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Noise Morphing for Audio Time Stretching
Eloi Moliner , Leonardo Fierro , Alec Wright , Matti S. Hämäläinen, and Vesa Välimäki , Fellow, IEEE

Abstract—This letter introduces an innovative method to en-
hance the quality of audio time stretching by precisely decomposing
a sound into sines, transients, and noise and by improving the
processing of the latter component. While there are established
methods for time-stretching sines and transients with high quality,
the manipulation of noise or residual components has lacked ro-
bust solutions in prior research. The proposed method combines
sound decomposition with previous techniques for audio spectral
resynthesis. The time-stretched noise component is achieved by
morphing its time-interpolated spectral magnitude with a white-
noise excitation signal. This method stands out for its simplicity,
efficiency, and audio quality. The results of a subjective experiment
affirm the superiority of this approach over current state-of-the-art
methods across all evaluated stretch factors. The proposed tech-
nique notably excels in extreme stretching scenarios, signifying a
substantial elevation in performance. The proposed method holds
promise for a wide range of applications in slow-motion media
content, such as music or sports video production.

Index Terms—Audio systems, interpolation, signal restoration,
spectral analysis, timbre.

I. INTRODUCTION

AUDIO time-scale modification (TSM), a critical process in
audio signal processing, involves adjusting the temporal

duration of a sound signal without altering its pitch [1], [2], [3],
[4]. This operation is integral in various applications, such as
music production [5], sound design [6], [7], and multimedia
content manipulation [8], [9]. This task becomes especially
challenging with large stretching factors, where conventional
methods, such as the phase vocoder, often introduce perceptual
artifacts, e.g., transient smearing, loss of presence, and phasi-
ness [3], [4], [10]. The subjective nature of audio time stretching
further complicates the problem, as there is no clear objective
metric for evaluation [9], [11]. The inherently ill-defined nature
of this task, as there is no ideal reference signal, is shaped by
subjective expectations and perceptual nuances.
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The best performing TSM methods apply the Short-Time
Fourier Transform (STFT), manipulate the spectrogram of the
signal to change its duration, and then apply the inverse STFT
to reconstruct the time-scaled signal [3], [4], [12]. Established
TSM methods have predominantly focused on the separation and
accurate manipulation of sinusoidal and transient components
of sounds [13], [14], [15]. The noise component describes
sound nuances and textures, e.g. plucking or bowing noise
from stringed instruments, and is often the main descriptor for
environmental sounds [16], [17]. Common TSM approaches,
including phase vocoder-based methods, struggle to provide
precise descriptions and scaling for such sound nuances, com-
promising the final time-stretched audio quality [16], [18]. The
use of a three-way decomposition to isolate the noise component
from sines and transients [19], [20], [21], [22], in combination
with phase randomization [23], [24] in the resynthesis process,
showed a first improvement in the quality of the stretched noise
component [4], [22]. A solution involving a Wavenet neural
synthesizer for the noise component has also proved successful
for extreme time stretching of environmental sounds [17]. Pre-
vious solutions targeting time-stretching of real-world sounds
modeled the stretched noise component via linear interpolation
of white Gaussian noise, with the spectral magnitude of the
original sound around detected transients [8], [25], or with the
residual component of the original sound after the sines were re-
moved [26]. These solution compromise the audio quality when
applied to general sounds as they are designed for noisy signals
and do not feature a three-way decomposition for transient han-
dling. An alternative technique leveraged generative adversarial
networks for TSM of speech signals [27], but its data-driven
nature imposes limitations on its application to general audio.

This letter introduces “Noise Morphing” (NM), an approach
that combines the core idea behind the aforementioned tech-
niques and the sines-transients-noise decomposition (STN). This
involves producing a white-noise excitation signal of equal
length to the output signal of the TSM processing. The white-
noise signal is morphed with interpolated log-magnitude spectra
of the noise component extracted from the target signal. The
novelty lies in the application of spectral morphing within
the STN framework, which adds a new layer of precision to the
TSM processing chain: in the proposed approach, each of the
three components is individually processed with the most suit-
able technique, before being recombined into a time-stretched
mixture [22], [28].

This letter is structured as follows. Section II describes the
STN decomposition and TSM principles that this work builds
upon. Section III details the proposed NM technique. Sec-
tion IV reports the methods and results of a subjective evaluation
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conducted against other TSM algorithms to validate the effec-
tiveness of the novel approach, and Section V concludes.

II. BACKGROUND

According to the STN model [19], [22], any sound can be
described as the summation of tonal content (sines), impulsive
events (transients), and sound nuances (noise). In this letter,
audio signals are decomposed into these three components via
soft spectral masking of their spectrograms, which leads to a
fuzzy decomposition with perfect reconstruction and is the best
method to date for this specific task [22].

Given an audio signal x ∈ RN and its Short-Time Fourier
Transform (STFT) X ∈ CM×K , one can obtain a set of class
masks following the methodology of Fitzgerald [29]. A median
filter is applied to the magnitude spectrogram |X| in the time
and frequency directions, and is used to retrieve the tonalness
Rs ∈ RM×K and transientness Rt ∈ RM×K , respectively. Soft
masks are then computed as follows [22]:

S = f (Rs) , (1)

T = f (Rt) , (2)

N = 1− S−T, (3)

where f(a) is an element-wise saturating function [22]:

f(a) =

⎧⎪⎪⎨
⎪⎪⎩

1, if a ≥ βU

sin2
(
π

2

a− βL

βU − βL

)
, if βL ≤ a < βU ,

0, otherwise

(4)

where βU and βL are the upper and lower boundaries of the
transition region, respectively.

The masks (1), (2), and (3) are imposed onto the complex spec-
trogram X via element-wise multiplication to decompose the
three components. The process is repeated for two consecutive
stages using different analysis window lengths and separation
factors βU and βL to improve the decomposition quality [22],
[30], [31]. The first stage extracts the sines from the transient
and noise residual mixture, using a large analysis window andβU

= 0.80 and βL = 0.70 for better frequency resolution; the second
uses a short analysis window for better temporal resolution,
separating the residual into transients and noise [22], using βU

= 0.85 and βL = 0.75. Thus, three spectrogram representations
are obtained, one for each component. As a consequence of the
fuzzy classification, each time-frequency bin can belong to two
classes simultaneously: to the sine and noise, or to the transient
and noise classes [22].

After performing the STN decomposition, different TSM
algorithms can be applied for each individual component. The
sines are time-stretched using a phase vocoder with identity
phase locking [32], as this has been found successful in previous
studies [4], [9], [17], [22]. Transients are preserved after extrac-
tion by segmenting them into individual events and repositioning
each segment in the correct position according to the TSM
factor [33].

The noise component has been previously time stretched by
randomizing the phase of each signal frame containing noise [4],

Fig. 1. Conceptualization of noise morphing, for α = 3. The original noise
log-magnitude spectra (yellow) are time-interpolated (red) and used to modulate
the white-noise spectra (green) to produce the time-stretched output.

[12]. However, this leads to an audible disturbance at large time-
stretching factors [4]. This letter proposes to use a morphing
technique to time-stretch the noise component with an improved
perceptual quality, as described next.

III. NOISE MORPHING

This section introduces NM, a spectral morphing technique
designed for the independent stretching of the noise component.
A similar concept has been explored in previous works of Moinet
et al. [8], [25] and Apel [26], although there were small but
significant differences. The core principle of the NM method
revolves around applying random phases while maintaining a
magnitude consistent with the original audio, in such a way that
perfect correlation between successive STFT frames is ensured.
The proposed approach is grounded in the assumption that the
noise or residual component, being quasi-stochastic, has little
perceptual impact from its phase, allowing us to discard it.

The proposed algorithm, depicted in Fig. 1, follows a struc-
tured analysis and synthesis procedure. The original noise com-
ponentnorig ∈ RN is first processed with the STFT, using a Hann
window of 2048 samples (46 ms) and a hop size of 1024 samples
(23 ms) at a sample rate fs = 44.1 kHz. The log-magnitude
spectrum of each STFT frame Norig ∈ RM×K is computed as

Norig = 10 log10(|F(norig)|), (5)

where F() represents the STFT operator. The log-magnitude
spectrum is then linearly interpolated according to the stretching
factor α based on the two neighboring spectra, occurring before
and after the interpolation point, following

Nα = lerp(Norig, α), (6)

where lerp(·) is the linear interpolation function and α is the
stretching factor. In the time dimension, the length of the spec-
trogram Nα ∈ R�αM�×K is α times that of the spectrogram
Norig ∈ RM×K rounded up to the nearest integer.

In the synthesis phase, a white-noise excitation signal ε ∈
R�αN� is first generated matching the length of the output
signal after time stretching, as shown in Fig. 1. According to
our experiments, the perceptual impact of the noise sequence’s
distribution is negligible, provided its spectrum is white, and
the sequence is standardized with zero mean and unit variance.
Consequently, uniformly or Gaussian distributed noises, when
normalized, are both viable options. In this work, the noise signal
is sampled from a standard Gaussian distribution.

As shown in Fig. 1, the STFT is also applied to the white
noise, using the same window and hop size as above. The
resulting complex time-frequency signal E ∈ C�αM�×K must
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Fig. 2. Can opening sound (a) at normal speed and stretched with α = 3 (b) without transient separation, which leads to transient smearing, and (c) with the
proposed method, which preserves transients with apt handling of the noise component.

be normalized by the window energy to ensure that the flat
spectral magnitude equals one. Subsequently, the noise spectral
frames are modulated by the interpolated magnitude spectra via
element-wise multiplication:

Nα
NM = E � 10N

α/10. (7)

Finally, the morphed noise signal in the time-domain nα
NM ∈

RαN is obtained by applying the inverse STFT using the same
parameters as in the analysis (see also Fig. 1):

nα
NM = F−1(Nα

NM). (8)

A notable difference between our method above and the
work of Moinet et al. [25] is that the latter directly replaces
the magnitude of the time-frequency signal E with the inter-
polated magnitudes through polar coordinates, neglecting the
white-noise magnitude spectra. Our observations suggest that
the modulation approach of (7) yields a more organic effect,
as the stochastic variations in the magnitude of the white-noise
signal contribute to a perceptually smoother and less artifact-
prone sound. Apel [26] combines the white-noise spectra and
the interpolated magnitude spectra in the same way as here, but
in his work, the residual component contains a mixture of noise
and transients, which leads to the need for additional spectral
smoothing techniques to enhance the sound quality.

A crucial parameter shaping the quality of the synthesized
time-stretched audio is the window length. A long window
introduces a smoother signal, akin to noise, but comes at the
expense of diminished temporal detail in the output signal,
and rapidly changing nuances tend to get smeared. On the
contrary, a short window captures finer nuances of the sound,
enhancing overall clarity, but has the potential of introducing
musical noise artifacts, which may compromise the quality of the
synthesized sound. Moinet made similar observations regarding
the window length [8]. However, the challenges associated with
long windows become more pronounced when transients are
not separated. Moreover, our approach of multiplying the noise
spectral frames with the interpolated magnitude spectra achieves
more natural results with a short window, compared to replacing
the magnitudes as Moinet et al. suggested [25].

A. Audio Time-Stretching Example

A comprehensive insight into the efficacy of the proposed
TSM method is offered by the example visualized in Fig. 2. The

waveform and spectrogram of the unprocessed signal, featuring
hisses and clicks from the opening of a soda can, are shown
in Fig. 2(a). The stretched noise is highlighted in Fig. 2(b), as
well as the need for transient preservation: when the signal is
stretched by a factor of 3, transients between 1.5 and 1.75 s are
clearly smeared over time, resulting in a characteristic undesir-
able effect. In striking contrast, Fig. 2(c) showcases the proposed
method’s performance by preserving the transients between
1.5 and 1.75 s during the time-stretching process. Notably, the
method adeptly manages the stretching of the noise component
appearing around 5 kHz starting at about 1.5 s. when transients
are separated, emphasizing its ability to achieve desirable audio
TSM outcomes.

IV. EVALUATION

The proposed method has been evaluated against a set of
relevant baselines by means of a formal blind listening test. The
evaluation process and results are reported in this section.

A. Compared Methods

We considered several baseline methods to provide a compre-
hensive benchmark for our proposed approach (NM). To estab-
lish a lower performance threshold, we included a standard phase
vocoder [18], [34] as anchor (AN). As additional baselines, we
incorporated the fuzzy phase vocoder [4] (FZ) and its enhanced
version with transient preservation [22] (FT). Furthermore, we
integrated a prior method in which the stretching of the noise
component was achieved using a neural synthesizer [17] (WN).

In addition to these baselines, we conducted two ablation
studies aimed at elucidating crucial factors influencing the time-
stretching quality of the proposed method. One variant of our
approach involved applying noise morphing without prior de-
composition and transient separation (ND), resembling previous
works by Moinet [8] and Apel [26]. Lastly, we included a version
of our proposed method in which the noise morphing employs
spectral magnitude replacement instead of multiplication (NI),
as suggested by Moinet [8].

B. Listening Test Design

Our test approach, a variation of the standard MUSHRA
test [35], has been used earlier in TSM studies [4], [17], and em-
ploys a multiple-stimuli method with the original, unprocessed
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Fig. 3. Listening test results, showing MOS with 95% confidence intervals for (a) α = 2, (b) α = 4, and (c) α = 8.

TABLE I
AUDIO EXCERPTS USED IN THE LISTENING TEST

sound as the reference. Across 15 trials, we presented sets of 7
stimuli, with 5 trials being conducted for each TSM factor α =
2, 4, and 8. Each set included stimuli representing the proposed
method and the 6 baseline methods outlined in Section IV-A.
A set of 5 representative mono audio excerpts were included in
the experiment. While we would have preferred to include more
examples, we deemed it impractical as it would have resulted
in a lengthy and tiring listening test for participants. The audio
samples under test are listed in Table I and are available on the
companion webpage for this letter1.

To accommodate the extreme stretching factors involved in
the test, each audio sample’s duration was kept very short
(approximately 2 s). This ensured that the longest time-stretched
sounds remained below 18 s in duration [35].

A total of 13 volunteers participated in the experiment, rang-
ing from 26 to 35 years of age. None of the participants had
hearing impairments. The participants were instructed to rate
each presented stimulus on a scale from 0 to 100, indicating the
degree to which the sample met their own subjective expecta-
tions for a time-stretched version of the reference, together with
the overall audio quality. The participants were not obligated to
use the full scale, since ideal examples of best nor worst quality
do not exist.

The test software was a customized version of Web-
Mushra [36]. The audio items were played through a single pair
of Sennheiser HD 650 headphones within a soundproof listening
booth at the Aalto Acoustics Lab in Espoo, Finland.

C. Results

The results of the listening test are presented in Fig. 3.
Notably, the proposed Noise Morphing method consistently
emerged with the highest Mean Opinion Scores (MOS) across all
examples and TSM factors except one, underscoring its efficacy

1http://research.spa.aalto.fi/publications/papers/ieee-spl-noisemorphing

in delivering perceptually superior time-stretched audio. The
recommended Wilcoxon signed-rank test [37] shows a general
trend of statistical significance in the data distributions, despite
occasional overlap in some distributions. Results are reported in
the companion website1. In this section, our analysis centers on
comparing situations where confidence intervals occasionally
overlap.

A comparative analysis between NM and NI reveals inter-
esting dynamics. For α = 2, NM and NI exhibited similar
performance. However, as the stretching factor increased to α
= 4 and α = 8, NI received significantly lower scores in most
examples. This reinforces our suggestion that the modulation
of the magnitude spectra produces a more realistic noise output
than simple magnitude replacement. Our results indicate that
noise morphing without transient decomposition (ND) performs
poorly on examples containing clear and frequent transients,
such as Cut and EDM. This observation highlights the beneficial
contribution of the STN decomposition in the time-stretching
framework. Interestingly, WN (α = 4) and FT (α = 8) show
comparable performance in the EDM example, while NI and
ND experience a quality drop. This is most likely due to the
nature of the sound, suggesting that WN and FT are more suited
for time-stretching music signals.

Qualitative comparisons with Élastique, a renowned piece of
commercial software for audio TSM, are not directly addressed
here; instead, readers are directed to audio examples available on
the accompanying website1 due to the need for third-party soft-
ware. This limitation precluded a direct quantitative comparison
within our controlled testing environment.

To provide an overview of NM capabilities wider than what
is shown in the results, a larger subset of processed examples is
also available for listening on the companion website1.

V. CONCLUSION

This letter introduces a method to improve the time-stretching
of the noise component of an audio signal, which is obtained
by separating tonal and transient components. The proposed
Noise Morphing method exhibits consistent superiority in audio
quality across various stretch factors when compared to baseline
methods. The suggested approach shows potential for extensive
use in various slow-motion media productions, including music
processing or sports videos. Future work involves exploring how
to expand the method for stereo and multichannel audio signals.
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