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Figure 1: We present a novel simulation-based target inference approach. In contrast to the existing data-based methods that 
use human data for training, our inference model is trained with a large and diverse amount of realistic simulated motions: (a) 
A user’s target selection can be assisted by an inference network that proactively infers the user’s intended target from their 
prior movements. (b) Our simulated user, based on a human biomechanical model, closely mimics user motion during target 
selection tasks, accommodating various task confgurations and human motor variations. 

ABSTRACT 
Selecting a target in a 3D environment is often challenging, espe-
cially with small/distant targets or when sensor noise is high. To 
facilitate selection, target-inference methods must be accurate, fast, 
and account for noise and motor variability. However, traditional 
data-free approaches fall short in accuracy since they ignore vari-
ability. While data-driven solutions achieve higher accuracy, they 
rely on extensive human datasets so prove costly, time-consuming, 
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and transfer poorly. In this paper, we propose a novel approach that 
leverages biomechanical simulation to produce synthetic motion 
data, capturing a variety of movement-related factors, such as limb 
confgurations and motor noise. Then, an inference model is trained 
with only the simulated data. Our simulation-based approach im-
proves transfer and lowers cost; variety-rich data can be produced in 
large quantities for diferent scenarios. We empirically demonstrate 
that our method matches the accuracy of human-data-driven ap-
proaches using data from seven users. When deployed, the method 
accurately infers intended targets in challenging 3D pointing con-
ditions within 5–10 milliseconds, reducing users’ target-selection 
error by 71% and completion time by 35%. 
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CCS CONCEPTS 
• Human-centered computing → Pointing devices; Interac-
tion techniques; • Computing methodologies → Machine 
learning; Modeling and simulation. 
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1 INTRODUCTION 
Selecting a target is a fundamental task in human–computer in-
teraction. In traditional desktop environments, users frequently 
engage in target selections by using a mouse pointer to navigate 
dense menus with high efciency and accuracy. In contrast, fast 
and accurate target selection in virtual- and augmented-reality 
(VR/AR) environments remains challenging, because of several fac-
tors: i) sensor limitations causing imprecision and lag [73, 90], ii) 
the absence of haptic feedback [88], iii) complications related to 
depth perception [83, 98], and iv) inherent noise in motor behav-
ior [20, 86]. Prior studies show that target-selection performance in 
VR is particularly difcult when targets are small or distant [5, 55]. 

Target inference is the problem of identifying user’s intended 
target before the cursor arrives at the target, using as input sensor 
data gathered during movement. The inference can inform assistive 
mechanisms, for expedited target selection [3, 31, 60, 65, 93, 100]. 
However, accurate target inference is not straightforward. The main 
challenge arises from the inherent variability of human movement. 
When selecting a given target, users difer in their trajectories 
toward it in response to their preferences (e.g., prioritizing speed 
vs. accuarcy of selection), biomechanical factors (strength, limb 
lengths, posture, etc.), and contextual factors. Even a single user 
selecting the same target twice exhibits variability. 

Previously, target-prediction methods have focused on user mo-
tions’ endpoints, representing potential endpoints for each target 
through Gaussian models [4, 30, 89, 102]; likelihood-based infer-
ence techniques are then applied that inversely infer the target from 
the endpoints. However, this approach, by excessively simplifying 
human motion, compromises accuracy in capturing users’ inten-
tions, particularly from high-variability motions. More recently, 
deep neural networks have been trained to predict the intended 
targets from trajectory data in a supervised manner [18, 49]. Suc-
cesses notwithstanding, this approach can be heavily dependent 
on extensive training datasets collected from humans. Inadequate 
training data can lead to poor inference performance when used 
for new users or conditions. Therefore, a varied user pool is needed 
for capturing variability within the population. 

Can we generate substantial and realistic movement data to train 
accurate inference models without involving human participants? 
In this paper, we introduce a novel target-inference method that 

employs simulation, grounded in a biomechanical model, to gener-
ate realistic human motion priors. Our key novelty lies in leveraging 
simulators to generate training motion data, mimicking the com-
plexity and variability of human movements. We exploit a natural 
assumption: users’ movements align more closely with biomechan-
ical optima than with random motions. By estimating these optima 
through biomechanical simulation, we enable model-based infer-
ence that by design accounts for human-like variations in body 
posture, size, motor noise, etc. 

Our method constructs a simulated user capable of visually per-
ceiving the task environment as humans do and performs motor 
actions in alignment with human kinematic joint movements. Ac-
cordingly, we obtain a control policy for the simulated user that 
captures rational decision-making at every timestep, ultimately 
reproducing the human target-selection behavior. The simulated 
users permit gathering high-volume motion data while incurring 
little cost. So that the data refect the full spread of human behaviors, 
our process considers various physical attributes (e.g., motor noise) 
and preferences (e.g., desired speed–accuracy tradeof). Systemati-
cally altering the settings for these attributes lets us generate a rich 
set of trajectories. These trajectories are then used to train a neural 
proxy model that identifes the probability distribution of intended 
targets in light of the observed trajectory thus far. The model thus 
derived infers the target in milliseconds probabilistically. Finally, 
deploying the inference model aids in users’ target selection in 3D 
environments, in real-time. 

Our simulation-based target-inference approach ofers clear ben-
efts. Relative to pre-existing data-driven approaches, this method 
does not require gathering human data from the real world, so it 
afords higher efciency, scalability, and signifcantly reduced costs. 
The method adapts to new task environments such as diferent 
arrangements of target objects or new interaction techniques. Fur-
thermore, our model specifes its confdence in the inferences. That 
allows the target-selection assistance technique to ascertain the 
optimal moment to assist users in selecting the most likely targets 
while minimizing any adverse efects if the inference is not a high-
confdence one. This is a crucial advantage over heuristics-based 
approaches, like proximity-based techniques, where uncertainty 
information is often ignored. 

We evaluated three key aspects of our method experimentally: 
i) the quality of our simulator’s motion replication, ii) inference 
performance with human data, and iii) improvement in users’ target 
selection when the inference methods are deployed in assistance 
techniques. In a VR setting using raycasting-based selection, our 
simulator faithfully replicated human users’ performance dynamics 
for diferent levels of selection difculty (Study 1). The inference 
network, trained solely on the simulated data, infers users’ intended 
targets within 5–10 ms per timestep. Each inference process oper-
ates using the partial trajectory data observed from the beginning 
of each trial, without requiring knowledge of the trajectory’s total 
length. With human trajectory data, the network achieved an accu-
racy of 88% when it observed the frst 80% of each trial (Study 2). 
We also showed human-data-driven approach’s performance signif-
icantly depends on the volume of training data: to achieve accuracy 
levels similar to or higher than ours, a minimum of seven users, 
each providing 250 trials, was required. This inference process im-
proved target-selection performance considerably (Study 3): when 
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targets are densely arranged, human users were 71% more accurate 
and 35% faster than with naive selection, and accuracy was 10% 
higher than with pre-existing forms of heuristic assistance. While 
our method’s accuracy was comparable with the heuristic baseline, 
it enhanced user performance by making use of the confdence 
estimates provided by the network. 

To sum up, this paper presents three main contributions. We 
release our dataset and code as open-source.1 

(1) A simulation-based target-inference method: To the 
best of our knowledge, this is the frst paper to train a target-
inference model using synthetic data from biomechanical 
simulations. Sharing our end-to-end implementation and its 
evaluation ofers valuable insights for this line of research. 

(2) Realistic simulation of target-selection motion: Unlike 
previous eforts to generate end-point predictions, our ap-
proach replicates human-like motion with bodily variability 
during target selection by employing biomechanical models. 

(3) Demonstration of efcacy in target-selection assistance: 
Our approach improves selection techniques by leveraging 
the inference outputs. With the high-speed inference, it ac-
commodates rapid visual fresh rates of VR environments. We 
empirically show that integrating our inference into VR se-
lection techniques signifcantly enhances user performance. 

2 RELATED WORK 

2.1 Techniques Facilitating Target Selection 
Reducing the burden on the user in target selection can improve 
overall efciency of tasks with an extensive range of interfaces, from 
traditional desktop ones [31, 57, 93, 100, 103] and touchscreens [7, 
53, 94] to immersive VR systems [2, 5, 32, 55, 97]. Researchers 
following the principles of Fitts’ law [26] have attempted to decrease 
the Index of Difculty by enlarging targets [59, 60] or the cursor’s 
interactive area [15, 31, 65, 93], for more efcient selection processes. 
Others modify transfer functions for quicker cursor movement [3, 9, 
93, 100] or introduce shortcuts during approach movements [1, 53]. 

Efective facilitation techniques require accurately predicting 
users’ intended targets, however. The traditional procedure relies 
on proximity-based heuristics [1, 31]. These often identify the clos-
est target as the one intended. A more complicated form is Bubble 
Cursor [31], whose interactive area (bubble radius) varies dynami-
cally with the context Lu et al. [55] have expanded this concept for 
3D selection tasks. In high-target-density interfaces, the proximity-
based “nearest neighbor” strategy inevitably proposes many wrong 
targets, causing unwanted distractions [97]. This shortcoming led 
to algorithmic attempts to improve motion end-point predictions 
by relying on the observed fractions of trajectories [3]; e.g., Lank et 
al. [48] predicted the pointing target by quadratic extrapolation of 
the cursor velocity based on observation. However, the algorithms 
often fall short of grasping the vast variability in human behavior. 

Recent eforts have turned to neural networks. They process 
multiple channels of information (cursor [8] and hand motions [18, 
38, 49], gaze [39], etc.) for more accurate evaluation of intentions. 
Recurrent neural networks [18, 95] have demonstrated efective 
handling of sequential data for prediction of user intention, with 

1https://github.com/hsmoon121/3d-target-inference 

meta-learning techniques [64] further enhancing the model’s abil-
ity to make efcient personalized predictions. These human-data-
driven approaches all face a great obstacle, though, in the labor-
intensive data collection required, both initially and often in light of 
new task conditions. We sought to address this challenge by using 
simulation-based data to facilitate target selection. 

2.2 Biomechanical Simulation of User Motion 
Data-driven methods improve inference of human intentions by uti-
lizing extensive human-motion datasets that capture both intra-user 
(diferences in a single user’s motions) and inter-user (diferences 
across multiple users) variability. Our novel approach achieves pre-
cise inference by implementing realistic motion simulation that 
has two following features: 1) utilizing a state-of-the-art human 
biomechanical model [77] and physics engine [84] to guarantee 
coherent bodily movements that honor human physical constraints 
and 2) biomechanics-informed replication of human motion’s vari-
ability. To address intra-user variability, which arises partly from 
motor noise during muscle/joint actuation [52, 58, 87], we modeled 
motor control’s constant and signal-dependent noise both [78, 86], 
sensitized to the latter’s recognized role in the speed/precision com-
promise inherent to motion [36]. Tackling inter-user variability 
involves diverse limb-joint confgurations, reward formulations, 
and motor-noise levels. 

One way to address a user’s goal-directed behavior with biome-
chanics is to frame it as an optimal-control problem [24]. Following 
the assumption that users aim to minimize internal costs (e.g., jerk 
of the end efector) when pursuing their goals, this optimization 
utilizes feedback from visual perception, proprioception, and other 
sensory channels. While classical closed-loop optimal-control tech-
niques, such as linear-quadratic-Gaussian (LQG) control and model 
predictive control (MPC), have served simulation of human motion 
in HCI [25, 46, 58, 74], the computation required at each timestep 
for motion optimization renders their use with high-dimensionality 
models impractical. This constraint has prompted a shift toward 
deep reinforcement learning (RL). Through RL, the control policy 
(which, given sensory input, selects optimal actions) is derived as a 
deep neural network. Applying this paradigm in RL-driven biome-
chanical simulations dovetails with the emerging user-modeling 
framework, computational rationality [17, 22, 43, 44, 69]. Such sim-
ulations have already proven efective in modeling mid-air point-
ing [16, 24], keyboard use [37], jumping [42], gait [51], and a suite 
of interactive tasks [40] addressed by Ikkala et al. These founda-
tions supported our work to develop biomechanical simulation for 
inferring user-intended targets via realistic motion data. 

2.3 Probabilistic Inference with User Simulation 
We also incorporate probabilistic inference to minimize risks of 
inference errors by accurately estimating the probability distribu-
tion for relevant variables [103]. This facilitates intelligent target-
selection assistance; for instance, the system might ofer shortcuts 
only when its predictions pass a certain confdence threshold [97]. 
Especially in traditional settings, Bayesian inference commonly 
serve such probabilistic reasoning [4, 30, 102, 103]. Informed by 
prior factors such as use frequency, it link users’ actions to likely tar-
gets, such as intended buttons [96, 102] or words [28, 30]. However, 
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this approach is available in models only where the user actions 
and targets can be easily paired through likelihood functions. One 
common approach is to model the endpoints corresponding to indi-
vidual keys by using simple Gaussian distributions [4, 102]. Ziebart 
et al. [103] exploited a simple linear relationship between 2D inter-
face states and user cursor actions to estimate a target’s posterior 
distribution from partial cursor trajectory. 

The complexity of today’s computational models for 3D point-
ing (e.g., arising from hierarchical structures with RL-based poli-
cies [16, 24, 40]) complicates applying traditional forms of prob-
abilistic inference. Against this backdrop, likelihood-free infer-
ence [19], which employs iterative simulations to identify the most 
plausible parameter distribution that could account for the behav-
iors observed, represents a viable alternative. Conventional forms of 
these methods, such as approximate Bayesian computation [6, 34], 
are hampered by a need for substantial computation power and 
time (often hours to days [45, 62]). Recently introduced amortized
inference techniques [19, 29, 75] appear more promising: Modern
machine-learning approaches enabled real-time variational approx-
imation of complex probability distributions. They used a neural 
proxy model that efectively maps observed behaviors to an approx-
imate posterior distribution of the parameters. This approach has 
already enhanced inference process with several HCI simulation 
models [63], delivering inferences in tens of milliseconds. We ex-
tend it to real-time 3D target inference, addressing key challenges 
such as real-time deployment, data discrepancy between simulation 
and humans, and user variability. 

3 SIMULATION-BASED TARGET INFERENCE 
We formulate the target-inference problem as identifcation of the 
posterior distribution of the user-intended target point by consid-
ering the ongoing trajectory of the end efector (in essence, to the 
on-screen cursor/pointer). Our method is fexible and suited for 
environments where pointing is done through human motion alone 
or with devices like VR controllers. The key steps of our method 
can be summarized thus: 

(1) Biomechanical simulations: The frst step constructs com-
putational agents that, bounded by human biomechanical
constraints, simulate realistic human motor behavior for the
intended interaction. Dynamically adjustable parameters for
several latent factors (such as limb length, the noise of motor
control, and kinematic constraints) account for intra- and
inter-user variability as the agent generates human-like mo-
tion toward various targets. The action policy, governing the
perceptual control of biomechanics in the interactive tasks
specifed, is obtained through RL with the agents pursuing
maximal utility analogously to how humans do.

(2) Training the inference model with the simulated data:
At its core, our inference model is a deep neural network.
Trained with the simulated data of the computational agent,
it employs state-of-the-art density-estimation techniques to
approximate probabilistic inference, thereby expediting the
target-selection procedure.

(3) Deploying the inference model to the end users: Once
trained, the inference model can compute posterior distri-
butions of the predicted target position all in milliseconds.

These distributions specify not only the most likely target but 
also a confdence level that can inform the system’s decision 
on when to provide assistance. 

3.1 Step 1: Biomechanical Simulations 
We assume that humans’ target-selection behavior unfolds as a 
sequence of decisions. At each timestep, the decision continually 
refnes the action in light of real-time sensory feedback (e.g., on 
the distance between the target and the end efector). Our agent 
emulates this complex dynamic through a computationally rational 
agent’s decision-making [69]. Concretely, the agents perceive the 
interactive environment through vision and proprioceptive feed-
back. Then, the action policy determines the action, which gets 
translated into movement through biomechanical models (see Fig-
ure 2(a)). This can be formulated as an RL problem within a partially 
observable Markov decision process, or POMDP. 

Our focus in this paper is on human upper-limb interaction. 
Humans’ upper extremities are typically characterized by seven 
degrees of freedom: three in the shoulder (elevation plane, shoulder 
elevation, and shoulder rotation), one in the elbow (elbow fex-
ion), and three in the wrist (forearm rotation, wrist fexion, and 
wrist deviation). We chose an implementation of the Upper Ex-
tremity Dynamic Model [77], which recent research has exploited
extensively to simulate human interaction — with actuation either 
directly at the joints [24, 37] or through the tendons [40]. In contrast 
to conventional linked-segment models with their basic skeletal 
framework, biomechanical models provide physiologically accurate 
joint movements with inter-segmental coupling and empirically 
derived angle and torque limits. For integration with RL, we employ 
a biomechanical model converted for use with the computationally 
efcient physics engine MuJoCo [40, 84]. 

Below, we present the RL problem formulation that captures the 
agent’s target selection in an interactive task environment, then 
introduce the settings that permit realistic motor variation. 

3.1.1 RL formulation. Within the POMDP framework2, an agent
performs an action based on its current observation, which encom-
passes only partial information on the full task state. In consequence 
of the action, the agent receives a reward, alongside a new obser-
vation, from the updated state. The following key components 
characterize our setting: 

• Observation: The agent’s observations of the task state come
from two primary types (inspired by prior work [40]): visual
and proprioceptive. A forward-facing eye 20 cm above the
agent’s neck captures visual feedback, as 180 × 120 RGB-D
images of the environment in front of it, and the proprio-
ceptive feedback encompasses information on each joint’s
rotational angle, angular velocity, and acceleration.

• Action: Our action space comprises: 1) seven action com-
mands of actuating corresponding joints and 2) a command
for click decision, both with ranges of -1 to 1. The action
commands for each joint directly determine the torque ap-
plied to each joint, scaled for the respective biomechanics
limits; this is inspired by the setting of Hetzel et al. [37],

2We refer the reader to Sutton and Barto [82] for the general formulation of POMDP
and RL problems. 
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Figure 2: (a) Our biomechanical simulation involves the complete perception–action loop, from observing the simulated 
environment to generating actions through a learned action policy. This simulation approach accounts for a set of latent factors 
that (b) defne the target-selection task and (c) yield various human motor variations. 

which aforded more efcient training than muscle-based ac-
tuation. The click decision command triggers the simulated 
user’s click after applying random time noise (as simplifed 
implementation of prior models of click timing [71]). 

• Reward: Each target selection can have its own task-specifc
reward formulation shaping the agent’s behavior strategy.
This reward structure’s weighting for the agent’s selection
success/failure, elapsed time, and motor efort ultimately in-
fuences tradeofs (e.g., prioritizing successful selections over
speed or fatigue factors). From among the various means
of evaluating optimal motor efort, we opted for a well-
established and simple measure: jerk (change in acceleration)
at the end efector [27, 85].

3.1.2 Interactive task. An interaction mechanism on top of the 
biomechanical model specifes how upper-limb movements trans-
late to end-efector movements. For instance, in VR, raycasting 
techniques are commonly used to map the hand’s orientation to 
a ray-style cursor. Meanwhile, transfer functions specifc to indi-
rect pointing devices (mice, trackpads, etc.) mediate the cursor’s 
on-screen position. Also crucial is addressing the target’s confg-
uration with other onscreen elements, which entails specifying 
target sizes and positions that match real-world use cases while 
simultaneously considering distractors’ possible exacerbation of 
task difculty. 

3.1.3 Latent factors for motor variability. Our model captures a 
broad spectrum of latent factors that contribute to both intra- and 
inter-user variation. Table 1 provides an exhaustive list of the com-
ponents our research covered. 

• Intra-user variability: Within-individual variations arise from
two sources: motor noise and posture shifts. We model motor
noise via both signal-dependent and constant components.
In our control system, the action, �, is infuenced by noise
added to the agent’s decision � ∗ thus:� � � � 

� = min max � ∗ · (1 + �sig ) + �con, −1 , 1 ,

where �sig is the signal-dependent and �con the constant
noise term. It samples both from Gaussian distributions with 
a mean of 0 and diferent standard deviations (0.103 and 
0.185), following van Beer et al.’s example [86]. Several mech-
anisms account for natural postural deviations not included 
in the biomechanical action space: in each trial, we randomly 
sample 1) the eye position, for perturbations to eye–hand 
separation caused by neck-tilting, and 2) torso tilt (while the 
spine is kept fxed), for considering variations that might 
arise from changes in body posture. 

• Inter-user variability: A parameterized simulation model per-
mits simulating user-to-user physical diferences and rep-
resenting user preferences. A parameter for limb scale gets
applied frst, adjusting the overall kinematics relative to the
external environment; next, noise-scaling factors are added
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Table 1: A list of the latent variables accounted for to address both intra- and inter-user motor variability. 

Notation Meaning Type Distribution 

�sig 
�con 
�eye 
�tor 
�limb 
�sho 
�elb 
�wri 
�fail

Signal-dependent motor noise term 
Constant motor noise term 
Deviation in eye position from the upright point (m) 
Angular deviation of the torso from vertical angle (◦) 
Global scaling coefcient for limb sizes 
Coefcient for scaling the noise for shoulder joints 
Coefcient for scaling the noise for the elbow joint 
Coefcient for scaling the noise for wrist joints 
Penalty coefcient for failed selections 

Intra-user 
Intra-user 
Intra-user 
Intra-user 
Inter-user 
Inter-user 
Inter-user 
Inter-user 
Inter-user 

N (0, 0.1032)
N (0, 0.1852)

U([−0.02, 0.02]3)
U ( [−1, 1]3)

U([0.85, 1.10]) 
U([0.25, 1.25]) 
U([0.25, 1.25]) 
U([0.25, 1.25]) 
U([0.1, 1.0]) 

for each joint (shoulder, elbow, and wrist), to capture its 
motor-precision variations; and, fnally, we adjust the penalty 
for unsuccessful selections (a weight parameter for reward 
formulation), to refect the cautiousness behind each user’s 
decision on clicking. 

3.1.4 Policy training. We utilize proximal policy optimization (PPO) 
[79] to optimize the neural-network-based action policy of the
agent. This deep RL algorithm is suitable for tasks with continu-
ous action spaces, contributing to its widespread use in human-
modeling research [40, 43]. Specifcally, we engineer the policy
network to accept given user-specifc free parameters (�limb , �sho ,
�elb , �wri , �fail ) along with the observation variables. By optimizing
the policy network across episodes featuring diverse user param-
eter values, we develop a generalized action policy for the agent 
that accommodates a wide range of user attributes [47, 62, 63]. 

3.2 Step 2: Training of the Inference Network 
We employ neural density estimation [21, 75] to obtain the posterior 
distribution for the intended target position from observed user 
trajectories (Figure 3). Recently published work [63] inspired us to 
extend the method for efciently inferring not just the free parame-
ters of simulation models (e.g., characteristics of the simulated user) 
but also the exact positions of intended targets. This broadening 
of focus is justifed in that the target positions can be viewed as a 
form of parameter, one representing the task environment in each 
trial. Accordingly, the same density-estimation techniques can be 
applied for our aim. 

The core strength of our inference network lies in its ability to ex-
tract essential information from input data to accurately represent 
complex probability distributions beyond simplistic assumptions 
such as Gaussian models’. Here, the input data � include not just 
the trajectory of the end efector’s 3D position but also the size and 
position details of interactive objects (potential targets) within the 
task environment. The output is a posterior distribution � (� |�), 
where � represents the intended target position. To generate this 
complex distribution computationally, our inference network em-
ploys normalizing fows [21, 70, 76]. Starting with a basic normal 
distribution, it applies a series of bijective transformations, each 
modeled by a neural network and conditioned on the input data �. 
These steps progressively shape the distribution into more intricate 
forms, approximating � (� |�). Additionally, an encoder network 

can preprocess the input data before feed-in to the normalizing 
fows. This encoder network can range from simple multi-layer per-
ceptrons to Transformers or other advanced architectures suited 
to handling time series or multiple trials. Descriptions elsewhere 
provide further implementation and training details [63]. 

Training the inference network relies on a simulated dataset com-
posed of pairs of target positions � and corresponding synthetic 
observations �. Factors such as the locations where targets spawn 
and their frequency of being chosen for targeting can infuence 
this prior. For instance, user commands in menu-selection tasks 
may show a bias toward specifc items [23] while word and letter 
frequency infuence presses in keyboard interfaces [28]. These vari-
ations in the prior distribution inevitably afect the posterior that 
the network learns, in line with Bayes’ theorem. 

3.3 Step 3: Deployment for User Assistance 
Once trained, our inference model generates posterior distributions 
of the target positions in light of the given portion of the user’s tra-
jectory. The operation, conducted via a single forward pass through 
the neural network, takes mere milliseconds. Importantly, this prob-
abilistic distribution provides more than the most probable target; 
it also assigns a confdence value to the prediction. Consider an 
interface populated with � selectable objects, each at position �� ,
for � = 1, . . . , � . For a given observed input �� at timestep � , the
most probable target �∗ is identifed thus: � 

� ∗ = argmax� � (�� |�� )� 

The procedure for calculating the exact � (�� |�� ) by means of the
normalizing fows is detailed in Supplement A. The confdence level 
(�� ) denotes the certainty ratio for the most likely target �∗:� 

� (��∗ |�� )
�� = � Í� 

�=1 � (�� |�� ) 

Accordingly, �� equips us with a probabilistic metric for the trust
we can place in the model’s prediction at the moment in question. 
As Figure 3(b) illustrates, the confdence level rises over time as the 
inferred posterior distribution narrows its focus to the correct target. 
With our inference approach, the related information is accessible 
at each timestep with minimal lag (∼10 ms). This permits ready 
integration of the confdence measurement into existing systems, 
enhancing target selection processes in real time [53, 97]. 
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Figure 3: (a) Our inference network derives the posterior distribution of the target position from observed user motion. (b) 
With the inferred posterior, the system not only identifes the most probable target but also provides a confdence level for that 
target, in real time (5–10 ms). The above posteriors are based on a human participant trajectory collected in Study 1. 

4 OVERVIEW OF STUDIES 
Our method is composed of three key steps. To fully validate our 
approach, our evaluation is also comprised of three distinct studies, 
each corresponding to one step in the method. Our evaluation of 
validity focused on raycasting-based pointing, which is a represen-
tative and ubiquitous target selection method that can be found in 
a wide range of VR/AR applications. Together, these eforts cover 
the full implementation and validation process, from building the 
biomechanical simulator to training and deploying our inference 
network in end-user target-selection scenarios. 

• Study 1 (Evaluating the simulator): We verifed how
well the simulated motion replicates the motions of human
users. We frst developed a simulator for the raycasting-based
target-selection task, which allows us to gather simulated
motion data. Then, we gathered human participants’ motion
data for the same selection task. Finally, we compared data
from two sources.

• Study 2 (Evaluating the inference): Next, after training
the inference network on the simulated dataset, we evalu-
ated the accuracy and efciency of the inference network in
inferring the target from human participants’ motion data.

• Study 3 (Evaluating the enabled assistance): We de-
ployed the trained inference network and utilized its in-
ference to assist target selection. Our method was designed
to ofer selective suggestions, displaying the inferred results
only when the inference was deemed reliable. We evaluated
how this approach improved the human users’ speed and
accuracy in selecting targets.

4.1 Task: Raycasting Selection 
Raycasting has become established as a standard technique for 
interacting with objects in VR [2, 5, 55, 61, 92]. It employs a cursor 
that resembles a stare emanating from a controller, whereby users 
can engage with distant objects. For simplicity, our task setting 
assumed that all interactive objects are positioned on a spherical 
surface, consistently at fve meters from the user’s eye level. This 
setup mirrors a typical VR scenario in which interface elements 
are arranged on a single plane, for minimal occlusion. Accordingly, 
the position of the end efector here is determined by the point at 
which the ray and the surface intersect. The user’s objective is to 
trigger a click when the end efector is within the target area. 

4.1.1 Task configuration and procedure. We implemented a target-
selection task described by Lu et al. [55]. This task comprises a grid 
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Figure 4: Overview of studies: (a) We developed a simulator to 
replicate user behavior during VR target selection tasks, and 
trained an inference network using the simulated dataset. (b) 
We then gathered motion data from participants perform-
ing the same task using the Meta Quest 2 device. This data 
was used to evaluate both our simulator (Study 1) and the 
inference network (Study 2). Finally, we tested our inference-
based assistance in target selection scenarios with human 
users (Study 3). 

containing spherical objects where one (colored blue) is designated 
as the target while the others (colored white) serve as distractors. 
We set two distinct grid confgurations (Dense and Wide) and two 
target sizes (Large and Small). As Figure 5 shows, the Dense confg-
uration represents a scenario with densely arranged objects, with 
a 7 × 7 grid whose spacing between objects is a visual angle of 
1.44◦, and the Wide confguration disperses the objects across the 
user’s entire feld of view, with a 9 × 7 grid that has 6◦ spacing. 
Target size is either Large (width: 0.10 m, visual size: 1.15◦) or Small 
(width: 0.06 m, visual size: 0.69◦). To modulate selection difculty 
target-specifcally, we established a consistent beginning point by 
means of a starting object. In this setting, users initiate a trial by 
directing the end efector through the starting object, after which 
the selection target — the target that the participant should select — 
is indicated (in blue, as opposed to white) on the grid. The starting 
object is positioned either below 13.5◦ from the grid center for the 
Dense type or at the center for the Wide type. The width of the 
starting object is 0.10 m (1.15◦). We followed the principles estab-
lished by Lu et al. [55], whereby each selection target must have 
four adjacent distractors. Since a target in the outermost layer or 
adjacent to the starting object is not surrounded by four distractors, 
it is not chosen as a selection target. This left 25 potential targets 
for Dense and 26 for Wide. For each trial, we sampled the target 
uniformly from the candidate targets. 

4.1.2 Transfer to simulation. We implemented the identical target 
selection task environment in MuJoCo for simulation. Our simu-
lated agent has a 3D model with a VR controller (Meta Quest 2) 
attached to its right hand, which serves as the origin of the ray 
projection. Hence, the upper-limb movements dictate the ray’s di-
rection and origin, thereby determining end-efector position. We 
set the decision-making interval to 50 ms. We defned the reward 
formulation for the task such that the simulated agent receives a 
reward signal at each timestep � , denoted as �� , as follows: �success − �efort · ∥�� ∥2 , if click is successful 

�� = 
 
−�fail − �efort · ∥�� ∥2 , if click is failed −�time − �efort · ∥�� ∥2 , otherwise 

Figure 5: Four target confgurations factored by grid confgu-
ration (Dense or Wide) and target size (Large or Small). 

The reward coefcients, �success , �fail , �time , and �efort , corre-
spond to the success, failure, elapsed-time, and motor-efort com-
ponents, and �� represents the timestep-specifc jerk of the end ef-
fector, expressed in m/s3. We chose the fxed settings �success = 10, 
�time = 0.05, and �efort = 0.0025, while �fail is varied in line 
with sampled values as presented in Table 1. This reward formu-
lation ultimately determines the simulated agent’s strategy after 
convergence. 

5 STUDY 1: EVALUATING USER SIMULATOR 
A foundation of our target-inference method is the biomechanical 
simulation’s capacity to replicate human users’ motions faithfully 
under varying levels of selection difculty. Study 1 validated this 
capacity through comparisons between the simulator-generated 
motions and human ones. We gathered data from participants per-
forming the raycasting-based target-selection task. The task incor-
porated variations in target confguration (Dense and Wide) and 
sizes (Large and Small). Our simulator was achieved through RL 
(PPO [79]) in MuJoCo simulation, adhering to its formulation in 
Subsection 4.1. To expedite the learning process, we trained two 
distinct simulators for both the Dense and the Wide target confgu-
ration. The training took approximately 40 hours on a PC equipped 
with an Intel i9-13900K CPU and NVIDIA RTX 4090 GPU. See 
Supplement B for details. 

5.1 Data Collection Method 
5.1.1 Participants. Twenty participants were recruited (11 women 
and 9 men). Their age range is 21–45 (mean=26.2, SD=5.1). All 
participants had either normal or corrected-to-normal vision and 
were right-handed. 

5.1.2 Task. The task and interface confguration were as presented 
in Section 4.1. Participants were instructed to select a specifc tar-
get from among distractor objects in the VR environment (see 
Figure 4(b)). They had to point their ray at a fxed starting object, 
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Table 2: Study 1: Comparison of human and simulated task performance across conditions. Our simulation’s mean performance, 
by every metric and under all target conditions, fell within one standard deviation (SD) of the mean performance of each 
participant across the full set of human participants. These results are therefore highlighted in green. 

Metric 
Target Condition 

Confguration Size 
Mean of 

Human Data 
SD of 

Human Data 
Mean of 

Simulated Data 

Completion time 
(second) 

Dense Large 
Dense Small 
Wide Large 
Wide Small 

1.174 
1.634 
1.411 
1.931 

0.202 
0.390 
0.311 
0.370 

1.357 
1.751 
1.551 
2.096 

Dense 
DenseError rate 
Wide 
Wide 

Large 0.140 0.113 0.158 
Small 0.238 0.126 0.262 
Large 0.203 0.134 0.174 
Small 0.307 0.148 0.403 

Figure 6: Study 1: Our simulator’s generated motion followed 
Fitts’ law, closely mirroring the human participants’ motion 

which activated a trial. Of the white objects in the grid, one object 
(the selection target) turned blue at the moment the trial began. 
When the end efector hovered over an object, that object turned 
light blue if it was the correct target and turned light green oth-
erwise. A successful selection was accompanied by a tone, while 
an unsuccessful selection was indicated by a beep sound distinct 
from this. Each trial persisted until a successful selection was made. 
Participants were instructed to complete each trial “as quickly and 
accurately as possible.” 

5.1.3 Study design and procedure. The study employed a within-
subject design with a 2 × 2 factorial structure: Target Confguration 
(Dense and Wide) × Target Size (Large and Small). We refer to each 
combination of Target Confguration and Target Size as a condition. 
Diferent conditions come with diferent levels of difculty in the 
target selection. 

All participants frst signed the consent forms. Participants com-
pleted a practice block for each condition before the data collection, 
to familiarize themselves with all task conditions. Then, they went 
through eight sessions in the study proper, with two sessions per 
condition. The sequence of conditions was counterbalanced via 
a balanced Latin square design [12] to mitigate the infuence of 

order efects and immediate carry-over efects. Each session com-
prised fve blocks, and each block presented the participant with 
all possible selection targets in the trials (25 trials for Dense, 26 
trials for Wide), appearing in a randomized order. Calibration was 
done before each block: the system measured the participant’s eye 
level and then displayed the target grid at that height, to guaran-
tee consistent positioning of the targets. Upon completion of each 
block, participants’ fatigue levels were assessed on the Borg CR10 
scale [11], a 10-point rating scale designed to quantify perceived 
human fatigue. Participants reporting fatigue levels of 6 or above 
were promptly granted breaks of at least three minutes to minimize 
the potential impact of fatigue. Also, participants were free to take 
additional rest breaks whenever needed. In all, each participant 
completed 1,020 trials (2 × 2 × 2 × 5 × (25 or 26)), with the full 
experiment lasting approximately an hour. The study adhered to 
the local protocols for ethics approval. 

5.1.4 Apparatus and implementation details. Participants performed 
the task with a Meta Quest 2 at a 120 Hz refresh rate. The study soft-
ware was implemented in Unity. Within the program, we tracked 
the trajectory of the end efector and recorded the execution of 
clicks for each trial at 50 ms intervals. 

5.2 Results and Discussion 
Aggregated task performance. Our simulator reached levels of task 
performance similar to humans’ under varying conditions and dif-
fering levels of selection difculty. In the four conditions, we gen-
erated a set number of trial data from our simulator and compared 
with human data, using two aggregated performance metrics: com-
pletion time and error rate. Completion time was measured from 
the moment a trial was initiated (i.e., the ray passing through the 
starting object) to the moment when a successful click occurred. 
The error rate was calculated as the ratio of the total number of 
unsuccessful clicks to the total click counts. Human participants 
exhibited longer completion times and higher error rates for more 
difcult selections; i.e., Wide confgurations and Small targets in-
troduced higher difculty. This result is in line with Fitts’ law (see 
Table 2 for the results). Using our simulator, we faithfully repro-
duced these dynamics. Simulated performance closely matched the 
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Velocity Profile across Users(a)

(b) Velocity Profile across Blocks
(Median user case)

Figure 7: Study 1: Our simulator faithfully replicates the in-
tricate details found in motion trajectories, as evidenced by 
velocity–time functions. We normalized all movement times 
to a [0, 1] range for easier comparison, with 0 marking the 
start and 1 the end of a movement. (a) The simulation closely 
matched the average velocity profle of individual partici-
pants. (b) With fxed user-specifc parameters, the simulator 
accurately reproduced the variability in the velocity profle 
across an individual participant’s blocks. The plot is from 
the participant with the median peak velocity across all par-
ticipants. 

mean performance of participants in each condition, falling within 
one standard deviation of mean performance across all participants. 

Our simulator consistently adhered to Fitts’ law, faithfully re-
producing the patterns observed in human participants’ perfor-
mance, even at a fner-grained level (see Figure 6). We binned all 
of the simulator’s trials into 12 groups on the basis of the Index 
of Difculty associated with each selection target’s position (with 
equal-frequency binning). The analysis revealed a positive linear 
correlation between the completion time and the Index of Difculty 
for each simulated point (�2=0.62). This result is consistent with 
prior work [24, 40], which has demonstrated adherence to Fitts’ 
law in biomechanical simulations of human pointing motion. 

Velocity profile. The velocity–time functions summarize how the 
motion dynamics of users unfold over a trial [22, 66]. Figure 7(a) 
shows that our simulated trajectories replicate the overall velocity 
profle of human movements. Specifcally, human and simulated 
users closely resemble each other in the magnitude of peak velocity 

and the normalized time at which this peak velocity was reached. 
Our simulator recorded a peak velocity of 0.179 m/s2 at a normalized 
time of 0.252, on average. Both the magnitude and the time fall 
within standard-deviation range of the human data; the fgures are 
0.204 ± 0.035 and 0.254 ± 0.008, respectively. 

Variability in velocity profles is visible in the human data, both 
across users and within trials for a single user. Our simulator cap-
tures this complexity by sampling the latent variables listed in 
Table 1 for each individual trial (inter-user) or user (intra-user). For 
intra-user variation, the simulator closely mimics fuctuations ob-
served from individual human users from one trial block to another. 
Specifcally, the SD values for peak velocity and its occurrence 
time were 0.018 and 0.025, falling within the human-data range, at 
0.025 ± 0.009 and 0.028 ± 0.010, respectively. Figure 7(b) showcases 
how our simulator replicated the intra-user variability of one par-
ticipant, the one with the median peak velocity from among the 
20 participants. As for inter-user variation, the simulator yielded 
SDs 0.005 and 0.008 for peak velocity and its timing, respectively, in 
contrast against the human data’s values of 0.035 and 0.021. We dis-
cuss the factors that may have contributed to the higher inter-user 
variability observed in the human data in Section 8. 

6 STUDY 2: EVALUATION OF THE INFERENCE 
MODEL 

In the second study, we assessed the performance of our inference 
network, which was trained exclusively on simulated data from 
Study 1. Our inference model predicts the intended target by using 
any fraction of the trajectory and states a probabilistic confdence 
level for each prediction. With primary focus on investigating the 
accuracy and efciency of the inference network as the trajectory 
progresses, we compared our inference model to three other ap-
proaches, including data-free and data-driven methods both. The 
baseline method that has the most potential to yield the best ac-
curacy uses the same neural-network structure for inference but 
with training on human motion data, collected in Study 1. With this 
study, we also aimed to highlight the advantages of using simulated 
data over human data. 

6.1 Experiment Method 
6.1.1 Evaluation data. We evaluated inference performance utiliz-
ing the human-participant data from Study 1 (� =20). With each 
trajectory recorded at intervals of 50 ms, we extracted fractions 
from each trajectory at cumulative progression intervals, starting 
from 0–10%, and extending by 10% increments up to 100%. 

6.1.2 Inference methods. We implemented four inference methods 
for the study, with our approach among them: 

• Nearest Neighbor : Inspired by Bubble Cursor [31, 55], this 
method simply considers the object closest to the current 
end-efector position as the inference result. 

• Quadratic Regression [48]: We adapted a method from Lank 
et al. Lank et al. [48] that predicts a trajectory’s endpoint 
through quadratic extrapolation of the end-efector velocity. 
This approach does not ofer probabilistic inference. For this 
study, we conducted 5-fold cross-validation, meaning that 
16 of the 20 users were used for training data, while the 

https://��2=0.62
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remaining four were used for testing, and this process was 
repeated fve times. 

• Human-data-based Neural Inference: We trained a baseline in-
ference model, which applied the model structure employed 
in Simulation-based Neural Inference, using human data. This 
baseline represents the upper limit for our simulation-based 
approach’s potential, as it captures human variability from 
authentic motion data. This approach enables probabilistic 
inference and ofers a predicted confdence level for each 
inference. See Supplement C.1 for further details. As with 
Quadratic Regression, we used 5-fold cross-validation. 

• Simulation-based Neural Inference (our approach): We trained 
an inference network based on the simulator constructed 
in Study 1. Similarly to Human-data-based Inference, this 
this method generates predicted targets and associated con-
fdence levels. During the training, we sampled user-specifc 
parameters (Table 1) for each trial and collected data accord-
ingly. The entire simulation comprised approximately 65,000 
trials, which took about two hours using the same PC as in 
Study 1. See Supplement C.2 for more details. 

6.2 Results and Discussion 
Inference accuracy. Figure 8(a) shows the accuracy of each inference 
method. Following the practice established by prior works [18, 103], 
we analyzed diferent method’s accuracy at varying proportions of 
the observed trajectory from the onset, ranging from 10% to 100%. 
This allows for the assessment of comprehensive inference accuracy 
across trials with diferent durations due to varying target locations. 
Human-data-based Neural Inference consistently performed better 
than other methods; however, its advantage over Simulation-based 
and Nearest-Neighbor methods gradually became marginal as the 
end of a trajectory approached. Our Simulation-based Neural In-
ference, though slightly behind the Human-data-based approach, 
outperformed the Quadratic Regression method. Our method and 
the Nearest-Neighbor method showed overall comparable perfor-
mance, with ours performing slightly better in the earlier stages 
and Nearest Neighbor doing slightly better in the fnal stage. Fi-
nally, Quadratic Regression consistently trailed behind the other 
methods; this is consistent with the literature, which has reported 
that it shows unstable performance [103]. 

Despite having similar accuracy to the Nearest-Neighbor method, 
Simulation-based Neural Inference ofers the signifcant beneft of 
leveraging inference confdence. This approach enhances the sys-
tem’s ability to determine the optimal timing for using inferred 
results, leading to more efective assistance and reducing distrac-
tions from premature visualizations of targets [97]. Figure 8(b) illus-
trates the increasing confdence of two Neural-Inference methods as 
movements progress. Unlike these methods, the Nearest-Neighbor 
approach lacks a mechanism for accurately timing assistance. 

Inference eficiency. Our method’s neural inference demonstrated 
an average inference time of 5–10 milliseconds. Although this is 
slightly longer than the processing times of Nearest Neighbor or 
Quadratic Regression, which took less than one millisecond, our 
inference method still ofers a remarkably high computation speed. 
This level of efciency allows it to function in real-time scenarios, 
even with visual refresh rates of 120 Hz. 

(a)

(b)

Figure 8: Study 2: (a) Mean accuracy of intended-target clas-
sifcation, by inference method, as the proportion of the 
trajectory observed rises. (b) The neural inference methods 
provide internal confdence levels along with the inference. 

The training data needed in human-data-based inference. Simulated 
data can be generated infnitely from a trained simulator while 
humans’ variability is captured via adjustment of user-specifc pa-
rameters. In contrast, gathering data from humans comes with 
a cost proportional to the quantity of data. This makes human-
data-based inference difcult to scale up. Here, we investigated the 
efects of training a given inference model with various quantities of 
human user data (see Figure 9). This highlighted the negative conse-
quences when the body of training data is not large or variety-rich 
enough. Human-data-based Neural Inference exhibited a signifcant 
decline in performance as the number of training users or trials per 
user decreased: when limited to seven users or when there were 
fewer than 40 trials per user, it was less accurate than Simulation-
based Neural Inference. This result highlights the cost that each 
new target-selection task brings in human-data-based inference, 
thereby establishing clear limits on transferrability due to the costs 
of data collection. Furthermore, predicting the “sufcient” num-
ber of users for reliable inference is challenging due to inherent 
uncertainties. Our method mitigates these challenges by ofering 
scalability through the use of simulation-generated data. 
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Figure 9: Study 2: The performance of human-data-based 
neural inference with various numbers of training users (left) 
and training trials per user (right). The plots highlight the 
dependency of the method’s performance on data availability, 
suggesting limited scalability. Shading denotes the standard 
deviation across fve validation user sets. 

7 STUDY 3: REAL-TIME USER ASSISTANCE 
Study 3 aims to demonstrate the efciency and efectiveness of our 
inference method in assisting users with target selection tasks. This 
study implements a real-time interaction technique on a Meta Quest 
2 device, comprising two key components: inference and assistance. 
The interaction operates by inferring the most likely target during 
a user’s selection process at every timestep and assisting user to 
make more efcient selections by utilizing the inferred results. We 
built a visual-suggestion-based assistance wherein the user can 
visually check the inferred target and decide whether to select it. 

Previous work has demonstrated that while predictive and heuris-
tic techniques are highly accurate in less dense arrays, their efec-
tiveness decreases in denser confgurations [33, 55, 65]. To fully val-
idate the performance of our simulation-based inference approach 
in a wide spectrum of tasks, this study compares our approach 
against various baseline techniques in two layouts: Wide and Dense 
(refer to Figure 5). We frst assess how our approach enhances 
user assistance in the Wide layout, a setting representative of con-
ventional scenarios where targets are adequately separated (Study 
3A). Then, we shift our focus to the Dense layout, representing 
more challenging environments where traditional methods tend to 
struggle (Study 3B). 

This study further investigates design options available for ef-
fectively incorporating the confdence levels into interaction tech-
niques. To illustrate, in Section 7.2.3, we additionally present a new 
assistance technique, where an auto-click function is integrated 
into the visual suggestion. This feature allows the system to au-
tonomously make decisions based on confdence levels of inference. 
We evaluated its impact on user performance improvements. 

7.1 Study 3A: Wide Layout Targets 
We frst assessed our assistance performance in the Wide type of 
target layout. We implemented visual-suggestion-based assistance 
interaction wherein the inferred targets are shown to participants 
to support efcient selection. The system proactively provides vi-
sual suggestions with a sticky ray [81, 91], where the ray starts 
of in a straight line from the controller’s current orientation and 
gradually curves at the end towards the inferred target. The in-
ferred target is highlighted as if it were hovered over: in light blue 
if correct and light green otherwise. The selected target was the one 
inferred at the time when the participant triggered the selection. 
Unlike non-probabilistic inference methods (e.g., Nearest Neigh-
bor), our probabilistic approach permits choosing to trigger visual 
suggestions only when the confdence value reaches a certain level, 
thereby avoiding distractions caused by unreliable suggestions. 

7.1.1 Participants. We recruited 12 new participants (3 women 
and 9 men), ensuring none had previously participated in our Study 
1. Their ages ranged from 19 to 29 (mean=24.75, SD=2.71). All 
participants had either normal or corrected-to-normal vision and 
were right-handed. 

7.1.2 Inference methods. Since the Quadratic Regression method 
showed poorer overall inference performance than the other infer-
ence methods probed in Study 2, we excluded it from this study. 
Accordingly, our setup involved the other inference methods consid-
ered thus far: Nearest Neighbor, Human-data-based Neural Inference, 
and Simulation-based Neural Inference (i.e., our method). For a sim-
ple baseline, we added the basic target-selection scenario without 
inference, denoted as None. The system with Neural Inference gave 
the user visual suggestions only if the confdence values exceeded 
50%. The study’s non-probabilistic inference methods kept the sug-
gestion active throughout the trials. 

7.1.3 Experiment design and procedure. The study employed a 
within-subject design, featuring a 4 × 2 factorial structure: four 
Inference Types (None, Nearest Neighbor, Human-data-based Neural 
Inference, and Simulation-based Neural Inference) and two Target 
Sizes (Large and Small). 

The task details were consistent with Study 1’s, except for the 
addition of the assistance interaction. All participants signed con-
sent forms. At the beginning of the experiment, participants were 
given a practice block refecting each condition (Inference Type 
× Target Size). They were asked to perform trials as quickly and 
accurately as possible. They went through eight sessions, each with 
a distinct condition, in a counterbalanced order using a balanced 
Latin square [12]. Each session was arranged into three blocks. As 
in Study 1, participants calibrated their eye height, reported their 
fatigue levels, and were provided with breaks as desired after each 
block. Each participant completed 624 trials (4 × 2 × 3 × 26), in 
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Layout Type

Layout Type

Layout TypeInferenceType

Figure 10: Study 3: Our simulation-based inference approach 
signifcantly improved the speed and accuracy of users’ target 
selection over the naive selection across two distinct target 
layout scenarios. No signifcant diference in performance 
was found between our assistance and human-data-based 
inference. An asterisk (*) indicates the statistically signifcant 
diference with � < 0.05 after adjustments using Bonferroni 
correction. Error bars denote 95% confdence intervals. 

approximately 30 minutes. The study adhered to the local ethical 
protocols for approval. 

7.1.4 Apparatus and implementation details. The interaction was 
performed on a Quest 2 device. For the neural-inference meth-
ods, we converted the pre-trained network models, initially imple-
mented in PyTorch, to Open Neural Network Exchange, or ONNX, 
format. This allowed us to run them on Unity’s Barracuda engine. 
The experiment program was executed on a desktop PC equipped 
with an NVIDIA RTX 3080 GPU, wired to the VR device. This setup 
enabled the neural-inference network to operate in real time, with a 
latency of 5–10 ms per inference. User trajectory data were collected 
and used for inference at 50-ms intervals. 

7.1.5 Results. We analyzed participants’ task performance using a 
two-way (Inference Type × Target Size) repeated-measures ANOVA 
with Greenhouse—Geisser correction. The absence of signifcant 
efects of the block on both performance metrics (�>0.05) suggests 

that the learning efect was efectively minimized by the practice 
session, allowing us to use data from all blocks in the analysis. The 
ANOVA results showed a statistically signifcant efect of Inference 
Type: �3,33=206.64, �<0.001 for completion time and �3,33=132.94, 
�<0.001 for error rate. Post-hoc tests with Bonferroni correction 
showed signifcant diferences between Inference Types (see Fig-
ure 10). All three inference methods led to signifcantly better task 
performance than the None condition in terms of both completion 
time and error rate (all �<0.001). There were no other signifcant dif-
ferences between Inference Types. We report the details of further 
analysis with Target Size in Supplement D.1. 

Overall, with large efective target sizes — in wide layouts where 
targets are sufciently separated — all inference methods signif-
cantly enhanced user performance compared to naive selection. The 
error rate of the assisted target selections was less than 6% on aver-
age. Considering that participants were instructed to prioritize both 
speed and accuracy, it is plausible to expect even higher accuracy 
in scenarios where speed is less prioritized, as indicated in previous 
studies [99, 101]. Our method, based on simulated data, demon-
strated performance comparable to inference methods trained on 
actual human data. As shown in previous work [55], the nearest 
neighbor approach exhibited a high level of assistance performance 
for targets with high efective size. 

7.2 Study 3B: Dense Layout Targets 
The visual-suggestion assistance with our inference method was 
evaluated with the Dense layout of targets, more challenging for 
target inference. We maintained consistency across task imple-
mentation, experiment design, and procedure, aligning them with 
Study 3A, except for the change of the target layout. Following 
the evaluation of visual-suggestion assistance, this study explores 
an alternative selection technique based on our inference outputs. 
We specifcally examined auto-click features, ofering a more ac-
tive system engagement compared to the passive nature of visual-
suggestion assistance. 

7.2.1 Participants. Twenty new participants (13 women and 7 men; 
ages ranged from 18 to 37; mean=25.6, SD=4.1) were recruited. All 
had normal or corrected-to-normal vision, were right-handed, and 
had not participated in our previous studies. 

7.2.2 Results. A two-way (Inference Type × Target Size) repeated-
measures ANOVA with Greenhouse–Geisser correction revealed 
a signifcant efect of Inference Type on both completion time 
(�3,57=82.31, �<0.001) and error rate (�3,57=154.20, �<0.001). Post-
hoc tests with Bonferroni correction identifed signifcant difer-
ences among the inference methods (see Figure 10). Consistent 
with Study 3A, all inference methods signifcantly improved task 
performance compared to the None condition, in terms of both 
completion time and error rate (all �<0.001). 

The key distinction from Study 3A was that both Human-data-
based and Simulation-based Neural Inference methods exhibited 
lower error rates than Nearest Neighbor (�=0.012 when compared 
to Human-data-based; �<0.001 for Simulation-based Inference). No 
other signifcant diferences were found between the inference 
types. These results indicate that marginal diferences in infer-
ence accuracy didn’t signifcantly impact assistance performance. 

https://��3,57=154.20
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Figure 11: Study 3: Both neural inference methods (human-
data-based and simulation-based) improved completion 
times with confdence-based automated-click assistance, 
maintaining similar levels of accuracy. An asterisk (*) de-
notes � < 0.05. Error bars denote 95% confdence intervals.

Our simulation-based inference outperformed the nearest-neighbor 
method in error rates, despite comparable levels of inference accu-
racy. Additionally, it matched the performance of human-data-based 
inference, despite slightly lower inference accuracy. 

7.2.3 Exploring the utility of confidence levels with auto-click. Infer-
ence confdence levels ofer various options for designing assistance 
interactions, ranging from passive to active system involvement. 
The visual suggestion represents passive usage, where the system 
proposes actions but the user retains decision-making control. In 
contrast, for clear user intents like text entry on a keyboard UI, 
the system can autonomously process inputs to enhance efciency. 
Dwell-click [35, 56, 80] is a common example where the system 
identifes user intention and clicks based on the user’s pointing 
duration. While dwell-click is prone to unintended activations [41], 
inference confdence can ofer a more reliability for activation. A 
balance between passive and active engagement is also possible, for 
instance, by dynamically adjusting the dwell-click threshold using 
inference confdence [68]. 

As a demonstrative example, we tested an active assistance inter-
action: auto-click. Here, participants controlled a ray upon the same
visual suggestions, but the system directly selected the inferred 
target when certain criteria were met. This auto-click feature was 
applied to all three inference methods. For neural-inference meth-
ods, the inferred target was auto-selected if confdence exceeded 
90%. For Nearest Neighbor, we used a time-based criterion, auto-
selecting the target if the inferred target remained unchanged for 
over 300 ms.3

Auto-click’s performance was evaluated with the same twenty 
participants, following the same procedure. Signifcant efects were 
observed in task completion time (�1,19=24.28, �<0.001) and er-
ror rate (�1,19=41.69, �<0.001) with the auto-click feature.4 The
confdence-based auto-click signifcantly enhanced completion time 
for neural-inference methods (all �<0.001) without signifcant error 
rate diferences (see Figure 11).5 Nearest Neighbor’s time-based
3The value was as in prior work of dwell-click with hand-held pointing devices [10, 72].
4A two-way (With-or-without Auto-Click × Inference Type) repeated-measures ANOVA 
with Greenhouse–Geisser correction was conducted. 
5Post-hoc pairwise tests with Bonferroni correction was conducted.

Nearest
Neighbor

Neural
Inference
(Ours)

Visually adjusted ray Target to selectTrue ray 

Wrong suggestionWrong suggestion

No suggestion
(Confidence = 15%)

No suggestion
(Confidence = 48%)

Correct suggestion
(Confidence = 94%)

Correct suggestion

Figure 12: Our neural inference approach enables the system 
to selectively ofer visual suggestions to the user based on in-
ternally measured inference confdence. In contrast, existing 
heuristic assistance methods like nearest neighbor continu-
ously ofer visual suggestions, often leading to suggestions 
towards incorrect targets, thus hindering user performance. 
The orange contour, overlaying the target array, represents 
the system’s internally measured inferred posterior, which 
is not visible to the actual participants. 

auto-click led to a signifcantly better error rate (�<0.001) with-
out afecting completion time (see Supplement D.2). The results 
support using confdence levels as criteria for auto-click. A key 
beneft of using confdence levels is their consistency. Unlike dwell-
click thresholds that vary widely from 300 ms to 2 s depending on 
the input method [67], inference confdence ofers a more stable 
threshold directly linked to the inference quality. 

7.3 Discussion 
Contributing factors to superior assistance performance. The key 
advantage of the neural inference methods over the nearest neigh-
bor approach was selective activation of visual suggestions based on
inference confdence (see Figure 12). The neural inference methods 
activated visual suggestion for only 43% of the duration, with an 
81% accuracy in targeting the user’s intended target. In contrast, 
the nearest neighbor method was accurate only 35% of the time. 
This selective feature was efective in reducing visual clutter and 
reducing users’ clicks on less certain locations, especially in denser 
target confgurations. 

We analyzed the impact of each inference method on partici-
pants’ cursor movements by measuring the number of submove-
ments6 and total travel distance. With assistance from the three
methods, participants showed fewer submovements (2.93 ± 0.36) 

6Following a previous practice [50], we identifed each submovement’s onset by lo-
cating the local minima in cursor speed, following smoothing with a Gaussian flter 
(� = 3). 
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Figure 13: Study 3: Mean accuracy and confdence in target 
inference during user-assisted target selection with each in-
ference method. 

and shorter travel distances (3.03 ± 0.19 m) compared to naive selec-
tion (4.03±0.74 submovements, 3.19±0.23 m). However, there were 
no signifcant diferences between the three methods, suggesting 
that the neural inference’s selective visual suggestions mainly af-
fected decision-making regarding click timing, rather than afecting 
cursor movement patterns. 

Inference accuracy with users assisted. Having noted that the assis-
tance infuenced cursor movements, we examined its efect on the 
inference accuracy of each method. We evaluated each method’s 
inference accuracy using trajectory data from trials with partic-
ipants assisted by corresponding inference (Figure 13). Compar-
ing with Study 2’s results (Figure 8), which used naive selection 
trajectory data, we noted a consistent trend: Our method lagged 
behind human-data-based inference around the midpoint of the 
trajectory but narrowed the gap towards the trajectory’s end, and 
ultimately showed comparable accuracy to the nearest-neighbor 
method. There was a general decline in inference accuracy com-
pared to Study 2, because assistance reduced the time the cursor 
spent near the target, where inference accuracy is typically higher. 

8 DISCUSSION AND CONCLUSION 
This work introduces a novel simulation-based target inference 
method, leveraging biomechanical simulation. The three studies 
we conducted shed light on ways of applying this idea in HCI. We 
can sum up their fndings as follows: 

• In Study 1, our simulator replicated human performance mea-
surements with high fdelity, falling within a one-standard-
deviation range across various levels of task difculty while 
also capturing motion variability. 

• In Study 2, our inference model, trained exclusively on sim-
ulated data, achieved accuracy similar to the human-data-
based approach’s, with a short inference time: ∼5 ms. The 
model usefully supplies a confdence level for its predictions. 

• Study 2 showed also that data from at least seven participants 
were needed for exceeding the accuracy of our simulation-
based inference model in our evaluation setting. 

• In Study 3, a selection technique implemented using our in-
ference method signifcantly improved speed and accuracy of 
users’ target selection over naive selection, leading to fewer 
cursor submovements. Furthermore, the selective assistance 
using measured inference confdence led to higher accuracy 
in densely arranged target selection scenarios compared to 
pre-existing heuristics-based assistance. 

Below, we discuss the implications of our fndings and explore 
opportunities for further extensions. 

Biomechanics as a human-motion prior. Our results illuminate the 
signifcant utility of human biomechanics as an essential prior in 
the study of humans’ interactive motion. Traditionally, understand-
ing such movements required resource-intensive data collection 
or heuristic programming, which may lack realism. We utilized 
our prior knowledge of biomechanical movement (limb kinematics, 
motor noise, and natural posture deviation) to generate realistic mo-
tion with variability. Study 1 showed that this approach faithfully 
captures motor variability, and Studies 2 and 3 provided evidence of 
the performance of the inference model trained with such simula-
tion. This work showcases the potential of the biomechanics model 
as a powerful tool for replicating, analyzing, and understanding 
human motion. 

Utility of inference confidence. In Study 3, we demonstrated that 
confdence levels from probabilistic inference function well as op-
erational indicators within the system to prompt assistance. One 
factor contributing to our approach’s enhanced end-user perfor-
mance compared to the nearest-neighbor condition could be our 
selective suggestion of inferred targets, enabled by confdence lev-
els. Also, confdence-driven auto-clicking further improved users’ 
target-selection performance. These results suggest our probabilis-
tic method efectively flters out unreliable inferences, a feat impos-
sible with non-probabilistic methods. While we used a simplistic 
fxed threshold for confdence, future work should explore opti-
mization techniques [54] or RL [97] for intelligently identifying 
optimal confdence thresholds or for adjusting to the desired bal-
ance between speed and accuracy. 

Intra- and inter-user variability. Our simulation faithfully repro-
duces the intra-user variability. However, we observed that human 
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participants exhibited greater inter-user variability than the sim-
ulator, which may be attributed to factors not captured by our 
current user parameters. For instance, humans’ internal reward 
functions can vary signifcantly. Also, users also complete selec-
tion with varying levels of attention, experience various levels of 
fatigue, and undergo unique learning processes, all contributing to 
inter-user variability. Further research is needed to capture these 
inter-user-level diferences in motion generation. Although the 
greater inter-user variability in human data leads to slightly better 
inference accuracy, this diference does not necessarily translate 
to more efective assistance for target selection, as Study 3 attests, 
highlighting the efcacy of the simulation-based approach. 

Personalized simulation and inference. The inclusion of user-specifc 
parameters to account for motions’ variability (Table 1) has demon-
strated efectiveness in our simulation setting. Currently, we uni-
formly sample user parameters from a set range to refect population-
level variability. However, in scenarios requiring inference for a 
specifc user or context, adjusting the user parameters’ sampling 
distribution is a viable option for better representing the purpose at 
hand. Previous work has demonstrated the feasibility of inversely 
inferring user-specifc parameters through neural density estima-
tion techniques [63]. This opens opportunities for personalized 
target inference: A system can observe multiple target-selection 
trials from a user to infer that user’s unique user parameters. The 
inferred parameters can then serve as the new prior for subsequent 
trials; thereby, the system can customize and enhance the system’s 
target inference for this individual. 

Deployment in real-world application. Our method can be applied 
outside of research settings with minimal alterations. The frst chal-
lenge involves identifying the start of a user’s aimed movement, 
which is non-trivial in real-world sequences. Techniques similar 
to those proposed by Chapuis et al. [14], which detect the start of 
movement based on the cursor’s pause time and subsequent move-
ment distance, provide a viable solution. The second challenge is 
the assumption that the target array is known in advance, crucial 
for generating appropriate simulated data and training the infer-
ence model. To adapt to real-world scenarios, the inference model 
requires pre-training on simulations that include diverse target 
confgurations. This intensive pre-training enables the model to 
contextually infer target locations by processing the trajectory in 
conjunction with the specifc target array presented, adapting its 
inference to the given situational context. 

Generalizability. The proposed simulation-based target-inference 
approach has potential for application in target-selection techniques 
beyond raycasting, since none of the steps in our method are limited 
to certain interactions. Recent studies [13, 40] have expanded the 
repertoire of biomechanical models available, enhancing the versa-
tility of our approach for replicating human motion in interactive 
tasks. Meanwhile, on the inference side, the fexibility inherent in 
the neural networks makes it suitable for handling a broader range 
of data channels or even longer trajectories [63]. Importantly, the 
fast inference (∼5 ms) makes our approach compatible with systems 
for real-time selection assistance across various interfaces. Another 
advantage of our method is that training data can be generated 
through diferent means, provided that synthetic motion dynamics 

are available. This makes it possible to use optimal-control-based 
methods such as LQG [25] and MPC [46]. However, it is critical to 
remember that inference accuracy is contingent on the validity of 
the synthetic data. 

Limitations and future work. Our research simultaneously has iden-
tifed several challenges for further investigation, to broaden the 
area of application. Firstly, future research could focus on more real-
istic target-selection tasks; our validation was limited to simplifed 
scenarios (fxed starting points, grid-based arrangements, uniform 
visual shapes, etc.). Secondly, simulations of human motion can be 
further enhanced via more realism by incorporating factors such 
as human-like perceptual processes (visual search), intermittency 
of motor control, and muscle actuation. Thirdly, more user data 
channels beyond just end-efector trajectory could be included; 
additional sensor data (hand position, eye-gaze, etc.) could enrich 
models and improve accuracy. Lastly, the feld lacks a formal process 
to translate human movements into computational models; cur-
rent methods need tuning of simulation parameters (user-specifc 
variables, reward formulations, etc.) across applications, limiting ef-
fcient generalization. We hope our research serves as a pioneering 
example, inspiring future work in RL-driven biomechanical simu-
lations and enabling cost-efective design evaluation, hypothesis 
testing, and study of complex interactions in HCI. 
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