water) is an important resource, which should be appropriately
incorporated in the water availability accounting.

Most of the water scarcity indicators previously developed only account for local water resources and local
water demand. But recent research advances have revealed that previously unrecognized global forces may
drive local-scale water problems [Vörösmarty et al., 2015]. Much of the global water use and pollution is
from the production of commodities for global and regional trade, which embodies a large amount of vir-
tual water flows and influences local water scarcity [Vörösmarty et al., 2015; Zhao et al., 2015; Hoekstra and
Mekonnen, 2016; Zhao et al., 2016]. Long distance water transfer systems also impact the local water scarcity
situations in both the sourcing and destination regions [Liu et al., 2013b]. There is a need to integrate virtual
water flows and water transfers in the water scarcity analysis.

5.5. Need for Collaboration Between Hydrological, Water Quality, Aquatic Ecosystem Science and
Social Science Communities in Water Scarcity Assessment

There are crucial connections between water availability and water quality [Jury and Vaux, 2005] and both
have been associated with human health [Myers and Patz, 2009], food security [Rockström et al., 2009;
Simelton et al., 2012] and for sustaining native biodiversity and integrity of aquatic ecosystems [Poff et al.,
1997; Richter et al., 1997]. This means that assessments of water availability and quality should be conducted
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in a consistent way so that relevant dependencies between availability and quality are accounted for. This
will require the integration of water quality and ecological parameters, and processes (and feedbacks
between them) into water availability assessment models. This can only be achieved through sustained
integration of the water availability modeling community with the water quality and ecological modeling
communities.

Integrating these communities represents the first, and an important step, toward developing a compre-
hensive understanding of the susceptibility of global water availability and quality to change. Beyond this,
the relevant communities will need to develop improved hydrological models at the global scale that con-
sider both water quantity and quality. Reliable observations of water quality at sufficient spatial resolution
across the globe will also be needed to validate the models.

As noted above, water scarcity indicator thresholds are artificial and “best guess” rather than evidence-
based. There are limitations about the utility of indicators [Fekete and Stakhiv, 2014] given the complexity
of water management challenges that these indicators intend to support. These indicators are generally
insufficient to incorporate the complex socio-economic backdrop driving water demands and they do not
address the alternative pathways such as the choices of water produced. Fostering interdisciplinary or even
trans-disciplinary research in water scarcity studies as well as the integration of stakeholders offers the pos-
sibility of clear frameworks and hence the improvement of systems’ understanding. For example, factors
affecting water demand, such as changes in lifestyle, perceptions of water scarcity, and attitudes toward
water use, are routed in social science understandings of how these factors can be influenced by govern-
ment policy and social norms [Wolters, 2014]. Moreover, a novel opportunity exists to make social science
more effective in improving water management and understanding the drivers of water scarcity [Lund,
2015].
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