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Full Length Article 

Structural integrity and hybrid ANFIS-PSO modeling of the corrosion rate of 
ductile irons in different environments 
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Tien-Chien Jen a, Peter A. Olubambi b 

a Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, 2092, Johannesburg, South Africa 
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A B S T R A C T   

Ductile iron (DI) samples were immersed in near-neutral, alkaline sodium hydroxide (NaOH), and sodium 
chloride (NaCl) environments for 180 days. The influence of microstructure on the corrosion resistance of three 
DI specimens was investigated. Microstructures, electrochemical measurements, and the characterization of the 
corroded surfaces were analyzed. The experimental results from this study were used to validate a model 
generated from hybrid adaptive neuro-fuzzy inferences system-particle swarm optimization (ANFIS-PSO) algo-
rithms. The hybrid ANFIS-PSO modelling technique was improvised for a detailed evaluation of corrosion rate of 
ductile cast iron materials in different environments. The integrated hybrid ANFIS-PSO model revealed a sharp 
rise in localized corrosion caused by chloride-induced structural deterioration at the nanoscale for some of the 
grains. The performance results revealed that the fuzzy c-mean (FCM) clustering outperformed other clustering 
approach in the neuro-fuzzy model. Accuracy values of 92.9% and 93.7% were recorded for the training phase of 
ANFIS-FCM and ANFIS-PSO-FCM respectively for corrosion rates. The percentage error of the ANFIS-PSO pre-
dictions is significantly lower than the ANFIS-standalone prediction. This shows that the ANFIS-PSO with FCM 
approach is a better model for predicting corrosion rates. This will contribute to the body of knowledge for 
ductile iron, corrosion, and corrosion modelling using machine learning.   

1. Introduction 

Social economic losses could be held responsible for the majority of 
government losses in well-known global industries. According to Wasim 
et al. (2020a) and Zheng et al. (2020) materials made with ductile iron 
components are at the forefront of these failures. An in-depth analysis by 
the United States on the economic impact of corrosion reveals that 
materials made of ductile iron constituents incur the highest cost in 
terms of percentage losses in repair and maintenance services (Koch 
et al., 2005). According to the literature, the United States has been 
employing ductile cast iron for water pipelines since the 1960s. How-
ever, due to the prolonged period of use as a method of transporting 
water across states, these pipelines now require frequent maintenance 
and repair (Koch et al., 2005; Szeliga et al., 2003). The failure of these 
materials in service conditions has been attributed to the harsh envi-
ronment in which they find their application (Wasim et al., 2018). 

One of the innovators who initiated a thorough corrosion assessment 

of materials made from DI constituents such as wheels, gearboxes, 
buried water pipelines, and engine seats in the US was Romanoff (1957). 
To test how different environments and environmental factors would 
affect these materials, he submerged numerous sections of DI pipe in 
various environments. However, the model created by Romanoff’s 
research lacked validation due to the variances and uncertainties in field 
conditions. The analysis of DI pipes by Kleiner et al. (2012) stands out 
among the many field studies on the corrosion of DI materials conducted 
after Romanoff’s works. In North America, Kleiner et al. (2012) studied 
several excavated DI materials and the influence of the environment on 
their properties. The information gathered from the 3D scan test con-
ducted for the detection of corrosion pits was used to perform a statis-
tical analysis of geometry and pit scattering. The study also provided a 
method based on corrosion pit geometry for assessing the susceptibility 
of DI materials to environmental degradation. According to the litera-
ture, limited research exists on the corrosion properties of DI materials 
exposed to environments capable of causing accelerated deterioration. 
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Recent research has compared the effects of chloride environment on DI 
and carbon steels (Song et al., 2017). Specimens from this study were 
subjected to electrochemical corrosion tests, physical mass loss, pit 
depth, surface morphology, and examination of the corrosion products. 
The findings from the three-month corrosion test showed that DI is more 
resistant to corrosion than mild steel in different environment such as 
near neutral, NaCl, NaOH and soils activated with different chloride 
proportions. 

Moreover, corrosion studies on DI in near-neutral environments has 
been investigated using techniques such as cathodic protection, surface 
analysis, and corrosion product characterization (You et al., 2020). The 
rapid corrosion of DI was reportedly resulted from the high salt con-
centration in the chloride environment compared to other environ-
ments. However, this study was performed within a short period; hence, 
mass loss measurement was not reported. However, this study did not 
examine how the mechanical properties of the DI would be influenced 
by corrosion. Similar experiments by Wang et al. (2019) and Ochoa et al. 
(2022) were conducted to assess the effect of corrosive environments on 
the mechanical and microstructural properties of grey cast iron. Their 
findings show that an acidic environment caused a decline in the tensile 
and fracture toughness of the specimens, while a chlorinated alkaline 
environment resulted in galvanic coupling between electrochemically 
nobler graphite particles and the matrix. 

The current research reports the corrosion findings on DI after 180 
days of exposure. Weight loss and corrosion rate analyses were per-
formed experimentally to understand how the mechanical properties of 
the DI specimens were affected by different corrosive environments. 
ANFIS-PSO modelling technique was adopted to compare the experi-
mental values and the modelled results. In addition to these measure-
ments, optimal hybrid ANFIS-PSO model building and parameter 
optimization analysis was employed to validate results obtained after 
180 days to see the effect of corrosion on the predominant ferrite phase. 
A flowchart describing the experimental and modeling process in this 
research is presented in Fig. 1. 

2. Materials and methods 

2.1. Specimen design 

The ductile iron (DI) samples used in this study were acquired from 
the Engineering Materials Development Institute (EMDI) in Nigeria, and 
their elemental composition is presented in Table 1. Equipment such as 
cutting machine, computer numerical control (CNC) machine were used 
to mechanically shape the specimens to precise dimensions of 20 mm 
(length), 10 mm (width), and 6 mm (thickness). Samples for analysis 
were vertically projected and completely immersed in a near-neutral 
alkaline sodium hydroxide (NaOH) and sodium chloride (NaCl) envi-
ronments to determine their corrosion susceptibility in these environ-
ments. To simulate actual service conditions, contact between the 
specimen and the wall of the container was prevented. The initial 
weights of the polished specimens were recorded before undergoing 
laser cleaning to remove the corroded surface. 

2.2. Morphological examination and mechanical testing 

Detailed morphological characterization was performed on the 
ductile iron (DI) samples to examine their internal structures using a 
JSM-6700F scanning electron microscope (SEM), and phase identifica-
tion was carried out using a Rigaku X-ray diffraction machine operating 
at a diffraction angle range between 300 and 800. A universal mechan-
ical testing machine with model number 3309 was used to conduct the 
tensile test on the three samples immersed in the test environment. 
Three samples were selected and immersed in each environment to 
ensure repeatability and reproducibility of values. Fractographic eval-
uation of the samples was performed using SEM to examine the mode of 
fracture of samples immersed in different environments. Micro hardness 

test was conducted on each sample and repeated thrice to ensure the 
reliability of the hardness values before applying the ANFIS and ANFIS- 
PSO to predict the outcome of both tensile and the hardness results. 

2.3. Environments 

To estimate the variations in results arising from the heterogeneity of 
the environment provided, 5 mol of aqueous sodium chloride (NaCl), 
Sodium hydroxide (NaOH), and a near-neutral environment with 
respective pHs of 6.8, 7 and 7.4 were employed in the testing rather than 
the real environments. The chemical composition of the chloride envi-
ronment is presented in Table 2. These environments were chosen in this 
study because previous research had shown their ability to rapidly 
deteriorate metallic components (Wasim et al., 2017, 2020b). 

2.4. Rates of corrosion 

Three identical samples with the same geometry were used in each 
test environment, and the weight of the specimens before and after 
corrosion was measured to evaluate the corrosion rates. After 180 days 
of immersion in the test environments, the samples were removed for 
weight loss assessments. According to the approved ASTM G1-03 stan-
dard (2017) (Astm and Practice for Preparing; Joseph et al., 2021), the 
deteriorated samples were chemically rinsed in Clark’s solution for a 
minute to remove the corrosion products without modifying the surface 
of the specimens. The specimens were cleaned, dried and weighed to 
determine the weight loss according to Equation (1).  

WT = Wi - W                                                                                 (1) 

Where WT = resultant weight loss of the sample, Wi = initial weight of 
the sample, and Wf = weight after removal of corrosion products. The 
corrosion rate is evaluated from the resultant weight loss values ac-
cording to Equation (2). 

C.R=(γ)∗WT/(A ∗ (T) ∗ δ (2)  

Where C.R = corrosion rate, γ = constant (87600), WT = resultant 
weight, A = covered area, T = time of exposure, and δ = theoretical 
density. 

It should be noted that mass loss measurement used to assess 
corrosion degradation in the ductile iron specimens was employed in a 
previous study to evaluate the corrosion rate in aggressive environments 
(Davis, 2000). Fig. 2 illustrates the corrosion setup used in this study. 

2.5. Adaptive neuro-fuzzy inference system 

The adaptive neuro-fuzzy inference system (ANFIS) is a framework 
which was first developed by Jang, 1993a, 1993b and integrated the 
fuzzy if-then rule system and numerical methods of artificial neural 
network forming a robust neuro-fuzzy system (Lazreg et al., 2022). The 
fuzzy if-then rule system is characterized by membership functions (MF) 
that optimize the linear consequent and non-linear premise parameters 
(Rajaobelina et al., 2022). The choice of functions such as Gaussian, 
triangular, trapezoidal, and sigmoidal, amongst others, are dependent 
on the nature of the problem to be solved. The fuzzy module in the fuzzy 
system mathematically maps the crips input to the fuzzy sets designated 
by the membership function, μ ∈ [0,1] (Seifi et al., 2022). ANFIS consists 
of a fuzzy layer (input layer), product layer, normalization layer, 
defuzzification and summation layer, as represented in Fig. 3. At the first 
layer, called the fuzzy layer, the membership grade containing the input 
and output functions at each node is computed, while the multiplication 
of the signal for the input in each layer is computed in the second layer 
(product layer). At the normalization layer, the output is a fraction of the 
firing strength of the node to the sum of all firing strength of the other 
nodes, while the signal from the normalization layer is multiplied by the 
fuzzy rule’s function at the defuzzification layer. The total output is 
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Fig. 1. Design of study flow chart.  
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estimated at the summation (output layer) by adding all signals from all 
layers using a summation function. The Takagi–Sugeno fuzzy technique 
in the ANFIS controller is depicted by a rule-based system with two 
inputs, a and b, and one output in a fuzzy inference system. 

Rule 1 : If a is A1 and b is B1,F1 = S1a + r1b + t1 (3)  

Rule 2 : If a is A2 and b is B2,F2 = S2a + r2b + t2 (4)  

Where A1,A2,B1,B2 represent the membership functions while a and b 
are input parameters. F1 and F2 are acquired outputs from the system, 
whereas s, r, and t are nodal consequent parameters. 

2.6. Particle swarm optimization algorithm 

Particle swarm optimization (PSO) was initially developed by 
Eberhart and Kennedy (Eberhart et al., 1995) as well as Seifi et al. (2022) 
to stimulate the social behavior of animals like bird populations and 
fishes. The PSO is a computational approach which is used for the 
optimization of problems iteratively such that a population of candidate 
solutions is improved based on identified quality measures, moved in a 
space over its position and velocity (Adeleke et al., 2022a). The working 
principle of PSO is simplified in three basic steps, generating the posi-
tions and velocities, updating the position and updating the velocities. 
The position of the particles is updated using the velocities of the par-
ticles, while the position denotes the prospective solutions in the search 
space (Li et al., 2022). The position (xi) and velocity (vi) of the ith par-
ticle are arranged based on their best local positions and the global 
positions in the search ranges and updated iteratively using the 
following equations: 

vi(k) =ωvi(k − 1)+ r1c1(xPbest − xi(k)) + r2c2(xGbest − xi(k)) (5)  

xi(k) = xi(k − 1) + vi(k) (6)  

ω=ωdamp × ω (7) 

Above, c1 is positive cognitive acceleration coefficient, c2 is social 
acceleration coefficient, r1 and r2 are uniformly distributed random 
variables between 0 and 1, ω is inertia weight, and ωdamp is the weight- 
damping ratio. In this study, the PSO optimization algorithm is explored 
to tune the parameters of the 1st and 4th adaptive layers of the stand-
alone ANFIS such that local minima are avoided. 

2.7. Optimal hybrid ANFIS-PSO model building and parameter 
optimization 

The hybrid neuro-fuzzy model was developed in this study based on 
data samples extracted from the experimental procedures and set as the 
input and output variables for the model. Input variables comprise 
exposure time, environment and weight loss, while the output variables 
are corrosion rate, hardness and tensile strength. The entire data set was 
divided in two: 70% was selected for training, while the remaining 30% 
was used to establish the accuracy and reliability of the developed 
model. Due to the significance of data preprocessing in the improvement 
and performance of the neuro-fuzzy model, it is essential to ensure that 
the training data falls within the range of 0 and 1. The normalization of 
the training data was performed using Equation (8). 

Table 1 
The compositions (weight percentage) of indigenously produced ductile iron.  

Si P Cr C Mn S Mg Sn Pb Cu Fe 

2.7 0.04 0.12 3.7 0.4 0.03 0.055 0.02 0.0015 0.1 92.8  

Table 2 
Composition of the chloride environment used (Wasim et al., 2020b; Koneshan 
et al., 2000) Na+–water, Cl− –water, ion–ion, and water–water potential 
parameters.  

Ion δi0(Å) εi0 (kJ/mol) δih(Å) εih (kJ/mol) 

Na+ 2.72 0.560 14 1.310 0.560 14 
Cl− 3.55 1.505 75 2.140 1.505 75 
Ion pair δ(Å) ε (kJ/mol) 
Na+ Na+ 2.443 0.119 13   
Na+ Cl− 2.796 0.352 6   
Cl– Cl− 3.487 0.979 06   
Water δ00(Å) ε00 (kJ/mol) Charge (q) 
O(H2O) 3.156 0.650 20 − 0.82  
H(H2O)   +0.41   

Fig. 2. Schematic diagram of the corrosion setup in different environments.  

Fig. 3. Adaptive neuro-fuzzy inferences system (ANFIS) model architecture.  
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ynorm =
x − xmin

xmax − xmin
(8)  

where ynorm = the normalized data, x = the mean of the variable, xmin =

minimum variable, xmax = maximum variable. 
The significance of hybridization in tuning the parameters of the 

ANFIS model using evolutionary algorithm PSO for improved perfor-
mance of the ANFIS model was established in this study. The choice of 
hyper-parameters of the ANFIS models and PSO algorithms is critical to 
the accuracy of the model, thus, careful selection of the control pa-
rameters of ANFIS and PSO was considered in this study. Clustering is a 
crucial requirement in neuro-fuzzy modelling for grouping data points 
into a similar fuzzy cluster, assigning membership functions and 
generating a fuzzy inference system structure for the data. In this study, 
fuzzy c-means (FCM) clustering is preferred over other techniques due to 
its speed boost capacity (Bamgbade et al., 2022). The parameters set for 
the ANFIS and PSO algorithm is presented in Table 3. 

The competence, reliability and eligibility of the developed ANFIS 
and ANFIS-PSO models for the prediction of the corrosion rates, hard-
ness and tensile strength based on weight loss approach were established 
by comparing the experimental and predicted values using relevant 
statistical metrics. The best models were selected after testing their 
performance using mean absolute percentage error (MAPE), mean ab-
solute deviation (MAD), root mean square error (RMSE), and correlation 
coefficient (R2) were computed using equations (9)–(12) respectively. 

MAPE =
1
N

∑N

i=1

⃒
⃒
⃒
⃒
Oi – Pi

Oi

⃒
⃒
⃒
⃒ x 100% (9)  

MAD=
∑N

i=1

(Oi − Pi)

N
(10)  

RMSE =

(
∑N

i=1

(Pi – Oi)
2

N

)1 /

2

(11)  

R2 = 1 −

⎡

⎢
⎣

∑n
i=1(Oi − O)(Pi − P)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(Oi − O)
2 x
∑n

i=1(PI − P)2
√

⎤

⎥
⎦

2

(12)  

Where n represents the number of samples, i = the sample index, Pi the 
value of the predicted outcome for ith sample, Oi the experimental 
outcome for the ith sample, O the average experimental outcome, and P 
the average predicted outcome. 

3. Results and discussion 

3.1. X-ray diffraction 

To analyze the corrosion morphology on the surface of ductile iron 
samples immersed in the three different environments, the X-ray 

diffractometer (XRD) analysis was used to ascertain the corrosion 
products of the samples removed from the three test environments. 
Fig. 4 below displays the XRD analysis of the specimens after 180 days of 
immersion. The C0.07Fe1.93 phase with plane orientation γ[200] belongs 
to the martensite phase with traces of magnetite (Fe2O3). Moreover, the 
segregated chromium nickel iron phase (Cr–Ni–Fe–C) with plane 
orientation α [211] comprised the bulk of the corrosion product 
observed in the specimens, as presented in Fig. 4. 

Additionally, a quantitative approach to the corrosion products was 
carried out, which showed that 90 % of them were martensite that was 
porous, and the remaining 10% were magnetite consisting of a ferritic 
phase. For the ductile irons, martensite predominance has been 
discovered in comparison to the selected environments (Wasim et al., 
2019a). The production of a significant amount of C0.07Fe1.93 on the 
samples shows that in all environments, the pH solution contains a 
significant amount of ions (Song et al., 2017). C0.07Fe1.93 martensite and 
Cr–Ni–Fe–C ferrite with γ[200] and α[211] were shown to be the pri-
mary corrosion products on all the ductile iron subjected to different 
solutions in a recent corrosion research (Qin et al., 2018; Krawiec et al., 
2021). Stages found in the rust layers caused by corrosion. After 
exposing the selected ductile irons to the different solutions including Cl 
and OH− , Na+, corrosion products, in a two-layer structure consisting of 
martensite and magnetite were also noted. High Cl concentration favors 
the development of martensite phase (Zhang et al., 2011). 

3.2. Microstructural description of ductile iron 

The images displayed in Fig. 5 shows the optical micrographs of the 
sample used for the corrosion analysis before immersed in three 
different corrosion media. From the results of the optical images, 
spheroidal graphite is seen to be relatively distributed throughout the 
entire micrographs. The grain boundaries are connected in a network 
form surrounding the spheroidal graphite nodules. The sizes of graphite 
nodules observed in sample prepared for immersion in sodium hy-
droxide environment has some relatively low amount of martensite 
present in the entire micrograph. 

3.2.1. Scanning electron microscopy 
The micrographs presented in Figs. 6–8 represents the morphology of 

the DI specimens before corrosion. From Fig. 4, it is observed that the 
microstructures contain some pearlite, ferrite and uniformly distributed 
spheroidal graphite in the entire matrix of ductile iron. The ferritic phase 
was found enveloping the spheroidal graphite nodules. The homoge-
nously distributed graphite nodules covered the whole ductile iron. 
There is a clear separation observed in the ferrite phase which forms the 
entire block of martensite within the ductile iron matrix of each sample. 
The morphological characteristic of the ductile iron immersed in sodium 
hydroxide environment form some acicular martensite which are very 
large in sides and in distinct form as displayed in Fig. 6. The mechanisms 
of corrosion observed in all the microstructures shows that the structural 
morphology of the samples after the weight loss test indicates some 
pitting and evidence of large corrosion holes was observed in all the 
sample after corrosion. 

The corroded samples show some corrosion attack which is due to 
enlargement of corrosion pits appearing in some segregated sections of 
the samples. This is clearly attributed to pitting form of corrosion. Due to 
some atom-rich and atom-poor-regions on the corroded samples, there 
was a strong segregation of the microstructural surface forming cladding 
layers. Inconsistency was observed on the microstructure of each sample 
after immersed in NaOH, NaCl, and the near-neutral media due to 
inhomogeneous experienced during the corrosion process. Comparing 
the corrosion products observed on each sample in Figs. 6 and 7, we 
observed the absence of pits on the surface of the sample immersed in 
near-neutral environment. which depicts less corrosion in comparison 
with samples immersed in other environments. The presence of boride 
and carbide in the corrosion products could be responsible for 

Table 3 
Specified parameters for ANFIS and PSO algorithms.  

Parameter  Value 

ANFIS FIS structure Takagi-Sugeno-type  
FIS function genfis3  
Number of clusters 5  
Maximum iteration 100  
Minimum improvement 1e-5  
Number of exponents for matrix portioning 2  
Stopping criteria Max no of iterations 

PSO algorithm Initial swarm size 20  
Initial weight, ω 0.5  
Initial weight damping ratio, ωdamp 0.8  
Social acceleration co-efficient, c1 2  
Cognitive acceleration co-efficient, c2 2  
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prevention of aggravated corrosion products on the samples. A clear 
network of block like continuous structure was noticed in samples dis-
played in Figs. 6b, 7b and 8b. 

3.3. Fractographic analysis of ductile irons 

The fracture morphology analysis of ductile iron immersed in NaCl, 
NaOH, and near-neutral environments in Fig. 9 offers critical insights 
into the material’s behavior under different chemical conditions. Ductile 
iron, known for its strength and ductility, can exhibit distinct fracture 

Fig. 4. The crystallographic analysis of ductile iron immersed in near neutral, sodium hydroxide, and sodium chloride environments.  

Fig. 5. Optical images of ductile iron immersed in (a) near – neutral environment, (b) sodium hydroxide NaOH environment, and (c) sodium chloride NaCl 
environment. 
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Fig. 6. Microstructural analysis of ductile iron prepared for near-neutral environment (a) before corrosion, (b) after corrosion and (c) energy dispersion spectroscopy 
analysis EDS-Spectra. 

Fig. 7. Microstructural analysis of ductile iron preparation for NaOH environment (a) before corrosion, (b) after corrosion and (c) energy dispersion spectroscopy 
analysis EDS-Spectra. 
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Fig. 8. Microstructural analysis of ductile iron preparation for NaCl environment (a) before corrosion, (b) after corrosion, and (c) energy dispersion spectroscopy 
analysis EDS-Spectra. 

Fig. 9. Fractography images of ductile iron specimens immersed in (a) NaCl (b) NaOH, and (c) near neutral environment.  
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features depending on the type and severity of the environment it en-
counters according to Labrecque and Gagne (Labrecque et al., 1998). 
The results of fracture morphology presented in Fig. 9 shows some mode 
of fracture observed in the three samples, and they are thoroughly 
analyzed via SEM. 

The DI immersed in a sodium chloride solution, faces the corrosive 
challenge posed by chloride ions, making it susceptible to chloride- 
induced defects such as pitting corrosion. The chloride ions penetrate 
the protective oxide layer on the specimen surface, leading to the for-
mation of ferrous chloride complexes, quasi cleavage fracture and 
accelerating the corrosion process as seen in Fig. 9a. Fractured surfaces 
of DI subjected to corrosion in NaCl solutions often exhibit characteristic 
features such as transgranular cracking, crack propagation along grain 
boundaries, and intergranular attack due to prolonged exposure in the 
corrosive NaCl environment. The presence of secondary cracks and 
microvoids within the fracture surface suggests the synergistic effects of 
chloride-induced corrosion. 

The fracture micrograph of specimen immersed in NaOH solution 
shown in Fig. 9b reveals that the specimen undergoes different corrosion 
mechanisms, primarily involving the formation of iron hydroxide com-
plexes and the dissolution of ions from the material’s surface, causing 
some cavity. According to Guo et al. (2019) and Akinribide et al. (2022), 
alkaline corrosion can lead to the degradation of ductile iron compo-
nents, albeit at a slower rate compared to acidic or chloride-rich envi-
ronments. Fracture surfaces of ductile iron exposed to alkaline NaOH 
solutions display signs of uniform corrosion, characterized by river 
makings, smooth etching and surface erosion, as displayed in Fig. 9b. 
The absence of localized pitting and the presence of oxide/hydroxide 
films on the fracture surface indicates the gradual dissolution of material 
due to alkaline attack (Ascencio et al., 2014). Moreover, alkaline envi-
ronments can also induce some oxide films in ductile iron, particularly 
under NaOH environmental conditions. Hydrogen atoms generated 
during the corrosion process can react with the atmosphere causing 
oxide films deposition on the material’s structure, promoting pitting 
form of corrosion on the surface of the sample (Lynch, 2007; Rajnovic 
et al., 2008). Fracture surfaces of ductile iron affected by pitting 
corrosion in alkaline NaOH solutions may exhibit features such as 
reduced ductility, intergranular cracking, and brittle fracture regions. 

In near-neutral environment, as seen in Fig. 9c, the fracture 
morphology of DI reflects a combination of factors, including corrosion, 
mechanical loading, and environmental conditions. Fracture surfaces in 
near-neutral environments may display a mixture of characteristics 
observed in both acidic and alkaline environments, depending on the 
specific chemical composition and pH level of the solution (Fierro et al., 
2000). Fracture surfaces of ductile iron exposed to near-neutral envi-
ronments with chloride contamination may exhibit pitting, crevice 
corrosion, cleavage face, cavity, river markings, and crack initiation 
sites, as seen in Fig. 9c. All these are indicative of chloride-induced 
corrosion mechanisms. Overall, fracture morphology analysis of 
ductile iron immersed in sodium chloride, alkaline NaOH, and 
near-neutral environments provides valuable insights into the material’s 
response to different chemical conditions. 

3.4. Rates of deterioration by weight reduction 

At 180 days, three ductile samples were taken out of the environ-
ments, and the corrosion rate for these specimens was recorded. After 
180 days, it was discovered that the average corrosion rate of the 
specimens was 0.1 mm/year. From the results, it can be seen that the 
corrosion rate increased quickly for 180 days, indicating the failure of 
the materials due to the rates of corrosion increased to 0.1 mm/yr, 
which is in line with the findings of Song et al. (2017). DI, known for its 
strength, durability, and versatility, undergoes a fascinating trans-
formation when subjected to weight reduction according to Polishetty 
(2012). The rates of deterioration experienced in ductile iron was due to 
weight reduction which are influenced by various factors, including 

material composition, environmental conditions, and applied stress. 
One primary mechanism driving deterioration is the reduction in 
cross-sectional area resulting from weight reduction (Du et al., 2005). As 
weight is reduced, the thickness of the material decreases, leading to a 
higher susceptibility to cracking and fracture under mechanical loading 
(Gouveia et al., 2017). This phenomenon is particularly pronounced in 
ductile iron structures subjected to cyclic loading or dynamic stresses, 
such as bridges, pipelines, and automotive components. The passive film 
may have broken due to chloride ions from the pH solution of all the 
environment used. For determining the corrosion and its associated 
impact on the ductile iron samples, a thorough and in-depth technique 
was used. Adopted for this study. According to the findings of Sherif 
(2014), weight reduction can accelerate corrosion processes, especially 
in environments with high moisture and corrosive agents. Thinning of 
the material exacerbates corrosion, compromising the structural integ-
rity of the iron and hastening its degradation over time. Furthermore, 
changes in microstructure and grain morphology occur as weight is 
reduced, affecting the mechanical properties of the material (Jafarian 
et al., 2021). These alterations can manifest as decreased ductility, 
increased brittleness, and diminished fatigue resistance, further 
contributing to the rates of deterioration. Understanding the intricate 
interplay between weight reduction and deterioration in ductile iron is 
paramount for designing and maintaining robust infrastructure and in-
dustrial components. By employing advanced materials engineering 
techniques and incorporating mitigation strategies, such as protective 
coatings and corrosion-resistant alloys, engineers can mitigate the 
detrimental effects of weight reduction, ensuring the longevity and 
reliability of ductile iron structures in diverse applications. (Song et al., 
2017; Davis, 2000). 

According to the findings in Table 1, corrosion produced the change 
in the ductile iron’s composition, which led to the reduction of iron (Fe) 
and diffusion of corrosive elements. Ferrous metals have also been 
observed to experience similar compositional changes brought on by 
corrosive soils in comparable acidic corrosive media (Wasim et al., 
2019a, 2019b, 2020c, 2020d). Other ferrous metals showed a decrease 
in the phases, specifically the ferrite and pearlite phases of the speci-
mens, which ultimately led to a decrease in the bulk mechanical pa-
rameters including ultimate tensile (Wasim et al., 2019b, 2020d), and 
fatigue strength (Wasim et al., 2020c; Wang et al., 2018). In contrast to 
flaky graphite-shaped cast iron, which is fragile, ductile iron is a type of 
cast iron where the graphite is shaped like nodules, making it harder. 
Recently, the bulk mechanical characteristics of pipes composed of flaky 
graphite have been reported to degrade in an environment with acidic 
soil (Wang et al., 2019; Anadebe et al., 2022). Similarly, corrosion can 
affect the mechanical characteristics of ductile iron in its bulk. However, 
a notable drop in the mechanical characteristics of the ductile iron 
grains was set in, indicating that corrosion clearly affects mechanical 
characteristics. The outcomes are consistent with the most recent 
research on the corrosive soil-induced degradation of the granular 
nanomechanical characteristics of cast iron (Wasim et al., 2021). Ductile 
iron samples were employed in the current study to see the shift in 
microstructural characteristics brought on by the corrosive 
environment. 

Table 4 
Statistical properties of the input and output variables.   

Input Output 

Exposure 
time (days) 

Weight 
(g) 

Environment Corrosion 
rate 

hardness 

Maximum 180.00 20.80 + 0.02400 1341.00 
Minimum 1.00 20.42 + 0.00033 21.00 
Mean 90.14 20.62 + 0.01210 681.00 
St.D 64.57 0.15 + 0.00930 426.94  
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3.5. Performance outcome of the ANFIS-PSO model 

The data used for developing the hybrid model were extracted from 
the experimental proceedings. Table 4 represents the statistical sum-
mary of the data. The heat map in Fig. 10 represents the correlation 
between the variables. 

The computational advantage and flexibility of the neuro-fuzzy 
model which allows variation of its hyper-parameters to achieve opti-
mality in the model has been explored in the present study (Adegoke 
et al., 2022; Kilani et al., 2022; Anadebe et al., 2020). Further to this, the 
significant effect of the parameter tuning of the neuro-fuzzy models 
using evolutionary algorithms such as the PSO for optimal performance 
of ANFIS was established in this study. The comparative analysis of the 
predictive capacity of the different clustering techniques of the hybrid 
ANFIS-PSO involving fuzzy c-means (FCM), grid partitioning (GP) and 
subtractive clustering (SC) were carried out. 

Several trials of training were carried out until an optimal hybrid 
ANFIS-PSO models that give the minimum error and highest accuracy 
were obtained. It was ensured that over fitting and under fitting are 
avoided to ascertain that the optimal models learn the data rather than 
memorizing and fail during the model testing phase. The optimal model 
architectures were tested with both the training and testing data. Pre-
sented in Table 5 are the statistical metrics result of the optimal ANFIS- 
PSO model based on different clustering techniques at the testing and 
training phase for corrosion rate of ductile iron. Based on all metrics 
used for assessing the models’ performance, a better prediction was 
observed in the ANFIS-PSO result based on FCM clustering than the 
other clustering as it gave the least prediction error and highest accu-
racy. The ANFIS-PSO result is 93.7% and 87.6% accurate at the training 
and testing phase respectively based on MAPE-values (MAPEtraining =

6.386,MAPEtesting = 12.456) compared to the ANFIS standalone model 
which is 92.9% and 87.1% accurate at the training and testing phase 
(MAPEtraining = 7.124,MAPEtesting = 12.975). A significant variation was 
noted in the RMSE values of the ANFIS-PSO using different clustering 
approaches. Both at the testing and training phase, a lower RMSE was 

recorded for the ANFIS-PSO depicting a more reliable and accurate 
model. The RMSE and MAD values of ANFIS-PSO are 0.0786 and 
0.3245, thus revealing the eligibility and capability of the model. A 
strong agreement between the experimental and predicted values of 
corrosion rates was demonstrated in the R2-values of all models, while 
the highest value of ANFIS-PSO-FCM was validates its better perfor-
mance than others. 

Shown in Table 6 is the statistical metrics result of the ANFIS-PSO 
model based FCM, GP and SC clustering techniques for hardness of the 
ductile iron based on weight loss method. A lower variability was also 
noted in the values of the experimental and predicted values of the 
hardness as lower prediction errors and higher accuracies were recorded 
for all models at the testing and training phase. Based on the RMSE, 
MAD and MAPE values, ANFIS-PSO model using FCM technique had the 
best performance in predicting the hardness of the ductile iron. The 
RMSE (RMSEtraining = 0.1248,RMSEtesting = 0.1887) and MAD values of 
the model (MADtraining = 0.2456,MADtesting = 0.5385) revealed its reli-
ability and eligibility in outcome prediction. The R2-values at the testing 
phase showed a stronger agreement between the experimental and 
predicted values of hardness of the ductile iron. 

The prediction outcome of the ANFIS-PSO model based on all the 
clustering techniques for the tensile strength is reasonable as the models 
predicted with lesser errors based on RMSE and MAD-values and higher 
accuracies based on MAPE, and R2-values as shown in Table 7. The 
MAD-value (MADANFIS− PSO− FCM = 0.4627) at the testing phased 
demonstrated a lower variability in the predicted outcomes and lower 
positive distance between the predicted outcomes and the mean values 
of tensile strength. The eligibility and reliability of the developed ANFIS- 
PSO-FCM models in predicting the tensile strength were demonstrated 
by their RMSE-values (RMSEANFIS− PSO− FCM = 0.4627) at the testing 
phase. The RMSE-values further depicted a good spread of the prediction 
outcomes around the residuals, and thus giving an acceptable fit be-
tween the models and predicted outcomes of tensile strength. The 
training of the ANFIS-PSO-FCM is 93.3% accurate 
(MAPEANFIS− PSO− FCM = 0.4627), while at the testing phase, the models is 
88.7% accurate (MAPEANFIS− PSO− FCM = 11.321). 

Tables 5–7 respectively present the predicted values of the corrosion 
rate, harness and tensile strength of the ductile iron based on the 
exposure time, environment and weight loss using the FCM-clustered 
ANFIS standalone and FCM-clustered PSO-ANFIS model. Laudable out-
comes were recorded for both models as closer range values were 
observed in the experimental and predicted values of corrosion rate. 
Both models recorded with a minimal prediction error, however a lower 
prediction error was observed for the ANFIS-PSO-FCM than the stand-
alone model. The percentage error of the ANFIS-PSO-FCM predictions is 
significantly lower than the ANFIS-standalone prediction. This shows 
that the ANFIS-PSO-FCM performed better than the ANFIS standalone 
models for predicting all the outcomes. 

Tables 8–10 respectively display the comparison between experi-
mental values and predicted values for corrosion rates with some dis-
crepancies due to factors such as surface imperfections, localized 
corrosion effects, or variations in environmental conditions. Addition-
ally, the predictive model’s accuracy may be limited by the complexity 
of corrosion processes and the difficulty in capturing all influencing 

Fig. 10. Correlation heat map of the input variables with the corrosion rates.  

Table 5 
Statistical metrics result of ANFIS-PSO for corrosion rate.  

Model Clustering Performance metrics 

RMSE MAD MAPE R2 

ANFIS-PSO FCM Training 0.0521 0.1532 7.124 0.9675 
Testing 0.0806 0.4532 12.975 0.9402 

SC Training 0.0634 0.2352 8.051 0.9235 
Testing 0.0842 0.5106 11.246 0.9134 

GP Training 0.6973 0.2557 9.526 0.9134 
Testing 0.0885 0.4262 13.612 0.9426  

Table 6 
Statistical metrics result of ANFIS-PSO for hardness.  

Model Clustering Performance metrics 

RMSE MAD MAPE R2 

ANFIS-PSO FCM Training 0.1248 0.2456 8.2374 0.9847 
Testing 0.1887 0.5385 15.4683 0.9532 

SC Training 0.1346 0.7433 9.1054 0.9653 
Testing 0.1863 0.5576 17.733 0.9445 

GP Training 0.1402 0.5214 9.056 0.9235 
Testing 0.1892 0.5731 16.879 0.9135  
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factors. Further refinement of predictive models for ductile iron corro-
sion rates may involve incorporating additional parameters, refining 
experimental techniques, or considering the synergistic effects of mul-
tiple variables. Validation of the model against a broader range of 
experimental data is also crucial for enhancing its accuracy and 
reliability. 

The experimental and predicted microhardness values show some 

little different behaviour which is attributable to differences in sample 
preparation, measurement techniques, or the influence of microstruc-
tural features on hardness. Calibration of the predictive model using a 
broader range of experimental data and finer resolution in input pa-
rameters may improve its predictive capability while the experimental 
and predicted tensile behavior display inconsistencies due to factors 
such as strain rate effects, temperature variations, or material anisot-
ropy. The predictive model’s accuracy may be limited by the complexity 
of material deformation mechanisms and the difficulty in accurately 
capturing all influencing factors. 

The comparison plot of experimental and predicted values of 
corrosion rates, hardness and tensile strength respectively using the 30% 
hold out test sample data are represented in Fig. 11 below. The figures 
depict a strong agreement between the experimental data and the pre-
dicted values with a marginal variations and less misprediction. A 
similar trend exists between the predicted data and experimental data 
for both optimal ANFIS and ANFIS-PSO which gave the best prediction 
outcomes. The few under-predictions and over-predictions could be 

Table 7 
Statistical metrics result of ANFIS-PSO for tensile strength.  

Model Clustering Performance metrics 

RMSE MAD MAPE R2 

ANFIS-PSO FCM Training 0.0773 0.1751 6.745 0.9725 
Testing 0.0953 0.4627 11.321 0.9467 

SC Training 0.0756 0.2453 8.334 0.9503 
Testing 0.0967 0.8545 13.043 0.9356 

GP Training 0.0823 0.2432 7.894 0.9542 
Testing 0.0984 0.8781 12.042 0.9214  

Table 8 
Experimental and predicted outcome of the corrosion rate of ductile iron.  

Exposure time Environment Weight loss Corrosion rate 

Experimental ANFIS-FCM ANFIS-PSO-FCM 

Predicted Error (%) Predicted Error (%) 

30 1 20.65 0.02429 0.02655 8.49 0.02546 0.67 
30 2 20.59 0.00480 0.00487 1.36 0.00465 1.04 
30 3 20.63 0.00039 0.00035 3.34 0.00042 4.81 
60 1 20.61 0.00033 0.00036 9.73 0.00032 2.73 
60 2 20.59 0.02429 0.02564 5.24 0.02479 1.98 
60 3 20.57 0.00400 0.00416 3.67 0.00412 0.49 
90 1 20.56 0.00047 0.00049 4.65 0.00055 2.27 
90 2 20.57 0.01203 0.01244 3.32 0.01366 1.09 
90 3 20.50 0.00028 0.00031 6.75 0.00280 3.14 
120 1 20.51 0.00099 0.00098 0.23 0.00099 0.35 
120 2 20.56 0.00035 0.00034 1.63 0.00036 0.99 
120 3 20.44 0.00601 0.00608 1.15 0.00612 0.09 
150 1 20.47 0.02429 0.02475 1.81 0.02543 1.00 
150 2 20.56 0.00069 0.00068 3.03 0.00075 3.48 
150 3 20.37 0.00023 0.00023 0.04 0.00025 5.26 
180 1 20.42 0.00066 0.00069 5.57 0.00065 0.91 
180 2 20.55 0.00049 0.00047 6.34 0.00051 9.67 
180 3 20.31 0.00802 0.00818 1.98 0.00800 0.67 

Environments (1- Near neutral Environment, 2 – Alkaline NaOH, 3- NaCl) 

Table 9 
Experimental and Predicted outcome of the hardness of ductile iron.  

Exposure time Environment Weight loss Hardness 

Experimental ANFIS-FCM ANFIS-PSO-FCM 

Predicted Error (%) Predicted Error (%) 

30 1 20.65 1341.72 1372.343 2.23 1343.634 0.14 
30 2 20.59 188.74 200.964 6.08 190.754 1.05 
30 3 20.63 272.53 291.975 6.66 294.753 7.54 
60 1 20.61 544.57 580.643 6.21 576.754 5.58 
60 2 20.58 345.29 370.754 6.89 366.975 5.91 
60 3 20.57 943.15 1000.643 5.74 985.755 4.32 
90 1 20.56 363.59 397.966 8.63 376.423 3.41 
90 2 20.57 356.31 390.544 8.76 384.633 7.36 
90 3 20.50 1142.44 1152.555 0.88 1146.233 0.33 
120 1 20.51 21.17 23.235 8.91 22.545 6.12 
120 2 20.56 403.45 447.343 9.80 407.435 0.98 
120 3 20.44 343.66 349.743 1.74 345.865 0.64 
150 1 20.47 423.37 463.543 8.66 452.555 6.44 
150 2 20.56 383.52 410.544 6.58 406.343 5.62 
150 3 20.37 20.62 22.534 8.49 21.544 4.28 
180 1 20.42 323.73 357.977 9.57 344.754 6.09 
180 2 20.55 104.95 115.635 9.24 113.535 7.56 
180 3 20.31 743.86 790.864 5.94 778.976 4.51 

Environments (1- Near neutral Environment, 2 – Alkaline NaOH, 3- NaCl) 
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attributed to the under-estimations and over-estimations of some of the 
parameters of the algorithms (Adeleke et al., 2022b; Taofeeq et al., 
2020; Anadebe et al., 2022) 

From the experimental study, we subject DI samples to corrosion 
tests, hardness measurements, and tensile strength tests. The corrosion 
tests were conducted in a controlled environment simulating real-world 
conditions, such as near-neutral, alkaline sodium hydroxide (NaOH), 
and sodium chloride (NaCl) environments for 180 days. Hardness 
measurements were performed using standard techniques like Vickers 
hardness tests. Tensile strength tests involved applying tensile loads to 
the ductile iron until failure, following ASTM E8 standards according to 
Baboian et al. (Baboian, 2005). 

Predictive models for corrosion rates, hardness, and tensile strength 
were developed based on theoretical frameworks and empirical data as 
seen in Fig. 11(a–c). These models incorporate factors such as material 
composition, environmental conditions, and processing methods. The 

experimental results from this study were used to validate a model 
generated using hybrid adaptive neuro-fuzzy inferences system-particle 
swarm optimization (ANFIS-PSO) algorithms. The hybrid ANFIS-PSO 
modelling technique was improvised for a detailed evaluation of 
corrosion rate of ductile cast iron materials in different environments. 
The integrated hybrid ANFIS-PSO model revealed a sharp rise in local-
ized corrosion caused by chloride-induced structural deterioration at the 
nanoscale for some of the grains may have been employed to establish 
correlations between input parameters and material properties (Mosavi 
et al., 2019). 

The comparison between experimental and predicted corrosion rates 
in Fig. 11a revealed a close agreement in some cases but discrepancies in 
others. Factors such as the presence of surface imperfections, localized 
corrosion effects, or unforeseen environmental variables could 
contribute to these disparities (Callister et al., 2007). Further refinement 
of the predictive model may be necessary to enhance its accuracy, 

Table 10 
Experimental and predicted outcome of the tensile strength.  

Exposure time Environment Weight loss Tensile Strength 

Experimental ANFIS-FCM ANFIS-PSO-FCM 

Predicted Error (%) Predicted Error (%) 

30 1 20.65 488.45 2849.75 1.01 2809.75 1.02 
30 2 20.59 605.00 845.45 0.83 805.45 0.87 
30 3 20.63 617.99 589.64 1.64 627.643 1.54 
60 1 20.61 643.44 2012.57 0.47 2009.57 0.47 
60 2 20.58 990.89 1129.57 0.37 1112.57 0.37 
60 3 20.57 1158.75 2587.57 2.76 2571.567 2.78 
90 1 20.56 798.42 1198.65 0.15 1160.65 0.16 
90 2 20.57 1200.00 616.48 1.38 596.48 1.42 
90 3 20.50 1699.50 3352.16 0.58 3341.16 0.58 
120 1 20.51 953.41 1281.76 0.96 1275.76 0.97 
120 2 20.56 2000.02 3028.68 0.38 3011.67 0.39 
120 3 20.44 2240.25 506.47 0.79 492.47 0.82 
150 1 20.47 1108.39 663.54 1.07 650.54 1.09 
150 2 20.56 2500.05 2287.33 0.75 2257.33 0.75 
150 3 20.37 2781.00 1711.76 0.24 1703.76 0.25 
180 1 20.42 1263.38 1219.46 0.94 1211.45 0.94 
180 2 20.55 3000.05 980.53 2.05 973.53 2.07 
180 3 20.31 3321.75 1010.57 1.06 1001.57 1.07 

Environments (1- Near neutral Environment, 2 – Alkaline NaOH, 3- NaCl). 

Fig. 11. Comparison test plot of the experimental and (A) predicted corrosion rates, (B) predicted hardness and, (C) predicted tensile strength.  
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potentially by incorporating additional parameters or refining the 
experimental setup. The comparison of experimental and predicted 
hardness values in Fig. 11b exhibited varying degrees of agreement. 
Deviations arise due to differences in sample preparation, measurement 
techniques, or the influence of microstructural features on hardness. 
Calibration of the predictive model using a broader range of experi-
mental data and finer resolution in input parameters may improve its 
predictive capability. Comparing experimental tensile strength with 
predicted values in Fig. 11c revealed trends similar to those observed for 
corrosion rates and hardness. 

While the predictive model, according to Mosavi et al. (2019), might 
capture the general behavior of the material, discrepancies between 
predicted and experimental values highlight the need for further vali-
dation and refinement. Factors such as strain rate effects, temperature 
variations, and material anisotropy could influence tensile strength 
predictions and require consideration in the model. The comparison of 
experimental and predicted material properties provides valuable in-
sights into the accuracy and reliability of predictive models. Discrep-
ancies between experimental and predicted values highlight the 
limitations of current models and the complexities involved in accu-
rately forecasting material behavior (Callister et al., 2007). Future 
research efforts should focus on refining predictive models through 
iterative experimentation, incorporating additional influencing factors, 
and enhancing model strength. 

4. Conclusion 

The structural integrity of DI components is crucial for the safety, 
reliability, and longevity of engineering systems, and understanding 
their corrosion behavior in different environments is essential for miti-
gating corrosion-related risks and ensuring optimal performance. This 
study used aqueous NaOH, NaCl, and near neutral solution electrolytes 
to evaluate three selected DI specimens. The experimental results were 
analyzed using the ANFIS-PSO model, which predicted the corrosion 
rate and mechanical properties of the DI specimens in the different test 
environments. Due to the nodular graphite ferritic microstructure and 
high silicon concentration, the DI specimen subjected to NaOH and near 
neutral environment exhibited the least corrosion rate at 0.0019 and 
0.0021 mmy− 1 respectively compared to 0.0022 mmy− 1 for DI sample in 
NaCl environment. The results obtained for experimental, ANFIS 
standalone and ANFIS-PSO were all similar in trends. Moreover, the 
enhanced resistance to corrosion exhibited by the DI specimens in these 
environments was also ascribed to the formation of pseudo-passive 
layers on their surfaces, reducing the attack of the aggressive ions in 
the electrolyte. A hybrid ANFIS-PSO modeling was performed by using 
exposure time, environment, and weight loss as the input parameters to 
predict the corrosion rate, tensile strength, and hardness. The percent-
age error recorded in the ANFIS-PSO predictions was significantly lower 
than the ANFIS-standalone prediction, which confirmed that the ANFIS- 
PSO had a better performance than the ANFIS standalone models. This 
finding is especially crucial for corrosion monitoring technology’s long- 
term survival and financial stability. However, there is still a need for 
thorough corrosion assessment methodologies and further in-
vestigations, such as electrochemical impedance spectroscopy (EIS), 
may enhance comprehension of the process by furnishing additional 
data for modeling. 
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