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A B S T R A C T   

Merchant vessels often require icebreaker (IB) assistance to create safe pathways and improve efficiency when 
navigating in the Baltic Sea. Since IB resources are limited, an accurate estimation on the need for IB assistance is 
important. Whether IB assistance is needed depends on multiple factors. While practical experience from captains 
is naturally a source of valuable information for the decision on the need for IB assistance, systematic analysis of 
the reasoning is limited. The primary aim of this paper is to holistically investigate the influencing factors and 
their effect on estimating the need for IB assistance through data-driven techniques. Based on a comprehensive 
list of potential factors, different of data such as traffic history, environmental conditions, and ship specifications 
are gathered to present complex navigational scenarios. Each scenario is labeled by different navigation modes 
(independent navigation or IB assistance), laying the foundation for influencing factor identification and effect 
quantification. Logistic regression is applied to evaluate the effect of the factors on the need for IB assistance. The 
results show that the impact of the factors is diverse, and ridged ice concentration has the most significant 
impact. The effectiveness of identified factors is measured by comparing it to that of the factors that have been 
implemented by the existing studies (e.g., the combination of ice concentration, thickness, and ship ice class, or 
only ship speed). By considering the factors in this study, the classification performance can be improved by at 
least 5.6%. The findings in this paper can provide insights for predicting IB workloads and optimizing IB re-
sources and have the potential to support the development of an intelligent decision-support system for winter 
navigation.   

1. Introduction 

Winter navigation operations are common but complex because of 
the existence of ice in the Baltic Sea. There are two typical navigation 
modes, independent navigation and icebreaker (IB) assistance operation 
(Valdez Banda et al., 2016). Independent navigation refers to an oper-
ation mode where a vessel navigates independently in ice-covered water 
without any assistance from other vessels or IB. IB assistance is an 
operation where one or more icebreakers assist the merchant vessel(s) to 
navigate in ice-covered waters (Zhang et al., 2019). Assistance mode is 
critical for winter navigation safety and efficiency in the Baltic Sea. It 
can help reduce the risk of the ship getting stuck or getting hull damage 
and decrease the required fuel consumption (Bergström and Kujala, 
2020; Choi et al., 2015). However, the demand for IB assistance from 
merchant vessels often exceeds the supply of icebreakers. One of the key 

estimations that IB captains need to make is whether a vessel would need 
assistance to proceed with the navigation, as it impacts the overall traffic 
flows in the area (BIM, 2020; Stoddard et al., 2016). Accurate estimation 
of the need for IB assistance matters for optimizing IB resources and 
improving the efficiency of the whole winter navigation system. 

The current efforts aiming to mimic the winter navigation system in 
the Baltic and find out the optimal demand of IB resources mainly come 
from engineering simulations (Bergström and Kujala, 2020; Kon-
dratenko et al., 2021; Kulkarni et al., 2022; Lindeberg et al., 2018). The 
studies describe the interaction between traffic scenarios and ice con-
ditions using semi-empirical equations or equivalent modeling tech-
niques. Even though state-of-the-art simulations could present 
components of the winter navigation system at a detailed level, there is 
still a significant gap between the simulation and reality due to the 
nonlinearity and stochastic features of the real-life system. Therefore, 
understanding the reasoning behind the estimation is necessary. While 
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the operational experience of human experts is naturally important in 
decision-making, the reasoning behind each individual case is hidden 
and can vary due to human subjective knowledge. Instead of collecting 
individual human decisions and reasoning on board, data-driven 
methods can be an alternative to capture and comprehend information 
about complex operational scenarios by learning patterns behind the 
decision from the data. 

To conduct a data-driven analysis on the need for IB assistance 
estimation, influencing factors and to what extent they can affect the 
need for IB assistance should be available. A considerable number of 
studies have directly assessed or indirectly referred to factors that 
indicate the need for IB assistance (Choi et al., 2015; Kuuliala et al., 
2017; Lehtola et al., 2019; Lu et al., 2021; Topaj et al., 2019). While 
factor analysis has been done for diverse research contexts, ranging from 
ship performance assessment (Kuuliala et al., 2017), and route planning 
in ice (Lee et al., 2021), to besetment evaluation (Turnbull et al., 2019) 
and winter navigation system simulations (Kulkarni et al., 2022), direct 
and comprehensive information about influencing factors for estimating 
the need for IB assistance is limited. Another issue with existing studies 
is the restricted focus. As only a limited number of cases have been 
examined to draw conclusions, the generalization ability of the methods 
and/or the findings is limited. To enable a better understanding of 
winter navigation operations, an approach driven by a comprehensive, 
scalable dataset is needed. 

To bridge the above gaps, this paper presents a data-driven frame-
work to capture the information of historical cases and comprehend the 
need for IB assistance using quantitative factors. We first identify a 
comprehensive list of known factors that might lead to the need for IB 
assistance by literature search. This step is essential, as scattered infor-
mation regarding influencing factors needs to be combined to provide a 
comprehensive and exhaustive source for all known factors. Second, 
using the list of factors as a guide, we explore multiple data sources to 
find data about the collected factors. A novel database is established to 
reflect operational conditions. Independent navigation and assistance 
operation cases are labeled in the database by a multi-step clustering 
method (Liu et al., 2022). This step is critical because it lays the foun-
dation for the implementation of data-driven analysis. As a starting 
point, the data information in this paper bridges the gap of insufficient 
objective data available for winter navigation research. Finally, logistic 
regression model is adopted to analyze the influencing factors and 
quantify their effects accordingly. The study also assesses the impact of 
diverse conditions on the need for IB assistance regarding ships with 
different ice classes. Compared to the state-of-art, quantitative knowl-
edge of the influencing factors impact becomes available in this paper. 
The findings can help to interpret the underlying reasons for when and 
where IB assistance would be needed and support IBs in estimating the 
forthcoming assistance workload by a data-driven approach. Therefore, 
the development of explainable and intelligent decision-making in 
winter navigation can benefit from this data-driven study. 

The rest of the paper is organized as follows. Section 2 conducts a 
literature review to collect potential influencing factors and highlights 
the research gap. Section 3 proposes the approach for establishing the 
novel database presenting factors of both navigation modes. Then based 
on the database, the approach quantifying the factor effect is described, 
followed by Section 4 presenting results and discussions on the findings. 
Finally, Section 5 proposes limitations and future work, and Section 6 
concludes the work. 

2. Literature review for influencing factors collection 

As a functional component of winter navigation, IB assistance 
operation has been mentioned in various research contexts. To collect a 
comprehensive list of factors from literature, this study focuses on the 
thematic coverage of IB assistance operation by grouping existing 
literature into the following contexts: route planning in ice, besetment 
evaluation, ship operability assessment in ice, and winter navigation 
system simulation (Liu et al., 2023). The detailed information is illus-
trated as follows. 

In Table 1, it summarizes different research contexts that mentioned 
IB assistance operations. First, to plan a shipping route in ice, IB assis-
tance is mentioned as a functional component to break the ice for 
merchant vessels. With the assistance operation, the path in ice could be 
optimized because of the shortened sailing distance in ice and the 
reduced fuel consumption (Lehtola et al., 2019; Zhang et al., 2017a, 
2017b). Therefore, factors that are used to involve IB assistance in route 

Nomenclature 

Variable Definition 
IB Icebreaker 
FSICR Finnish-Swedish ice class rules 
POLARIS Polar operational limit assessment risk index system 
AIRSS Arctic ice regime shipping system 
SC Ship category 
WC Weather category 
IC Ice category 
HELMI Helsinki Multi-category sea-ice model 
AIS Automatic identification system 
MMSI Marine mobile service identity 

SF Ship factors 
WF Weather factors 
IF Ice factors 
VIF Variance inflation factor 
OR Odds ratio 
ROC The receiver operating characteristic 
AUC The area under the receiver operating characteristic curve 
TP True positive 
FP False positive 
FN False negative 
TN True negative 
TPR True positive rate 
FPR False positive rate  

Table 1 
Contexts mentioning IB assistance operation  

No. Context The functionality of 
IB assistance 

Reference examples 

1 Route planning 
in ice 

Keep ice channels 
open and traffic flow 
smooth 

(Fedi et al., 2018, 2020; Lee 
et al., 2021; Valkonen and 
Riska, 2014; Wang et al., 
2021; Dong et al., 2024) 

2 Besetment 
evaluation 

Breaking a ship loose (Fu et al., 2016; Kubat et al., 
2016; Turnbull et al., 2019;  
Vanhatalo et al., 2021; Xu 
et al., 2022) 

3 Ship operability 
assessment in ice 

Break the ice in front 
of merchant vessels 

(Juva and Riska, 2002;  
Kuuliala et al., 2017; Li et al., 
2021; Li and Huang, 2022;  
Milaković et al., 2019;  
Montewka et al., 2015, 2019;  
Xie et al., 2023) 

4 Winter 
navigation 
system 
simulation 

Keep ice channels 
open and traffic flow 
smooth 

(Bergström and Kujala, 2020;  
Ding et al., 2016; Kondratenko 
et al., 2021; Kulkarni et al., 
2022; Lindeberg et al., 2018)  
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planning can be potential factors that lead to IB assistance. Second, 
loosening a merchant vessel from ice is one of the main functions of IB 
assistance operations. Besetment occurrence reflects the need for IB 
assistance (Vanhatalo et al., 2021). Hence, factors leading to besetment 
can also trigger the need for IB assistance. Third, the context of ship 
operability in ice reflects how ice impacts ship performance. Involving 
IB assistance can affect ships’ ice resistance and ice loads (Kuuliala et al., 
2017; Milaković et al., 2019). Thus, factors that affect the ship’s per-
formance in ice can be potential factors that lead to the need for IB 
assistance. Finally, the IB workload assignment is of interest to simulate 
and optimize the winter navigation system (Kulkarni et al., 2022). 
Therefore, factors used to implement IB assistance for winter navigation 
simulation are the ones leading to the need for IB assistance. 

Based on the contexts in Table 1, a literature search is conducted to 
collect potential factors affecting the need for IB assistance. To ensure an 
objective assessment of the scientific value of the literature, Web of 
Science and Scopus are used as the primary sources for reference 
searches, focusing only on English-written articles. Articles referring to 
the contexts mentioned above are deemed relevant for factor collection. 
The details can be referred to (Liu et al., 2023). 

In Fig. 1 it lists the factors collected from references. There are 22 
factors classified into four categories: ship-related category (SC), ice- 
related category (IC), weather-related category (WC), and human- 
related category (HC). As shown in Fig. 1, the ship-related category 
includes 5 factors. Firstly, ship ice class is the most frequently mentioned 
factor. Ice class refers to the ice-going capacity of a ship. According to 
the Finnish-Swedish Ice Class Rules (FSICR), there are five ice classes, 1 
A SUPER (1 AS), 1 A, 1B, 1C, and II. 1 AS has the strongest ice-going 
capability, followed by 1 A. Ships with these two ice classes can be 
assisted without restrictions in severe ice conditions. While for 1B, 1C, 
and II, the availability of icebreaker assistance to Finnish and Swedish 
ports is restricted during peak winter due to their low ice-going capacity 
(BIM, 2020). Secondly, hull shape and ship type are potential factors as 
well. Hull shape matters for ice loads and ice resistance investigation, 
influencing the ice-going capability of the vessel (Kujala et al., 2018). 
Although the ship type consideration is limited to some specific types, 
this factor has been discussed by besetment evaluation and route plan-
ning studies (Fu et al., 2016; Kubat et al., 2012; Valdez Banda et al., 
2015). Engine power comes as another potential factor. Engine power 
partly presents the ship’s ice-going ability. Ships assisted by IB can 

reduce the power output when sailing in ice (Juva and Riska, 2002). To 
balance the navigation cost and efficiency, IB assistance service is an 
option for merchant vessels sailing in ice-covered waters (Kondratenko 
et al., 2021). Finally, ship length, width, and deadweight are collected as 
influencing factors because of their effect on the ice-going capabilities of 
the ship. Furthermore, authorities set restrictions on ship deadweight to 
determine whether a vessel is entitled to be assisted by IB (Matala and 
Suominen, 2022). 

The ice-related category covers 9 factors. Ice concentration and ice 
thickness are the 2 most frequently mentioned elements. Ice concen-
tration generally represents a fraction of a measured area covered by ice. 
Ice can be categorized into diverse groups (e.g., new ice, grey ice, etc.) 
according to thickness (Milaković et al., 2019). The ice condition with 
high concentration and thickness would increase the navigation diffi-
culty of merchant vessels, leading to a high probability of needing IB 
assistance. Rather than express ice appearance in general, ice types are 
presented by level ice, ridged ice, and rafted ice. Rafted and ridged ice 
can be deformed from level ice (Haapala et al., 2005), while ridged ice is 
significantly thicker than other ice types, leading to harsh conditions 
where IB assistance would be needed (Kubat et al., 2014). 

Apart from the concentration and thickness of different ice types, 
some other ice characteristics have been discussed by existing studies, 
such as ice floe size, dynamic ice, brash ice, and ice compression. Ice floe 
is a piece of ice floating on the sea surface, impacting ice loads on ship 
hulls (Huang et al., 2021). Goncharov et al. (2023) indicated that broken 
ice floes in channel brings danger for merchant vessels, as they would 
make the rotation of ship propeller difficult, reduce ship thrust, and 
affect ice resistance. Brash ice occurs when ice floes or level ice breaks 
up into smaller floating chunks. Ship resistance would be affected by 
such ice conditions, leading to speed changes (Guo et al., 2018). If a ship 
is not able to move in such a condition, IB assistance operation is an 
alternative. Dynamic ice can be generated by wind, wave, and current 
forces (Lensu and Goerlandt, 2019). Zhang et al. (2023) proposed a 
novel artificial potential field-based model to investigate the sea ice risk 
considering ice drift, which can be used to present the probability of a 
ship stuck in ice during convoy operation. Usually, dynamic ice moving 
perpendicular to the midship section is considered hazardous, with a 
high risk of getting stuck, indicating that IB assistance would be needed 
(Lu et al., 2021). It is assessed to investigate ship performance in ice or 
predict besetting probability (Pärn et al., 2007). Ice compression is 

Fig. 1. Collected Factors that may affect the navigation mode determination (the number in the parenthesis indicates the response number).  
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another factor mentioned by references (Kubat et al., 2012; Pärn et al., 
2007). Although its definition is still imprecise, ice ridges and wind have 
been identified as the main forces leading to ice compression (Kubat 
et al., 2012; Wang et al., 2021). 

For the weather-related category, 6 factors are collected from the 
literature, including visibility, air and sea surface temperature, wind, 
snow thickness, and current. Weather factors are often discussed by 
besetment evaluation using the Bayesian networks; see examples (Fu 
et al., 2016; Montewka et al., 2015; Xu et al., 2022). The wind has been 
discussed by the research investigating ship performance in ice, as it is 
one of the driving forces of ice movement and ice compression (Kubat 
et al., 2014; Lensu et al., 2013). Human factors are often mentioned in 
studies on risk analysis. For example, lacking navigational experience 
would lead to risky conditions (e.g., besetment events) (Xu et al., 2022). 

However, among the factors listed in Fig. 1, most of the factors have 
not been used for directly analyzing the need for IB assistance. 
Currently, no study systematically investigates the effect of these factors 
to better understand the need for IB assistance. Only a limited number of 
factors have been used to indicate the need for IB assistance in existing 
references, see Table 2. 

In Table 2, it illustrates two sets of factors that are currently used to 
estimate the need for IB assistance. The first set (Set I) consists of factors 
considered by the Polar Operational Limit Assessment Risk Index System 
(POLARIS) and Arctic Ice Regime Shipping System (AIRSS) (Fedi et al., 
2018, 2020; Lee et al., 2021). POLARIS and AIRSS are systems that can 
be used to evaluate navigational risk. The systems consider ship ice 
class, ice concentration, and the range of ice thickness to calculate the 
navigation risk index. If the index is lower than 0, it indicates IB assis-
tance would be a navigational option to secure navigation safety. The 
second set (Set II) comprises factors that are taken into account in winter 
navigation simulation studies. Ship speed is calculated as a function of 
operational conditions, such as equivalent ice thickness with an 
assumption of engine power (Kulkarni et al., 2022; Martin et al., 2016; 
Tarovik et al., 2017). Ship speed is set as a sole threshold to determine 
the need for assistance. If the speed is below the threshold (e.g., 3 knots), 
the ship needs to wait for IB assistance. Otherwise, the ship can proceed 
with independent navigation in ice. 

The research gap can be observed from the literature review when 
comparing the factors in Fig. 1 to the ones in Table 2. The effect of 
operational conditions on the need for IB assistance has not been thor-
oughly examined. Multiple factors, including ice conditions, weather, 
and ship specifications, could influence the estimation of the need for IB 
assistance. The limited number of factors shown in Table 2 does not fully 
account for complex winter navigation scenarios. Therefore, under the 
guidance of Fig. 1, it is necessary to conduct a data-driven study to 
identify and quantitatively analyze a comprehensive list of factors 
impacting navigation mode estimation. 

3. Methods 

The paper proposes a data-driven framework for identifying influ-
encing factors and quantifying their effect on the need for IB assistance. 

The framework includes three stages, as shown in Fig. 2. A brief intro-
duction of the framework is described below, and more details are 
provided in Sections 3.1–3.3. 

Stage I focuses on multi-sources data collection and integration. By 
integrating multiple data sources (traffic, environment, and ship speci-
fications information), factors to be assessed can be presented quanti-
tatively. This step provides data sources for the following stages. Under 
stage II, data points are labeled by a multi-step clustering method to 
distinguish instances of assistance operation and independent naviga-
tion. This is followed by data selection, filtering, and balancing. The 
outcome of stage II is subsequently used to analyze the influencing 
factors in the following stage. Finally, in Stage III, influencing factors 
analysis is done using logistic regression, and the effectiveness of the 
identified factors regarding modes classification capability is measured 
at the end. The following subsections describe these three stages in more 
detail. 

3.1. Stage I: multi sources data collection and integration 

To gather data about the factors in Fig. 1, data sources that can 
provide information regarding traffic information, environmental con-
ditions, and ship specifications, are needed. Data from three different 
sources – automatic identification system (AIS), Helsinki Multi-category 
sea-ice model (HELMI), and the operational management system of 
winter shipping (IBNet), are integrated in this paper to represent the 
operational conditions. 

The first source is maritime traffic data, represented by AIS data 
provided by the Finnish Transport Infrastructure Agency. It is used to 
present traffic scenarios. The detailed description of the data source can 
be found in Liu et al. (2022). Dynamic ship positions and marine mobile 
service identity (MMSI) are extracted from AIS. Although the quality of 
AIS data was initially mediocre in the early implementation years due to 
the error information related to speed, course, and location, there has 
been a significant improvement in the quality of AIS data over the past 
decade (Goerlandt et al., 2017). In the current paper, we implemented 
the error filtering method used by Liu et al. (2020) to eliminate error 
information related to speed, course, and geographical coordinates and 
exclude trips of insufficient duration that do not encompass valuable 
traffic information. 

The second data source comes from the Helsinki Multi-category sea- 
ice model (HELMI) which is developed for climate applications. The 
model has been used as a basis for describing the sea ice conditions 
(Montewka et al., 2015; Goerlandt et al., 2017). Details of the model can 
be found in Haapala et al. (2005). Lensu et al. (2013) indicated that the 
HELMI model has been developed and compared with observed data in 
many projects during 10 years. The comparison with ice charts has 
shown that the model serves its purposes. The data for both ice factors 
(IF) in the ice-related category and weather factors (WF) in the weather- 
related category in Fig. 1 are collected from the HELMI model. The 
HELMI stores factors in a three-dimensional NetCDF format, where 
variables vary with time over the fixed grid cell. The grid has 556 nodes 
in the latitude direction and 415 nodes in the longitude direction, with 
each grid cell covering an area of 1 square nautical mile (nm) and an 
hour temporal resolution. Each node has all variables, and each variable 
has its own value that is updated hourly. 

Among the 6 weather factors in Fig. 1, wind speed, snow thickness, 
and air temperature can be obtained from the HELMI model. It is worth 
noting that the snow thickness in HELMI is the average thickness per 
unit area over the level ice cover (Rontu et al., 2019). The detailed in-
formation refers to Haapala et al. (2005) and Rontu et al. (2019). 
Although visibility and currents have been cited by references, data on 
these two factors are currently not available. Sea surface temperature 
value is constant in HELMI during the study period and hence does not 
add value to the impact analysis. Thus, this factor is not included in the 
following stage as well. 

As mentioned above, HELMI provides ice factors. The concentration 

Table 2 
Factors assessed to determine the need for IB assistance  

No The name of the factor 
considered by the 
reference 

Reference examples 

IC IT SIC SP 

Set I ✓ ✓ ✓  (Fedi et al., 2018, 2020; Lee et al., 2021) 
Set II    ✓ (Bergström and Kujala, 2020; Kulkarni et al., 

2022; Lindeberg et al., 2018; Tarovik et al., 
2017) 

Note IC: ice concentration; IT: ice thickness; SIC: ship ice class; SP: ship speed.  
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and thickness of level, ridged, and rafted ice are recored in the model, 
covering 5 of 8 ice factors shown in Fig. 1. There are 7 categories, 5 level 
ice categories, ridged ice category, and rafted ice category. Each cate-
gory represents an average ice thickness per unit area (1 square nm). The 
level ice concertation is derived by summing the values from all five 
categories. The concentration of ridged and rafted ice are directly pro-
vided by the model record. The thickness of level ice, ridged ice, and 
rafted ice is calculated by dividing the average thickness obtained from 
HELMI by their respective concentrations. However, getting information 
on ice floe size, dynamic ice, brash ice, and ice compression from HELMI 
is not feasible. To our knowledge, currently, there is a lack of data 
sources that can accurately capture the conditions of dynamic ice, 
compressed ice, brash ice, and ice floes in the Baltic Sea. While the in-
formation on these ice conditions is usually collected by observations, 
obtaining observed ice information for tens of thousands of trips with 
these ice conditions poses a significant challenge. However, ice speed 
exhibits a strong correlation with wind speed, and ice compression is 
primarily driven by the combined forces of wind and ice ridges (Pärn 
et al., 2007). Thus, the inclusion of the wind speed partially mediates the 
issue of not having direct data on ice compression and dynamic ice. 

Information from IBNet is the third data source. IBNet is an IT-based 
online system jointly operated and maintained by the Finnish Transport 
Infrastructure Agency and the Swedish Maritime Administration to co-
ordinate icebreaking operations (BIM, 2020). IBNet is used in this paper 
to collect data on ship factors (SF) in the ship category in Fig. 1. From 
IBNet, ship length, width, type, deadweight, engine power, and ice class 
are obtained. Although ship hull is vital for ship performance investi-
gation in ice, data on ship hull information, like the angle of the bow, is 
not available. Furthermore, hull information varies from ship to ship, 

which is impossible to get for all vessels visiting the Baltic Sea during the 
study period. Hence, the ship hull is excluded in the following analysis 
and discussion. 

The factors for which data can be collected are summarized in 
Table 3, based on the presentation in Fig. 1. While the human factor is 
observed as an influencing factor, it is impossible to collect data about 
human decisions and reasoning on board when IB assistance happened 
for tens of thousands of trips. The navigational patterns resulting from 
human made decisions can be mirrored in the observed trips (indepen-
dent navigation and IB assistance operation) presented by the dataset. 
The approach of this paper is to quantitatively understand the influ-
encing factors behind the actual cases based on the available data. 

Fig. 2. Framework for influencing factors analysis.  

Table 3 
Factors presented by data for quantitative analysis  

No Factors from the integrated 
dataset 

No Factors from the integrated 
dataset 

IF 1 Level ice concentration (in 
tenths) 

WF 
3 

Wind speed (m/s) 

IF 2 Ridged ice concentration (in 
tenths) 

SF 1 Ship length (m) 

IF 3 Rafted ice concentration (in 
tenths) 

SF 2 Ship width (m) 

IF 4 Thickness of level ice (m) SF 3 Ship engine power (Kw) 
IF 5 Thickness of ridged ice (m) SF 4 Ship deadweight (T) 
IF 6 Thickness of rafte d ice (m) SF 5 Ship ice class 
WF 1 Snow thickness (m) SF 6 Ship type 
WF 2 Air temperature (◦C)    
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Data collected from three different sources need to be integrated 
before use. Ship factors are combined with dynamic ship traffic infor-
mation using MMSI. Dynamic ship position extracted from AIS data is 
integrated with the corresponding ice and weather factors. To integrate 
ice and weather data with AIS messages, we employed the method 
outlined in Lensu and Goerlandt (2019). Given that ice and weather 
conditions typically do not undergo significant changes within a short 
time frame (within an hour), it is reasonable to use the values from the 
nearest temporal and spatial point. For example, as shown in Fig. 3, the 
red-highlighted cross mark represents an AIS message with a timestamp 
(occurred at 15:50) and location information (indicated by latitude and 
longitude). To obtain the corresponding values from the HELMI model, 
we identified the index of the nearest timestamp (which occurred at 
16:00) and nearest location (the point a as shown in Fig. 3). The values 
corresponding to this index in the attribute dataset are then extracted 
and utilized as matches. According to the statement in Lensu and 
Goerlandt (2019), the location accuracy of this match is about the size of 
one grid cell or even better. 

3.2. Stage II: different navigation mode labeling and data points 
preparation 

Stage II (a). Different navigation mode labeling: After the multi- 
sources data integration, each data point consists of 15 factors shown 
in Table 3, reflecting traffic conditions, ice conditions, and weather 
conditions. However, initially, the data points are not inherently cate-
gorized as either assistance or independent cases, necessitating the need 
for labeling to be conducted. The process of labeling navigation mode is 
to identify the navigation mode from the dataset and assign the label 
that specifies if the data point represents an assistance or independent 
navigation case. Our previous study (Liu et al., 2022) adopted a multi- 
step clustering method to label navigation mode and validated the 
outcomes using real-life IBNet assistance records. 

Stage II (b). Data points preparations: The number of independent 
cases is much greater than that of assistance cases in the Baltic Sea. To 
ensure data consistency and comparability, three constraints are used 
for independent case selection. First, to be qualified for IB assistance 
service, a minimum deadweight and ice class are mandatory for mer-
chant vessels (FSICR, 2021). Given this constraint, only merchant ves-
sels larger than 1300 DWT and ice class higher than II are considered for 
the study period (SMHI, 2023). Second, 98% of assistance cases in the 
study period happened at 63◦ N and above. Thus, 63◦ N and above is 
used to select data points of independent cases. Finally, among different 
ship types, the assistance instances contain bulk, container ship, general 
cargo, RoRo cargo, and tankers. Therefore, the above five types are also 
used to filter independent cases. 

To ensure the integrity and validity of the established dataset, data 
cleaning is further conducted by checking each data point in the 

database. Missing information, such as missing ship deadweight, un-
available ice factor at a specific position, and obvious outliers are 
detected and removed from the dataset. To detect outliers, interquartile 
range (IQR) is applied, see Table 4 (Tukey, 1977). 

Finally, random under-sampling is employed for independent cases 
to avoid a skewed class proportion (independent case vs. assistance 
operation). This method is chosen when there is plenty of data for an 
accurate analysis (Brownlee, 2020). The aim is to reduce the number of 
data points by removing samples from independent cases, with the goal 
of achieving an equal number of samples for both operational modes. 
When there is a significant disparity in sample sizes between two classes, 
capturing the characteristics of the minority class becomes challenging. 
The method can be represented as follows: Nmajority is the number of 
instances in the majority class; Nminority is the number of instances in the 
minority class. To achieve a 1:1 ratio between the majority and minority 
class, Nnew majority = Nminority, Nremove = Nmajority − Nnew majority is the num-
ber of instances that need to be randomly removed from the majority 
class. After this step, the database has a balanced representation of two 
operations. 

3.3. Stage III: influencing factor analysis by logistic regression 

Binary logistic regression is a statistical model that estimates the 
probability associated with one of the two classes in the dataset (Gam-
bella et al., 2021). It can take both continuous and discrete variables as 
inputs. The result of the model is the impact of each input variable on the 
target event of interest. There are two main steps involved.  

• Step 1. Multicollinearity detection and explanatory variables 
selection 

Fig. 3. An example of matching AIS data with data in NetCFD format.  

Table 4 
Interquartile range method for outlier detection  

Input: 

D = {d1, d2…, dn} is a column of data points 
Output: 
Outliers 
Process: 
1. Calculation of Quartiles: 
Q1,Q3 = s.quantile(.25), s.quantile(.75)

2. Interquartile Range (IQR): 
IQR = Q3 − Q1 
3. Bounds for Outliers: 
Low,Up = Q1 − 3*IQR,Q3 + 3*IQR 
4. Identifying Outliers: 
Outliers are those values in series s where:  

Outlier = {d ∈ s|x < Low, or x > Up }
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In logistic regression, no assumptions are made on the distribution of 
any explanatory variables. However, the multicollinearity of two or 
more independent variables would affect the performance of coefficient 
estimation (Bewick et al., 2005). Given a little change in the data, 
multicollinearity can cause unstable explanations of strongly correlated 
input variables. It is generally acceptable to have moderately correlated 
variables, but high levels of multicollinearity can be problematic and 
should be a cause for concern. The variance inflation factor (VIF) is 
adopted to detect multicollinearity among factors (Daoud, 2017). It 
technically measures how much the squared standard deviation of an 
estimated regression coefficient is increased because of collinearity. It 
can be measured for each explanatory variable by Eq. (1). To interpret 
the meaning of VIF, Table 5 is used. It is advisable to remove or 
appropriately combine variables with a variance inflation factor (VIF) 
higher than 5. The process of the factor determination can be found in 
Appendix A.2. 

VIF =
1

1 − R2
i

(1) 

Where R2
i represents the unadjusted coefficient of determination for 

regressing the ith explanatory variable on the remaining ones.  

• Step 2. Logistic regression analysis 

A logistic regression models the chance of the target event based on 
individual variables. Given a chance is a ratio, the logarithm of the 
chance is modeled by Eq. (2). The process of the regression coefficient 
determination can be found in Appendix A.1. 

log
(

p
1 − p

)

= β0 + β1x1 + β2x2 + … + βmxm (2) 

Where p is the chance of the occurrence of an event (e.g., assistance 
operation in the current paper), p

1−p is the odds of the events, β0 is the 
intercept term of the model, and β1…βm present the regression co-
efficients associated with the target event and x presents the input 
variable. 

The regression coefficient can explain a brief relationship between a 
variable and the target event. Given the association is significant at the 
0.05 level (2-tailed), if the coefficient is larger than 0, it indicates that 
they are positively correlated, and vice versa. However, coefficients 
cannot measure the exact effect of a variable on the target event. To 
represent the effect extent of the variable, the odds ratio (OR) value is 
adopted (Sperandei, 2014). Odds is explained as the ratio of the target 
event happening to the event not happening. OR is explained as the ratio 
of odds, which is a statistic that quantifies the strength of the association 
between the explanatory variable and the target event. Important points 
on interpreting OR in logistic regression are briefly described below. 
Further details can be found in (Lavalley, 2008; Sperandei, 2014).  

• Assuming X is a variable of a multivariant logistic regression model, 
if X is a continuous variable, the logarithm of the odds of the event 
changes with a 1-unit change in the X, keeping other variables un-
changed. If X is a categorical variable, the logarithm of the odds of 
the event changes with the change of the dummy variable over the 
reference group, keeping other variables unchanged.  

• 100 times the OR minus 1 (e.g., 100*(OR − 1)), gives the percent 
change in the odds of the event corresponding to a 1-unit increase in 
X.  

• If OR value is higher than 1, it indicates that the odds of the event 
increase with the change of X, and vice versa. 

For this paper, the binary logistic regression models the need for IB 
assistance as a function of factors listed in Table 3. This can be consid-
ered as a classification problem where all factors in Table 3 are input 
variables for the model, and the navigation mode (independent case vs 
assistance case) is the response variable. The results are presented in the 
following section. 

4. Results 

In this section, a database consisting of scenarios of independent and 
assistance operations was established, and influencing factors were 
analyzed by logistic regression. 

4.1. Result of the database of assistance and independent navigations 

According to the method demonstrated in Stage I, this study inte-
grated three different data sources to present traffic and operational 
conditions. The data sources cover mild-winter months from January to 
February in 2018. In Fig. 4, it shows examples of integrated traffic and 
ice scenarios. Each point represented by the spatial matrix was matched 
with its corresponding operational conditions. 

In Fig. 5, itshows all 15 factors presented in Table 3. All experiments 
were running on a computer with Intel i7-12700H CPU, 32 GB of RAM 
and NVIDIA RTX A2000 GPU. According to Stage II in Section 3.2, data 
preparation was conducted. There were 559,694 data points classified 
into two navigation modes (independent navigation or assistance 
operation) (Liu et al., 2022), and 558,482 were left after the missing 
information removal, including 83,901 assistance operation and 
474,581 independent navigation data points. Next, we removed the 
duplications, leaving 80,566 data points in the dataset based on the 15 
factors. Data cleaning was then conducted to remove obvious outliers 
using IQR method described in Section 3.2. After the data cleaning, 6357 
assistance cases and 60,628 independent cases were reserved. Then, the 
number of independent points were under-sampled to match the number 
of assisted points. The random under-sampling method provided by the 
imbalanced-learn Python library was used to balance the data points of 
different navigation modes. The final dataset consists of 12,714 data 
points presenting two navigation modes equally. 

4.2. Result of factors effect analysis 

4.2.1. Factor effect analysis based on the entire database 
According to Stage III in Section 3.3, the effect of factors is evaluated 

by logistic regression. According to Eq. (1), VIF of each variable is 
calculated. The result is shown in Fig. 7 (a). It is observed that the fac-
tors, including ship length, width, deadweight, and power, have VIF 
larger than 5, indicating that these 4 variables could be highly correlated 
with each other. The pairwise correlation matrix is used to investigate 
how correlated these variables are. In Fig. 6, it shows that these four 
variables are correlated, and coefficient values vary from 0.719 to 0.923. 
The correlations are practically reasonable as they are static specifica-
tions of a vessel. The longer the length, the wider the width, and vice 
versa. The larger the ship dimension, the higher the deadweight and 
engine power. Correlated factors need to be combined reasonably or 
partly removed to eliminate the effect of multicollinearity on logistic 
regression. In this case, among these four factors, one factor is selected to 
be the input, and the remaining ones are reserved for robustness check. 

In Fig. 7(b), it shows the result of the updated list of variables. VIF of 
the selected variables are all <5, indicating there is no strong multi-
collinearity existing. 

Table 5 
VIF interpretation (Daoud, 2017)  

VIF value Interpretation 

VIF = 1 Not correlated 
1 < VIF < 5 Moderately correlated 
5 ≤ VIF Highly correlated  
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After the factor selection, logistic regression is implemented ac-
cording to the process of statistical analysis as shown in Section 3.3. In 
Table 6, it shows the logistic regression summary, including the coeffi-
cient, OR value, the range of OR value, and the corresponding confi-
dence level. In Fig. 8, it shows the result of the robustness check when 
changing ship characteristic representatives. 

In Table 6, it can be observed that different types of variables have 
diverse impacts. In general, ice factors have a more significant effect 
compared to ship factors and weather factors. Ridged ice concentration 

has the most significant impact on the target event, followed by level ice 
concentration. The interpretation of the identified influencing factors is 
explained in depth in the following section. 

Before the in-depth discussion on distinct factor effects, factor impact 
robustness is assessed, as shown in Fig. 8. To check the robustness when 
changing the representative variable of ship dimension, ship deadweight 
is replaced by ship length, width, and power, respectively. Air temper-
ature is not statistically significant at the 0.05 level, it is removed in the 
robustness check part. It is evident that when changing representative 

Fig. 4. Integrated traffic and ice scenarios in the Northern Baltic Sea.  

Fig. 5. Statistics of the database of assistance and independent operations.  
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ship dimension, the effect level remains stable regarding OR values of 
factors. We can conclude that the association result is robust against the 
representative ship characteristic variable change when determining the 
need for IB assistance. Thus, the final list of identified influencing factors 
is shown in Fig. 9. 

The detailed interpretations of influencing factors are explained as 
follows: 

Influencing ice factors: Based on the effect analysis results of logistic 
regression (Table 6 and Fig. 8), among all the ice variables, ridged ice, 
and level ice concentration have the most significant impact, followed 
by ridged ice thickness, level ice thickness, rafted ice thickness, and 
rafted ice concentration. To interpret the effect result, we use ridged ice 
concentration as an example. Assuming all other variables are held 
constant, the estimated coefficient for ridged ice concentration suggests 
a positive correlation with the need for IB assistance. The OR value 
quantifies this relationship, indicating the multiplicative increase in the 
odds of requiring IB assistance for every one-unit increase in ridged ice 
concentration. Furthermore, this association result is statistically sig-
nificant at the 0.01 level. The higher the OR is, the more significant the 
effect of the variable. 

These findings can be supported by the previous study (Chang et al., 

2015; Huang et al., 2021; Montewka et al., 2014). Ice ridges have a 
significant effect on navigation safety. One potential reason could be 
that ridged ice is generally thicker than level and rafted ice, increasing 
the ice resistance and threatening the ship hull. It is known as well that if 
there is wind forcing on ridges, more challenging ice condition would 
appear as ice compression can be generated, leading to a high proba-
bility of getting stuck or a high risk of getting hull damage, especially for 
ships with low ice-going capability (Kuuliala et al., 2017). However, it is 
observed that ridged ice concentration has a more significant impact 
compared to its thickness. This observation is interesting, as it delivers 
the information that the high concentration would alert the ships to be 
aware of the harsh ice conditions. IB assistance has priority as long as the 
navigating area is covered by ice with high concentration. 

It is noticeable that OR value of the concentration of rafted ice is <1, 
presenting a relatively minor effect compared to the concentration of 
ridges and level ice. Rafted ice concentration is negatively correlated 
with the target event, indicating that the increase of this factor did not 
increase the odds of the need for IB assistance. This is because the effects 
of factors are coupled, and the impact of rafted ice concentration is 
weakened by ridges and level ice. According to the database statistic in 
Fig. 5, the level ice concentration is significantly higher than that of 

Fig. 6. Correlation matrix of variables with high VIF.

Fig. 7. (a). VIF before variable selection Fig. 7 (b). VIF after variable selection  
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rafted ice. Furthermore, although the distrubition of rafted ice concen-
tration is similar to that of ridged ice in Fig. 5, ridged ice is much thicker 
than rafted ice, which lead to harsher ice conditions where IB assistance 
is highly likely needed. 

Influencing weather factors: The wind is recognized as one of the 
main factors influencing navigation mode determination. The OR value 
of wind indicates that the increase in wind speed would increase the 
probability of the need for IB assistance. The result is in line with the 
findings from previous studies (Abbassi et al., 2017). In the Baltic Sea, 
the wind is one of the main causes of ice drift and ice pressure, leading to 
ridges, rafting, and slush barriers in Baltic Sea (Kubat et al., 2016). This 
harsh ice condition requires IB to assist merchant vessels in navigating to 
reduce the potential risk (Berglund et al., 2007). The observed snow 
thickness and air temperature have a slightly positive impact. However, 
the value for air temperature is not significant between assistance and 
independent mode at the 0.05 level. Thus, the effect of this variable is 
considered insignificant. 

Influencing ship factors: The effect of ship factors is assessed from 
three aspects, namely, ship dimension presented by ship deadweight/ 
dimension/engine power, ship ice class, and ship type. These three 
factors are all associated with the need for IB assistance. Ship ice class 

and ship type are categorical and are modeled as dummy variables. II ice 
class is used as the reference category for ship ice class. Compared to II, 
the remaining ice classes of 1 AS, 1 A, 1B, and 1C have a lower impact. 
Overall, given the ice class rules in the Baltic Sea can be satisfied, II has 
the most apparent effect on the need for IB assistance among all ice 
classes, followed by 1C. Although ships with high ice classes, such as 1 
AS and 1 A, are the common ships being assisted by IB, they have a lower 
impact on the need for IB assistance than II and 1C in similar ice con-
ditions. The findings on the effect of ice class are aligned with the pre-
vious studies and empirical knowledge. Ice class rules are assigned based 
on the ice-going capability of a merchant vessel, resulting in the varying 
odds of IB assistance need for different ice classes (FTIA, 2021). To 
ensure a safe navigation procedure of a merchant vessel, the lower the 
ice class, the higher probability of being assisted by IB. 

For ship type, the tanker is used as the reference category. Compared 
to tankers, general cargo has a more significant effect. Container and 
RoRo ships have a lower impact on the need for IB assistance. The 
explanation is that the ice class range of general cargos entering the 
Baltic Sea is wider, varying from II to 1 AS. Low ice class leads to the 
necessity of the need for IB assistance. RoRo ships, in general, have high 
engine power requirements because of their high open water speed. 
They may need less IB assistance in reality (Riska et al., 1997). On the 
other hand, Fig. 5 shows general cargo presents the most significant 
percentage of traffic volume. Based on winter traffic statistics in Finnish 
and Swedish maritime areas, general cargo consists of 30% of the total 
traffic reported during a winter month, followed by tanker with 25% of 
the reported traffic. The influence of general cargo and tanker might be 
associated with the traffic volume. This observation aligns with the 
previous finding in Valdez Banda et al. (2015). However, the result of 
bulk cargo was not statistically significant at the 0.05 level. It indicates 
that this ship type does not significantly impact the need for IB assis-
tance probability. 

For ship dimension, it is presented by ship deadweight, length, 
width, and power individually (see Fig. 8). OR value of this factor is in a 
stable range varying from 0.824 to 0.941. This indicates that the smaller 
vessel has a higher probability of triggering the need for IB assistance. 
This finding is evidenced by the study of Valdez Banda et al. (2016), 
which found that the smaller the ship is, the higher the risky situations 
(e.g., getting stuck in ice) in ice-covered waters would be. 

In Fig. 9, it summarizes the findings on influencing factors based on 
the logistic regression analysis, which is presented by the average value 
from robustness check result. To obtain insights on the extent to which 
the identified factors can improve the navigation modes classification, a 
classification performance comparison is implemented by using factors 
in Fig. 9 and currently used factors shown in Table 2. The details are 

Table 6 
Logistic regression summary  

No. Variable Coefficient OR Lower 95% CI Upper 95% CI 

1 Level ice concentration 0.826 2.283** 2.121 2.458 
2 Ridged ice concentration 1.017 2.766** 2.537 3.016 
2 Rafted ice concentration −0.383 0.682** 0.636 0.731 
3 Level ice thickness 0.486 1.626** 1.498 1.764 
4 Ridged ice thickness 0.547 1.727** 1.597 1.868 
5 Rafted ice thickness 0.232 1.261** 1.156 1.376 
6 Snow thickness 0.062 1.064* 1.010 1.120 
7 Air temperature 0.034 1.035 0.982 1.091 
8 Wind speed 0.471 1.602** 1.518 1.691 
9 Ship dimension1, * −0.061 0.941 0.866 1.022 
Ice class (Reference: II) **     
10 1AS −1.618 0.198** 0.122 0.321 
11 1A −1.392 0. 249** 0.153 0.404 
12 1B −1.518 0.219** 0.127 0.379 
13 1C −0.714 0.490* 0.255 0.939 
Ship Type (Reference: Tanker) **     
14 General Cargo 0.338 1.403** 1.179 1.667 
15 Container ship −0.318 0.727* 0.546 0.970 
16 RoRo Cargo −0.659 0.517* 0.396 0.676 
17 Bulk Cargo 0.014 1.014 0.809 1.270 

Note 1: In this table,ship deadweight presents ship dimension. 
(**): The association is significant at the 0.05 level (2-tailed). 
(*): The association is significant at the 0.01 level (2-tailed). 

Fig. 8. Robustness check of association results under alternative ship dimension  
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illustrated in Section 4.3. 

4.2.2. Factor effect analysis with the fixed ship ice class 
Based on the entire dataset shown in Fig. 5, the 1A ice class presents 

skewed traffic statistics. This means that the 1A ice class might dominate 
the factor effect analysis. Thus, an investigation of the factor effect under 
the control of ship ice class is conducted. It is notable that based on the 
available data in the current paper, when ship ice class is fixed, ship type 
diversity within one ice class group is restricted as well, leading to poor 
statistical power. Thus, ship type is excluded from the discussion. Fig. 10 
and Fig. 11 demonstrate the comparison of factor effects regarding 
merchant ships of different ice classes. 

In Fig. 10, it shows OR values of influencing factors regarding 
different ice classes. Unsurprisingly, the factor effect varies for ships 
with different ice classes. The trend of the factor effect of high ice class 
ships is similar to the entire database. Ridged ice concentration has the 
most impact on high ice class ships, but level ice concentration is the 
factor that influences the need for IB assistance the most for low ice class 
ships. Furthermore, wind impact is not statistically significant for low 
ice class ships. This can be explained as wind is a leading force for harsh 

ice conditions, and low ice class ships usually get IB assistance before 
entering such a severe condition. 

In Fig. 11, it shows how the factor effect changes along the change of 
ship ice class. For ships with low ice classes, there is a substantial in-
crease in the influence of level ice concentration. It is observed that the 
effect of level ice concentration overrules the influence of other factors 
for ships with low ice class, constituting 56.2% of the overall impact on 
the need for IB assistance. Although ridged ice concentration still has a 
relatively important impact for ships with low ice class, accounting for a 
weight of 13.1% in influencing the IB assistance need, its effect is 
mitigated by level ice concentration. This can be explained as ships with 
1B, or lower ice class would stop before entering more challenging ice 
conditions, like ice ridges, because of the safety consideration (Kuuliala 
et al., 2017). 

4.3. Effectiveness evaluation of the identified factors 

To bridge the research gap discussed in Section 2, a relatively 
comprehensive list of influencing factors is identified (see Fig. 9) and 
analyzed by logistic regression. To evaluate the effectiveness of the 

Fig. 9. Identified factors that lead to the need for IB assistance  

Fig. 10. OR values of influencing factors for different ice classes (Note: (**) indicates the association is significant at the 0.05 level (2-tailed); (*) indicates the 
association is significant at the 0.01 level (2-tailed)). 
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identified factors in classifying different navigation modes, logistic 
regression classification performance using different input factors is 
measured. 

Specifically, the classification performance of the model is measured 
by using identified factors in Fig. 9 and two sets of factors in Table 2, 
respectively, and the results are compared. The confusion matrix and the 
area under the receiver operating characteristic curve (AUC) are applied 
to present the classification capability. The comparison method and 
results are descried in the following sections. 

4.3.1. Effectiveness comparison method for navigation modes classification 
In Fig. 12, it illustrates the comparative method, consisting of three 

steps. The first step is to prepare three different sets of factors as input 
for the classifier. Sets I and II present factors mentioned by existing 
studies in Table 2. Specifically, Set I presents ice concentration, 

thickness, and ship ice class. Set II presents ship speed. Detailed illus-
trations can be referred to in Table 2 and Section 2.1. Set III presents the 
factors identified in the current paper, including concentration and 
thickness of level ice,ridged ice, and rafted ice, snow thickness, wind 
speed, ship ice class, ship dimension, and ship type, see Fig. 9. The 
corresponding data come from the database in the current paper. Then, 
different sets of factors are used to feed logistic regression separately. By 
assessing different sets of factors, the classifier can perform differently 
regarding the classification of navigation modes. Finally, the confusion 
matrix and AUC results are compared to measure the effectiveness of 
different sets of factors. 

The confusion matrix is a table that visualizes the performance of a 
classifier (Fawcett, 2006). As shown in Table 7, the matrix presents how 
well the classifier can distinguish different classes. Accuracy, precision, 
recall, and F1-score can be calculated based on the confusion matrix. See 
Eqs. (3)–(6). The higher the values, the better the performance of the 
classifier. 

Accuracy =
TP + TN

TP + TN + FN + FP
=

TP + TN
P + N

(3)  

Precision =
TP

TP + FP
=

TP
Total classified as assistance operation

(4)  

Recall =
TP

TP + FN
=

TP
Total actual assistance operation

(5)  

Fig. 11. Relative effect comparison of different ice classes  

Fig. 12. The method of influencing factors performance comparison.  

Table 7 
Confusion matrix visualizing classification performance.   

Classification assistance 
operation 

Classification independent 
operation 

Actual assistance 
operation (P) 

True positive (TP) False negative (FN) 

Actual independent 
operation (N) 

False positive (FP) True negative (TN) 

Note: P presents positive (Assistance operation); 
N presents negative (Independent operation).  
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F1 − score = 2*
Precision*Recall

Precision + Recall
(6) 

Except for accuracy, precision, recall, and F1-score, AUC is also 
measured, a common index used to evaluate the classifier performance 
(Fawcett, 2006). AUC is the area under the receiver operating charac-
teristic (ROC) curve, generally varying from 0.5 to 1. If AUC is 0.5, it 
demonstrates the classifier is only as good as the chance model. 
Generally, an AUC value ranging from 0.7 to 0.8 is considered accept-
able; 0.8 to 0.9 is considered excellent, and >0.9 is considered 
outstanding (Mandrekar, 2010). 

To measure AUC, the ROC curve needs to be plotted first. ROC is a 
two-dimensional graph in which the y-axis plots the true positive rate 
(TPR), and the x-axis plots the false positive rate (FPR). Based on various 
classification thresholds ranging from 0 to 1, TPR and FPR can be 
calculated according to Table 7 and Eqs. (7)–(8). The detailed infor-
mation on ROC curve can be referred to (Fawcett, 2006; Halimu et al., 
2019). Once ROC is plotted, AUC can be calculated based on the trap-
ezoid rule, Eq. (9). 

TPR =
TP
P

=
TP

Total actual assistance operation
(7)  

FPR =
FP
N

=
FP

Total actual independent operation
(8)  

AUC =

∫ 1

0
[FPR(t) ]*[dTPR(t) ]dt

≈
∑N

1
0.5*(TPR[i] + TPR[i − 1] )*(FPR[i] − FPR[i − 1] ) (9) 

Where i presents the point on the ROC curve, and N presents the total 
number of points on the curve. 

4.3.2. Effectiveness comparison results for navigation modes classification 
Following the above method in Section 4.3.1, Table 8 shows the 

accuracy, precision, recall, and F1-score. Fig. 13 visualizes the AUC 
value, which is the area under the ROC curve. 

In Table 8, it is observed that the classifier using factors in the current 
paper (as shown in Fig. 9) has the best classification performance, with 
0.808 accuracy, 0.810 precision, 0.808 recall, and 0.807 F1-score. This 
is followed by the classification performance under the Set I (accuracy =
0.740, precision = 0.767, recall = 0.740, F1-score = 0.732). The per-
formance under Set II is the worst. Compared to the result of Sets I and II, 
by considering the factors in Fig. 9, accuracy, precision, recall, and F1- 
score can be improved by at least 9.2%, 5.6%, 9.2%, and 10.3%, 
respectively. 

In Fig. 13, the yellow line shows the ROC curve using the identified 
factors in the current paper (as shown in Fig. 9). The navy line shows the 
curve using factors in Table 2 Set I, and the green line indicates the curve 
using factors in Table 2 Set II. The AUC value is presented by calculating 
the area under each curve. The AUC comparison result also shows that 
the classifier using factors in the current paper has the best performance, 
with AUC equals to 0.874. Compared to the performance using the Set I 
(AUC = 0.803) and Set II (AUC = 0.690), AUC increases by at least 8.8%. 

Therefore, based on the result comparison, we can conclude that the 

IB assistance need can be estimated more accurately by considering the 
identified influencing factors listed in Fig. 9. Although ship speed re-
flects operational conditions (e.g., the combined influence of ice con-
ditions and ship conditions), using this indirect threshold solely as an 
estimation for IB assistance need is not the best option. 

5. Limitations and future work 

The paper presents a data driven approach to investigate the influ-
encing factors and their effect on estimating the need for IB assistance in 
the Baltic Sea. However, as a starting step in quantitatively analyzing 
and understanding the factors and the reasoning behind human-made 
decisions, the proposed approach poses some limitations. 

Firstly, the established dataset presents various ice conditions 
including thickness and concentration of different types of ice. However, 
extending the parameter set, including dynamic ice, ice compression, 
brash ice, or ice floes, can be considered, if the needed data are possible 
to obtain directly, or to derive from other data. For instance, a vessel 
navigating through thick level ice may find opportunities to reverse and 
repeatedly ram into the ice to break its way. However, dynamic ice 
around a vessel would significantly limit its movement, specifically 
when moving towards the midship section, because the broken channel 
would close, and dynamic ice would pose additional resistance. There-
fore, the consideration of the additional factors could provide diverse 
findings. As a future work, various ice data source integration can be 
carefully considered. For instance, collecting and merging ice data from 
satellite images, ice observations and multiple forecasting models might 
be an option. 

Secondly, the data analysis does not consider seasonal, yearly, and 
regional variations in operational conditions. The effect of parameters 
directly or cumulatively affecting ice structure and properties (e.g., 
freezing and melting cycles) would vary through seasons and years. The 
consideration of the above variations may lead to different results. For 
example, level ice may behave differently in cold winter months 
compared to warmer melting periods, thereby affecting the estimation 
of IB assistance need. Furthermore, the findings from this study focus on 
the Baltic Sea. Regional difference also plays a significant role, as 
external conditions and decision-making policies vary. The influencing 
factors and their effects may vary across different areas. Therefore, the 
investigation on other ice-covered waters (e.g., Arctic area) should be a 
sperate study in the future. Since the dataset is scalable, an extended 
data analysis by adopting the proposed approach to account for the 
above variations can be conducted when the necessary data becomes 
available. 

Thirdly, as mentioned in Section 3.1, to present external conditions 
and traffic volume, AIS data and HELMI data are integrated. However, 
due to the varying resolution of AIS data and HELMI data, it is impos-
sible to precisely integrate operational conditions with each traffic data 
point for all trips in the Baltic Sea. As a simplification, we assume that 
the external conditions remain constant around the vessel within the 
resolution of HELMI model. While 1 nm* 1 nm is a good resolution for an 
ocean model, it remains too coarse to accurately represent external 
conditions from a ship’s perspective. Given this consideration, one po-
tential future study should involve researching how to bridge the gap 
between the varying demands for data resolution across different fields. 
For instance, to present more detailed external conditions for ship 
operation analysis, collecting on board observed data within a 1 square 
nautical mile area would be necessary. 

Finally, this study assumes that navigational patterns resulting from 
human made decisions are reflected in the observed trips, but a full-scale 
human factor study could help to better understand the efficacy of the 
approach. The effect of navigational experience can be analyzed within 
different navigational scenarios, using the factors identified in this study 
as a foundation for human factor analysis. 

Table 8 
Effectiveness comparison of different sets of factors   

Accuracy Precision Recall F1- 
score 

Performance using factors in Table 2 
Set I 

0.740 0.767 0.740 0.732 

Performance using factors in Table 2 
Set II 

0.626 0.630 0.626 0.622 

Performance using factors in Fig. 9 
Set III 

0.808 0.810 0.808 0.807  
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6. Conclusions 

This study proposed a data-driven framework for influencing factors 
analysis regarding navigation mode determination. This is the first time 
that the quantitative knowledge of how different factors affect the need 
for IB assistance was captured and discussed based on data. A novel 
database containing 15 factors presenting various operational scenarios 
for different navigation modes was established, and navigation mode 
classification was modeled as a function of the above factors. The results 
indicate that ice factors, environment factors, and ship specifications 
influence navigation mode determination simultaneously. Specifically, 
ridged ice concentration has the most significant impact, followed by 
level ice concentration. Compared to ridged and level ice, rafted ice 
thickness and concentration have minor effect on the IB assistance need. 
The analysis for fixed ice class indicates that for ships with low ice class, 
level ice concentration overrules the effect of all other factors, ac-
counting for 56.2% of the overall impact. In actual life, ships with low 
ice class needs to be assisted by IB before encountering extremely harsh 
conditions, like the area covered by ridged ice. The findings aligned well 
with the current empirical knowledge. Except for quantitatively 
reflecting the actual operational scenarios well, the effectiveness eval-
uation of influencing factors demonstrates that the identified factors (see 
Fig. 9) enable a machine learning model to classify different navigation 
modes automatically. Compared to the existing used factors (see 
Table 2), the classification performance is improved by at least 5.6%. 
Overall, the study’s outcomes underline the importance of data-driven 
research in winter navigation. 
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Appendix A. Appendix

Algorithm A.1. Logis�c regression algorithm for coefficients determina�on
Ini�alize: 
1. Let be the matrix of input features, with each row represen�ng a data point ( ) and each 
column a feature, see Table A1.
2. Let be the vector of target values (binary outcomes: Independent naviga�on or Assistance 
opera�on).
3. Choose a learning rate alpha and itera�ons number for the model training process.
4. Ini�alize the vector of coefficients (including the intercept term) with zeros.
Output: 

value of , and the corresponding classified target value . 
Process: 
1. Add an intercept term to :

Prepend a column of ones to the matrix , = . ( , 0, 1, = 1)

2. Perform gradient descent:
α = learning rate
ε = convergence threshold

While not converged:
2.1. Calculate the current predic�ons:

Compute = ∗ , where '*' denotes matrix mul�plica�on.
Define Func�on sigmoid ( ): return 

( . ( ))

Apply the sigmoid ( ) to get predicted probabili�es: ℎ = ( )

2.2. Calculate the gradient:
The gradient is the par�al deriva�ve of the cost func�on with respect to each coefficient.
It can be computed as = (1/ ) ∗ ( ^ ∗ (ℎ − )) , where '^ ' denotes 
matrix transpose and ' ' is the number of .

2.3. Update the coefficients:
Adjust each coefficient by subtrac�ng alpha �mes the corresponding gradient: 
= − ∗ .

if norm(gradient) < ε:
converged = True

3. The coefficients at the end of this process are the es�mated regression coefficients.
4. To calculate the value:

For each coefficient in b, calculate the as the exponen�al of the coefficient, . ( )

Algorithm A.2. The process of calcula�ng 
Ini�alize: 
Dataset with Features 
Output: 

Selected Features
Begin: 
1. Calculate :

_ :
For each in :

= _ ( )

=

2. Calculate :
_ ():

Regress each against all other ~ : _ = ( , ~ )

= _ .

3. Remove mul�collinearity feature(s):
For each in :

If > 5, is iden�fied as a feature contribu�ng to mul�collinearity,
_ _ ℎ ( )

4. Recalculate :
_ = _ ( )

While any ( > 5 for in  _ ):
Remove mul�collinearity feature(s)

Table A1 
Data format regarding navigation mode classification  

Case Level ice concentration Ridged ice concentration Rafted ice concentration … Ship ice class Class 

1 Numerical value Numerical value Numerical value  Categorical value Yes 
2 Numerical value Numerical value Numerical value  Categorical value No 
… … … … … … … 
m Numerical value Numerical value Numerical value  Categorical value Yes 
Note: m is the number of cases.  
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