
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or
part of any of the repository collections is not permitted, except that material may be duplicated by you for
your research use or educational purposes in electronic or print form. You must obtain permission for any
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not
an authorised user.

Truong, Linh; Nhu Trang, Nguyen Ngoc
Analytics Feature Space: a Novel Framework for Interoperable Edge Machine Learning
Detection

Submitted: 29/03/2024

Please cite the original version:
Truong, L., & Nhu Trang, N. N. (2024). Analytics Feature Space: a Novel Framework for Interoperable Edge
Machine Learning Detection.

Analytics Feature Space: a Novel Framework for
Interoperable Edge Machine Learning Detection

Hong-Linh Truong
Aalto University, Finland

linh.truong@aalto.fi

Nguyen Ngoc Nhu Trang
Daienso Lab, Vietnam

nhutrang.nguyen@daienso.com

Abstract—Departure from the analytics for single assets, in
many application domains, complex scenarios require us to
determine and discover facts and insights for a collective of
assets, spaces, and environments. Due to the advance of machine
learning (ML), such complex scenarios are increasingly relied
on different edge ML detection, which are diverse for different
purposes, like object detection, anomaly detection, surface defect
detection or activity recognition/classification, in a unified man-
agement view of a business. Widely integrated and provisioned
at the edge, the diversity of the underlying ML models, concrete
deployments, and changes in operations lead to different types
of detection results. However, extensive metadata required for
interpreting the results is not well supported, in addition to
the difficulty when integrating and analyzing detection results
from multiple pipelines and algorithms. In this paper, we present
Analytics Feature Space (AFS) as a novel framework to support
high-level analytics and integration for multiple types of ML
detection at the edge in a unified way that is applied to collectives
of assets, spaces and environments. AFS abstracts and supports
key metadata related to edge ML detection, changes in detection
deployments and metadata for the above-mentioned collective
detection and analytics. We introduce techniques to manage
relationships between analytics subjects, ML detection models
and results. Different ways for integrating AFS and detection
pipelines are presented. We demonstrate our experiments with
realistic scenarios for operation management.

I. INTRODUCTION

Currently, various ML pipelines have been developed and
deployed at the edge to carry out different types of near real-
time detection. Although object detection [1], [2], [3], [4]
is widely used in many applications, in real-world complex
systems like Intelligent Operation Centers for industrial zones
or Digital Twins, we have many other types of detection,
like anomaly detection [5], [6], [7], event detection, quality
control detection of specific categories, hazardous material
and surface detection. In parallel, in the view of analytics for
different purposes, we move away from single detection for
single assets to the analytics of complex subjects encapsulating
highly connected assets (e.g., pumps and pipes), related spaces
(e.g., wastewater lakes), and environments (e.g., wastewater
and air) in a managed business. We call entities abstracted
in such a complex subject that must be managed together
a Collective of Assets, Spaces, and Environments (CASE).
In the interest of complex operations and management, to
manage CASE, the analytics can leverage many types of

above-mentioned detection1. Thus, there is a need to integrate
different types of detection for a holistic analytics of CASE.

To date, the results from the detection at the edge are
normally delivered to the downstream (cloud-based) applica-
tions via messaging systems to support near real-time stream
analytics and decision-making and to store the results into
data lakes for future analytics. When examining the detection
needed for the analytics of CASE, two key observations are
drawn. First, the detection pipelines are diverse in terms of
underlying ML models (e.g., object detection models and time
series anomaly data detection models) and outputs (e.g., mul-
tiple object detection vs specific types of anomaly detection).
Second, due to highly decoupling and ML model changes in
software and system operations at the edge, these pipelines can
be reconfigured and changed w.r.t. runtime execution configu-
rations, ML model configurations, and data sources without
controls/awareness of the downstream applications/systems.
Therefore, for complex applications in the downstream, which
aggregate the results from various pipelines, there are many
types of data that can be missed or inadequate to support the
analytics and integration of the outputs from these pipelines.

concrete assets

pumps
building

specific spaces/locations

work space

envrionments

construction
sitebattery waste

water
waste
storage

unified detection for collectives of assets, spaces and environments (CASE)
across distributed edges

safety application predictive maintenance operation management... ...

air

Fig. 1. Unified detection management for collectives of assets, spaces, and
environments at the edge. Often the operator needs applications to analyze
multiple related entities in a CASE.

Most state-of-the-art systems support tightly integrated sin-
gle, specific detection pipelines for specific purposes, such as
traffic management, face detection, and surveillance, within a
view of Internet of Things (IoT) platforms. Thus, existing tech-
niques do not consider dynamic changes due to the decoupling
of the operation of these edge pipelines in complex systems,

1Although in ML, ”detection” has a specific interpretation, distinguishable
from, e.g., classification or recognition. This paper uses the term ”detection”
in a broader sense to indicate the fact that, for management purposes, we need
to discover and determine insightful states and facts of target entities.

as mentioned above. However, real-world applications need to
deal with the management of multiple types of detection ap-
plied to CASE, as show in Figure 1. In our focus, downstream
applications often require many results from different detection
pipelines without having a complete knowledge about changes
at the edge. For such applications, it is important to obtained
various types of metadata, besides the detection results, as well
as changes in order to carry out the analytics. This requires
us to carefully devise new types of traceable, metadata and
changes that must be captured and delivered together with the
detection results to support downstream applications. In this
work, we address the above-mentioned issues by introducing
the Analytics Feature Space (AFS) as a novel framework to
address the interoperability, integration and explainability for
multiple types of ML detection at the edge in a unified way
for CASE. The paper makes the following contributions:

• making several types of metadata associated with edge
detection pipelines for a CASE explicitly: many types of
metadata are implicitly hidden inside the implementation;
they are not available or hard to obtain for downstream
analytics. This paper identifies and introduces specifica-
tions for many metadata that must be explicitly modeled.

• capturing important changes for downstream applications:
given the autonomous deployment and operation of edge
pipelines, cloud-based downstream applications must be
aware of the changes in order to make decisions. This
paper contributes techniques for capturing such data,
powering metadata enrichment for detection results.

• providing a generic framework with functions and mid-
dleware for the enrichment of results and metadata:
usually such enrichment cannot be done at a single place
due to the complex deployment. This paper develops
various functions together with messaging middleware
and other relevant components to support the enrichment.

The AFS framework supports analytics subjects for CASE
in a flexible and reusable way. By utilizing the AFS, many
types of necessary metadata can be provided, together with
different results of detection models that are transformed and
enriched into common schemas and categories, including do-
main and optional information. This will help the development
of downstream analytics and detection result sharing.

The rest of this paper is organized as follows: Section II
presents our scenarios and requirements. We present the AFS
framework in Section III and provide the implementation detail
in Section IV. Section V presents examples and experiments.
We discuss the related work in Section VI and conclude the
paper in Section VII.

II. SCENARIOS AND RESEARCH QUESTIONS

A. Scenarios

Let us consider a scenario in which multiple, different
upstream detection pipelines at the edge will provide de-
tection services to the downstream applications for CASE.
Our scenario is based on a realistic Intelligent Operation
Center (IOC) for industrial zones and factories, especially in

developing countries. The exemplified IOC type is to manage
environmental conditions and safety in different wastewater
processing factories located in different places. Several edge
cameras and IoT devices are deployed, managed, and operated
autonomously with ML-based detection pipelines, decoupled
from the IOC services in the cloud. The analytics of CASE
for IOC requires:

• edge detection (upstream detection): data from cameras
and IoT devices are fed into ML pipelines for various
types of detection, such as restricted area violation de-
tection (using cameras) or wastewater surface detection
(using cameras) or wastewater monitoring (using sensors
for oxygen, pH and pressure measurement). The relevant,
significant detection results will also be sent to the IOC
services in the cloud. However, not all (detailed) results
are sent, but follow the configuration, e.g., periodically
every hour, or only for important events, measurements,
objects, and possible raw images/detailed evidence if
some conditions are met. During the operation, these
pipelines can be updated, changed, and reconfigured
independently from the cloud-based IOC services. Thus,
if not updated, the IOC will not know the changes, which
can affect the management and decision-making.

• downstream applications for the analytics of CASE:
based on the high-level results from various upstream
detection, further detection and analytics will be car-
ried out. For example, for safety purposes, an analytics
may require upstream object detection and restricted
area violation detection, detection of wastewater lakes
quality from wastewater surface detection and wastewater
monitoring. Such analytics and further detection reflect a
composable (real-time) monitoring and warning system
that integrates upstream results to improve the efficiency
of CASE management using multiple detection.

Although upstream detection may be distributed across differ-
ent places, all of them are for CASE that must be managed in
a unified view to serve complex applications:

1) An safety application needs a unified view of upstream
object detection and anomaly detection: Common character-
istics of factories are their large area and many surveillance
needs, such as safety and emergency situation support. Be-
sides single pipelines for specific places, such as surveillance
detection in wastewater processing lakes or activity detection
in office areas, unified monitoring for the whole factory,
especially for emergency support, is needed. For example,
where does the emergent situation occur? How many people
are in that dangerous area? Checking all cameras or every
single detection result at that time is not an optimal solution.
Therefore, integrating detection pipelines to have a unified
view and sharing detected data is necessary in an IOC or in
some emergency situations.

2) A quality control application needs a unified view of
upstream anomaly detection and activity detection: Automatic
quality control via images or video is carried out for water
lakes by detecting anomalies in areas that are required to be
monitored all the time or are difficult for humans to access.

2

Drones or specialized cameras must be used instead. More-
over, in the case of semi-automatic wastewater processing,
where workers take roles in some parts of the processing,
activity detection can be deployed. Together with camera
system, the quality control also uses sensors to monitor water
quality, pressure, temperature, to name just a few. In order
to build an overall quality control monitoring application,
the IOC needs to integrate and combine different types of
measurements and deploy many downstream analytics.

B. Research Questions (RQs)

From the scenarios, two RQs are identified that need to be
tackled:
RQ1 – Which types of metadata and how to link them to
the detection results and analytics for a CASE? We must
address the diversity of ML detection pipelines by modeling
and capturing common metadata reflecting different types
of detection, ML models and assets in a CASE, such as
detection classes, models, and data sources. Furthermore,
metadata should help us to integrate and route feature instances
resulted from detection pipelines at the edge for downstream
applications in a unified view. Many more types of metadata
about ML inferences/detection must be provided to support the
use of detection results, including explainability. Given the
metadata provided by the pipeline, downstream applications
must be able to access further metadata about ML algorithms
to make decision. Furthermore, metadata enrichment functions
must be supported to enhance detection results to adapt to
downstream analytics needs.
RQ2 – What types of changes need to be captured and
exchanged? Many changes can happen in detection models
and their configurations due to model updates or ensem-
ble configurations. At runtime, changes in detection result
constraints can be observed as ML pipelines can be highly
configurable to specify constraints on detection results to be
delivered to the downstream. Furthermore, changes in data
sources associated with analytics subject occur when one or
more data sources for a pipeline are added or removed. These
changes are triggered by two main situations: the context
awareness of the business/deployment (e.g., the minimum
thresholds for a specific CASE) and the runtime adaptation due
to adaptive control strategies (e.g., reducing detection rates).
Especially, changes in constraints for detection results that are
based on runtime contexts and deployment contexts should
be communicated to avoid misunderstanding of the quality of
detection results and to support explainability on data drifts in
detection.

III. THE ANALYTICS FEATURE SPACE FRAMEWORK

A. Defining an Analytics Feature Space: unified detection
management for CASE at the edge

We first explain our unified view for multi types of detection
at the edge in our focus. In existing work, typically there exist
multiple assets (e.g., pumps and pipes) and each asset has a set
of dedicated monitoring points, e.g., linked to sensors/cameras,
for the asset only. Then, analytics/detection is specifically

applied to the asset by analyzing measurements and detec-
tion results from data provided by these monitoring points.
However, due to the dynamic edge deployments, software,
changes and the concept of analytics/detection associated with
the domain, several relationships are complex and changing.
For example, a monitoring point at a specific location can
provide data for a concrete asset located in that location, such
as an equipment, but can also provide data for monitoring of
the specific location. Hence a single monitoring point is for
two separated different analytics subjects.

abstractsMany

AnalyticsSubject
monitorsMany

CASE

provides

Monitoring Point

Data
Source

usesMany

employsMany

detects

needsMany

Detection
Pipeline

ML
Model

Specific
Spaces/

Locations

Concrete Assets &
Specific categories

Environments

Fig. 2. High-level conceptual relationships of main elements in a unified
detection view.

Figure 2 presents a unified view of relevant software and
data components for dynamic, multiple types of detection.
From the application viewpoint, a Detection Pipeline can be
deployed for detection of an asset, space or environment.
A Detection Pipeline will rely on Data Source provided
by Monitoring Point. An Analytics Subject is a high-level
abstraction that indicates the subject to be analyzed is a CASE.
The subject can include a concrete asset (e.g., like a pump or
a building), a specific location, entries to gates or wastewater
lake, or a specific category like wastewater. Analytics subjects
are usually defined in the application specific setting, such
as downstream analytics. To analyze a subject, we use dif-
ferent ML models with different data sources and techniques.
However, analytics subjects and data sources have a dynamic
relationship.

In principle, using ML Model a detection algorithm within
an ML-based Detection Pipeline performs various tasks of
detection (e.g. in YOLO8 we can do ’detect’, ’segment’,
’classify’, ’pose’ detection [8]). A detection pipeline may
employ many detection algorithms. The detection results can
be associated with different classification labels (e.g., ”person”
for an object detection or ”spike” for anomaly detection)
defined in different naming classes, e.g., classes for objects
in YOLO COCO8 [9]. Listing 1 presents an example of
an output from Aamzon SageMaker activity detection [10],
whereas Listing 2 presents a typical output from a YOLO
detection (self implemented).

Hence, in the real-world situations, although the research
and industry communities have harmonized such labels, still
there exist many naming classes that the downstream applica-
tions must handle. A detection result also includes many other
types of data, including (i) properties of the detection result
such as "count" – a specific measurement for "person" or

3

%Source code from:
https://github.com/aws-samples/amazon-sagema ⌋
ker-activity-detection/blob/master/developme ⌋
nt/SM-transferlearning-UCF101-Inference.ipynb
response = {

'S3Path': {'S': data['S3_VIDEO_PATH']},
'Predicted': {'S': predicted_name},
'Probability': {'S': probability},
'DateCreatedUTC': {'S': now},

}

Listing 1: Example from an Amazon Sagemaker code sample
[10]

result={
'detection_model_name': model_name,
'ts': timestamp,
'result': list_detected_objects

}

Listing 2: Example of detection data from a YOLO model

"anomaly" – an indicator of an anomaly and (ii) confidence
of the detection associated with the detection object via
"Probability".

Thus, besides the detection results, there are many other
types of data characterizing and explaining the result, e.g.
which ML models or configuration are used. Overall, given
a CASE, when using multiple ML models for various detec-
tion tasks with multiple pipelines, we can consider that the
results and associated metadata from these algorithms belong
to an ”Analytics Feature Space” (AFS), which provides an
abstraction for the analytics of CASE. We define an AFS as:

Analytics Feature Space (AFS)

An Analytics Feature Space defines a unified detection
management for a collective of assets, spaces, and
environments (CASE) at the edge, supporting key
metadata, changes, and detection results enrichment to
address interoperability, integration, and explainability.
A system that supports the AFS concept is called an
AFS-aware detection system.

Conceptualizing AFS helps address data interoperability,
integration, and explainability of multiple detection algo-
rithms/pipelines for complex applications. First, AFS provides
modeling for the results outputted from these tools and their
associated metadata in a generic way. This helps improve the
selection of detection results based on ML algorithms and
their changes in downstream analytics. Second, in order to
provide features for advanced analytics, AFS helps the use
and composition of the results easily for different applications,
from common purposes to specific analytics.

B. Designing AFS

1) Analytics Subject: An Analytics Subject is used to rep-
resent the subject for detection and analytics. We assume

that any AFS-aware detection system will integrate with a
CASE management service (e.g., asset management), which
have detailed information about the subject. For example,
the asset management system can have detailed information
about a pump (vendors, profiles, etc.). Analytics subject can
represent a CASE. AFS will use the identifier of the subject
for discovering associated entities. Every analytics subject is
unique in a system (based on naming convention) and for
the purpose of integration and explainability, the analytics
subject is explicitly model in AFS by tagging an identifier
– analyticsSubjectId.

2) Detection feature instances: Outputs from an upstream,
edge ML detection pipeline are feature instances or candidates
for feature instances to be used in downstream applications
(for analytics or further ML tasks), such as safely or runtime
operation of all entities the CASE abstracted in an analytics
subject in a unified view. Candidates for feature instances
will have to be processed through transformation/enrichment
functions to be feature instances for the downstream appli-
cations. Therefore, feature instances must also be associated
with information about domains and extension for enrichment.
Second, the schema for metadata associated with the feature
instances is an important problem to be addressed. Such
metadata can be collected and enriched through the pipeline.

Currently, many algorithms can detect different types of
entities that can be considered for the AFS, such as (i)
object detection – types of detected objects are based on a
common definition such as person and car [11], [12], (ii)
anomaly detection – such as operational problems and faults
of assets [13], [14], or behavior detection, such as trends in
forecasting. Detailed data fields in the feature instances are
specific to application domains. Thus, we can classify the
feature instances into different application domains to support
the routing and delivery of feature instances through various
components in the data pipeline. It is a new problem on
how we select, categorize and map the feature instances in a
systematically way to suitable for programming, configuring,
and developing downstream detection.

3) Explicit naming classes for detection results: Some
data fields of feature instances can be improved for data
interoperability. Consider a detected object in an ML
object detection. Although represented in different forms, in
most cases, we see that the results from a detection are in the
form of ”classname:count”, illustrated as follows:
"result": {

"person": 3,
"car": 1

}

where classname ("person" or "car") is the label of
the detected object. Furthermore, a confidence degree of the
detection can be provided. Given a detection for a data stream,
many different ML detection models can be used. Each model
is used for different object detection with different accuracy.
However, different models may use the same or different class
names. For example, "person" can be used by two different
ML models but it will be an issue to interpret "persons"

4

detected from them as the same, as the "persons" detected
are with different accuracy.

Therefore, AFS proposes to map labels/class names from
specific ML models to a global name for integration and inter-
operability purposes. AFS provides an explicit list of naming
classes so that classname in the detection results can be
traced back to its definitions and detection models. Common
prediction classes that can be used in pipelines. We use a
common namespace way "namingscheme.classname"
to specify information about the scheme where class names are
based on. Examples are "UCF101.Archery" ("Archery"
is a predicted class in the UCF101 dataset [15]), and
"YOLO.Person" (based on YOLO COCO8 [9]).

4) Explicit domain categories for detection purposes: Other
important information about the ML detection models used in
an existing detection pipeline is the purpose of the detection.
Such purposes are implicitly hidden in the deployment of the
pipelines. In terms of sharing for a unified view on detection
of a CASE, such results cannot effectively be utilized by
other applications without the important information about the
purpose.

Understanding the domain and the detection purpose is im-
portant. For example, an ML pipeline can detect "persons"
but the interpretation is very different if the result is used for
traffic and access control management in an industrial zone
vs for safety analytics of workers in the same zone. Given
a data source, the data captured is for a specific application
purpose. Thus, the detection results from that data source are
for a specific application purpose, which can be identified by
the deployment of the detection pipeline. The purpose can be
reflected via the application domain category.

Although, the state-of-the art does not have a common
agreed vocabulary w.r.t. the category of the application do-
main, we can assume that they can be pre-defined and user-
defined when sharing detection results for CASE. In AFS,
we see that the application domain indicates the deployment
and goal of detection. We can have a single ML pipeline for
a single data source to provide multiple results for multiple
applications, which interpret the results differently. In this
view, AFS supports a hierarchical domain category and models
the domain category hierarchy explicitly. This is part of the
metadata to associate the results to indicate different applica-
tion categories. The category hierarchy can be implemented
by using hierarchical naming mechanisms.

5) Capturing runtime configuration: Runtime information
about an ML-based detection includes two main aspects.
First, the ML models used in the pipeline have different
runtime parameters, including the composition of multiple
models like ensembles [16]. Second, given an ML model
and its data sources, the configuration of several parameters,
like data sampling rate, window length, and detection fre-
quency, can be customized and configured based on specific
underlying deployment. AFS explicitly supports the capture
runtime configuration based on a change lifecycle. First, at
the deployment time, runtime configuration will be recorded,
like a checkpoint, and sent to the downstream. Whenever

the configuration changes, AFS-aware pipelines should send
a message to inform the change. The message includes a
reference to the analytics subject and other changes. Thus,
downstream applications will be aware of such changes and
make use of the information for their decision.

6) Capturing data source changes: Given the characteris-
tics of an analytics subject explained before, data sources used
for the detection are not necessarily fixed in terms of quality
and quantity. For example, given a wastewater lake, an existing
camera as an data source can be improved if the camera is
upgraded with new software or a new data source can be
added, such as a new camera is added into a new position.
A single detection pipeline using different data sources [17] is
very suitable for the analytics of CASE. The information about
data source can be modeled based on existing information
systems and existing schemas [18]. However, the change of
such data sources cannot be detected by the downstream or it
is challenging for the downstream to detect the change of data
sources by knowing only the detection result. The change is
especially important when the detection result may get poorer,
such as due to the unavailability of a data source, contributing
the quality of input data for the detection.

In AFS, we explicitly model the change of data sources
by introducing a schema for sending changes about data
sources. A basic lifecycle of a data source is given,
covering state like added, removed, unavailable,
changed. Similarly to capturing runtime configuration, we
can provide APIs for pipelines to checkpoint data sources
inside the pipeline (during the deployment and runtime). If
there is a change, the change information will be determined
and sent. The pipeline can also include quality of data sources
that is sampled or observed over the same and send the drift
within the change message.

7) Functions for enriching detection results: Feature in-
stances sent to the AFS may not be completed for downstream
due to various reasons. First, the detection may decide to put
only basic information for efficient purposes, e.g. to be fast or
due to limited deployment. Second, at the detection pipeline,
information is not available and reference data resides in the
place next to the AFS. Therefore, functions can be used to
enrich detection results. Such functions can be deployed at
various points to perform the enrichment at near real-time.

Another aspect of enrichment is related to the reference
sources for metadata. We have to consider the issue that the
edge detection deployment is lightweight. Thus, the results
may include several references, instead of values. For example,
to be efficient, the results from a detection may only include
references to ML models, deployment purposes, analytics
subject (the subject to be monitored), and data sources. Given
such references and sharing purposes, the specific results can
be enriched with metadata obtained from reference sources. In
some situations, a reference source about the metadata is based
on runtime analytics. For example, in oil and gas detection, we
may have an hour volume as references for anomaly detection
results.

5

8) Messaging middleware for the AFS (MAFS): Since
detection results are mostly delivered at near real-time to the
downstream applications, various messaging middleware can
be used. In many cases we have to integrate different middle-
ware, due to the diversity of ML detection configurations. We
focus on MAFS atop common, well-established middleware
(like a combination of MQTT, Apache Pulsar and Apache
Kafka) for detection results. We mainly focus on added func-
tions to support the exchanges of AFS-based feature instances
and metadata, meaning the routing and enrichment, because
techniques and software for bridging and integrating multiple
messaging systems are well-developed. Messages encapsulat-
ing feature instances are propagated through a scalable mid-
dleware. Detection push results of feature candidates/instances
to AFS via topics. At the core of AFS, a scalable messaging
system will be used for the following main purposes:

• Context-aware result delivery: Hierarchical category
naming can be mapped to topics/subscriptions. Given the
result constraints, detection pipelines can also support
the concept of context-aware data sharing by fan-outing
or routing the detection results to different topics. This
allows dynamic data sharing at the pipelines and MAFS
level, rather than at the data hub seen in existing works.

• Integration of functions for enriching results: the inte-
gration is based on two different deployment modes:
the internal deployment mode explores serverless and
streaming analytics of the messaging brokers (e.g., Pulsar
Functions [19] and kSQL [20]) to deploy functions. The
external model deployment allows functions to consume
messages that can be implemented using docker-based
microservices or severless functions.

• Delivery of additional non-message metadata: Addi-
tional, non message-based data, such as an image, short
clip or a CSV dataset, linked to feature instances can
also be supported. They can be delivered to downstream
systems via two mechanisms: pull from an edge storage
or push to a cloud based storage.

9) Integration with pipeline development: Metadata and
results as well as AFS models can be used differently: (i) the
implementation of pipelines do not use AFS but the down-
stream applications use AFS to transform non-AFS results.
(ii) existing pipelines can be modified to add metadata into
detection results, and (iii) the implementation of pipelines
completely uses new schemas from AFS. A light pipeline with
limited ML models may detect one types of objects, thus its
feature instances can be associated with a single a category
or domain. A complex pipeline may detect many things, thus
the results include several types of detection, each can have
different naming classes.

IV. IMPLEMENTATION

Based on the concept of AFS presented in Section III, in
this section we present one implementation of the AFS.

1) Hierarchical category: Figure 3 gives a snapshot of
the hierarchical category for the application purposes. The
principle is that they can be used to annotate the domain with

the detection results. AFS does not enforce a common one and
they can be defined based on the specific deployment.

Fig. 3. Example of the hierachical category. Note that these categories are
customized based on applications and deployments.

2) Detection configuration change: List 3 shows the basic
model for making/informing the change of the detection
pipeline: e.g., window, sampling, topology, detection model,
that will be recorded by using a checkpoint API. Given a
timestamp and analyticsSubject we know that the
configuration has been changed.

class DetectionConfig(BaseModel):
timestamp: float
analyticsSubject: AnalyticsSubject = None
domainCategory: str = None
detectionModel: DetectionModel = None
config: dict = None

Listing 3: Changes in runtime configuration.

3) Data source change: Listing 4 presents the schema
for capturing and sending the change. We use existing data
observability tools for sampling and profiling data from the
sources, such as Ydata [21]. At the deployment of the pipeline
a checkpoint will write the data sources and when there is
change the system will have to do this. This is not carried
out automatically but the API has to be instrumented by the
developer of the ML pipeline.

4) Feature Instance Schema: Features provided by an ML
detection are specific to the ML pipeline implementation.
There are different ways to integrate AFS models with current
results from existing pipelines by using AFS schemas and
functions. Listing 5 presents AFS Feature Instances and a com-
mon structure to encapsulate features from specific pipelines.
However, each pipeline can have its feature structure and use
AFS metadata.

6

class DataSource(BaseModel):
name: str=None
type: str=None
sourceRefId: str=None
properties: dict=None

class DataSourceChange(BaseModel):
timestamp: float
analyticsSubject: AnalyticsSubject = None
changeType: ChangeTypeClassEnum = None
dataSources: List[DataSource]

Listing 4: Modeling changes in data sources.

class CommonDetectionResult(BaseModel):
domainCategory: str = None
detectionResult:
Union[ObjectDetectionResult,dict]
detectionSourceRefId: str = None
additionalData: dict = None

class FeatureInstance(BaseModel):
featureInstanceId: str
timestamp: float
detectionResult:
List[CommonDetectionResult] = None
analyticsSubject: AnalyticsSubject
domainCategory: str = None
detectionModel: DetectionModel = None
detectionConfig: DetectionConfig = None

Listing 5: A schema for representing feature instances.

5) Common result handlers for detection pipelines: Results
from a detection ML are sent to middleware for downstream
applications. In cases of specific results (no AFS), a handler
may take the specific result and send it. In cases of a AFS-
aware system, the handler behavior has to be changed by (i)
transforming the specific result to AFS and (ii) filtering/routing
results based on the classname and domain of AFS. In our
implementation, we provide baseclass for ResultHandler.
Each handler can be configured with a data transformation to
send data into the space or customers. Listing 6 shows two
basic APIs for supporting edge pipeline. Both handlers and
transformations for handlers can be dynamically loaded using
configuration information. When sending data into AFS, it
is also possible to use the domain category or class name
to configure the topic and channel (e.g., for publish and
subscription models).

6) Storing and Messaging: Detection results are delivered
by using MQTT, Pulsar and Kafka. Changes are also delivered
as messages but they are different so that the downstream
applications can distinguish between detection results and
changes. However, for some data required for the references to
the detection, such as images and detail logs, we need to use
a different way. In this case, AFS supports REST-based APIs
that pipelines can use to push the data and provide references
into messages.

7) AFS Enrichment Functions: AFS functions are imple-
mented differently from transformation/handlers used at the

#for processing and pushing results to
messaging systems and target services
@abstractmethod
def __process__(self,result):

pass
#for transforming specific results to
AFS-aware results
@staticmethod
def transform(input_detection_result,filtere ⌋
d_domain_category_instance=None,filtered_dom ⌋
ain_category_result=None,filtered_classname= ⌋
None):

pass

Listing 6: Common abstract APIs for sending and transforming
features at the pipeline side.

edge pipeline side to send results to the space. We currently
implement two mechanisms: function embedded into the mes-
saging system and external docker containers. For embedded
function, it is dependent on the messaging system. For exam-
ple, shown in Figure 4 this can be done by having a task in
the streaming processing, e.g., with kSQL [20] or serverless
function like Pulsar functions [19]. The external functions in
containers are well understood and follow a typical model of
bridges of consuming, transforming and republishing data.

stream processing

feature
candidate

context

AFS enrichment
functions

feature
instances

Fig. 4. AFS enrichment functions deployed within messaging systems.

V. EXPERIMENTS

A. Testbed and experiment settings

As we cannot present experiments with a real IOC setting,
we emulate IOC scenarios and their CASE using existing data
sources and common ML pipelines. Figure 5 illustrate the
testbed:

• ML-based object detection is for detecting people in
buildings and specific spaces (such as surrounding
wastewater lakes).

• ML-based sound detection (using data from [22]) is for
detecting anomaly of assets (such as the pumps).

• ML-based anomaly detection is for detecting the environ-
mental quality of the wastewater (such as conductivity,
pH, etc. using data from [23]).

These detection pipelines have been developed and deployed
differently and then integrated using MQTT/Pulsar/Kafka and
RQ Queue [24] to push data to downstream applications. Other
external services for the testbed are integrated:

• ML Model Registry: We use MLflow [25] to store detailed
ML model information for enriching detection models,
such as YOLO models for object detection, as well

7

as ML benchmark details of other real-world models
for object classification2, including accuracy, throughput,
risks associated with classification, etc. In addition, we
also store basic ML models for anomaly detection of
industrial audio signals trained using data from [22]) and
of time-series sensor measurements.

• Analytics Subject Management: a service based on Mon-
goDB is used for storing details about analytics subjects
and assets. The asset information is based on our expe-
riences with industrial asset management.

ingestion jobs
object detection pipeline

receiving
video

extracting
frames

detecting/segmenting
objects ingesting data

ingestion job queue

sound detection pipelines

receiving
sound

detecting
sound

public videos

public sound data set
 from industries

assets: machines & pipes

assets: machines & pipes; spaces: wastewater lakes

sensing measurement detection
pipelines

environment: air quality,
water quality, pressure

detecting
anomaly/change

Fig. 5. Emulation testbed.

For the downstream application, we consider a situation
in which the IOC deploys operation management. When a
problem happens in a CASE, a collection of related anomalies
of assets and environments at a given time needs to be
extracted for additional information to deal with the problem
or to find the root cause. The object detection can also
support the analytics if it signals some important information,
such as people in the space or assets that can cause some
problems. When accessing the metadata supported by AFS,
all anomalies and detected objects related to the CASE can be
easily identified in a unified way.

B. Examples of using AFS models and functions

Let us consider a factory in an IOC ioc-f01 and a
CASE f01-case01. Three entities in f01-case01 are a
pump pump01 (an asset), a wastewater lake wastewater01
(an environment), and the space around the wastewater
lake lakespace01 (a space). Within this CASE, we de-
fine a single analytics subject representing three entities
as-case01wastewater which aims at demonstrating the
management of the collective, instead of individual entities.

In the following, different ways of using AFS are em-
phasized. Listing 7 illustrates the output data given by the
specific schema of an ML pipeline for object detection for
entity lakespace01. Such a detection result requires a deep
integration between the service handling the detection result
and the upstream ML detection. For example, the detection
result classes can be interpreted well only if the downstream
application knows the information about the ML model used.
To be interoperable, one solution is that the data based on this

2obtained from a national research institute whose name is withdrawn for
double blind submission

{
"detection_model_name": "yolov8n.pt",
"ts": 1710591222.862264,
"results": {

"person": 3
},
"source_image_uri":
"source_1710591222.862264.jpg",
"annotated_image_uri":
"annotated_1710591222.862264.jpg"

}

Listing 7: An object detection record based on a specific
schema.

schema can be replaced by using AFS schema (implemented
within the pipeline) or can be transformed into AFS schema
(using an adaptor or a function). Listing 8 presents an example
AFS-based data that can be obtained either by transforming
the specific schema or using AFS API in detection pipelines.
During runtime, the upstream detection can decide changing
the result constraints that affect the detection results, e.g.,
when there is a human work at lakespace01. Listing 9
shows an example of the change message of the detection
constraints. Similarly, changes of data sources associated with
a pipeline can also be sent. Details about an ML model used in
a pipeline can be enriched by using ML Model Registry
and the name of the model encapsulated in the detection result,
e.g. shown in Listing 10. Similarly, detailed about entities in
an analytics subject can be enriched by calling the Analytics
Subject Management service.

C. Example of downstream analytics applications

For newly-developed ML pipelines, detection results can be
represented by using AFS schemas and other enrichment can
be done by functions in the corresponding AFS middleware.
However, without changing anything, detection results from
an existing upstream pipeline can be transformed and enriched
with AFS metadata at the downstream. Figure 6 shows a con-
figuration for the operation management application discussed
in Section V-A, in which results based on specific ML schemas
will be transformed into AFS schema. In this configuration,
many detection pipelines are deployed for streaming data
sources. Different types of pipelines have different types of
results, e.g., for classes and numbers of detected objects
(lakespace01), anomalies from audio signals (pump01),
anomalies from sensing measurements (wastewater01),
and target for different applications (safety vs quality control).
These above-mentioned results are managed uniformly for
all downstream applications using a file storage (Minio),
a document database (MongoDB), and a vector database
(Milvus). However, individual detection results are streaming
for different applications. Then applications can decide to
subscribe suitable topics to get detection results in the same
format (but different types).

For the operation management application, when an
incident or problem happens in the analytics subject

8

{
"featureInstanceId":
"956947ff-a05f-492d-a8fc-669d4880653a",
"timestamp": 1710591222.862264,
"detectionResults": [

{
"detectionResult": {

"classname": "yolo_categorym ⌋
apping.objects.person",
"count": 3

},
"detectionSourceRefId":
"as-case01wastewater_533a1f0e-20 ⌋
f2-4f15-ace8-f31baae1d7e1_source ⌋
_1710591222.862264.jpg",
"additionalData": {

"ref_doc": "as-case01wastewa ⌋
ter_533a1f0e-20f2-4f15-ace8- ⌋
f31baae1d7e1_annotated_17105 ⌋
91222.862264.jpg"

}
}

],
"analyticsSubject": {

"analyticsSubjectId":
"as-case01wastewater"

},
"domainCategory": "app.ioc",
"detectionModel": {

"detectionModelName": "yolov8n.pt"
}

}

Listing 8: Example of transform the specific one to the AFS
model. The detection results can include many records.

{
"timestamp": 1710591220.340439,
"analyticsSubject": {

"analyticsSubjectId":
"as-case01wastewater"

},
"detectionModel": {

"detectionModelName": "yolov8n.pt"
},
"config": {

"result_constraints": {
"person": {

"operator": ">",
"value": 2

}
}

}
}

Listing 9: Example of a changes of result constraints.

{
"detectionModelRefId": "pump_id_04_6dB",
"detectionModelName": "pump_id_04_6dB",
"modelInfo": {

"details": {
"name": "pump_id_04_6dB",
"last_updated_timestamp":
1710583057537,
"tags": [

{
"key":
"detectionModelRefId",
"value": "pump_id_04_6dB"

},
{

"key": "detectionType",
"value":
"anomaly_detection"

},
{

"key": "AUC",
"value": "0.987"

}
]

}
}

}

Listing 10: Example of enriching ML model information.

as-case01wastewater, further analytics are required to
check the cause and evidence:

• Operators need to identify all entities in
as-case01wastewater. This can be easily done by
using CASE management integrated with AFS-aware
features.

• After that, operators can use the reference and documents
from the operation management service to obtain images
and all anomalies of identified entities that would be
related to the incident or problem.

Listing 11 illustrates a simple code excerpt triggering the
search for relevant evidence. First, the document database can
be searched to find relevant detection results of the object
detection within a window of time (based on the time when
anomalies in audio signals and sensing measurements are
detected). When checking the detection result returned as
shown in Listing 12, a further search, e.g., similar search,
can be done by retrieving the evidence (ref_image) of the
detection result from the file storage.

VI. RELATED WORK

Edge ML detection: A large number of works on object detec-
tion at the edge in various scenarios have been published [1],
[2], [3], [4]. They many cover (i) ML models and algorithms
for detection, (ii) systems for integration of detection and (iii)
performance evaluation. In the industry, there are many tools
and models available, like [8]. However, the major problems
that can be seen when utilizing them are specific data models
and lack of metadata. Another problem is that these works
do not address the detection and communication of changes

9

edge information services operation management services and tasks

CASE ingestion pipeline

detection pipelines

object detection for
camera data

ingestion job queue

Use

AFS Models

ML Model
Registry

Use

documents &
analytics subjects

(MonggoDB)

vector
database
(Milvus)

search

User

AFS-aware
Operation Management Service

ingesting
data

transforming
detection

results

MQTT/Pulsar/Kafka

result receiver

REST

reference
images
(Minio)

Asset
Management

Service

Use

audio signal anomaly
detection for audio signals

anomaly detection
for sensing measurements

Fig. 6. Example of configuration and integration for operation management
downstream application use case.

analytics_subject="as-case01wastewater"
#...
start_time = specified_time - interval/2
end_time = specified_time + interval/2
query = {

"timestamp": {'$gte': start_time, '$lt':
end_time},
"analyticsSubject.analyticsSubjectId":
analytics_subject

}
results = db_collection.find(query,projectio ⌋
n=projection)
for result in results:

#...
#get image/evidence in the select result:
temp_data_file=os.path.basename(selected_res ⌋
ult["ref_image"])
#get the image
minio_utils.downloadtolocal(bucket,selected_ ⌋
result["ref_image"],temp_data_file)
print(f'Evidence image: {temp_data_file}')

Listing 11: Simple code illustrating the query of relevant
evidences when a streaming detecting anomalies in both
wastewater01 and pump01.

in detection deployment to the downstream. When utilizing
single models in a single system, one does not face the
interoperability problem. However, it is a great challenge for
the developer when dealing with different detection pipelines.
Our work focuses on reducing such challenges.
Metadata and data transformation: One solution is to use
different transformation functions to transform the specific
data into a common model. However, such a solution does not
provide an interoperable structure, meaning that the choice of
transformation and target are specific. Work in [26] focuses
on querying data to support adaptation. This is a kind of
”downstream” applications based on multiple sources of data.
Detection results with metadata could help to improve such a

{
"id":
"c53f2ba0-921c-4b4b-adf2-227f6f6b8a0a",
"details": {

"featureInstanceId": "c53f2ba0-921c- ⌋
4b4b-adf2-227f6f6b8a0a",
"timestamp": 1710616161.826744,
"detectionResults": [
...
]

},
...
"ref_image": "as-case01wastewater/as-cas ⌋
e01wastewater_8996d661-b4f0-492e-8bd4-b8 ⌋
7f612a2732_source_1710616161.826744.jpg"

}

Listing 12: Examples of object detection results for
lakespace01 when the anomalies occurred at pump01 and
wastewater01.

work. The paper [27] focuses on metadata and data modeling
for assets and processes. Our work differs as we concentrate
on the integration and exchanges of detection results and
analytics.

VII. CONCLUSIONS AND FUTURE WORK

If tightly integrated or implemented and controlled by a
single vendor in a close edge-to-cloud infrastructure, the
results from multiple detection pipelines might not need much
metadata. However, today and future’s ML detection relies
on multiple ML models and pipelines developed by different
vendors, is based on marketplace ML models and blackbox
ML as a service [28], [29], and is highly decoupling in terms
of operations and management responsibility. Thus, addressing
metadata for the integration of multiple types of edge ML
detection pipelines are of paramount importance. We have
introduced AFS as a novel framework to abstract individual
detection and unified them for analytics of subjects associated
with collectives of assets, spaces and environments. AFS
introduces various schemas and techniques to link and enrich
metadata for detection integration and interoperability.

Our future work is to improve the prototype and integrate
AFS into real-world systems of intelligent operation centers.
Furthermore, we will focus on the enrichment and downstream
applications, which will help to improve and extend designs
of AFS.

REFERENCES

[1] M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan,
and F. Hussain, “Machine learning at the network edge: A survey,”
ACM Comput. Surv., vol. 54, no. 8, oct 2021. [Online]. Available:
https://doi.org/10.1145/3469029

[2] S. Nagaraj, B. Muthiyan, S. Ravi, V. Menezes, K. Kapoor, and
H. Jeon, “Edge-based street object detection,” in 2017 IEEE SmartWorld,
Ubiquitous Intelligence Computing, Advanced Trusted Computed,
Scalable Computing Communications, Cloud Big Data Computing,
Internet of People and Smart City Innovation (SmartWorld/SCAL-
COM/UIC/ATC/CBDCom/IOP/SCI), 2017, pp. 1–4.

10

[3] L. U. Khan, I. Yaqoob, N. H. Tran, S. M. A. Kazmi, T. N. Dang, and
C. S. Hong, “Edge-computing-enabled smart cities: A comprehensive
survey,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 10 200–
10 232, 2020.

[4] Y.-Y. Chen, Y.-H. Lin, Y.-C. Hu, C.-H. Hsia, Y.-A. Lian, and S.-
Y. Jhong, “Distributed real-time object detection based on edge-cloud
collaboration for smart video surveillance applications,” IEEE Access,
vol. 10, pp. 93 745–93 759, 2022.

[5] S. Mehnaz and E. Bertino, “Privacy-preserving real-time anomaly detec-
tion using edge computing,” in 2020 IEEE 36th International Conference
on Data Engineering (ICDE), 2020, pp. 469–480.

[6] M. V. Ngo, T. Luo, and T. Q. S. Quek, “Adaptive anomaly detection for
internet of things in hierarchical edge computing: A contextual-bandit
approach,” ACM Trans. Internet Things, vol. 3, no. 1, oct 2021.
[Online]. Available: https://doi.org/10.1145/3480172

[7] H. Xiang and X. Zhang, “Edge computing empowered anomaly
detection framework with dynamic insertion and deletion schemes on
data streams,” World Wide Web, vol. 25, no. 5, pp. 2163–2183, 2022.
[Online]. Available: https://doi.org/10.1007/s11280-022-01052-z

[8] “Ultralytics yolov8 tasks,” last access: Mar 9, 2024. [Online]. Available:
https://docs.ultralytics.com/tasks/#detection

[9] “Ultralytics yolo – coco8 dataset,” last accessed: Mar 27, 2024.
[Online]. Available: https://github.com/ultralytics/ultralytics/blob/main/
ultralytics/cfg/datasets/coco8.yaml

[10] “Transfer learning and action inference on input video
segments,” last accessed: Mar 27, 2024. [Online]. Available:
https://github.com/aws-samples/amazon-sagemaker-activity-detection/
blob/master/development/SM-transferlearning-UCF101-Inference.ipynb

[11] S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and
B. Lee, “A survey of modern deep learning based object detection
models,” Digital Signal Processing, vol. 126, p. 103514, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S1051200422001312

[12] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20
years: A survey,” Proceedings of the IEEE, vol. 111, no. 3, pp. 257–276,
2023.

[13] A.-A. Tulbure, A.-A. Tulbure, and E.-H. Dulf, “A review on modern
defect detection models using dcnns – deep convolutional neural
networks,” Journal of Advanced Research, vol. 35, pp. 33–48, 2022.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2090123221000643

[14] E. Westphal and H. Seitz, “A machine learning method for defect
detection and visualization in selective laser sintering based on
convolutional neural networks,” Additive Manufacturing, vol. 41,
p. 101965, 2021. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S2214860421001305

[15] “Ucf101 – action recognition data set,” last accessed: Mar 27, 2024.
[Online]. Available: https://www.crcv.ucf.edu/data/UCF101.php

[16] A. D. Blaom and S. J. Vollmer, “Flexible model composition in machine
learning and its implementation in MLJ,” CoRR, vol. abs/2012.15505,
2020. [Online]. Available: https://arxiv.org/abs/2012.15505

[17] “Robotflow – multiple video sources,” last accessed: Mar 27, 2024.
[Online]. Available: https://github.com/roboflow/inference/releases/tag/
v0.9.18

[18] N. W. Paton, J. Chen, and Z. Wu, “Dataset discovery and exploration:
A survey,” ACM Comput. Surv., vol. 56, no. 4, nov 2023. [Online].
Available: https://doi.org/10.1145/3626521

[19] “Pulsar functions overview,” last accessed: Mar 27, 2024. [Online].
Available: https://pulsar.apache.org/docs/next/functions-overview/

[20] “Introducing ksql: Streaming sql for apache kafka,” last accessed:
Mar 27, 2024. [Online]. Available: https://www.confluent.io/blog/ksql-
streaming-sql-for-apache-kafka/

[21] YdataAI, “YData-quality data quality assessment with one line of
code,” 2023, last accessed: Mar 09, 2024. [Online]. Available:
https://github.com/ydataai/ydata-quality

[22] H. Purohit, R. Tanabe, K. Ichige, T. Endo, Y. Nikaido,
K. Suefusa, and Y. Kawaguchi, “MIMII dataset: Sound
dataset for malfunctioning industrial machine investigation and
inspection,” CoRR, vol. abs/1909.09347, 2019. [Online]. Available:
http://arxiv.org/abs/1909.09347

[23] S. Lindgren and B. d. Bruin, “Water quality data from talkpool sensor,”
Apr. 2023. [Online]. Available: https://doi.org/10.5281/zenodo.7860472

[24] “Rq (redis queue),” last accessed: Mar 16, 2024. [Online]. Available:
https://python-rq.org/

[25] “Mlflow model registry,” last accessed: Mar 12, 2024. [Online].
Available: https://mlflow.org/docs/latest/index.html

[26] J. de Oliveira, C. Calle, P. Calvez, and O. Curé, “Towards autonomous
anomaly management using semantic technologies at the edge,” in 2023
IEEE International Conference on Edge Computing and Communica-
tions (EDGE), 2023, pp. 159–165.

[27] H. Shi, S. Liu, and L. Pan, “Domain modeling for scenario sensing and
edge decision-making,” in 2023 IEEE International Conference on Edge
Computing and Communications (EDGE), 2023, pp. 118–125.

[28] J. Pei, R. C. Fernandez, and X. Yu, “Data and ai model markets:
Opportunities for data and model sharing, discovery, and integration,”
Proc. VLDB Endow., vol. 16, no. 12, p. 3872–3873, aug 2023. [Online].
Available: https://doi.org/10.14778/3611540.3611573

[29] J. Liu, J. Lou, J. Liu, L. Xiong, J. Pei, and J. Sun, “Dealer: an
end-to-end model marketplace with differential privacy,” Proc. VLDB
Endow., vol. 14, no. 6, p. 957–969, feb 2021. [Online]. Available:
https://doi.org/10.14778/3447689.3447700

11

