
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Shi, Danqing; Zhu, Yujun; Jokinen, Jussi P.P.; Acharya, Aditya; Putkonen, Aini; Zhai, Shumin;
Oulasvirta, Antti
CRTypist: Simulating Touchscreen Typing Behavior via Computational Rationality

Published in:
CHI '24: Proceedings of the 2024 CHI Conference on Human Factors in Computing Systems

DOI:
10.1145/3613904.3642918

Published: 11/05/2024

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Shi, D., Zhu, Y., Jokinen, J. P. P., Acharya, A., Putkonen, A., Zhai, S., & Oulasvirta, A. (2024). CRTypist:
Simulating Touchscreen Typing Behavior via Computational Rationality. In F. F. Mueller, P. Kyburz, J. R.
Williamson, C. Sas, M. L. Wilson, P. Toups Dugas, & I. Shklovski (Eds.), CHI '24: Proceedings of the 2024 CHI
Conference on Human Factors in Computing Systems Article 942 ACM.
https://doi.org/10.1145/3613904.3642918

https://doi.org/10.1145/3613904.3642918
https://doi.org/10.1145/3613904.3642918

CRTypist: Simulating Touchscreen Typing Behavior via
Computational Rationality

Danqing Shi
Aalto University

Finland
danqing.shi@aalto.fi

Yujun Zhu
Aalto University

Finland
yujun.zhu@aalto.fi

Jussi P.P. Jokinen
University of Jyväskylä

Finland
jussi.p.p.jokinen@jyu.fi

Aditya Acharya
University of Birmingham

United Kingdom
aditya02acharya@gmail.com

Aini Putkonen
Aalto University

Finland
aini.putkonen@aalto.fi

Shumin Zhai
Google

United States
zhai@acm.org

Antti Oulasvirta
Aalto University

Finland
antti.oulasvirta@aalto.fi

ABSTRACT
Touchscreen typing requires coordinating the fingers and visual
attention for button-pressing, proofreading, and error correction.
Computational models need to account for the associated fast pace,
coordination issues, and closed-loop nature of this control problem,
which is further complicated by the immense variety of keyboards
and users. The paper introduces CRTypist, which generates human-
like typing behavior. Its key feature is a reformulation of the super-
visory control problem, with the visual attention and motor system
being controlled with reference to a working memory representa-
tion tracking the text typed thus far. Movement policy is assumed
to asymptotically approach optimal performance in line with cogni-
tive and design-related bounds. This flexible model works directly
from pixels, without requiring hand-crafted feature engineering
for keyboards. It aligns with human data in terms of movements
and performance, covers individual differences, and can general-
ize to diverse keyboard designs. Though limited to skilled typists,
the model generates useful estimates of the typing performance
achievable under various conditions.

CCS CONCEPTS
• Human-centered computing → User models.

KEYWORDS
Simulation models; Reinforcement learning; Touchscreen typing;
Computational modeling

ACM Reference Format:
Danqing Shi, Yujun Zhu, Jussi P.P. Jokinen, Aditya Acharya, Aini Putkonen,
Shumin Zhai, and Antti Oulasvirta. 2024. CRTypist: Simulating Touchscreen

This work is licensed under a Creative Commons Attribution International 4.0 License.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642918

Typing Behavior via Computational Rationality. In Proceedings of the CHI
Conference on Human Factors in Computing Systems (CHI ’24), May 11–16,
2024, Honolulu, HI, USA. ACM, New York, NY, USA, 17 pages. https://doi.
org/10.1145/3613904.3642918

1 INTRODUCTION
How might computational models help us improve text entry meth-
ods for human use? Since the field’s inception in the 1980s, Human-
Computer Interaction (HCI) has been in pursuit of models that
could illuminate and predict outcomes in typing [15]. Some models
predict performance in elementary subtasks, such as selecting keys
[12], or visually searching them [44], and choice [53], while some
cover compound tasks, such as transcription typing [14, 42, 43, 77].
Successful models would have multiple applications. They could
advance the formation of theories of typing and provide insights
into usability of prototypes before user testing, and thereby lower
the costs of human-centric engineering. They could help improve
the accessibility of interfaces by simulating users with different
capabilities, which might be hard or impossible to recruit (e.g., [80]).
They could be applied to algorithmically design better layouts and
drive decoding algorithms that better adapt to users’ movement
strategies [29, 92]. Finally, models could serve to support machine
learning -based methods by generating datasets using simulations
of human behavior [56, 57].

However, one critical challenge that stands unsolved is predicting
the effects of changing conditions. To illustrate the importance of
this point, imagine Alex, a middle-aged user who types comfortably
at around 28 words per minute using one finger on a smartphone:

• Change in performance objectives: How would performance
and strategies change if Alex aimed to be more careful and
leave fewer errors?

• Change in typing style: What if Alex wants to type faster
with two thumbs?

• Change in design: Would switching from QWERTY to an
optimized keyboard layout improve Alex’s performance?

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613904.3642918
https://doi.org/10.1145/3613904.3642918
https://doi.org/10.1145/3613904.3642918
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613904.3642918&domain=pdf&date_stamp=2024-05-11

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Shi, et al.

a) Human data b) Model prediction c) Gaze and finger trajectory

d) Comparison of IKIs between human (a) and model (b)

g) Auto-correct h) Low cognitive ability

~2 WPM faster

e) Two-thumb typing f) Non-QWERTY layout

Shorter finger
movement distance

hello world typist

Left thumb
Right thumb

Gaze

tarkoititko yliopistoatarkoititko yliopistoa

Gaze
Finger

D
is

ta
nc

e
to

 t
he

 t
ar

ge
t

ke
y

(c
m

)

Time (ms)

Lots of gaze shifts
and backspaces

Gaze
Finger

Human
Model

IKI (ms)

C
ou

nt

Figure 1: CRTypist predicts typing behavior with touchscreen keyboards, running directly from screenshots or software
emulators. The simulated finger- and eye-movement trajectories (a) match humans’ (b), including how people shift their
attention and correct mistakes (c). Also, the distribution of internal-key intervals (IKIs) produced via CRTypist is similar to the
human pattern (d). The model adapts its typing behavior to new conditions by reoptimizing its policy; the examples here reflect
two-thumb typing (e), typing with a non-QWERTY layout (f), use of auto-correction (g), and effects of low cognitive ability (h).

• Change in assistive features: If auto-correction was turned
on, would Alex’s performance improve or worsen? Would
the effectiveness of this feature matter much?

• Change in capabilities: How might deterioration in Alex’s
memory abilities affect typing?

Such counterfactual questions are claimed to be at the heart of de-
sign [62]. However, available models fare poorly in answering them.
They do not include mechanisms that enable them to leap from

the set of observations they have been trained on or fitted to. For
example, models based on Fitts’ law require reparameterizing re-
gression coefficients (0 and 1), which rely on experimental data
[12]. Likewise, cognitive-architecture models such as GOMS and
EPIC, and their simplified keystroke-level versions, require hand-
crafting a new production system, which demands deep empirical
insight [36, 42]. Could we machine-learn our way out this? No,
not without unprecedented data collection effort. Training datasets

CRTypist: Simulating Touchscreen Typing Behavior via Computational Rationality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

typically offer a “snapshot” of user behavior particular to a given
device and skill level, yet supervised-learning models struggle with
out-of-distribution samples. Although current reinforcement learn-
ing -based models can learn policies without human data, existing
typing models [43] have limitations when testing their ability to
generalize to out-of-distribution samples. This is because they rely
on manually crafted representations of the state and action spaces
for any new environment, which we aim to address.

In this paper, we introduce CRTypist (Computationally Rational
Typist), a computational model that simulates typing behaviors
on touchscreens under various conditions (Figure 1). Given a text
phrase (target) and a virtual keyboard (design), CRTypist moves the
gaze and taps on a touchscreen. It does so in a human-like manner:
it makes mistakes and looks up and down the display to detect
and correct them. Because it can “see” and “touch” a screen, the
researcher does not need to represent the world for it.

To enable CRTypist, we describe a modular and hierarchical
model architecture (Figure 2) that supports simulating touchscreen
typing and runs directly on screenshots or emulators. The model
builds on the theory of computational rationality [63], and extends
it as a pixel-based agent. Computational rationality as a theory of
interaction predicts that typing behavior can be predicted as opti-
mization within relevant bounds, in particular the design, the user’s
capabilities (motor, perceptual, and cognitive), and goals (speed vs.
accuracy). The key enabler of the architecture is the supervisory
control that a supervisor interacting with an internal environment
(cognition), bridging the controller and the touchscreen via a vision
module and a fingermodule. Moreover, it maintains a workingmem-
ory representation of what it has typed so far. These modules can be
trained from pixels to perform pixel-level observation and interac-
tion, which makes the typing simulation more realistic and allows
the model to transfer its typing ability to various keyboards regard-
less of design. The approach goes beyond the previous model [43]
in terms of generalizability by incorporating modules trained to
work directly from pixels, instead of task-oriented modules like
pointing or proofreading.

We report results from a series of experiments. Using compar-
ison with the baseline approach [43] and empirical data [41], we
assessed CRTypist’s ability to reproduce human-like one-finger
and two-thumb typing behavior. The results indicate that CRTyp-
ist performs comparably to, or even more accurately than, the
baseline technique regarding typing speed, error correction, and
proofreading strategy. Next, exploring the range of typing behav-
ior that our model can address, the model successfully predicted
performance across a spectrum of human capabilities. Last, we
tested the generalizability of the agent by evaluating CRTypist for
real-world keyboard screenshots, and examining how the model
captures typing behaviors arising from novel keyboard layouts
and an auto-correct feature. The experiments’ results highlight the
potential that CRTypist offers for real-world environments and
showcases its applicability for predicting how human cognition
adapts to keyboards with different features. The model is limited to
the prediction of performance after practice; it does not yet model
skill acquisition.

Our main contribution is a computational model of typing that,
for the first time, enables accurate simulation of typing in terms

of typing speed and strategies for error correction and proofread-
ing directly from pixels without hand-crafted state representations.
The model reproduces a broad range of empirical phenomena in
touchscreen typing, including one- vs. two-thumb typing, individ-
ual differences, the effects of keyboard design, as well as that of the
auto-correction feature. The core technical innovation is a refor-
mulation of the supervisory control problem: here, visual attention
and fingers are controlled based on working memory, which contin-
uously updates a time-decaying belief about what has been typed
so far. Our architecture is modular and hierarchical: the vision, fin-
ger, and working memory modules are trained to a sufficient level
of competence, after which they can be utilized with the supervi-
sor. This approach allows flexibility critical for practitioners: The
pre-trained model can be run in conditions and on keyboards not
contained in the dataset. To facilitate the training and evaluation of
this new breed of models, we release a benchmark for touchscreen
typing. We also opensource the model that can be downloaded by
others and used for evaluation, design, and engineering 1.

2 BACKGROUND
This section reviews background knowledge about human touch-
screen typing behavior and points out the research gap in the
current modeling approaches.

2.1 Human Typing on Mobile Touchscreens
How we type. Typing is a complex process involving numerous

cognitive, perceptual, and motor abilities [78]. Multiple physical
and cognitive constraints of human typists come into play: 1) The
finger-movement inaccuracies and ambiguities caused by the in-
herently noisy motor actions [64] necessitate a tradeoff between
achieving quick input with greater potential for error and achieving
accuracy at the expense of speed [30]. 2) The human visual sys-
tem has limited information-processing capacity, and only a tiny
foveated area of the visual field can be in sharp focus at any given
time [17]. 3) Information held in working memory will likely decay
over time [72], requiring one to look at the text display to reduce
uncertainty about what was typed. 4) Virtual keyboards on mobile
touchscreens lack the tactile feedback of physical keyboards [35].
5) Most modern virtual keyboards, such as the iOS keyboard [84]
and Google’s Gboard [55], offer auto-correction, completion, and
prediction functions that may demand additional attention and
selection actions from users.

The combination of these phenomena makes the typing behavior
complicated. In touchscreen typing, utilizing the limited resources
proves especially challenging because of a conflict rooted in the in-
herent constraints of human vision [79]: on one hand, the variability
in finger movements necessitates continuous visual guidance due to
the unpredictability of motor responses [41], yet the same visual at-
tention must be allocated to proofreading the typed text [74]. Users
have to divide their visual attention between guiding the motions
on the keyboard and proofreading the text entered. Hence, text
entry is an optimization challenge for the typist: what is the correct
ratio for gazing at the text vs. the keyboard, and how frequently
should the gaze shift? A recent study [41] reports that the typists

1https://crtypist.github.io

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Shi, et al.

Figure 2: An overview of the modeling approach. The supervisory control problem is modeled as deciding where to look next
and where to move the finger next. The supervisor does not have direct access to the state of the touchscreen – it must rely on
an internal environment, which bridges the supervisory controller and touchscreen in conditions of cognitive and physical
limitations. Within the internal environment, there are three internal modules: vision moves the gaze and observes the screen
from pixels through foveated and peripheral vision; finger obtains a position accordingly and taps on the virtual keyboard; and
working memory infers what has been typed thus far, updating the related beliefs, by means of the target text phrase and
information from vision and finger. At high level, the supervisor reads working memory and sets goals for vision and finger.
The reward A is defined with a speed–accuracy tradeoff: typing correct target phrases as quickly as possible.

kept their gaze on the keyboard around 70% of the time when enter-
ing text with one finger and 60% when using their thumbs. Glances
at the text, for proofreading, were interleaved with typing, with
roughly four such glances per sentence with a mean length of 20
characters. While this insight is valuable for understanding human
hand-eye coordination strategies, it is only a start.

How individual differences affect typing. Beyond population-level
patterns, typing performance and strategies are influenced by large
individual-level differences. The range of typing speeds typically
reported, 25–40 words per minute (WPM), points to a wide range
of performance capacities among touchscreen typists [66]. Inter-
estingly, while two-thumb typing has been associated with higher
speeds, it also results in a higher error rate [5, 60]. Despite this
drawback and the increased muscle activity entailed, most individ-
uals generally favor two-thumb typing unless the context or device
creates constraints that limit its application [90]. Another pivotal
determinant of typing speed is the user’s familiarity with the lay-
out; novices, lacking layout knowledge, often underperform, with
speeds as low as 7 WPM, while experts can reach speeds upwards
of 29 WPM in controlled settings [40, 44], and as high as 80 WPM
in naturalistic ones [66]. Typists also adjust their typing prefer-
ences to the situation. When they are free to leave errors in mobile
emails [85], they backspace approximately twice per sentence [66].
In contrast, when there is greater emphasis on error avoidance, the
frequency of using the Backspace key inevitably rises [41].

How the keyboard design influences typing. The design of touch-
screen keyboards has a significant impact on typing behavior. Key
size plays a crucial role in improving typing speed and reducing
the error rate in touchscreen typing, as Parhi et al. have shown [67].
Layout too is vital, as studies of optimal stylus-keyboard layouts

shows [92]: across QWERTY, CHUBON, FITALY, and OPTI key-
boards, speeds ranged from 30 to 38 words per minute. In one opti-
mization effort, Oulasvirta et al. [65] designed a new split keyboard
layout for two-thumb fast text entry, whichminimized thumb-travel
distance and maximized alternation between thumbs. In addition to
layout, designers frequently employ intelligent text-entry features
to enhance efficiency. For instance, an effective auto-correct feature
can reduce the time required to manually correct typing errors and
raise typing speeds [9]. Typists speed up and move more quickly
between keys when less concerned about errors [7, 8]. Hence, ac-
curate word suggestions have been shown to improve both user
satisfaction and typing speed [76].

2.2 The Research Gap
Typing was long modeled purely as motor performance [77]. The
impact of keys’ size and relative positioning can be effectively
predicted via classic approaches such as Fitts’ law [12]. However,
these approaches disregard the interaction of human vision and
motor system. Although rule-based models such as ACT-R [1] and
EPIC [48] can use step-by-step simulation for both eye and finger
movements, there are no comprehensive text entry models built
on ACT-R or EPIC that consider proofreading and errors. Until
recently, the latest study [43] has yielded a computational model for
predicting both eye and finger movement via supervisory optimal
control, which helps shed light on error correction and proofreading.
Though valuable, this state-of-the-art approach still has two major
limitations. Firstly, its fixed parameters and task-specific design
(for pointing and proofreading) render it unable to simulate diverse
behaviors and thus reflect a wide range of individual users. While
an ability-based optimization approach [81] might assist in this
regard, that still cannot provide a training workflow to integrate

CRTypist: Simulating Touchscreen Typing Behavior via Computational Rationality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

with the optimization pipeline. Secondly, generalizability to typing
behaviors with various real-world keyboards is lacking, because the
existing model uses hand-crafted state–action spaces representing
the environment. This limits its real-world usability.

To summarize, existing approaches to modeling touchscreen
typing do not support eye–hand movements’ simulation, handling
of individual-level factors, and generalizability at the same time.
Generalizability related to keyboard designs remains challenging.

3 CRTYPIST: MODELING TOUCHSCREEN
TYPING

We adopted three strategies to design the computational model for
generating typing behavior from pixels. These strategies embrace
the foundational theory of computational rationality and two over-
arching design considerations – namely, hierarchical supervisory
control and modular architecture.

• Computational rationality. The premise of computational
rationality posits that humans adopt behaviors that maxi-
mize expected utility within given bounds [63]. In our design,
these constraints, or bounds, are categorized as external (per-
taining to the operation environment) and internal (related
to cognitive factors such as visual perception, motor con-
trol, and working memory) environment. The supervisory
controller does not interact with the screen pixels directly;
instead, it focuses on the internal environment represent-
ing the intricate interplay of visual and motor coordination
during typing.

• Hierarchical supervisory control. Hierarchical supervi-
sory control denotes a tiered control system where superior
modules set goals for their subordinates. Each sequence of
actions from subordinates is integrated into an overall pat-
tern for the higher-level control [71]. Research suggests that
humans utilize such hierarchical frameworks to manage the
multifaceted challenges encountered in real-world settings,
aiding both learning and decision-making [13, 27]. For in-
stance, the role of vision in the hierarchical organization is
to help its supervisor observe pixels and guide attention in
searching for the text display and keys [89]. Hierarchical
architectures are pivotal in machine learning, especially for
breaking intricate tasks down into simpler subtasks [10].

• Modular architecture. Modularization divides a system
into distinct components that function autonomously but
can collaborate to reach broader objectives. This principle
fosters adaptability and architectural clarity while speeding
up the development process [68]. There is evidence that the
human cognitive system is modular in nature, with sepa-
rate modules handling specific cognitive tasks [1, 25]. By
adopting a modular architecture, we can adjust modules to
imitate certain human abilities. Such modularization has
been adopted in machine learning to enhance the efficiency
and performance of deep-learning models [3].

Two fundamental principles lie behind these strategies: One is
the principle of parsimony (“Entities are not to be multiplied without
necessity”, William of Occam), which suggests choosing the least
complex model that describes the data well [58]. Given the problem
space of modeling, we employed only a small number of modules

and kept each one as simple as possible. The other principle is
glass-box modeling, a fundamental principle behind explainable
artificial intelligence [32]. Model transparency helps researchers to
understand and access the decision-making processes of the model.
Such a level of transparency requires that the model structures’ and
modules’ design be consistent with cognitive-science research.

3.1 Problem Formulation
Generating typing behavior on touchscreens is a sequential decision-
making problem to control gaze and finger over time. To represent
this user’s decision problem accurately, we fomulate it as a bounded
optimality problem in a partially observable Markov decision pro-
cess [83]. The typist observes the state B ∈ S through > ∈ O and
performs an action 0 ∈ A to type target phrases. Given the action
0 ∈ A and current state B ∈ S, the environment (touchscreen
device) gets transitioned to a new state B′ ∈ S. The typist receives
a reward A at the end of a typing episode. The following description
details the individual terms for capturing the typing task:

• S is the state space, in which a state BC is the pixel repre-
sentation of the touchscreen display at timestep C , including
both keyboard and text area.

• O is the observation space, in which an observation >C is the
information that can be observed by the typist within the
cognitive process.

• A is the action space, in which an action 0 is behavior the
typist can execute, ranging from gaze movements to screen
taps.

• A is the reward, which provides feedback from the environ-
ment.The reward for typing is definedwith a speed–accuracy
tradeoff: the goal is to type correct target phrases as quickly
as possible.

3.2 Model Design
Drawing from our guiding strategies and the defined problem space,
we conceptualize a model premised on human bounds (Fig. 2). In-
stead of directly interacting with the external environment (touch-
screen), the typist’s central controller (supervisor) communicates
with an intermediary internal environment molded by human cog-
nitive processes. This internal environment, bridging the typist and
touchscreen, generates typing behaviors congruent with human
cognitive and physical capibilities and limitations. Within this in-
ternal environment, we incorporate three pivotal modules: vision,
finger, working memory. Following Occam’s razor, we aim to make
each component model as simple as possible. Each module’s design
and functionality are elaborated upon in subsequent subsections.

3.2.1 Supervisor. Functioning as the system’s central controller,
the supervisor manages the internal environment. It takes in the
belief from working memory as well as the \ parameters of the
internal environment to decide the next action. We consider three
parameters in the internal environment: � indicates the encoding
time of vision, � represents the accuracy of finger, and _ deter-
mines the capability of working memory. They will be introduced
in corresponding component parts.

In each typing episode, the policy c (\) of the supervisor decides
where to look next and where to move the finger next based on
the information retrieved from working memory. Specifically, it

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Shi, et al.

decides when to deploy the vision for proofreading and when the
gaze should be on the keyboard to guide finger movements. It also
commands the finger to tap a letter key to complete a phrase or
tap backspace for error correction, while also selecting the speed
for the finger movement. The gaze and finger movement occur in
parallel as the supervisor instruct vision and finger concurrently
in every timestep. Although the supervisor sets goals for both
vision and finger movements concurrently in each timestep, it is
important to note that finger and eye movements may not occur
simultaneously. If finger is already performing an action in the
current timestep, vision can still start moving, and the command
to finger is ignored. To ensure a high resolution of simulation, we
have set the timestep to 50ms, which is comparable to the time
it takes for the eye movement and shorter than finger movement.
When the “Enter” key is pressed, the typing session ends and the
model receives a reward based on accuracy and time efficiency:

A = F1 · (1 − 24AU) −F2 · C (1)

The first term is a positive reward for accuracy, where 24A is the
character error rate [52], indicating the percentage of incorrectly
typed characters. It has an exponential power constant U to encour-
age correctness. The second term is a constant penalty over time,
where C is the time duration normalized by the length of sentence
text.F1 andF2 are weights to ensure the speed–accuracy tradeoff.

3.2.2 Vision. The vision component interfaces with the external
world and is critical for interactive typing. It is responsible for
guiding fingers on the keyboard (since the touchscreen keyboard
provides no physical feedback) and reading of the text display for
proofreading. Because of limits inherent to human vision, such as
the high acuity foveal vision being size-limited, the typist needs to
move the gaze to gather accurate visual information about the en-
vironment’s state. It includes two pixel-based modules to “see” the
world: (foveal and peripheral vision, which align with the bounds
imposed on the human visual system [22]) and one policy module
to control the gaze position.

• Foveal vision module involves a small high-resolution area
of the eye’s retina, which can capture information with high
visual acuity. When the gaze is on the keyboard, foveal vision
can help one see which key it has rested upon; when the gaze
is on the text display, the user can read what has been typed
there. In the implementation, we first use deep learning-
based OCR [54] to recognize text from the pixels of the
original screenshot. Then, it crops an image patch (64 × 64)
as the foveal area from the screenshot (256× 455) to identify
the text and keys present in the patch. The size of the foveal
area is approximated when the visual angle is 2 degrees and
the distance from the touchscreen is about 16 inches.

• Peripheral vision module, in turn, refers to what is outside
the center of foveal vision. While visual acuity and detail
perception are reduced in peripheral vision relative to foveal
vision, it still provides valuable spatial information about
the general layout and arrangement of objects in the envi-
ronment. In the implementation, the module takes a blurred
image of the entire screen as input and uses a CNN-based
autoencoder [34] to encode it into a dense vector. This vector
represents the overall visual information that can reconstruct

the original pixels. Since we do not consider switching the
keyboard while typing, the peripheral information remains
constant and does not change over time.

• Policy module is the controller for the gaze movement. It
takes in the command of a goal (e.g., look at key “a”) as a one-
hot vector and outputs the next coordinate position of gaze.
It takes the peripheral vision into account as well for making
gaze movement decision, and uses foveal vision to ensure
it arrives at the correct place. The policy is modeled by a
neural network and trained with reinforcement learning.The
reward function for vision is A = 1 − (3

3<0G
)0.4, where 3 is

the distance from the current position to the center of target
position, while3<0G represents themaximum distance based
on the size of the keyboard.

We compute the vision’s fixation time via the EMMA model [79].
A visual encoding time)4=2 is included, for the duration of encoding
a target, such as a key or a typed word.

)4=2 = � · [− log 58] · 4:Y8 (2)

where 58 represents the frequency of the target being encoded and Y8
denotes the target’s eccentricity. The constants � and : influence
the scaling of the encoding time and the exponent. We use � as
a free parameter that can express the vision’s capability level. A
larger � imposes a need for more time for visual encoding. Besides
the fixation time, we set the time to prepare and execute a saccade
for gaze movement to approximately 200 ms [79].

3.2.3 Finger. The finger module emulates the motor control of
finger movement, simulating physical touchscreen interactions.
Similar to the policy module of vision, the controller of finger is
modeled as a neural network that takes in the goal (e.g., tap key
“a”) as a one-hot vector and outputs the coordinate position of
the fingertip to tap the touchscreen. In addition to its goal, the
finger also utilizes visual information from the peripheral vision to
determine its movement based on the keyboard’s visual features.
The reward function used in finger is identical to the vision policy,
with the highest reward being given when finger taps the center of
the target.

Movement accuracy, which varies with speed and distance [24],
is simulated in the model via the parameterized Weighted Homo-
graphic model [31]:

(~ − ~0)1−:U (G − G0):U = � (3)

where G is the movement time of finger. ~ is the standard deviation
for the finger’s endpoint spread. � is a free parameter that can be
adjusted to address finger capability (a smaller � represents more
accurate finger movement). This model encourages slow movement
for an accurate result. Furthermore, the error gets worse if the finger
lacks guidance from vision. Our method adds increasing Gaussian-
distributed noise to the finger’s position over the duration without
visual guidance.

3.2.4 Working Memory. Finally, working memory serves as a tem-
porary mental storage system that holds information briefly [26,
49, 50]. It is fundamental to the task of typing, not only storing
information but also processing it. Specifically, during the process
of deciding what to type next, the model preserves details about the
target phrase, the text already typed, and its correctness. On the

CRTypist: Simulating Touchscreen Typing Behavior via Computational Rationality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 3: An example of how the model’s internal working memory module helps the agent track what has been typed as the
observations and agent actions progress. Here, the module (WM, _ = 0.2) updates itself as the model types “hello world” on a
touchscreen. The green box indicates the information held by WM: the typed text stored , time since last proofreading ,
and corresponding correctness and certainty. The panes illustrate WMmissing an error (tapping e instead of r) as the vision
fixates on neither the finger’s position nor the text display (a); the phrase in WM being 100% correct but certainty decreasing
rapidly if one does not proofread for a long time (67%) (b); low certainty of correctness fromWM steering the supervisor toward
proofreading, which helps identify the error (c); upon identification, vision guiding the finger to make multiple Backspace
presses (d); and the model proofreading the text again and performing one more backspace to correct the remaining error (e).

other hand, the purpose of modeling working memory is not only
remembering all that has been typed, but also simulating human’s
limitation in recall. Specifically, working memory encapsulates the
uncertainty about what has been typed [37]. During typing, the
correctness and certainty of the text stored in the working memory
changes over time, requiring proofreading to ensure accuracy and
efficiency. We designed working memory to follow three stages
accordingly [11, 69, 70]:

• Encoding and Storage. The module encodes information re-
ceived from the vision and finger movements into the typed
text and stores it in memory. When vision is proofreading,
it uses the text from the display as the input text. When vi-
sion is on finger’s position, a neural network, which predicts
the typed text from vision’s feature and finger’s position, is
trained through supervised learning for encoding movement
details into text. When vision is on keyboard but not on fin-
ger’s position, it directly uses the goal of finger as the input
character.

• Maintenance. The module maintains the correctness and
certainty of the typed text. It measures the correctness of
the typed text %2>AA42C=4BB = 1 − 24A in memory based on
the character error rate 24A [52]. As time progresses, the cer-
tainty of information stored in memory decreases. We apply
a decay model %24AC08=C~ = 4−_g to simulate this process,
where g is the time elapsed since the last proofreading, and
_ is the parameter for tuning the capability. A lower _ indi-
cates a stronger level of certainty, and _ = 0 denotes perfect
confidence in all time.

• Retrieval. Supervisor retrieves information from working
memory when making decisions. This happens when a fix-
ation or a tapping occurs, and a decision needs to be made
about the next action. Supervisor updates its belief about the

text that has been typed so far - this includes both the cer-
tainty and the correctness. Additionally, it uses the memory
of the text already typed to determine the next character.

Figure 3 illustrates how working memory aids in the simulation
of human typing. In the concrete case depicted, modeling human
working memory can yield a more complete understanding of the
situation than simply observing “snapshots” of gaze and finger
movements. An ablation study, presented in depth in the supple-
mentary material, supports this conclusion. It revealed that only
the model featuring working memory could generate typing per-
formance similar to the human data.

3.3 Training Workflow
We propose a new workflow for training and fitting the computa-
tionally rational models. It follows three steps:

(1) Pre-train the components to build the basic human capabili-
ties with the internal environment.

(2) For individual-level differences and generalizability, train
the supervisor policy c with randomly sampled cognitive
parameters and keyboard screenshots.

(3) For accurate reproduction of data from humans, fit the cog-
nitive parameters \ = (� , � , _) of the model to align the
simulated behavior with the empirical data.

3.3.1 Pre-training for the internal environment. The three modules
are pre-trained separately to work with real-world keyboards. Vi-
sion is trained to gaze at the correct position when given a random
target (e.g., a key or the text display), Finger is trained to move
the finger and tap the correct place for a given random key, and
Working Memory is trained to predict what has been typed in light
of the information from the pre-trained vision and finger. During
training, keyboard screenshots are randomly sampled; Goals, such

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Shi, et al.

as looking at the key “h” or pointing to the key “a”, are randomly
selected; All movements are accompanied by Gaussian-distributed
noise. These modules compose the internal environment as the
interface between the supervisor and the external environment.

3.3.2 Policy optimization. Step 2 is to train the controller of the
model to cover diverse conditions. The output is an optimal policy
c∗ that can type well with different cognitive parameters on as
many keyboards as possible. Unlike behavioral cloning [16], which
involves the expensive step of collecting large quantities of hu-
man data, this step does not require any human data. The policy
is trained through interaction with the pixel-based environment
and a designed reward. In this step, we randomly sample target
typing phrases from a daily mobile typing dataset [85]. The pol-
icy optimization employs two loops, randomly sampling keyboard
images and cognitive parameters in the outer loop and learning
the optimal policy via reinforcement learning in the inner loop.
The reinforcement learning algorithm we used is the proximal pol-
icy optimization [82] in stable-baselines3 library [73]. Training the
model takes about 6 hours on a commodity GPU computer (NVIDIA
GeForce RTX 4090).

3.3.3 Parameter fitting. The trained model can sample diverse
users from the cognitive parameter space.The purpose of parameter
fitting is to find the optimal parameters \∗ = (�∗

, � ∗

, _∗) that can

let the typist model perform similarly to the average performance
of a target user group. In studies 5.1 and 5.2, we followed this step
to fit the parameters to benchmark human data, using Bayesian
optimization for efficient parameter-fitting. In each iteration, the
typist model samples a set of random trajectories, for comparison
with human data via the acquisition function � . This acquisition
function measures the similarity between generated behavior and
human data:

� =
∑
<∈"

�((� (<) | |� (<)) (4)

where " is the list of typing metrics, including typing speed (in
WPM), proofreading (the number of gaze shifts), and error cor-
rection (the number of backspaces). �(is the Jansen–Shannon di-
vergence, to measure the distance between two distributions (a
symmetric and bounded version of the Kullback–Leibler, or KL,
divergence). � (<) and � (<), respectively, are the distribution of
the performance< derived from the generated and the human data.
Bayesian optimization leads to the optimal parameters \∗ of the
internal environment that fit the target users. The policy with the
optimal parameters c∗ (\∗) can generate typing behavior like the
target users’.

4 CREATING A BENCHMARK FOR
TOUCHSCREEN-TYPING MODELS

This section presents MobileTyping, a benchmark for evaluating
and comparing touchscreen-typing models. The benchmark is re-
leased as part of the paper and can be adopted and extended by
others. The creation of a benchmark for touchscreen typing is es-
sential for two reasons. First, it allows for evaluation of varied
touchscreen-typing models and for their comparison, which is cru-
cial for improving HCI models for typing. Second, it provides a

standardized set of data that can be used to train and evaluate
machine-learning algorithms for HCI purposes.

4.1 Goals for the Benchmark
We identified three major goals for benchmarking touchscreen
typing, informed by prior research in the fields of human–computer
interaction and machine learning:

• The touchstone of any simulation model lies in its accuracy,
which, in this context, refers to the model’s capacity to reli-
ably replicate or forecast human typing actions [18, 47, 51].
An accurate model’s policy aligns closely with human strate-
gies, thereby closely mirroring key metrics and phenomena.
Taking accuracy as the first priority for modeling human
behavior, we sought performance comparable to humans.

• Typing patterns vary considerably among individuals, in
line with factors such as finger precision and memory ca-
pacity [80]. Some are fast, some slow; some type with more
errors, and some proofread more. For example, elderly users
may type slowly in response to forgetfulness and declining
motor skills [59]. Modeling these individual-level differences
can be important, especially for applications that support a
special user group [81]. We aimed to generate varied typing
behavior that can reflect a wide range of user populations.

• A generalizable computational model is one that should per-
formwell not only for the specific keyboard it was trained on
but also for previously unseen keyboards [33]. A model fitted
to a specific keyboard might perform well in a lab setting
but have a narrower range of real-world usefulness. Previ-
ous solutions displayed this limitation: their requirement
for manual feature-engineering for new keyboard designs
reduced flexibility [43]. The goal of generalizability requires
a model that functions well across varied keyboard designs,
layouts, and intelligent features.

4.2 Modeling Tasks and Metrics
To measure how well computational models can reach these goals,
we developed the benchmark MobileTyping with human typing
data and touchscreen keyboards; see Table 1. The table presents all
the modeling tasks, arranged into three categories corresponding
to the three goals, and comparisons for human ground truth, the
latest OSC model [43], and CRTypist. It covers 600 episodes of
detail-level gaze and finger movements [41], 18,074 unique users’
sentence-level typing performances [66], and 1,028 newly collected
keyboard screenshots from a mobile application market. Although
MobileTyping covers a large number of participants and designs,
this benchmark might still be only a “snapshot” that future work
could improve upon. We describe the three categories of modeling
tasks in the following subsections.

4.2.1 Accuracy in generating human-like behavior. The first mod-
eling task is to measure the accuracy of prediction. For this, we
utilized a typing dataset from researchers’ detailed finger-tracking
and gaze-tracking with 30 participants who transcribed 20 Finnish-
language sentences each in a lab environment [41]. That dataset
helped us understand how humans decide on speed, proofreading,
and error correction in their typing. We compared the model with
human data for single-finger and two-thumb typing both (modeling

CRTypist: Simulating Touchscreen Typing Behavior via Computational Rationality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 1: MobileTyping: a benchmark for evaluating touchscreen-typing models, including eight modeling tasks with a
comparison of models with humans (see details in Sec. 4.2)

Goal Task Definition Metric Human OSC [43] CRTypist

Accuracy in
generating
human-like behavior

1.1 Reproduce human-like
one-finger typing [41]

WPM 27.2 (3.6) 25.2 28.9 (4.4)
IKI 381 (51) 399 366 (30)
Backspaces 2.6 (1.8) 1.5 2.4 (2.5)
Error % 0.6 (0.7) 0.5 0.1 (0.4)
Gaze shifts 3.9 (1.5) 4.2 5.5 (1.7)
Gaze on kbd % 70 (14) 87 71 (4)

1.2 Reproduce human-like
two-finger typing [41]

WPM 39.3 (10.3) ∼32 34.8 (6.2)
IKI 267 (64) 376 275 (19)
Backspaces 3.6 (2.8) ∼0 5.2 (4.2)
Error % 0.6 (0.9) <0.5 0.2 (0.8)
Gaze shifts 3.4 (2.3) ∼3 4.6 (1.9)
Gaze on kbd % 60 (16) - 73 (4)

Capturing of variety
at individuals’ level

2.1

Cover differences in
one-finger typing [66]

WPM - Max. 70.9 - 53.9
WPM - Avg. 30.6 - 25.3
WPM - Median. 29.3 - 21.7
WPM - Min. 3.9 - 7.6

Cover differences in
two-finger typing [66]

WPM - Max. 96.0 - 64.8
WPM - Avg. 39.1 - 32.8
WPM - Median. 37.7 - 25.4
WPM - Min. 3.4 - 11.4

2.2 Predict the effects of
aging on typing speed [66]

WPM (10-19) 34.1 - 31.0
WPM (20-29) 32.3 - 29.8
WPM (30-39) 29.2 - 28.7
WPM (40-49) 24.4 - 27.1
WPM (50-59) 22.2 - 25.7

2.3 Adjust the speed-accuracy
tradeoff [66]

WPM 29.2 - 30.6
Error % 2.3 - 1.4
Gaze on kbd % - - 61

Generalizability of
typing ability across
diverse keyboard
designs, layouts,
and features

3.1

Simulate one-finger typing
on Gboard [66]

WPM 34.8 - 28.6
Backspaces 2.4 - 2.5
Gaze shifts - - 4.4

Simulate one-finger typing
on Swiftkey [66]

WPM 32.7 - 28.3
Backspaces 2.1 - 3.7
Gaze shifts - - 4.8

Simulate one-finger typing
on Go keyboard [66]

WPM 30.5 - 28.4
Backspaces 2.0 - 3.6
Gaze shifts - - 4.7

3.2

Simulate one-finger typing
on CHUBON keyboard [92]

WPM 33.3 - 34.8
Backspaces - - 3.1
Gaze shifts - - 3.4

Simulate two-finger typing
on KALQ keyboard [65]

WPM 40.2 - 39.2
Backspaces - - 3.2
Gaze shifts - - 2.9

3.3 Simulate one-finger typing
with auto-correct [66]

WPM 31.2 ∼29 30.9
Backspaces 2.46 ∼0.1 3.2
Gaze shifts - ∼3.7 3.1

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Shi, et al.

tasks 1.1 and 1.2 in the table). The following six metrics were chosen
for evaluating how accurately the models match human data in
terms of typing speed, error correction, and proofreading [4, 23, 88].

• Word per minute (WPM). WPM, the most widely used means
for assessing typing speed, is computed as the number of
standard words (averaging five characters) divided by the
time taken [4].

• Internal-key interval (IKI). We examined the time, in millisec-
onds, between consecutive keypresses [23].

• Number of Backspaces. Backspacing is a way of removing
errors from the typed text. This metric refers to the number
of Backspace presses during typing of the given sentence.

• Error rate (%). For assessing the correctness of what has been
typed, one can compute erroneous characters as a percentage
of the total character count.

• Number of gaze shifts. Gaze-shifting is movement of the
gaze from the keyboard to the text display, which is a signal
to proofread the text entered. The amount of gaze-shifting
indicates the frequency of proofreading during typing.

• Gaze-on-keyboard time ratio (%). The final metric is the per-
centage of time spent with the gaze on the keyboard. It shows
how much time the visual guidance of the finger requires.

4.2.2 Expression of individual differences. The second modeling
task assists in measuring representation of individual-specific dif-
ferences. The dataset for benchmarking here is from large-scale
collection of mobile text-entry data from numerous participants per-
forming a web-based transcription task [66]. In Table 1, we provide
illustrative statistics for typing speed to summarize the spectrum
of individual-level variations. We show peak performance with
the max typing speed to see how fast a human typist can reach in
each condition. For an overview of performance, we also record the
average and median typing speeds. Figure 4 shows the distribution
of human single-finger and two-thumb typing speed. One major
modeling task (2.1 in Table 1) is to check how much of the mass
distribution can be captured. This task setting encourages the com-
putational model to not only replicate the median performance but
also cover the whole distribution as much as possible. Alongside
this, modeling task 2.2 considers individual differences brought on
by age-related changes, and 2.3 entails predicting differences in
accordance with the speed–accuracy tradeoff.

4.2.3 Generalizability for diverse visual designs, layouts and features.
The modeling tasks connected with the last goal involve diverse
typing conditions, with different visual designs (3.1), keyboard lay-
outs (3.2), and auto-correction feature (3.3). In the absence of prior
modeling of typing with a wide range of real-world keyboards,
we constructed a collection of 1,028 screenshots with real-world
touchscreen keyboards. The purpose for this new collection was to
build a typing testbed for training and evaluating of computational
models over diverse keyboard designs.The collection procedure and
details of the results can be found in Supplementary Material. Fig-
ure 5 presents a gallery of screenshots with a broad range of visual
styles. The richness of the large-scale online collection of data from
prior work [66] enables probing, in addition, how humans type on
three mainstream keyboards: Gboard, SwiftKey, and GO keyboard.
Next, we included two novel keyboards also (CHUBON [92] and

Figure 4: Histograms presenting the distribution of human
one- and two-digit typing speed in conditions of no intelli-
gent assistance [66]. The yellow highlighting indicates that
CRTypist can cover around 97% of the mass distribution of
typing speeds in both forms of typing. Human data typically
show a right-skewed distribution; CRTypist yields a similar
distribution, with its median performance being slower than
the average.

KALQ [65]), for predicting single-finger and two-thumb typing
with novel layouts. Finally, we added data from human typing with
an auto-correct feature [66], to reflect intelligent assistance that is
commonplace in daily typing. These task settings (see 3.1 to 3.5 in
Table 1) can contribute to assessing how well a model’s capturing
of typing ability transfers to different conditions.

5 RESULTS
This section presents our evaluation of the model against the tasks
defined via MobileTyping (summarized in Table 1).

5.1 Eye and hand movement strategies
Our model demonstrates human-like motion strategies. In particu-
lar, it can simulate moment-to-moment eye and finger movements
and predict strategies of eye–hand coordination. The simulation
results are comparable to empirical typing data (ground truth) [41]
and to the output of the latest state-of-the-art OSC approach [43].

5.1.1 Generating human-like single-finger typing. (Task 1.1)

CRTypist: Simulating Touchscreen Typing Behavior via Computational Rationality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 5: Sample keyboards, representing several categories, from our collection of screenshots in MobileTyping.

After fitting cognitive parameters (Sec. 3.3.3), CRTypist shows
the following human-like behavior as we simulate eye and finger
movements (see Fig. 1; Pane a visualizes subject 129 in the the
human data; b–c show simulation data; d shows an episode-level
comparison on the distribution of internal-key interval (IKI).):

1) Proofreading: The model has an ability to shift the gaze from
the keyboard to the text display to verify what has been
written.

2) Selective focus of gaze: The model selectively fixates on part
of the keyboard instead of all keys tapped.

3) Error correction: Correcting typing errors takes place through
backspacing.

4) Parallelism: Vision and finger get commands concurrently
in each timestep, but they do not need to be executed at the
same time. The finger can start moving toward the target
based on memory of the target position, without fixating on
the target. If vision is fixating on the target, it can guide the
finger to land more accurately.

5) Episode-level similarity:Thepredicted finger behaviormatches
that of humans in terms of typing speed on an episode level.

The model does not simulate full movement trajectories, rather it
only simulates the endpoint and the time it takes for the finger or

gaze to reach that point, like in earlier work [43]. The interpolation
in the figure is solely for a clear visualization. In Figure-c 1, we
assume that eye movement is linear [21], while finger movement
follows a simple quadratic interpolation that accounts for the time
required to home in at the end of the motion [41].

To compare the typing behavior produced by our model to the
ground truth and the baseline model, we ran our model with 30
independent episodes (identical to the human data’s and the base-
line model’s conditions). These predictions were aggregated for
the comparisons. Our model produces results similar to humans’,
as shown in Table 1. The WPM, IKI, backspacing, error rate, and
gaze-on-keyboard rate fall within one standard deviation of the
human data, and the number of gaze shifts falls within two. From
comparing the performance of the baseline model and our solution,
we conclude that the performance is comparable (see Table 1). Our
model outperforms the baseline by the gaze-on-keyboard metric,
which the baseline model overestimates relative to the human data.

5.1.2 Extension to two-thumb typing. (Task 1.2)
Next, we show how CRTypist performs for two-thumb typing

(panel e in Figure 1), which is a popular way of typing on touch-
screens [60]. Thanks to its hierarchical and modular design, our
model can be easily extended to support two-thumb typing by using

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Shi, et al.

two finger models, to represent the left and the right thumb. Instead
of the constant finger-to-key mapping used in the baseline, we
chose a more flexible and realistic implementation: the finger clos-
est to the key is assigned to select it, and a physical constraint for
no crossing of fingers is introduced. When a target key is selected,
finger calculates the distance required to move the thumb to tap
that key, and then the thumb that requires the shorter movement
distance would be selected. Additionally, it ensures that the left
thumb is never to the right of the right thumb and vice versa.

Compared to single-finger typing, two-thumb typing is signifi-
cantly faster (with a 5.9 WPM difference, on average). In addition,
IKI falls from 366 to 275 on account of the shorter distances traveled
by each finger. Finally, the two-thumbmodel replicates the phenom-
enon of fewer gaze shifts relative to single-finger conditions. Table 1
shows the quantitative results and the comparison. The two-thumb
typing behavior from CRTypist is comparable to humans’, with
all metrics falling within one standard deviation from the human
data. It performs closer to human data than the baseline approach,
especially in Backspace presses.

5.2 Individual differences
Our model can capture users’ differing typing capabilities via ad-
justable cognitive parameters. That is, CRTypist can generate typ-
ing behavior that accounts for individuals’ differences. This sub-
section addresses the range of behavior our model can cover, then
demonstrates how to simulate typing in various ages and with
varying performance objectives.

5.2.1 The model’s performance range. (Task 2.1)
The performance range covered by the model can be explored

by testing the peak and worst performance. We determine the
range of cognitive parameters \ (� ∈ [0, 0.05], � ∈ [0, 0.18], _ ∈
[0, 0.3]) by considering empirical data [2, 79, 81]. By setting extreme
values to these cognitive parameters, we obtained a maximal and
minimal typing speed of 53.9 and 7.6 WPM in one-finger typing
and 11.4–64.8 WPM in two-thumb typing. This range indicates that
our model can cover 97% of the mass distribution of typing speeds
in single-finger and two-thumb typing (see Figure 4). For a better
sense of the distribution of the model’s performance, we generated
100 independent typing episodes by randomly sampling parameters
from the space. The average and median performance in both one-
and two-thumb typing show a right-skewed distribution similar to
that of the results from human users.

Figure 6 provides a closer look at the peak andworst performance
of the model with one target phrase. The former takes less than four
seconds, and the latter consumes around 23 seconds. With high
cognitive ability (see Figure 6, pane a), the finger moves rapidly
with no errors and the vision continues guiding it, with only rare
glances at the text display (gaze-on-keyboard ratio: 93%). When set
for low cognitive ability (in pane b), the model applies a strategy
of proofreading after each keystroke. Finger movement is slow, to
assure of accuracy, and the gaze always takes time to check what
has been typed (spending 62% of the time on the keyboard).

Our model cannot cover the tails of the two-tailed distribution
(see Figure 4), because of the model’s underlying assumptions,
which do not take into account the extremes. For instance, an
expert typist may remember the key positions and expedite typing

by means of eyes-free text entry [28]. Our model at present does not
cover assumptions of this sort. Likewise, it cannot reproduce the
performance of users with special needs, such as some who have
Parkinson’s disease [86]. This stems from two factors: 1) the error
rate for these groups is too high to mesh with our reward function,
and 2) the insertion errors they frequently display are not modeled.
These issues could be mitigated by revising the reward function to
accept a higher error rate and designing a more thorough finger
model, with multiple types of errors.

5.2.2 Age-related changes. (Task 2.2)
With another test, we examined individual-specific differences

linked to age-related changes. As people grow older, maintenance
and processing operations inworkingmemory declinewith age [75].
To analyze the effects of decline in working memory on typing
speed, we fixed the parameters for vision and finger and fitted the
cognitive parameter _ for working memory to data filtered to sum-
marize typing performance by age band. Specifically, we calculated
the average performance (by WPM and backspacing) within each
band and fitted the cognitive parameters to this “average user.” After
parameter fitting to typing speed over different ages, our model can
successfully predict the change in typing performance for different
age groups (see Table 1). The fitted _ values are 0.0323 (31.0 WPM),
0.0403 (29.8 WPM), 0.1036 (28.7 WPM), 0.2572 (27.1 WPM), and
0.2854 (25.7 WPM). They follow a monotonic trend, thus demon-
strating the decline in capacity. A Pearson correlation coefficient
was computed to show a linear correlation between typing speed
and _ (A (3) = −0.96,with ? < 0.01). The limitation is not consid-
ering the change in motor control and vision ability due to aging,
which might also have strong correlations with age.

5.2.3 Change in performance objectives. (Task 2.3)
Also, the behavior of touchscreen typists may change as they

adjust their performance objectives to the situation at hand. For in-
stance, one may feel more comfortable leaving errors when chatting
with friends but type formal letters with greater care. To predict
this kind of change in typing behavior, we revised the reward func-
tion (Equation 1) and re-train the model. This involves changing
the speed–accuracy tradeoff by adjusting weights, which indicates
the importance of correctness. In response, when the model typed
much faster (speed rose to 30.6WPM from 28.9WPM), it made more
errors without correction (1.4% rather than 0.1%), and allocated less
visual attention to the keyboard (61% instead of 71%).

5.3 Generalizability
CRTypist also has the advantage that its ability can be transferred
to unseen keyboards. Below, we evaluate our model with a training
and testing set of screenshots, then show how CRTypist adapts to
novel keyboard layouts and an auto-correction feature.

5.3.1 Evaluation with real-world touchscreen keyboards. (Task 3.1)
In comparison to preexisting approaches, our model benefits

from being able to run simulations for unseen keyboards since it
takes the pixels as the input. We tested the transfer capacity of our
model with the screenshot collection, splitting it into a training set
(28 keyboards, 816 screenshots) and a testing one (10 keyboards,
212 screenshots). CRTypist performs comparably with the training
and testing set for typing speed (WPM: " = 27.6, (� = 4.5 for

CRTypist: Simulating Touchscreen Typing Behavior via Computational Rationality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 6: Time-series charts for (a) peak and (b) worst typing behavior. For simulating users with high/low visual, motor, and
memory ability, we set all three parameters to the corresponding extreme. The G-axis indicates the time and sequence for
the target keys (< and _ denote the backspace and spacebar, respectively) during typing, while the target keys’ distance from
the gaze and finger is along the ~-axis. The space above the dashed line, with gaze distances more than 6 cm from the target,
captures looking at the text display for proofreading. a) With high cognitive ability (53.9 WPM), the finger moves quickly in an
error-free manner, and the visual system keeps guiding it, with few glances at the text display (the gaze is on the keyboard 93%
of the time). b) With low cognitive ability (7.6 WPM): finger motion is slow, for guaranteed accuracy, and the text gets visually
checked after each keystroke (gaze-on-keyboard value: 62%). Note that the simulation encompasses only the endpoint and the
time for the finger or gaze to reach it; the interpolation in the time-series charts is for clear-visualization purposes only [43].

training vs. " = 27.4, (� = 4.4 for testing), proofreading (gaze
shifts: " = 4.8, (� = 1.8 vs. " = 4.6, (� = 1.9), and error correc-
tion (backspaces: " = 2.9, (� = 2.7 vs. " = 3.1, (� = 2.4). The
standard deviation of testing-set error rate, at 1.2%, is slightly higher
than the training-set one 0.7%; however, both are in an acceptable
range of comparability with human performance. Figure 7 (a–c)
demonstrates how the trained model types on three mainstream
keyboards included in the testing set: Gboard, SwiftKey, and GO
Keyboard. No significant performance differences are visible among
these three keyboards. Typing is slightly faster with Gboard than
on the other keyboards (see Table 1), which could be due to the
larger key size in the Gboard screenshot.

5.3.2 Typing on novel-layout keyboards. (Task 3.2)
Next, we tested how the model adapts to two novel layout key-

boards: CHUBON [92] and KALQ [65], for one- and two-thumb
typing, respectively. The CHUBON layout is optimized specifically
for one-finger typing (frequently used letters are near the middle of
the keyboard), and KALQ is a layout with proven ability to improve

the efficiency of finger use in two-thumb text entry significantly.
As CRTypist was trained on QWERTY keyboard screenshots, it
cannot be used on non-QWERTY layouts directly. Therefore, we
re-trained the internal environment to let CRTypist adapt to these
two novel layout keyboards.

The aggregate results are listed in Table 1. In simulation of one-
finger typing on CHUBON (Figure 7, pane d), the typing speed, at
34.8 WPM, is much higher than that with QWERTY; this is consis-
tent with the empirical result (33.3 WPM). We can observe from
Figure 1 (f) that the finger travels shorter distances than in typing
with a QWERTY keyboard; When simulating two-thumb typing on
KALQ (Figure 7, pane e), CRTypist predicts nearly equal division of
work between the thumbs, and alternating between them is rapid,
which suggests frequently switching thumbs while typing. In con-
sequence, the average typing speed on KALQ is 39.2 WPM, which
is about 2.6 WPM faster than QWERTY’s 36.6 WPM. This speed
difference too is in line with that reported from user-study data

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Shi, et al.

(4.2 WPM). Note that, because KALQ has two space keys, we re-
moved the space character from the target sentences to address our
model’s current restriction of one-to-one character–key mappings.

5.3.3 Auto-correction. (Task 3.3)
Research has shown that auto-correction makes typing faster [9],

which is an effect our model, when re-trained with this feature,
can reproduce. We used the open-source auto-correction model
JamSpell [39], which has a roughly 80% fix rate (i.e., 80% of words
with errors end up correct). It corrects the typed sentence once
a full word gets followed by a terminating character (a space or
Enter). Our model predicts typing 2 WPM faster with this feature
than without auto-correction. Additionally, the model relies notice-
ably on the auto-correcting: it engages in less gaze-shifting and
backspacing (see Figure 1, pane g).

6 DISCUSSION
From our study results (see the comparisons in Table. 1), we char-
acterize the findings thus:

• Type like a human: Eye and finger movements generated
by CRTypist are comparable to those of human typists in
terms of typing speed and strategies for error correction and
proofreading.

• Support two-thumb typing: The architecture of CRTypist
can be extended to support simulating two-thumb typing.
The simulated typing performance is closer to human data
than the baseline by four metrics.

• Express diverse users: We observed that CRTypist is able
to capture a wide range of individual differences in typing
speed, from 7.6 to 64.8 WPM, covering 97% of the mass dis-
tribution.

• Predict typing across abilities: By adjusting cognitive pa-
rameter _ in working memory, CRTypist shows a strong
relationship (A (3) = −0.96,with ? < 0.01) between the typ-
ing performance and decay of working memory.

• Reward changes affect objectives: Altering the reward func-
tion in CRTypist yields different performance objectives in
the speed–accuracy tradeoff (1.7 WPM faster typing speed
and 1.3% increase in error rate).

• Generalize to new QWERTY keyboards: CRTypist can gen-
eralize to typing on unseen real-world QWERTY keyboards
after training. The behavior is comparable with the typing
in the training set by all metrics (within one standard devia-
tion); only the standard deviation of error rate shows a more
significant difference in relative terms (1.2% and 0.7%).

• Adapt to novel layouts: CRTypist’s behavior can adapt to
novel-layout keyboards. Its 34.8 WPM on CHUBON and
39.2 WPM on KALQ are consistent with the improvement
reported in the original papers.

• Adapt to auto-correction: CRTypist predicts the typing per-
formance improves by about 2 WPM when accurate auto-
correction is active. This is in line with prior studies’ real-
world data.

These results critically build on a key assumption of our model:
supervisory control is based on an internal environment (vision, fin-
ger, and workingmemory), which is built over fixations taking place

during typing. The internal environment functions as an interme-
diary between the central controller (supervisor) and the external
design (pixels on the touchscreen). This modeling approach allowed
us to work directly from pixels without hand-crafted state-action
representations. Moreover, separately modeling the underlying cog-
nitive modules opened the door to capturing individual differences
by controlling their parameters.

The model offers a significant advancement over existing ap-
proaches to modeling touchscreen typing, by simultaneously pre-
dicting human-like eye-handmovements, accommodating individual-
level factors, and demonstrating generalizability. It successfully
produces behavior that adapts to varying conditions tied to individ-
ual differences and keyboard designs. These capabilities create the
potential for a wide range of applications. Our model could serve
as a valuable tool for efficient design evaluation [6], eliminating
the need for costly and time-consuming human user tests. For in-
stance, it can facilitate the development of more efficient keyboard
layouts to enhance typing speed or evaluate the accessibility of
touchscreen keyboards for individuals with disabilities (e.g., those
with limited finger accuracy or exhibiting memory impairments),
thus promoting accessibility-friendly designs. In addition, themodel
can simulate typing patterns to develop/refine biometric security
measures that exploit keystroke dynamics [38], or simulate player
behavior in games that involve text input, thereby enhancing game
design and testing [87].

We believe that this model is a leap forward in deploying user
models for the text-entry domain. Furthermore, because text entry
is plagued by the more general challenge of coordinating limited
components (eye–hand coordination), the model’s potential ex-
tends to simulating user behavior in other interactive tasks, such as
visual search [20], pointing [47], and menu selection [19]. Research
putting user simulation to such uses holds great promise and, more-
over, is essential for researchers striving to understand the behavior
of complex systems in HCI [57]. It shows the potential to contribute
to the creation and validation of new HCI theories, enhancing the
predictability of design and engineering processes, all while improv-
ing accessibility. More concretely, simulation-based evaluation can
yield immediate insights related to usability before any user testing.
Our work represents an exciting prospect for future research into
artificial agents that simulate human-like behavior in HCI.

One avenue for future work is to include further capabilities in
our model. Inclusion of reading and memorization capabilities will
be especially vital for future work. Currently, CRTypist does not
model reading behavior [45] in its visionmodule, an aspect of typing
behavior that significantly affects speed. Additionally, the working
memory module does not account for long-term memory [61],
chunking [91], or the impact of phrase sets. Doing so could provide
valuable knowledge of detail-level patterns in human behavior.
Our study lays a solid foundation for future research in all these
directions. Better modeling of the internal environment should
further improve accuracy and facilitate the development of more
effective typing interfaces.

A lot of work remains to extend this approach to account for
everyday typing more broadly. First, our current model is limited
to predicting performance after practice rather than accounting for
skill acquisition. As with human users, who can quickly adapt their
typing skills to a new QWERTY keyboard, there is also a learning

CRTypist: Simulating Touchscreen Typing Behavior via Computational Rationality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

D
is

ta
nc

e
to

 t
he

 t
ar

ge
t

ke
y

(c
m

)
D

is
ta

nc
e

to
 t

he
 t

ar
ge

t
ke

y
(c

m
)

D
is

ta
nc

e
to

 t
he

 t
ar

ge
t

ke
y

(c
m

)
D

is
ta

nc
e

to
 t

he
 t

ar
ge

t
ke

y
(c

m
)

D
is

ta
nc

e
to

 t
he

 t
ar

ge
t

ke
y

(c
m

)

Time (ms)a) Gboard

b) SwiftKey

c) GO keyboard

d) CHUBON keyboard

e) KALQ keyboard

Gaze
Finger

Gaze
Finger

Gaze
Finger

Gaze
Finger

Gaze

Right thumb
Left thumb

Figure 7: Simulation of single-finger typing with the Gboard (a), SwiftKey (b), GO Keyboard (c), and Chubon keyboard (d)
interfaces and with two-thumb typing on the KALQ keyboard (e). In typing on the optimized-layout keyboards (d–e), the finger
is fast and the vision spends more time on the keyboard, guiding the fingers.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Shi, et al.

curve when switching to a new keyboard. The process of learning
novel layouts poses challenges [44] that require greater attention.
Additionally, we need to understand how supervisory control works
in actual typing. In this work, we have assumed that humans com-
mand finger and gaze movements concurrently. However, this may
not accurately reflect how the human cognitive system functions.
Moreover, human behavior can be more varied due to the various
features available on a mobile device, such as multitasking (e.g., typ-
ing while reading popup notifications), word suggestions [76], and
“smart reply” [46]. Further research is required for a comprehensive
understanding of these phenomena.

ACKNOWLEDGMENTS
This work was supported by the Research Council of Finland (flag-
ship program: Finnish Center for Artificial Intelligence, FCAI, grants
328400, 345604, 341763; Human Automata, grant 328813; Subjec-
tive Functions, grant 357578) and Google Grant (DeepTypist). We
thank Prof. Andrew Howes, Dr. Suyog Chandramouli, and all the
reviewers for their valuable suggestions and comments.

REFERENCES
[1] John R. Anderson, Daniel Bothell, Michael D. Byrne, Scott Douglass, Christian

Lebiere, and Yulin Qin. 2004. An integrated theory of the mind. Psychological
Review 111, 4 (2004), 1036–1060.

[2] John R. Anderson, Dan Bothell, Christian Lebiere, and Michael Matessa. 1998. An
integrated theory of list memory. Journal of Memory and Language 38, 4 (1998),
341–380.

[3] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. 2016. Neu-
ral module networks. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). ACM, 39–48.

[4] Ahmed Sabbir Arif and Wolfgang Stuerzlinger. 2009. Analysis of text entry
performance metrics. In Proceedings of the IEEE Toronto International Conference
– Science and Technology for Humanity (TIC-STH 2009). IEEE, New York, NY,
100–105.

[5] Shiri Azenkot and Shumin Zhai. 2012. Touch behavior with different postures on
soft smartphone keyboards. InMobileHCI ’12: Proceedings of the 14th International
Conference on Human–Computer Interaction with Mobile Devices and Services.
ACM, 251–260.

[6] Norman I. Badler, Cary B. Phillips, and Bonnie Lynn Webber. 1993. Simulating
humans: Computer graphics animation and control. Oxford University Press.

[7] Nikola Banovic, Tovi Grossman, and George Fitzmaurice. 2013. The effect of time-
based cost of error in target-directed pointing tasks. In CHI ’13: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, 1373–1382.

[8] Nikola Banovic, Varun Rao, Abinaya Saravanan, Anind K. Dey, and Jennifer
Mankoff. 2017. Quantifying aversion to costly typing errors in expert mobile
text entry. In CHI ’17: Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems. ACM, 4229–4241.

[9] Nikola Banovic, Ticha Sethapakdi, Yasasvi Hari, Anind K. Dey, and Jennifer
Mankoff. 2019. The limits of expert text entry speed on mobile keyboards with
autocorrect. In MobileHCI ’19: Proceedings of the 21st International Conference on
Human–Computer Interaction with Mobile Devices and Services. ACM, Article 15.

[10] Andrew G. Barto and Sridhar Mahadevan. 2003. Recent advances in hierarchical
reinforcement learning. Discrete Event Dynamic Systems 13, 1–2 (2003), 41–77.

[11] Paul M. Bays, Nikos Gorgoraptis, Natalie Wee, Louise Marshall, and Masud
Husain. 2011. Temporal dynamics of encoding, storage, and reallocation of visual
working memory. Journal of Vision 11, 10, Article 6 (2011).

[12] Xiaojun Bi, Yang Li, and Shumin Zhai. 2013. FFitts law: Modeling finger touch
with Fitts’ law. In CHI ’13: Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems. ACM, New York, NY, 1363–1372.

[13] Matthew Michael Botvinick. 2012. Hierarchical reinforcement learning and
decision making. Current Opinion in Neurobiology 22, 6 (2012), 956–962.

[14] Shi Cao, Anson Ho, and Jibo He. 2018. Modeling and predicting mobile phone
touchscreen transcription typing using an integrated cognitive architecture.
International Journal of Human–Computer Interaction 34, 6 (2018), 544–556.

[15] Stuart K. Card. 1983. The psychology of human–computer interaction. CRC Press.
[16] Micah Carroll, Rohin Shah, Mark K. Ho, Tom Griffiths, Sanjit Seshia, Pieter

Abbeel, and Anca Dragan. 2019. On the utility of learning about humans for
human–AI coordination. In Advances in Neural Information Processing Systems
32 (NeurIPS 2019). ACM, 3326–3336.

[17] Kyle R. Cave and Narcisse P. Bichot. 1999. Visuospatial attention: Beyond a
spotlight model. Psychonomic Bulletin & Review 6 (1999), 204–223.

[18] Xiuli Chen, Aditya Acharya, Antti Oulasvirta, and Andrew Howes. 2021. An
adaptive model of gaze-based selection. In CHI ’21: Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems. ACM, Article 288.

[19] Xuili Chen, Gilles Bailly, Duncan P. Brumby, Antti Oulasvirta, and Anrew Howes.
2015. The emergence of interactive behavior: A model of rational menu search.
In CHI ’15: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems. ACM, ACM, 4217–4226.

[20] Xiuli Chen, Sandra Dorothee Starke, Chris Baber, and Andrew Howes. 2017. A
cognitive model of how people make decisions through interaction with visual
displays. In CHI ’17: Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems. 1205–1216.

[21] Olivier Coubard, Zoi Kapoula, Rene Muri, and Sophie Rivaud-Péchoux. 2003.
Effects of TMS over the right prefrontal cortex on latency of saccades and con-
vergence. Investigative Ophthalmology & Visual Science 44, 2 (2003), 600–609.

[22] Andrew T. Duchowski. 2018. Gaze-based interaction: A 30 year retrospective.
Computers & Graphics 73 (2018), 59–69.

[23] AnnaMaria Feit, DarylWeir, and Antti Oulasvirta. 2016. Howwe type: Movement
strategies and performance in everyday typing. In CHI ’16: Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems. ACM, 4262–4273.

[24] Paul M. Fitts. 1954. The information capacity of the human motor system in
controlling the amplitude of movement. Journal of Experimental Psychology 47,
6 (1954), 381–391.

[25] Jerry A. Fodor. 1983. The modularity of mind. MIT Press.
[26] Daryl Fougnie, Jordan W. Suchow, and George A. Alvarez. 2012. Variability in

the quality of visual working memory. Nature Communications 3, 1, Article 1229
(2012).

[27] Michael J. Frank and David Badre. 2012. Mechanisms of hierarchical reinforce-
ment learning in corticostriatal circuits 1: Computational analysis. Cerebral
Cortex 22, 3 (2012), 509–526.

[28] Dylan Gaines, Mackenzie M. Baker, and Keith Vertanen. 2023. FlexType: Flexible
text input with a small set of input gestures. In IIUI ’23: Proceedings of the 28th
International Conference on Intelligent User Interfaces. ACM, 584–594.

[29] Dylan Gaines, John Dudley, Per Ola Kristensson, and Keith Vertanen. 2022. Sta-
tistical keyboard decoding. Bayesian Methods for Interaction and Design (2022),
188–211.

[30] Julien Gori and Olivier Rioul. 2018. Information-theoretic analysis of the speed–
accuracy tradeoff with feedback. In 2018 IEEE International Conference on Systems,
Man, and Cybernetics (SMC). IEEE, 3452–3457.

[31] Yves Guiard and Olivier Rioul. 2015. A mathematical description of the speed/ac-
curacy trade-off of aimed movement. In British HCI ’15: Proceedings of the 2015
British HCI Conference. 91–100.

[32] David Gunning, Mark Stefik, Jaesik Choi, Timothy Miller, Simone Stumpf, and
Guang-Zhong Yang. 2019. XAI: Explainable artificial intelligence. Science Robotics
4, 37, Article eaay7120 (2019).

[33] Trevor Hastie, Robert Tibshirani, and Jerome H. Friedman. 2009. The elements of
statistical learning: Data mining, inference, and prediction, second edition. Springer.

[34] Geoffrey E. Hinton and Ruslan R. Salakhutdinov. 2006. Reducing the dimension-
ality of data with neural networks. Science 313, 5786 (2006), 504–507.

[35] Eve Hoggan, Stephen A. Brewster, and Jody Johnston. 2008. Investigating the
effectiveness of tactile feedback for mobile touchscreens. In CHI ’08: Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems. ACM, 1573–1582.

[36] Paul Holleis, Friederike Otto, Heinrich Hussmann, and Albrecht Schmidt. 2007.
Keystroke-level model for advanced mobile phone interaction. In CHI ’07: Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM,
1505–1514.

[37] Maija Honig, Wei Ji Ma, and Daryl Fougnie. 2020. Humans incorporate trial-to-
trial working memory uncertainty into rewarded decisions. Proceedings of the
National Academy of Sciences 117, 15 (2020), 8391–8397.

[38] Syed Zulkarnain Syed Idrus, Estelle Cherrier, Christophe Rosenberger, and Patrick
Bours. 2014. Soft biometrics for keystroke dynamics: Profiling individuals while
typing passwords. Computers & Security 45 (2014), 147–155.

[39] JamSpell. 2023. bakwc/JamSpell: Modern Spell Checking Library. https://github.
com/bakwc/JamSpell

[40] Xinhui Jiang, Jussi P. P. Jokinen, Antti Oulasvirta, and Xiangshi Ren. 2022. Learn-
ing to type with mobile keyboards: Findings with a randomized keyboard. Com-
puters in Human Behavior 126, Article 106992 (2022).

[41] Xinhui Jiang, Yang Li, Jussi P. P. Jokinen, Viet Ba Hirvola, Antti Oulasvirta, and
Xiangshi Ren. 2020. How we type: Eye and finger movement strategies in mobile
typing. In CHI ’20: Proceedings of the 2020 CHI Conference on Human Factors in
Computing Systems. ACM.

[42] Bonnie E. John. 1996. TYPIST: A theory of performance in skilled typing. Human–
Computer Interaction 11, 4 (1996), 321–355.

[43] Jussi Jokinen, Aditya Acharya, Mohammad Uzair, Xinhui Jiang, and Antti
Oulasvirta. 2021. Touchscreen typing as optimal supervisory control. In CHI ’21:
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems.
ACM, Article 720.

https://github.com/bakwc/JamSpell
https://github.com/bakwc/JamSpell

CRTypist: Simulating Touchscreen Typing Behavior via Computational Rationality CHI ’24, May 11–16, 2024, Honolulu, HI, USA

[44] Jussi Jokinen, Sayan Sarcar, Antti Oulasvirta, Chaklam Silpasuwanchai, Zhenxin
Wang, and Xiangshi Ren. 2017. Modelling learning of new keyboard layouts. In
CHI ’17: Proceedings of the 2017 CHI Conference on Human Factors in Computing
Systems (Denver, CO). ACM, New York, NY, 4203–4215.

[45] Marcel A. Just and Patricia A. Carpenter. 1980. A theory of reading: From eye
fixations to comprehension. Psychological Review 87, 4 (1980), 329–354.

[46] Anjuli Kannan, Karol Kurach, Sujith Ravi, Tobias Kaufmann, Andrew Tomkins,
Balint Miklos, Greg Corrado, Lśzlø’ Lukćs, Marina Ganea, Peter Young, and
Vivek Ramavajjala. 2016. Smart reply: Automated response suggestion for email.
In KDD ’16: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. ACM, 955–964.

[47] Antti Keurulainen, Isak Rafael Westerlund, Oskar Keurulainen, and Andrew
Howes. 2023. Amortised experimental design and parameter estimation for user
models of pointing. In CHI ’23: Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems. ACM, Article 772.

[48] Davis E. Kieras and Davis E. Meyer. 1997. An overview of the EPIC architecture
for cognition and performance with application to human–computer interaction.
Human–Computer Interaction 12, 4 (1997), 391–438.

[49] Iuliia Kotseruba and John K. Tsotsos. 2020. 40 years of cognitive architectures:
Core cognitive abilities and practical applications. Artificial Intelligence Review
53, 1 (2020), 17–94.

[50] Benoît Lemaire and Sophie Portrat. 2018. A computational model of working
memory integrating time-based decay and interference. Frontiers in Psychology
9, Article 416 (2018).

[51] Zhi Li, Yu-Jung Ko, Aini Putkonen, Shirin Feiz, Vikas Ashok, I. V. Ramakrishnan,
Antti Oulasvirta, and Xiaojun Bi. 2023. Modeling touch-based menu selection
performance of blind users via reinforcement learning. In CHI ’23: Proceedings of
the 2023 CHI Conference on Human Factors in Computing Systems. ACM, Article
357.

[52] PyTorch Lightning. 2023. Char Error Rate – PyTorch-Metrics 1.3.1 Documentation.
https://torchmetrics.readthedocs.io/en/stable/text/char_error_rate.html

[53] Wanyu Liu, Julien Gori, Olivier Rioul, Michel Beaudouin-Lafon, and Yves Guiard.
2020. How relevant is Hick’s law for HCI?. In CHI ’20: Proceedings of the 2020
CHI Conference on Human Factors in Computing Systems.

[54] Yaobo Liu, Yeqing Bai, Pengyuan Zhang, Mingyang Zhou, Siwei Wang, Jie Liu,
and Shijian Lu. 2021. PaddleOCR: A high performance scene text recognition
platform. In Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision (WACV). OAE, 2984–2993.

[55] Google LLC. 2023. Gboard – the Google Keyboard. https://play.google.com/store/
apps/details?id=com.google.android.inputmethod.latin

[56] Hee-SeungMoon, Antti Oulasvirta, and Byungjoo Lee. 2023. Amortized inference
with user simulations. InCHI ’23: Proceedings of the 2023 CHI Conference on Human
Factors in Computing Systems. ACM, Article 773.

[57] Roderick Murray-Smith, Antti Oulasvirta, Andrew Howes, Jörg Müller, Aleksi
Ikkala, Miroslav Bachinski, Arthur Fleig, Florian Fischer, and Markus Klar. 2022.
What simulation can do for HCI research. Interactions 29, 6 (2022), 48–53.

[58] J. I. Myung andMark A. Pitt. 1997. Applying Occam’s razor in modeling cognition:
A Bayesian approach. Psychonomic Bulletin & Review 4 (1997), 79–95.

[59] Hugo Nicolau and Joaquim Jorge. 2012. Elderly text-entry performance on
touchscreens. InASSETS ’12: Proceedings of the 14th International ACM SIGACCESS
Conference on Computers and Accessibility. ACM, 127–134.

[60] Hugo Nicolau and Joaquim Jorge. 2012. Touch typing using thumbs: Under-
standing the effect of mobility and hand posture. In CHI ’12: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems. ACM, New York,
NY, 2683–2686.

[61] Dennis Norris. 2017. Short-termmemory and long-termmemory are still different.
Psychological Bulletin 143, 9 (2017), 992–1009.

[62] Antti Oulasvirta and Kasper Hornbæk. 2022. Counterfactual thinking: What
theories do in design. International Journal of Human–Computer Interaction 38, 1
(2022), 78–92.

[63] Antti Oulasvirta, Jussi P. P. Jokinen, and Andrew Howes. 2022. Computational
rationality as a theory of interaction. In CHI ’22: Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems. ACM, Article 359.

[64] Antti Oulasvirta, Sunjun Kim, and Byungjoo Lee. 2018. Neuromechanics of a
button press. In CHI ’18: Proceedings of the 2018 CHI Conference on Human Factors
in Computing Systems. ACM, Article 508.

[65] Antti Oulasvirta, Anna Reichel, Wenbin Li, Yan Zhang, Myroslav Bachynskyi,
Keith Vertanen, and Per Ola Kristensson. 2013. Improving two-thumb text entry
on touchscreen devices. In CHI ’13: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM, 2765–2774.

[66] Kseniia Palin, Anna Maria Feit, Sunjun Kim, Per Ola Kristensson, and Antti
Oulasvirta. 2019. How do people type on mobile devices? Observations from a
studywith 37,000 volunteers. InMobileHCI ’19: Proceedings of the 21st International
Conference on Human–Computer Interaction with Mobile Devices and Services.
ACM, Article 9.

[67] Pekka Parhi, Amy K. Karlson, and Benjamin B. Bederson. 2006. Target size
study for one-handed thumb use on small touchscreen devices. In MobileHCI ’06:
Proceedings of the 8th Conference on Human–Computer Interaction with Mobile

Devices and Services. ACM, 203–210.
[68] David Lorge Parnas. 1972. On the criteria to be used in decomposing systems

into modules. Commun. ACM 15, 12 (1972), 1053–1058.
[69] Benjamin Pearson, Julius Raškevičius, Paul M. Bays, Yoni Pertzov, and Masud

Husain. 2014. Working memory retrieval as a decision process. Journal of Vision
14, 2, Article 2 (2014).

[70] Yoni Pertzov, Paul M. Bays, Sabine Joseph, and Masud Husain. 2013. Rapid
forgetting prevented by retrospective attention cues. Journal of Experimental
Psychology: Human Perception and Performance 39, 5 (2013), 1224–1231.

[71] Richard W. Pew. 1966. Acquisition of hierarchical control over the temporal
organization of a skill. Journal of Experimental Psychology 71, 5 (1966), 764–771.

[72] Sophie Portrat, Pierre Barrouillet, and Valérie Camos. 2008. Time-related decay
or interference-based forgetting in working memory? Journal of Experimental
Psychology: Learning, Memory, and Cognition 34, 6 (2008), 1561–1564.

[73] Antonin Raffin, AshleyHill, AdamGleave, Anssi Kanervisto, Maximilian Ernestus,
and Noah Dormann. 2021. Stable-Baselines3: Reliable reinforcement learning
implementations. Journal of Machine Learning Research 22, 268 (2021).

[74] Keith Rayner. 2009. The 35th Sir Frederick Bartlett Lecture: Eye movements and
attention in reading, scene perception, and visual search. Quarterly Journal of
Experimental Psychology 62, 8 (2009), 1457–1506.

[75] Patricia A. Reuter-Lorenz and Ching-Yune C. Sylvester. 2005. The cognitive
neuroscience of working memory and aging. In Cognitive Neuroscience of Aging:
Linking Cognitive and Cerebral Aging, R. Cabeza, L. Nyberg, and D. Park (Eds.).
Oxford University Press, 186–217.

[76] Quentin Roy, Sébastien Berlioux, Géry Casiez, and Daniel Vogel. 2021. Typing
efficiency and suggestion accuracy influence the benefits and adoption of word
suggestions. In CHI ’21: Proceedings of the 2021 CHI Conference on Human Factors
in Computing Systems. ACM, Article 714.

[77] David E. Rumelhart and Donald A. Norman. 1982. Simulating a skilled typist: A
study of skilled cognitive-motor performance. Cognitive Science 6, 1 (1982).

[78] Timothy A. Salthouse. 1986. Perceptual, cognitive, and motoric aspects of tran-
scription typing. Psychological Bulletin 99, 3 (1986), 303–319.

[79] Dario D. Salvucci. 2001. An integrated model of eye movements and visual
encoding. Cognitive Systems Research 1, 4 (2001), 201–220.

[80] Sayan Sarcar, Jussi P. P. Jokinen, Antti Oulasvirta, Zhenxin Wang, Chaklam Silpa-
suwanchai, and Xiangshi Ren. 2018. Ability-based optimization of touchscreen
interactions. IEEE Pervasive Computing 17, 1 (2018), 15–26.

[81] Sayan Sarcar, Jussi Joklnen, Antti Oulasvirta, Chaklam Silpasuwanchai, Zhenxin
Wang, and Xiangshi Ren. 2016. Towards ability-based optimization for aging
users. In ITAP ’16: Proceedings of the International Symposium on Interactive
Technology and Ageing Populations. ACM, 77–86.

[82] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[83] Matthijs T. J. Spaan. 2012. Partially observable Markov decision processes. In
Reinforcement Learning: State of the Art, Marco Wiering and Martijn van Otterlo
(Eds.). Springer, 387–414.

[84] Apple Support. 2023. Type with the Onscreen Keyboard on iPhone. https://support.
apple.com/guide/iphone/type-with-the-onscreen-keyboard-iph3c50f96e/ios

[85] Keith Vertanen and Per Ola Kristensson. 2011. A versatile dataset for text entry
evaluations based on genuine mobile emails. In MobileHCI ’11: Proceedings of the
13th International Conference on Human Computer Interaction with Mobile Devices
and Services. ACM, 295–298.

[86] Yuntao Wang, Ao Yu, Xin Yi, Yuanwei Zhang, Ishan Chatterjee, Shwetak Patel,
and Yuanchun Shi. 2021. Facilitating text entry on smartphones with QWERTY
keyboard for users with Parkinson’s disease. In CHI ’21: Proceedings of the 2021
CHI Conference on Human Factors in Computing Systems. ACM, Article 735.

[87] Christoph Wimmer, Bernd Stainer, and Thomas Grechenig. 2022. On the impact
of competitive gameplay on text entry performance – a study based on a mobile
typing game. In CHI EA ’22: Extended Abstracts of the 2022 CHI Conference on
Human Factors in Computing Systems. ACM, Article 430.

[88] Jacob O.Wobbrock. 2007. Measures of text entry performance. Text Entry Systems:
Mobility, Accessibility, Universality (2007), 47–74.

[89] Jeremy M. Wolfe, Kyle R. Cave, and Susan L. Franzel. 1989. Guided search: An
alternative to the feature integration model for visual search. Journal of Experi-
mental Psychology: Human Perception and Performance 15, 3 (1989), 419–433.

[90] Yanfei Xie, Grace P. Y. Szeto, Jie Dai, and Pascal Madeleine. 2016. A comparison
of muscle activity in using touchscreen smartphone among young people with
and without chronic neck–shoulder pain. Ergonomics 59, 1 (2016), 61–72.

[91] Motonori Yamaguchi and Gordon D. Logan. 2014. Pushing typists back on the
learning curve: Revealing chunking in skilled typewriting. Journal of Experimen-
tal Psychology: Human Perception and Performance 40, 6 (2014), 1713–1732.

[92] Shumin Zhai, Michael Hunter, and Barton A. Smith. 2000. The Metropolis key-
board – an exploration of quantitative techniques for virtual keyboard design.
In UIST ’00: Proceedings of the 13th Annual ACM Symposium on User Interface
Software and Technology. ACM, 119–128.

https://torchmetrics.readthedocs.io/en/stable/text/char_error_rate.html
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://support.apple.com/guide/iphone/type-with-the-onscreen-keyboard-iph3c50f96e/ios
https://support.apple.com/guide/iphone/type-with-the-onscreen-keyboard-iph3c50f96e/ios

