

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Ejaz, Farhan; Kilpeläinen, Simo; Mustakallio, Panu; Zhao, Weixin; Kosonen, Risto

An Experimental Study on the Efficacy of Local Exhaust Systems for the Mitigation of Exhaled Contaminants in a Meeting Room

Published in: Buildings

DOI:

10.3390/buildings14051272

Published: 01/05/2024

Document Version
Publisher's PDF, also known as Version of record

Published under the following license: CC BY

Please cite the original version:

Ejaz, F., Kilpeläinen, S., Mustakallio, P., Zhao, W., & Kosonen, R. (2024). An Experimental Study on the Efficacy of Local Exhaust Systems for the Mitigation of Exhaled Contaminants in a Meeting Room. *Buildings*, *14*(5), Article 1272. https://doi.org/10.3390/buildings14051272

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.

Article

An Experimental Study on the Efficacy of Local Exhaust Systems for the Mitigation of Exhaled Contaminants in a Meeting Room

Muhammad Farhan Ejaz ^{1,*}, Simo Kilpeläinen ¹, Panu Mustakallio ^{1,2}, Weixin Zhao ¹ and Risto Kosonen ^{1,3}

- Department of Mechanical Engineering, Aalto University, 02150 Espoo, Finland; risto.kosonen@aalto.fi (R.K.)
- ² Halton Oy, 00520 Helsinki, Finland
- ³ College of Urban Construction, Nanjing Tech University, Nanjing 210037, China
- Correspondence: muhammad.ejaz@aalto.fi

Abstract: In industrial applications, local exhaust systems have been used extensively for capturing and confining contaminants at their source. The present study investigates the efficacy of these systems in mitigating the spread of exhaled pollutants by combining them with mixing and displacement ventilation. Experiments were conducted in a simulated meeting room with six closely situated workstations, featuring five exposed persons (simulated with heated dummies) and one infected person (simulated with a breathing manikin). Six overhead local exhaust units, merged with panels, corresponding to workstations, were installed using a lowered false ceiling. Additionally, a table plenum setting for air inlets was introduced to enhance displacement ventilation effectiveness along with local exhaust systems. Results from 16 experimental cases are presented, using the local air quality index and ventilation effectiveness in the breathing zone. The local exhaust system improved the local air quality at the measuring locations closest to the infector in almost all test scenarios. The improvement, particularly significant with displacement ventilation, marked a maximum 35% increase in the local air quality index adjacent to the infector and 25% in the entire breathing zone of the tested meeting room. Moreover, the table plenum settings, coupled with displacement ventilation, further enhanced conditions in the breathing zone. Under the specific conditions of this investigation, the number of operational local exhausts had a marginal impact on mixing ventilation but a significant one on displacement ventilation tests. The efficacy of local exhaust systems was also influenced by the levels of heat gains present in the room. Overall, the study aims to contribute to ongoing efforts to identify sustainable solutions to mitigate indoor airborne diseases with a combination of supply and local exhaust units.

Keywords: local exhaust; airborne transmission; respiratory pollutants; contaminant removal; meeting room

Citation: Ejaz, M.F.; Kilpeläinen, S.; Mustakallio, P.; Zhao, W.; Kosonen, R. An Experimental Study on the Efficacy of Local Exhaust Systems for the Mitigation of Exhaled Contaminants in a Meeting Room. Buildings 2024, 14, 1272. https:// doi.org/10.3390/buildings14051272

Academic Editors: Delia D'Agostino, Grzegorz Majewski, Jianbang Xiang and Shen Yang

Received: 12 March 2024 Revised: 17 April 2024 Accepted: 22 April 2024 Published: 1 May 2024

Copyright: © 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

In recent years, the threat of COVID-19 and other airborne diseases has caused havoc in all aspects of humanity [1]. In response to the pandemic, lockdowns were imposed to control the rapid spread of infectious diseases [2]. They proved to be effective in limiting the transmission of pathogens but they had substantial adverse impacts on economies, mental health, education sector, and overall societal well-being [3]. Thus, the situation compelled experts to explore effective mitigation strategies and fight the pandemic while keeping societies open [4].

Investigating the mechanism and characteristics of disease transmission is a prerequisite for implementing effective mitigation strategies [5]. Recent studies [6–10] have indicated that one of the primary transmission routes of COVID-19 is through the air, involving exhaled particles from infected individuals. This airborne spread encompasses various respiratory activities, including breathing, coughing, sneezing, talking, etc. Exhaled infectious particles (diameter < $100 \, \mu m$) can travel room-scale distances and remain

airborne for up to hours [11–13]. These inhalable airborne contaminants have been causing cross infections, particularly in densely occupied indoor spaces such as meeting rooms, offices, or classrooms [14]. Also, in indoor settings where occupants interact closely, there is a likelihood that, intentionally or unintentionally, they may not maintain safe distances or wear masks. This increases the risk of cross-contamination in these settings [15,16]. Therefore, effective air distribution methods along with sufficient airflow rates are essential for mitigating the threat of airborne transmission in indoor settings [17–19].

Various experimental approaches, such as tracer gas measurements, aerosol particle measurements, smoke visualization, etc., along with computational fluid dynamics (CFD) studies, have been used to investigate the effectiveness of ventilation systems in reducing airborne transmission within indoor spaces [20]. Kurnitski et al. [21] introduced several ventilation designs for the post-COVID-19 era. These design methods encompass target ventilation rates and ventilation effectiveness. Their calculations were based on factors such as occupancy rates and room volumes. A CFD study [22] indicated that displacement ventilation could effectively clean the air in breathing zone by containing the heated contaminants stratified near the ceiling. Displacement ventilation can, in some cases, create a clean air layer in the occupied zone. For example, according to Sumei et al. [23] it could surpass mixing ventilation in reducing the concentration of airborne particles in the breathing zone of an office space. Some other studies [24,25] also concluded that displacement ventilation promotes vertical stratification which is effective in controlling airborne exposure in an office as compared to mixing ventilation.

However, the literature [26,27] has also highlighted the limitations of displacement ventilation, suggesting that its effectiveness in reducing airborne pathogens in the breathing zone could be contingent on factors such as location of exhausts, location of source, and size of polluted particles. Therefore, it may not be effective in all scenarios. Nielsen et al. [28] performed a tracer gas measurement for a simulated hospital ward and concluded that vertical displacement ventilation is effective in controlling cross infections but the efficiency depends on the height of return openings. Zhang et al. [29] presented an interesting observation that for short separation distances between the occupants, displacement ventilation may lead to high exposure due to thermal stratification and locking of exhaled contaminants. However, increasing separation distance reduced this effect, and eventually, displacement ventilation outperformed mixing ventilation.

Scholars have focused their efforts on personalized ventilation systems as a means of decreasing the concentration of airborne contaminants. For example, Su et al. [30] compared personalized ventilation to typical air distribution methods in a simulated office space. The investigation specified that personalized ventilation reduced infectious spread most effectively, followed by displacement ventilation, stratum ventilation, and mixing ventilation, respectively. Another study [31] indicated that, as compared to mixing ventilation, personalized ventilation could form a clean microclimate around the passenger in an aircraft cabin.

Air distribution methods such as stratum ventilation [32], impinging jet ventilation [33], and underfloor air distribution (UFAD) [34] have emerged as effective strategies to mitigate the spread of airborne contaminants in indoor environments. Similarly, aircleaning devices have an important role in controlling the spread of airborne contaminants particularly where it is difficult to increase airflow rates or change the air distribution method. Conducted studies [35–39] have verified the usefulness of several air-cleaning methods, such as high-efficiency particulate air (HEPA) filters, ultraviolet germicidal irradiation (UVGI), and photocatalytic oxidation, in reducing the number of airborne pathogens and pollutants.

In addition to that, the literature also focuses on local exhaust methodologies to reduce airborne pollutant concentration in the breathing zone. For example, Bivolarova et al. [40] indicated that local exhaust ventilation systems could reduce pollutant exposure by up to 96% in a hospital ward. Dygert and Dang [41,42] investigated a local exhaust system with overhead and built-in-seat suction vents in a mixed indoor environment for

Buildings **2024**, 14, 1272 3 of 17

a simulated airplane cabin. Their CFD study with tracer gas validation determined up to a 60% decrease in co-passengers' exposure to body-emitted pollutants. Yang et al. [43] designed a personalized exhaust system for hospital consultation rooms. The effectiveness of the overhead and shoulder-mounted exhaust was tested by using a thermal manikin and tracer gas. They found that using a personalized exhaust system resulted in lower occupant exposure even after 30 min, compared to a 10 min test without the personalized exhaust system. Olmedo et al. [44] implemented a personalized exhaust system in a hospital bed and assessed its performance under various air distribution methods. They indicated that the personalized exhaust system could reduce contaminant exposure by about 57–80%. In some studies, [40,45,46], scholars also employed a combination of local exhaust and personalized ventilation to reduce contaminants in the breathing zone.

Earlier studies, including those referenced [47–54], confirm the effectiveness of facemasks in filtering respiratory particles and reducing the airborne transmission of infectious agents. However, recent investigations [52-57] have raised concerns about the discomfort, respiratory strain, and communication challenges associated with facemasks. Mask wearers often experience irritation, prompting frequent touching and adjustment, which may increase their exposure. Issues related to disturbed verbal and nonverbal communication can lead individuals to unintentionally draw closer, potentially compromising social distancing compliance. Wearing facemasks may also create a false sense of safety, reducing compliance with social distancing and handwashing guidelines. The restrictive airflow, retention, and re-inhaling of the exhaled carbon dioxide can result in hypercapnia (discomfort, muscular weakness, drowsiness, etc.) and other secondary complications. This could potentially impact productivity in office or school environments and contribute to serious health issues. Proper mask fitting is another critical factor affecting the filtration efficiency of masks. While it is challenging for the general population to achieve a secure fit, individuals with long noses or facial deformities may encounter even greater difficulties. Therefore, despite the effectiveness of using face masks, it is necessary to explore alternative and sustainable ways to combat airborne contaminants, particularly in indoor settings.

The existing literature highlights a significant research gap in assessing local exhaust systems' effectiveness in mitigating airborne spread, particularly in densely occupied indoor environments under different air distribution methods. Although existing studies report the effectiveness of local exhaust systems in environments like airplane cabins and hospitals, there is still a gap in specific research focused on densely occupied meeting rooms. The exploration of explicit indoor settings is crucial because each indoor space has unique dynamics, encompassing factors like seating arrangements, interpersonal distances, and the physical and respiratory activities of occupants. For the present study, the meeting room is being examined because it could be a focal point for cross-contamination. According to the REHVA guide [19], meeting rooms are places that are highly susceptible to cross-contamination. These spaces are common in built environments and often bustle with either long or consecutive short meetings. Moreover, they may have high occupant density, with participants engaging in more active communication compared to other working spaces such as regular offices. Therefore, precautionary measures such as wearing face masks and maintaining interpersonal distance may also be neglected.

This study aims to explore a technical solution that effectively reduces cross-contami nation in indoor settings. The simulated meeting room used in the study was equipped with a local exhaust system. A combination of local exhaust with either displacement or mixing air distribution methods is examined. In addition to that, a method to enhance the performance of displacement ventilation using a table plenum setup is analyzed. It also explores the effect of heat gains experienced by indoor environments during a typical summer and mid-season. Moreover, the influence of the number of operational local exhausts in the occupied zone is considered. The findings of the study provide valuable insights to reduce airborne contagions and improve occupant well-being in densely occupied indoor spaces.

summer and mid-season. Moreover, the influence of the number of operational local exhausts in the occupied zone is considered. The findings of the study provide valuable insights to reduce airborne contagions and improve occupant well-being in densely occupied indoor spaces.

2. Materials and Methods

2.12 EMpateirial a tank & Methods

2.1.21. Test Chamber

2.1.1. Test Chamber
Experimental measurements were conducted in a full-scale test room, as depicted in Experimental measurements were conducted in a full-scale test room, as depicted in Experimental measurements were conducted in a full-scale test room, as depicted in Figure 1, where indoor conditions were kept at a steady state. The test room had dimensions sions of 5.50 m (Ln), 3.54 m (Wn), and 3.60 m (H). In (H), if was situated withing laboratory hall which restured to the rest can be restored and state of the rest can be restored the restor

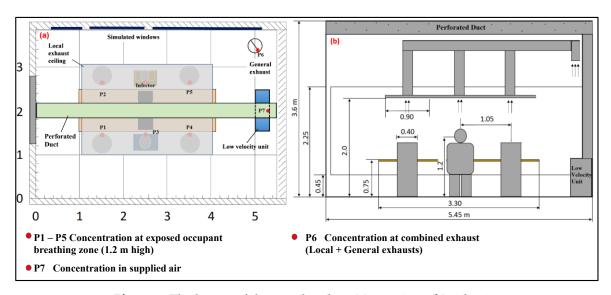


Figure 1 The hay count of the test chamber: (a) top veice (b) did review.

The work stations had one trien has the army kiraffic Telpik, Tellerred, Internet, Denmark has the infector and five heated dummies representing the exposed occupants as illustrated as in Figure 2. At location P3 (Figures 1a and 2), a heated dummy was present that imitated in Figure 2. At location P3 (Figures 1a and 2), a heated dummy was present that initiated a human with body parts like head, chest, and legs. The dummy consisted of 75-watt initiating elements with body parts like head, chest, and legs. The dummy consisted of 75-watt initiating elements with body parts like head, chest, and legs. The dummy consisted of 75-watt initiating elements with body parts like head, chest, and legs. The legan in ground the initiating factor of 75-watt heating elements with body parts in heading the body parts. The legan in ground the property dummy consisted of 75-watt heating elements with latest and the body parts. The legan in ground the property dummines (P1183-cftapped with latest and latest legan the body parts in the legan that the legan the latest legan to a latest legan to a latest legan to a lower of second parts of a second second parts. The heat gain varied between 75 and 85 W/m² with a approximate averwas installed. These exhaust units were merged seamlessly, forming a panel with no cracks between them. Two laptops were also present at the workstations, and light bulbs were installed. These exhaust units were merged seamlessly, forming a panel with no cracks between them. Two laptops were also present at the workstations, and light bulbs were installed. These exhaust children the local exhaust assections are larged as a workstation, was installed. The legal exhaust units were made as a large ceiling with six local exhaust assections as metallic with a workstation, was installed. The legal exhaust units were merged searness large them.

installed above the local exhaust ceiling. The local exhaust traise ceiling was metallic with was installed above the local exhaust ceiling. The local exhaust false ceiling was metallic with was installed above the local exhaust water was installed above the local exhaust false ceiling the parely with no cracks between them. Two laptons were also introduced as it land works the local exhaust false ceiling trained had becaute the local exhaust false ceiling traise for its line with some trains parely glass we deroths that salt we little becaute the direct solar each attended to the local exhaust false ceiling to the local exhaust false ceiling the local exha

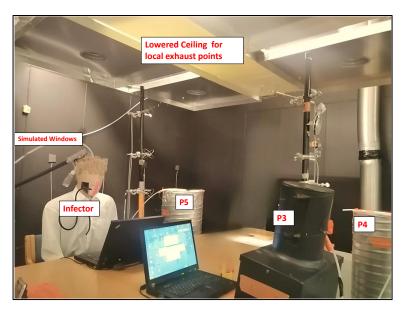


Figure 2. Experimental arrangement.

Table The Isohere gainst word inferrents heart diffindevels used in this study for the space under consideration are summarized in Table 1. The indoor temperature for all tests was maintained sources of Heart Gains were balanced by increasing the supply airflow rates to maintain the set target temperature, as described why because the section 3.2 (W/m²)

Manikin	80 W		80 W	
Table 1. Thurnestessairs used in the test condi		375 W		
Laptops (40 × 2 pc)	80 W	Heat Gains	80 W	
Sources eit in lieutin (W) Simulated solar gain from windows	90 W 643 3W/m 2)	Heat Gains	90 W 33. 2 5(W/m²)	
Simulated dir Maribiin gain at floor	4 20 W		80W V	
Equipn Deustr(mmiærsi(1715)'s 5 oprot trollers)	30 5/W		3 Ø5/WV	
Latotophead gainpc)	13 80 W		7 90 W	
Ceiling light	90 W		90 W	
2. Fizn waterlandan switten windows	235 W		25 W	
	100 717			

Simulated direct solar gain at floor
In this study, local exhaust systems were employed and evaluated with two different Equipment (manikin's controllers).
The distribution methods. The aim was to assess their effectiveness in mitigating the lotal heat gain. The aim was to assess their effectiveness in mit gating the airborne contaminants. Tests were conducted separately for mixing and displacement air distribution systems. The mixing system supplied air through a 2.1.2. Venillation System. 2.1.2. Venfilation System perforated duct that was installed in the middle of the ceiling at 3.25 m height as illustrated in Figure is study elocal extra estate extra extremental extra ext Auritistikutione meteodratibie, aim wastassassilbei tietteetivanessi venitisatina teaspiedel offenbaled airborack contaminants estats tweeto apprinted 19e parataly if suppinious and dise Ragemental and etribution exercises table towards successful and in through a perforated duct That was installed in the swiddle not three cilings to 2.45 per height as illustrated in Eigner duffing (greath of the performanced at those merge and the thing the was each mork seather, place institution thatien other entrass cupitlig later rusher for 2 no locity their placeston but floor pothe waskenfulperdown beside the wolf (Fagurer) en Toring it semplied airjusted lengitudinal digention decreather hockelentenes allow the accordance of the contraction was adjusted to be 10 L/s. All eXhardstephenhaustrhoodsniveted installedensing exhappendadtsteekedihing dition metre locialle (charusts, ra); Sine rater the auch good leaves geet ghit of platesy as new traited involves testicing where (Figure 2) in the local exhaust ceiling at a height of 2 m from the floor. Each exhaust point was equapplicio novich tae codjustatioen alla mujoen geanadolidis polla em member endijustico hachior etingly calisco exame in earthe Then low rade white igst tilt goe ffect of kenalt exhalastation te masand just be det plea util Lifesi Atl ix han jurgations with a looking tack mentioning in a continuous firm that is a look in the continuous firm that looking the l politicuts chagineent to like av ortilien table; ightich Supplied in it ildere ith the table challo behalfige ure 1).

In addition to the conventional mixing and displacement ventilation, this study also In addition to the conventional mixing and displacement ventilation, this study also examines the combined mitigating effect of local exhaust systems and a table plenum deexamines the combined mitigating effect of local exhaust systems and a table plenum deexamines the combined mitigating effect of local exhaust systems and a table plenum deexamines the combined mitigating effect of local exhaust systems and a table plenum deexamines the combined mitigation with the displacement air distribution method. The displacement unit was positioned adjacent to the working table, which supplied air beneath the table. To enhance its effectiveness, the working table, which supplied air beneath the table. To enhance its effectiveness, the table plenum settings, as depicted in Figure 3, were implemented by adding partition gurtains (walls) to specify the space in weith the table with mented by talding partition gurtains (walls) to specify the space in the table with mented by talding partition gurtains (walls) to specify the space in the fable with mented by talding partition gurtains (walls) to specify the space in the cocupants.

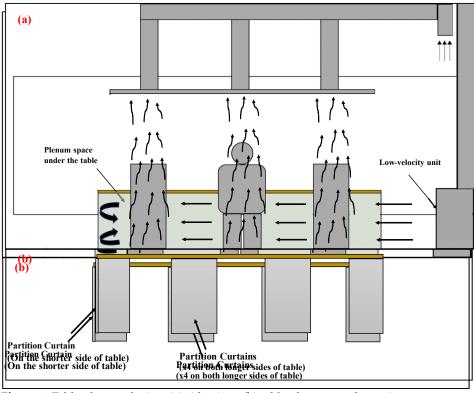


Figure 3. Table plenum design: (a) side view; (b) table plenum configuration.

The supply air openings for the table plenum are depicted in Figure 4. The green arrows represent the location of air openings and the corresponding airflow direction arrows represent the location of air openings and the corresponding airflow direction from these openings. The air including pollutants, rises through these openings properlied by convective flows generated by simulated persons and is subsequently captured by overhead local exhausts.

Figure 4. Supply air openings with table plenum: (a) all openings; (b) close-up for infector's opening. Figure 4. Supply air openings with table plenum: (a) all openings; (b) close-up for infector's opening.

2.1.3. Thermal Breathing Manikin

The thermal breathing manikin comprised 27 heated body segments and was utilized to simulate an infected person in a seated position with an average heat gain of 80 watts. The manikin's dimensions replicated a 1.75 m tall male. The temperature and heating power of the body segments could be controlled by a computer program. Throughout the

Buildings **2024**, 14, 1272 7 of 17

experiments, the surface temperature of the manikin was regulated to approximate the skin temperature of an occupant experiencing thermal comfort in a controlled environment (34–36 $^{\circ}$ C). The manikin was dressed in a short-haired wig, vest, shirt, trousers, light socks, and light shoes, thereby simulating typical office attire for the summer season, with a thermal insulation rating of 0.5 clo. The nostrils of the manikin were shaped as round openings with an area of 44.2 mm² each, and the mouth had the form of an ellipsoidal opening with an area of 113.4 mm². The two jets from the nostrils were deflected 45 $^{\circ}$ downwards from the horizontal axis.

To simulate real human breathing, the manikin was connected to an artificial lung, enabling control of breathing patterns. In this study, the manikin inhaled by mouth and exhaled by nose. The designed pulmonary ventilation rate was 6.0 L/min [58]. Each breathing cycle consisted of 2.5 s of inhalation, 1.0 s break, 2.5 s exhalation, and 1.0 s break. The exhaled air mixed with the tracer gas from the manikin was heated to 35 °C and humidified to about 85% RH. Tracer gas was injected directly into the artificial lung of the infector. The rate of the tracer gas dose was 2.5 mL/min and the pulmonary ventilation rate of the infector was 6 L/min which is the normal breathing rate of a male adult at rest [58]. Therefore, the tracer gas concentration in the exhaled air of the infector was approximately 20,000 ppm.

2.1.4. Measured Parameters and Instrumentation

For this investigation, we deliberately chose sulfur hexafluoride (SF₆) as the tracer gas after comparing its characteristics with alternatives like carbon dioxide (CO₂) and nitrous oxide (N₂O). SF₆ was preferred because it is not usually found in the outdoor air and can be detected even at very low concentrations. It is typically odorless, chemically inert, and safe at the concentration level used in the present investigation. However, both N₂O and CO₂, which have a relatively similar density to air, are normally a constituent of air and tend to mix and disperse quicker than SF₆. These characteristics of N₂O and CO₂ may potentially impact the accuracy of measurements in specific experimental conditions of this study. Moreover, SF₆ has also been used by scholars in similar studies such as [42,59–61].

A multi-gas analyzer platform (GASERA one, Turku, Finland), with an accuracy of approximately 0.5 ppm, conducted continuous tracer gas measurements. These measurements were performed at seven locations (P1–P7), as illustrated in Figure 1. Points P1 to P5 were situated at the exposed occupant's mouth height (1.2 m) and measured tracer gas inhalable concentration. P6 was at the combined exhaust point just before the final air extraction from the room. While P7 provides information about the contaminant concentration at either mixing or displacement supplied air close to the terminal unit.

2.2. Experimental Process and Scenarios

The measurement process started by adjusting the total supply airflow rate and exhaust flow rates according to heat gains and air conditioning requirements. Each operational local exhaust flow was set to 10 L/s. The flow rate of the general exhaust varied depending on the experimental scenario. A multifunction meter (TSI, Aachen, Germany, TC9650) equipped with a hot wire anemometer probe (TSI, Aachen, Germany, TC966) was used for velocity measurements at the exhaust points. A large rectangular volume flow hood was then employed to calculate volume flow from velocity measurements. This flow measurement process maintained the overall balance of the system with minimum disturbance. The adjustable damper installed at each exhaust point was then used to adjust the required exhaust flow. A smoke test was conducted to visualize and ensure proper air movement and functionality of the exhaust points. Then, tracer gas dosing was initiated after the indoor airflow distribution and room conditions had reached steady-state conditions, a process that typically took about 1 h. Then, a continuous measurement of tracer gas concentration at all measuring locations P1 to P7 (Figure 1) was conducted throughout the test.

The supply airflows were 116 L/s and 61 L/s for the 64 W/m² and 33.2 W/m² heat gain levels, respectively. This resulted in specific airflow rates of $5.5 \, 1/(s, m^2)$ and

Buildings **2024**, 14, 1272 8 of 17

 $2.9\,1/(s,\,m^2)$. The reference air temperature (accuracy of $\pm 0.2\,^{\circ}$ C) was kept at $25\pm 1\,^{\circ}$ C at measured at the heights of 1.1, 1.5, and 1.9 m. The supply air temperature for all experiments was 16 °C. The relative humidity of the indoor air was not actively controlled, and it varied slightly between 30% and 40% during the experiments. A description of test scenarios is presented in Table 2.

Table 2. Description of test scenarios	Table 2.	Description	of test	scenarios.
---	----------	-------------	---------	------------

	п .с.	Ala Distribution Contons	No. of Local	Exhaust Flow Rates	
Case Heat G	Heat Gain	Air Distribution System	Exhaust	Local Exhausts	General Exhaust
1	- - - - - - - -	Mixing (61 L/s \pm 5%, 25 \pm 1 °C)	0 (Reference Case)	0 L/s	~61 L/s
2			2	20 L/s: 2 × 10 L/s	~41 L/s
3			6	60 L/s: 6 × 10 L/s	~0~1 L/s
4		Displacement (61 L/s \pm 5%, 25 \pm 1 °C)	0 (Reference Case)	0 L/s	~61 L/s
5			2	20 L/s: 2 × 10 L/s	~41 L/s
6			6	60 L/s: 6 × 10 L/s	~0~1 L/s
7		Displacement with table plenum	2	20 L/s: 2 × 10 L/s	~41 L/s
8		$(61 \text{ L/s} \pm 5\%, 25 \pm 1^{\circ}\text{C})$	6	60 L/s: 6 × 10 L/s	~0~1 L/s
9	_	Mixing (116 L/s \pm 5%, 25 \pm 1 °C)	0 (Reference Case)	0 L/s	~116 L/s
10			2	20 L/s: 2 × 10 L/s	~96 L/s
11		,	6	60 L/s: 6 × 10 L/s	~56 L/s
12	64 W/m ²	64 W/m ² Displacement (116 L/s \pm 5%, 25 \pm 1 °C)	0 (Reference Case)	0 L/s	~116 L/s
13			2	20 L/s: 2 × 10 L/s	~96 L/s
14			6	60 L/s: 6 × 10 L/s	~56 L/s
15		Displacement with table plenum	2	20 L/s: 2 × 10 L/s	~96 L/s
16	-	$(116 \text{ L/s} \pm 5\%, 25 \pm 1 \degree \text{C})$	6	60 L/s: 6 × 10 L/s	~56 L/s

2.3. Evaluation Indices

For this study, the performance is analyzed with the local air quality index (ε_p), a methodology subsequently adopted by earlier studies, including [21,42]. The index provides local air quality information about the specific measurement point. It is calculated as follows:

$$\varepsilon_p = \frac{C_e - C_s}{C_p - C_s} \tag{1}$$

where

 C_e is the contaminant concentration in the combined exhaust duct;

 C_p is the contaminant concentration at the concerned measuring location (P1–P5);

 C_s is the contaminant concentration in supply air ($C_s \approx 0$ for all the measured cases). Ventilation effectiveness (ε_v) is defined in REHVA Guidebook no. 2 [62] as the following:

$$\varepsilon_v = \frac{C_e - C_s}{C_i - C_s} \tag{2}$$

For this study, point source ventilation effectiveness for breathing zone ε_v^b is calculated as reported by Kurnitski et al. [21]. Unlike the local air quality index which offers information specific to individual measurement points, ε_v^b provides insights into the air quality across the entire breathing zone within the investigated meeting room. It is calculated as follows:

$$\varepsilon_v^b = \frac{C_e - C_s}{C_h - C_s} \tag{3}$$

lated as follows:

$$\varepsilon_v^b = \frac{C_e - C_s}{C_b - C_s} \tag{3}$$

Buildings 2024, 14, 1272 9 of 17 where

 C_i is the averaged contaminant concentration in the room.

wher \mathcal{E}_b represents the averaged contaminant at the breathing zone level and is calculated usin@itlactfollowingcfountarlainant concentration in the room.

 C_b represents the averaged contaminant at the preathing zone level and is calculated g the following formula. $C_b = \sum_{\substack{P_b = 5 \\ C_i}} \frac{\sum_{P_i = 1}^{p_i = 1} C_i}{n = 5}$ In determining C_b , Kurnitski et al. [24] used a 50% measurement points rule, calculated using the following formula.

lating the average concentration from 50% of the measurement points with the highes condendrationis: iProwe Ver, nitakiest resent streety, an home mentioni proints well averaged lating the average concentration from 50% of the measurement points with the highest at measurement points. The difference of the limited number of points, and for mixing ventilation, concentrations at measurement points were averuing points exhibited considerable similarity.

aged due to the limited number of points, and for mixing ventilation, concentrations at measuring points exhibited considerable similarity.

3. Results

3. Resultimption of Steady State

3.1. Assumption of Steady State

Two indices, ε_p and ε_p^b , used for the evaluation of measurements, are deemed valid when the contaminant concentrations in the indoor environment attain a steady state. Fo when the contaminant concentrations in the indoor environment attain a steady state. For this investigation, a steady state is assumed when the contaminant concentration in the this investigation, a steady state is assumed when the contaminant concentration in the this investigation, a steady state is assumed when the contaminant concentration in the contaminant concentration in the state of the state combined exhaust stabilized during the three-hour tosts of the eastly assess as depicted in Figures 5 shown down the generalization and bilizen in the west two breams after initially rising for anthorus dibblioining the beast art contaminate time estimate a filmer of 0 min.

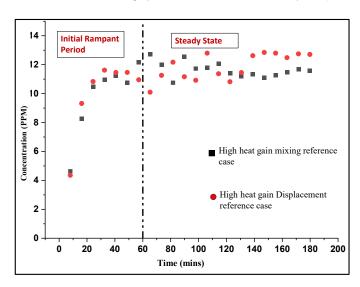


Figure 55 FEA hast storound attraction highly half bear general erance cases.

3.2. Local Air Quality Index $P(\varepsilon_p)$

The local air quality index (ε_p) measures the effectiveness of ventilation systems in the local air quality index (ε_p) measurement points, i.e. the simple contaminants from the immediate vicinity of measurement points, i.e. the simple contaminants from the immediate vicinity of measurement points, i.e., the simple contaminants from the immediate vicinity of measurement points, i.e., the simple contaminants are used to summarize the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the variation in the ε_p in the proof of the variation in the ε_p in the proof of the variation in the ε_p in the variation in the ε_p in the ε_p in the variation in the ε_p in the ε_p in the variation in the ε_p in the ε_p in the ε_p in the variation in the ε_p in sulated individuals. Box plots are used to summarize the variation in the ε_{p}^{p} in the breath breathning zones of occupants at locations of to 15. The box indicates the primary data ing zonewech ancupants at slonations. Pile to R5 with the bax indicates othe incimary how a range bretweener then 20 thurn and 20 the xpericentialness. This evaluation the direction of the control of the contr signaisen srinical thresholddi.m.aximu(narvakoesa Alson acooded to the ohlaneois biondistently used to significanceitical phireth Wilden, the value of sanal schlamthis line (acendrittionicates that ined ex the solutant concentration of the swedier measurement point is big by the point in the exhaust duct. In other words, poor air quality conditions occur when $\varepsilon_v < 1$.

Figure 6a indicates that in the reference test of the mixing system with low heat gain (33.2 W/m²), the local air quality index ε_p values for locations P2 and P5 were not only less cates that the pollutant concentration at the specific measurement point is higher compared to the concentration in the exhaust duct. In other words, poor air quality conditions occur when $\varepsilon_p < 1$.

Figure 6a indicates that in the reference test of the mixing system with low heat gain (33.2 W/m²), the local air quality index ε_p values for locations P2 and P5 were not only less than the critical value of 1 but also lower than the values observed at the other measuranties privile. This of beat substituted and the values observed at the other measuranties privile. This of beat substituted and the values observed at the other measuranties of the research of the particular particles of the privile of the particular particles of the particular particles of the particles of t

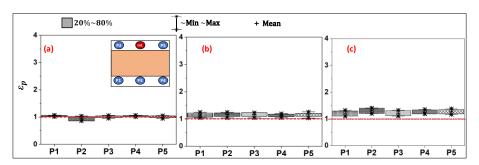
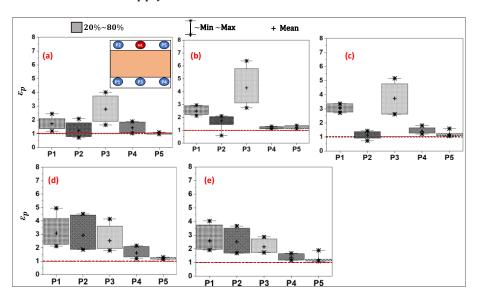


Figure 6. Local air quality (ε_p) at the breathing zones (P1-P5) for low heat gain mixing distribution cases. (a) Reference case (no lotal axeaust)st)b) (by Two people and had local axet (at infact of each tient of 1 and tient of 1 (8). Six) Special and local explicit of 1 and tient of 1 (8). Six) Special and local explicit of 1 axes (1 axes) and 1 axes (1 axes) are the control of 1 axes (1 axes) and 1 axes (1 axes) are the control of 1 axes (1 axes) are the contr

The results of the tests secrations from mixing cases with high chegaga (6464/M²) nare summized and Figligure-7a—The high introduction of obligate characteristic two or six led to slight improvement at locations P1 to P4, while P5 experienced deterioration in this case and 4p, not confly recluced ibut also fell below the critical value of 11. Under high heat gain conditions, a higher supply airflow rate of 116 IL/s was employed to balance heat gains and maintain the room temperature at 25 °C. Consequently, the flow rate of the general exhaust was set at 96 L/s for secnation involving two operational local exhaust points and 56 L/s for cases with six operational local exhaust points, as the operational local exhaust flow rate remained constant at 10 L/s throughout. Location P5 was between this high-flow general exhaust point, the lowered suspended ceiling, and the neighboring infector. The combination of these factors overcame the local exhaust effect (40 L/s) at location P5, and the high-flow general exhaust pulled the exhaled jet from the infector manikin towards itself, making P3 a vulnerable location.


Buildings 2024, 14, x FOR PEER REV

The results suggest that local exhausts can improve the contaminant removal effectiveness of the mixing air dight button system. In the mixing system, the presence of a local exhaust at the infector onerged as the most critical factor which made the operation of other local exhaust at the infector onerged as the most critical factor which made the operation of other local exhaust at the infector of the exposed occupants. This phenomenon is also indicated by Zhang et al. [29] and Danca et al. [31]. Therefore, having an overhead local exhaust at the source heips eliminate the exhaust at the source heips eliminate the exhaust at th

Figure 7. Local air quality (ε_p) at the breathing zones (P1-P5) for high heat gain mixing distribution cases. (a) Reference case (no object about the breath of the Two contribution alocal axis (at infector conditional local axis). (B). S(a) Specipion in blood cash axis as the contribution of the condition o

The new of the regard, that low heat guids, easy improve the constitution of an environmental end of the regard the residence are the constitution of the regard of the re

On the other hand, for low heat gain, displacement air distribution, as shown in Figure 8a-e, ensured a cleaner breathing zone at all exposed locations. Figure 8a exhibits that for the reference case of displacement ventilation at low heat gain (33.2 W/m²), $\varepsilon_n > 1$ for all measured locations. Like the mixing test cases, the adjacent locations P2 and P5 were comprise aively amore in separated ather the free believe you expandition jet expositive and beroaller than in the corresponding mixing ventilation tests with the introduction of algorithment to Zinalaceman i zoptilation systemia i Jojv tretarbie, the situation et neah meas exingulacat then sharemed betterm That side vex wars are aduation transminants they are constituted in section of the contract of the cont lesch exhaustosystems with six operational local exhausts. With six operationablogalexhaustra az illustratedira Figure ad phaceasult indicateria significantino case inclore bair quality in dexicapler to real magazorie a la meiopo de dubetantial. Increase a fatilibrat ATAN FUNCTION OF THE PROPERTY furnilmeasoured locations? Like the was an increase of thought Ent Theations Palsand Prughty 259 pincetroety im one way valeut stract extract set that were exuring xlocation expense it invalves at 174 (than in the later of a local exhaust to displatement v Eigilation, by chang gestoth at eategainm ther sit that id we have senisastrained substianbiadaimo bettier. dTholaideveny capes attlef aimquality arissbetters uncessfully niceluted by volid enhaustgrifteant at theatricids tweer loieabpehational where let the USher Mith, six on a trailineal localens hautisias i de la comparista actività de la comparista de la comp air guidlocal and the least 35% was reported et location P Parkeplen marochocares exitopolan y luckar banal kesternew neck At locations. Enthurn whem recerts of other labor. There we also a voughly 125 brick seaso imensacryphnes anapietenthanaeanuring location arspectically (PtP4rlapP2)2sNuffelt darthest # source of supply air.

Figure 8. Local air quality (ε_p) at the breathing zones (P1–P5) for low heat gain displacement distribution cases. (a) Reference case (no local exhaust). (b) Two operational local exhausts (at infector and location P3). (c) Two operational local exhausts with table plenum. (d) Six operational local exhausts. (e) Six operational local exhausts with table plenum.

However Figure 8a,b,d suggest that the number of local exhausts also has a substantial impact in displacement cases. The air quality is better and contaminant removal is more significant at locations where local exhausts were active. Therefore, a local exhaust system with six operational exhausts is more effective than the system with two operational local exhausts and displacement ventilation.

The effect of the table plenum for two and six operational local exhausts for low heat gain is presented in Figure 8c,e. This setting improved the delivery of supply air close to the occupants and it enhanced the air quality at locations (P1 and P2) situated farthest from the source of supply air.

The effect of local exhausts for the high heat gain displacement air distribution case is illustrated in Figure 9a–e. In contrast to the previously discussed cases, the reference case, as illustrated in Figure 9a, demonstrated less lateral spread of contaminants towards P2 and

ical value of 1. The effect of the number of local exhausts was also present in high heat gain cases and air quality was relatively better at locations where local exhausts were operational.

At high heat gain when there was a higher supply airflow rate, the influence of the table plenum became more prominent, particularly in the case with six exhaust points. The table plenum provided a designated path for supplying air to the farthest locations from the supply air terminal, namely P1, and P2, resulting in a minimum 15% increase in P5e Thin isother, to at helacisphyiligheratiopsly-liable divisitable planemisetting delivered factions of the thin increase in P5e Thin isother, to at helacisphyiligheratiopsly-liable divisitable planemisetting delivered factions of the thin increase in P5e Thin isother, to atthe local explicit in the local expli

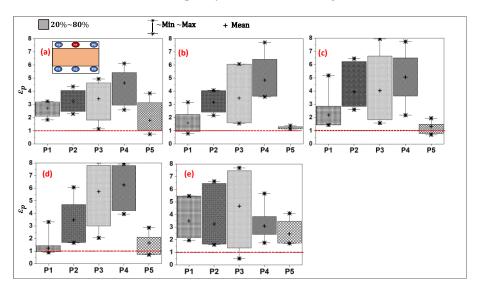


Figure 9. Used lain quality (e/s) pat the Her tarbitty represence (HPS) His high in high in pair gain plais proceed with the Her tarbit of the Her tarbit of

The ignultaring line to these these exhausting the mappy and better with displacement the clisteriple increase the environment of the control of the control

Also, in the case of high heat load, the introduction of local exhausts (Figure 9b,d) led to a decrease in air quality at P1. This is likely because the local exhausts may have extracted some of the clean outdoor air before it reached P1. This phenomenon was also mitigated by utilizing table plenum settings. Consequently, table plenum resulted in a more uniform and better air quality at all locations (Figure 9e).

The results indicate that local exhaust systems perform better with displacement air distribution compared to mixing systems. A significant reduction in exhaled contaminants was observed at measured locations, particularly close to the infector. This is because displacement air distribution systems introduce outdoor air at low height, and gradually push it upwards to carry contaminants away from occupants. The upward airflow characteristic of displacement systems aligns well with the vertical extraction of overhead exhaust points. The effect of the number of operational local exhausts is prominent in displacement cases. Earlier studies [31,63] have reported that in displacement air distribution, contaminants can travel significant distances horizontally because of a lock-up effect of exhaled contaminants at the breathing zone. Therefore, it is important to have local exhausts at other locations in addition to the contamination sources. The table plenum with displacement ventilation further increases local air quality as it provides a designated path to supply uniform air to all the occupants.

was seen in the case of six local exhausts. However, with the displacement system at low heat gain, the ε^b_v value approached 1.7 for two operational local exhausts representing an increase of approximately 15% compared to its reference case. This value further increased to 2 with 6 operational local exhausts, marking a 22% increase in ventilation effectiveness for the breathing zone. The table plenum further enhanced displacement air distribution by increasing ε^b_v by about 5% compared to scenarios where it was not employed.

At high heat gain, the local exhaust with mixing air distribution system slightly compromised the extendibility defectives as predains and defective to the extendibility of the extendibility and predains and the extendibility and predains and the extendibility and predains of the extendibility of the

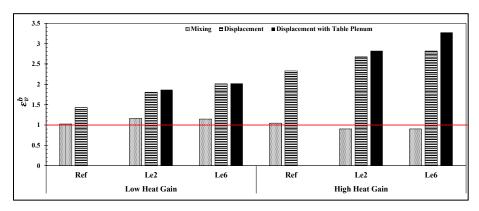


Figure 10. Point source ventilation effectiveness for the entire breathing zone.

4. Discussion heat gain, the local exhaust with mixing air distribution system slightly compromised the overall air quality. This was primarily due to elevated contaminant The experimental findings of the present study confirm that local exhaust systems concentrations at location P5, influenced by a lower ceiling and its positioning in the path effectively enhance conventional air destribution and its positioning in the path of contaminant flow toward a high-llow-rate general exhaust. The ε_v^0 value decreased of exhaust compared to high heat gain mixing reference case) for both the air distribution present of a successful exhaust. The ε_v^0 value decreased of exhaust compared to high heat gain shall the number of operational local six operational, location and strength of heat gains, and the number of operational local approached 2.75, indicating a 19% increase for 2 local exhausts. When utilizing 6 local exhausts, ε_v^0 approached 3 which is about 25% higher as compared to the high heat gain displacement reference case. The impact of the table plenum was particularly important in the high heat gain system when combined with six local exhausts. This combination significantly improved the performance of displacement air distribution, demonstrating an increase of approximately 12% compared to cases where the table plenum was not utilized.

4. Discussion

The experimental findings of the present study confirm that local exhaust systems effectively enhance conventional air distribution systems in reducing the airborne spread of exhaled contaminants. However, their impact depends on factors such as the air distribution method, location and strength of heat gains, and the number of operational local exhausts. Earlier studies [41,42,44] have indicated similar observations in other indoor spaces. Scholars [41,42] achieved a minimum 30% reduction in exposure by testing overhead, seat, and window-mounted local exhausts in a mixed-air cabin. Their exhaust flow rate varied between 7 and 15 L/s. Olmedo et al. [44] implemented a personalized exhaust system on the patient's bed near to its head in a hospital ward. They achieved a minimum of 57% efficiency with about 50 L/s exhaust flow rate. However, such settings with closer exhaust points and higher flow rates are not feasible in a meeting room space due to more active communication and occupant movement.

The local exhaust systems utilized in the presented study do not disturb the workspace of occupants. Also, they are easy to install in existing building stock and do not add any

extra energy costs to the system. The local exhaust functions like a point sink and sucks air from its surroundings. The suction velocity decreases proportionally to the square of the distance from the exhaust face. This feature is well known in studies of local exhaust ventilation, particularly in industrial settings. The implication of this phenomenon has both advantages and disadvantages. On the positive side, it reduces discomfort for occupants by avoiding strong airflows. But, it limits the system's ability to capture contaminants effectively. However, the potential comfort issues associated with local exhausts operating at higher flow rates are the acoustic problems that may affect the occupants [42,64,65].

In this study, ventilation effectiveness (contaminant removal effectiveness) serves as the primary evaluation index. This index has been extensively utilized in previous studies (e.g., in [60,62,66]), and it offers a reliable, quick, and straightforward prediction of pathogen spread and comparison both in experiments and numerical simulations. The usefulness of the index comes from its ability to directly show the situation compared to threshold value (typically 1) in a fully mixed environment. However, it falls short of assessing the infectivity of specific disease agents. Also, this index is relative and normalized with the pollutant's concentration at the exhaust. That is why if not used carefully, it may potentially lead to false conclusions about the absolute concentration of contaminants in the indoor environment.

The present study primarily evaluates the effect of air distribution systems on contaminant concentration, which is why the tracer gas method was used. A potential future direction regarding various other experimental methods could involve using microorganisms instead of tracer gas. Microorganisms may offer a direct representation of airborne pathogens but also pose challenges like feasibility, maintenance, and safety. Biological pollutants might be more helpful when the primary goal is to evaluate disinfection methods such as UV lights, ozone generators chemical disinfectants, and other similar methods. Moreover, particle-based aerosols are useful when evaluating filtration techniques or studying the deposition of infectious particles [35,67].

This study's results encourage further exploration of local exhausts, particularly in the context of other respiratory activities like coughing or sneezing, where particles may have higher release velocities. Understanding how local exhaust systems effectively capture and remove these particles is crucial for infection control. Moreover, the findings of the presented research may also apply to similar smaller indoor spaces and typical heat loads, as studied. However, future research should also explore larger spaces like auditoriums, gyms, large meeting rooms, etc., as well as other non-typical heat gains. These conditions may yield different experimental findings compared to this study's results. Furthermore, the results of the present study are considered reliable due to their evaluation at the steady state, thus experiments were not repeated. However, this approach could be a potential limitation for experimental studies, particularly for time-based analysis and more dynamic settings.

5. Conclusions

In this study, the effectiveness of local exhaust systems in mitigating exhaled pollutants in a mock-up meeting room is evaluated. A combination of local exhausts with traditional air distribution methods like mixing and displacement ventilation is examined. The aim was to enhance contaminant removal efficiency. The main findings are summarized as follows:

- (1) Local exhaust systems with displacement air distribution remained more effective as compared to mixing. With displacement air distribution, it enhanced the local air quality (ε_p) near the infector by up to 35% and improved ventilation effectiveness (ε_v^b) in the meeting room's entire breathing zone by a maximum of 25%.
- (2) The addition of a table plenum increased ε_v^b up to 15% compared to configurations without it. Additionally, it improved local air quality, particularly for occupants farther from the displacement air supply inlet.

(3) The number of operational local exhaust points directly impacts air quality with displacement ventilation. However, in the mixing system, an operational local exhaust with the infector reduces the importance of other exhaust points. In real scenarios, where the infector is often unknown or asymptomatic, it is advisable to utilize all available local exhaust points to maintain optimal air quality.

Author Contributions: Conceptualization, R.K. and M.F.E.; methodology, S.K., P.M. and M.F.E.; investigation, M.F.E.; resources, S.K. and P.M.; data curation, M.F.E.; writing—original draft preparation, M.F.E. and W.Z.; writing—review and editing, R.K., S.K. and P.M.; visualization, M.F.E. and W.Z.; supervision, R.K. All authors have read and agreed to the published version of the manuscript.

Funding: The Higher Education Commission (HEC), Pakistan, extended a personal grant (HRD/OSS-III/2022/HEC/118) to Muhammad Farhan Ejaz for this investigation.

Data Availability Statement: The raw data supporting the conclusions of this article will be made available by the authors on request. The data are not publicly available due to privacy.

Acknowledgments: The study was conducted at Aalto University, Finland, with generous material support from the university. The authors express their gratitude to Petteri Kivivuori for his efforts in constructing the experimental setup for this investigation. Special thanks are also conveyed to Afzaal Ather for his valuable assistance and contributions to this article.

Conflicts of Interest: Author Panu Mustakallio was employed by the company Halton Oy. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

References

- 1. Su, R.; Obrenovic, B.; Du, J.; Godinic, D.; Khudaykulov, A. COVID-19 Pandemic Implications for Corporate Sustainability and Society: A Literature Review. *Int. J. Environ. Res. Public Health* **2022**, *19*, 1592. [CrossRef] [PubMed]
- Chinazzi, M.; Davis, J.T.; Ajelli, M.; Gioannini, C.; Litvinova, M.; Merler, S.; Piontti, Y.; Pastore, A.; Mu, K.; Rossi, L.; et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. *Science* 2020, 368, 395–400. [CrossRef] [PubMed]
- 3. Brooks, S.K.; Webster, R.K.; Smith, L.E.; Woodland, L.; Wessely, S.; Greenberg, N.; Rubin, G.J. The psychological impact of quarantine and how to reduce it: A Rapid review of the evidence. *Lancet* **2020**, *395*, 912–920. [CrossRef] [PubMed]
- 4. WHO. Considerations for Implementing and Adjusting Public Health and Social Measures in the Context of COVID-19: Interim Guidance; WHO: Geneva, Switzerland, 2023.
- 5. Sheikhnejad, Y.; Aghamolaei, R.; Fallahpour, M.; Motamedi, H.; Moshfeghi, M.; Mirzaei, P.A.; Bordbar, H. Airborne and aerosol pathogen transmission modeling of respiratory events in buildings: An overview of computational fluid dynamics. *Sustain. Cities Soc.* 2022, 79, 103704. [CrossRef] [PubMed]
- 6. Rabaan, A.A.; Al-Ahmed, S.H.; Al-Malkey, M.; Alsubki, R.; Ezzikouri, S.; Al-Hababi, F.H.; Sah, R.; Al Mutair, A.; Alhumaid, S.; Al-Tawfiq, J.A.; et al. Airborne transmission of SARS-CoV-2 is the dominant route of transmission: Droplets and aerosols. *Infez Med.* 2022, 29, 10–19.
- 7. Morawska, L.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Dancer, S.J.; Floto, A.; Franchimon, F.; Haworth, C.; Hogeling, J.; et al. Coronavirus Disease 2019 and Airborne Transmission: Science Rejected, Lives Lost. Can Society Do Better? *Clin. Infect. Dis.* 2023, 76, 1854–1859. [CrossRef] [PubMed]
- 8. Morawska, L.; Cao, J. Airborne transmission of SARS-CoV-2: The world should face the reality. *Environ. Int.* **2020**, *139*, 105730. [CrossRef] [PubMed]
- 9. Baboli, Z.; Neisi, N.; Babaei, A.A.; Ahmadi, M.; Sorooshian, A.; Birgani, Y.T.; Goudarzi, G. On the airborne transmission of SARS-CoV-2 and relationship with indoor conditions at a hospital. *Atmos. Environ.* **2021**, *261*, 118563. [CrossRef] [PubMed]
- 10. Robotto, A.; Civra, A.; Quaglino, P.; Polato, D.; Brizio, E.; Lembo, D. SARS-CoV-2 airborne transmission: A validated sampling and analytical method. *Environ. Res.* **2021**, 200, 111783. [CrossRef]
- 11. Nazaroff, W.W. Indoor aerosol science aspects of SARS-CoV-2 transmission. Indoor Air 2022, 32, e12970. [CrossRef]
- 12. Scientific Brief: SARS-CoV-2 Transmission. Available online: https://www.cdc.gov/coronavirus/2019-ncov/science/science-briefs/sars-cov-2-transmission.html# (accessed on 7 May 2021).
- 13. Tang, S.; Mao, Y.; Jones, R.M.; Tan, Q.; Ji, J.S.; Li, N.; Shen, J.; Lv, Y.; Pan, L.; Ding, P.; et al. Aerosol transmission of SARS-CoV-2? Evidence, prevention and control. *Environ. Int.* 2020, 144, 106039. [CrossRef]
- 14. Xu, S.; Zhang, G.; Liu, X.; Li, X. CFD modelling of infection control in indoor environments: A focus on room-level air recirculation systems. *Energy Build.* **2023**, *288*, 113033. [CrossRef]
- 15. Diep, F. The 5 biggest lessons we've learned about how coronavirus spreads on campus. In *The Chronicle of Higher Education*; NASPA: Washington, DC, USA, 2020; Volume 3.

16. Shen, J.; Kong, M.; Dong, B.; Birnkrant, M.J.; Zhang, J. Airborne transmission of SARS-CoV-2 in indoor environments: A comprehensive review. *Sci. Technol. Built Environ.* **2021**, *27*, 1331–1367. [CrossRef]

- 17. Qian, H.; Zheng, X. Ventilation control for airborne transmission of human exhaled bio-aerosols in buildings. *J. Thorac. Dis.* **2018**, 10, S2295–S2304. [CrossRef]
- 18. Li, Y.; Leung, G.M.; Tang, J.W.; Yang, X.; Chao, C.Y.H.; Lin, J.Z.; Lu, J.W.; Nielsen, P.V.; Niu, J.; Qian, H.; et al. Role of ventilation in airborne transmission of infectious agents in the built environment? A multidisciplinary systematic review. *Indoor Air* **2007**, 17, 2–18. [CrossRef]
- 19. REHVA. REHVA COVID-19 Guidance Document: How to Operate HVAC and Other Building Service Systems to Prevent the Spread of the Coronavirus (SARS-CoV-2) Disease (COVID-19) in Workplaces. In Federation of European Heating, Ventilation and Air Conditioning Associations (REHVA); REHVA: Ixelles, Belgium, 2021; Volume 3, Available online: https://www.rehva.eu/fileadmin/user_upload/REHVA_COVID-19_guidance_document_V4.1_15042021.pdf (accessed on 1 March 2024).
- 20. Zhao, X.; Liu, S.; Yin, Y.; Zhang, T.; Chen, Q. Airborne transmission of COVID-19 virus in enclosed spaces: An overview of research methods. *Indoor Air* **2022**, *32*, e13056. [CrossRef] [PubMed]
- 21. Kurnitski, J.; Kiil, M.; Mikola, A.; Võsa, K.-V.; Aganovic, A.; Schild, P.; Seppänen, O. Post-COVID ventilation design: Infection risk-based target ventilation rates and point source ventilation effectiveness. *Energy Build.* **2023**, 296, 113386. [CrossRef]
- 22. Hirnikel, D.J. Validation of a CFD model for temperature and particulate concentration in a test room with mixed air and displacement ventilation/Discussion. ASHRAE Trans. 2003, 109, 80.
- 23. Liu, S.; Koupriyanov, M.; Paskaruk, D.; Fediuk, G.; Chen, Q. Investigation of airborne particle exposure in an office with mixing and displacement ventilation. *Sustain. Cities Soc.* **2022**, *79*, 103718. [CrossRef]
- 24. Barbosa, B.P.P.; de Carvalho Lobo Brum, N. Ventilation mode performance against airborne respiratory infections in small office spaces: Limits and rational improvements for COVID-19. *J. Braz. Soc. Mech. Sci. Eng.* **2021**, *43*, 316. [CrossRef]
- 25. Bhagat, R.K.; Wykes, M.D.; Dalziel, S.B.; Linden, P. Effects of ventilation on the indoor spread of COVID-19. *J. Fluid Mech.* **2020**, 903, F1. [CrossRef]
- Yin, Y.; Xu, W.; Gupta, J.K.; Guity, A.; Marmion, P.; Manning, A.; Gulick, B.; Zhang, X.; Chen, Q. Experimental study on displacement and mixing ventilation systems for a patient ward. HVAC&R Res. 2009, 15, 1175–1191.
- 27. Tian, X.; Li, B.; Ma, Y.; Liu, D.; Li, Y.; Cheng, Y. Experimental study of local thermal comfort and ventilation performance for mixing, displacement and stratum ventilation in an office. *Sustain. Cities Soc.* **2019**, *50*, 101630. [CrossRef]
- 28. Nielsen, P.V.; Li, Y.; Buus, M.; Winther, F.V. Risk of cross-infection in a hospital ward with downward ventilation. *J. Affect. Disord.* **2010**, *45*, 2008–2014. [CrossRef]
- 29. Zhang, C.; Nielsen, P.V.; Liu, L.; Sigmer, E.T.; Mikkelsen, S.G.; Jensen, R.L. The source control effect of personal protection equipment and physical barrier on short-range airborne transmission. *J. Affect. Disord.* **2022**, 211, 108751. [CrossRef]
- 30. Su, W.; Yang, B.; Melikov, A.; Liang, C.; Lu, Y.; Wang, F.; Li, A.; Lin, Z.; Li, X.; Cao, G.; et al. Infection probability under different air distribution patterns. *J. Affect. Disord.* **2022**, 207, 108555. [CrossRef]
- 31. Danca, P.; Coşoiu, C.I.; Nastase, I.; Bode, F.; Georgescu, M.R. Personalized Ventilation as a Possible Strategy for Reducing Airborne Infectious Disease Transmission on Commercial Aircraft. *Appl. Sci.* **2022**, *12*, 2088. [CrossRef]
- 32. Lu, Y.; Oladokun, M.; Lin, Z. Reducing the exposure risk in hospital wards by applying stratum ventilation system. *J. Affect. Disord.* **2020**, *183*, 107204. [CrossRef]
- 33. Qin, C.; Zhang, S.-Z.; Li, Z.-T.; Wen, C.-Y.; Lu, W.-Z. Transmission mitigation of COVID-19: Exhaled contaminants removal and energy saving in densely occupied space by impinging jet ventilation. *J. Affect. Disord.* **2023**, 232, 110066. [CrossRef]
- 34. Cheong, C.H.; Park, B.; Ryu, S.R. Effect of under-floor air distribution system to prevent the spread of airborne pathogens in classrooms. *Case Stud. Therm. Eng.* **2021**, *28*, 101641. [CrossRef]
- 35. Morawska, L.; Tang, J.W.; Bahnfleth, W.; Bluyssen, P.M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; et al. How can airborne transmission of COVID-19 indoors be minimised? *Environ. Int.* **2020**, *142*, 105832. [CrossRef] [PubMed]
- 36. Curtius, J.; Granzin, M.; Schrod, J. Testing mobile air purifiers in a school classroom: Reducing the airborne transmission risk for SARS-CoV-2. *Aerosol Sci. Technol.* **2021**, *55*, 586–599. [CrossRef]
- 37. Sheraz, M.; Mir, K.A.; Anus, A.; Kim, S.; Lee, W.R. SARS-CoV-2 airborne transmission: A review of risk factors and possible preventative measures using air purifiers. *Environ. Sci. Process. Impacts* **2022**, 24, 2191–2216. [CrossRef] [PubMed]
- 38. Zhao, B.; Liu, Y.; Chen, C. Air purifiers: A supplementary measure to remove airborne SARS-CoV-2. *J. Affect. Disord.* **2020**, 177, 106918. [CrossRef]
- 39. Ng, Y.; Li, Z.; Chua, Y.X.; Chaw, W.L.; Zhao, Z.; Er, B.; Pung, R.; Chiew, C.J.; Lye, D.C.; Heng, D.; et al. Evaluation of the Effectiveness of Surveillance and Containment Measures for the First 100 Patients with COVID-19 in Singapore—January 2–February 29, 2020. MMWR. Morb. Mortal. Wkly. Rep. 2020, 69, 307–311. [CrossRef] [PubMed]
- 40. Bivolarova, M.P.; Melikov, A.K.; Mizutani, C.; Kajiwara, K.; Bolashikov, Z.D. Bed-integrated local exhaust ventilation system combined with local air cleaning for improved IAQ in hospital patient rooms. *J. Affect. Disord.* **2016**, *100*, 10–18. [CrossRef]
- 41. Dygert, R.K.; Dang, T.Q. Mitigation of cross-contamination in an aircraft cabin via localized exhaust. *J. Affect. Disord.* **2010**, 45, 2015–2026. [CrossRef]
- 42. Dygert, R.K.; Dang, T.Q. Experimental validation of local exhaust strategies for improved IAQ in aircraft cabins. *J. Affect. Disord.* **2012**, *47*, 76–88. [CrossRef]

43. Yang, J.; Sekhar, C.; Cheong, D.K.; Raphael, B. A time-based analysis of the personalized exhaust system for airborne infection control in healthcare settings. *Sci. Technol. Built Environ.* **2015**, *21*, 172–178. [CrossRef]

- Olmedo, I.; Sánchez-Jiménez, J.; Peci, F.; de Adana, M.R. Personal exposure to exhaled contaminants in the near environment of a patient using a personalized exhaust system. J. Affect. Disord. 2022, 223, 109497. [CrossRef]
- 45. Liu, W.; Liu, L.; Xu, C.; Fu, L.; Wang, Y.; Nielsen, P.V.; Zhang, C. Exploring the potentials of personalized ventilation in mitigating airborne infection risk for two closely ranged occupants with different risk assessment models. *Energy Build.* **2021**, 253, 111531. [CrossRef] [PubMed]
- 46. Yang, J.; Sekhar, S.C.; Cheong, K.W.D.; Raphael, B. Performance evaluation of a novel personalized ventilation-personalized exhaust system for airborne infection control. *Indoor Air* **2015**, 25, 176–187. [CrossRef] [PubMed]
- Ju, J.T.; Boisvert, L.N.; Zuo, Y.Y. Face masks against COVID-19: Standards, efficacy, testing and decontamination methods. Adv. Colloid Interface Sci. 2021, 292, 102435. [CrossRef] [PubMed]
- 48. Brienen, N.C.J.; Timen, A.; Wallinga, J.; Van Steenbergen, J.E.; Teunis, P.F.M. The Effect of Mask Use on the Spread of Influenza during a Pandemic. *Risk Anal.* **2010**, *30*, 1210–1218. [CrossRef] [PubMed]
- 49. Fischer, E.P.; Fischer, M.C.; Grass, D.; Henrion, I.; Warren, W.S.; Westman, E. Low-cost measurement of face mask efficacy for filtering expelled droplets during speech. *Sci. Adv.* **2020**, *6*, eabd3083. [CrossRef]
- 50. Saunders-Hastings, P.; Crispo, J.A.; Sikora, L.; Krewski, D. Effectiveness of personal protective measures in reducing pandemic influenza transmission: A systematic review and meta-analysis. *Epidemics* **2017**, *20*, 1–20. [CrossRef] [PubMed]
- 51. Matuschek, C.; Moll, F.; Fangerau, H.; Fischer, J.C.; Zänker, K.; van Griensven, M.; Schneider, M.; Kindgen-Milles, D.; Knoefel, W.T.; Lichtenberg, A.; et al. The history and value of face masks. *Eur. J. Med. Res.* **2020**, *25*, 1–6. [CrossRef]
- 52. Ahmad, F.; Wahab, S.; Ahmad, F.A.; Alam, M.I.; Ather, H.; Siddiqua, A.; Ashraf, S.A.; Abu Shaphe, M.; Khan, M.I.; Beg, R.A. A novel perspective approach to explore pros and cons of face mask in prevention the spread of SARS-CoV-2 and other pathogens. *Saudi Pharm. J.* 2021, 29, 121–133. [CrossRef]
- 53. Matuschek, C.; Moll, F.; Fangerau, H.; Fischer, J.C.; Zänker, K.; van Griensven, M.; Schneider, M.; Kindgen-Milles, D.; Knoefel, W.T.; Lichtenberg, A.; et al. Face masks: Benefits and risks during the COVID-19 crisis. *Eur. J. Med. Res.* **2020**, 25, 1–8. [CrossRef]
- 54. Shen, J.; Kong, M.; Dong, B.; Birnkrant, M.J.; Zhang, J. A systematic approach to estimating the effectiveness of multi-scale IAQ strategies for reducing the risk of airborne infection of SARS-CoV-2. *J. Affect. Disord.* **2021**, 200, 107926. [CrossRef]
- 55. Geiss, O. Effect of Wearing Face Masks on the Carbon Dioxide Concentration in the Breathing Zone. *Aerosol Air Qual. Res.* **2021**, 21, 200403. [CrossRef]
- 56. Patel, S.; Majmundar, S. Physiology, Carbon Dioxide Retention. In *StatPearls*; StatPearls Publishing: Treasure Island, FL, USA. Available online: https://pubmed.ncbi.nlm.nih.gov/29494063/ (accessed on 1 March 2024).
- 57. Suen, L.; Guo, Y.; Ho, S.; Au-Yeung, C.; Lam, S. Comparing mask fit and usability of traditional and nanofibre N95 filtering facepiece respirators before and after nursing procedures. *J. Hosp. Infect.* **2020**, *104*, 336–343. [CrossRef] [PubMed]
- 58. Pleil, J.D.; Wallace, M.A.G.; Davis, M.D.; Matty, C.M. The physics of human breathing: Flow, timing, volume, and pressure parameters for normal, on-demand, and ventilator respiration. *J. Breath Res.* **2021**, *15*, 042002. [CrossRef] [PubMed]
- 59. Laporthe, S.; Virgone, J.; Castanet, S. A comparative study of two tracer gases: SF6 and N₂O. *J. Affect. Disord.* **2001**, *36*, 313–320. [CrossRef]
- 60. Wu, Y.; Tung, T.C.; Niu, J.-L. On-site measurement of tracer gas transmission between horizontal adjacent flats in residential building and cross-infection risk assessment. *J. Affect. Disord.* **2016**, *99*, 13–21. [CrossRef] [PubMed]
- 61. Zhao, W.; Lestinen, S.; Kilpeläinen, S.; Yuan, X.; Jokisalo, J.; Kosonen, R.; Guo, M. Exploring the potential to mitigate airborne transmission risks with convective and radiant cooling systems in an office. *J. Affect. Disord.* **2023**, 245, 110936. [CrossRef]
- 62. Mundt, M.; Mathisen, H.M.; Moser, M.; Nielsen, P.V. *Ventilation Effectiveness: Rehva Guidebooks*; Rehva Guidebook, no. 2; Federation of European Heating and Ventilation Association: Brussels, Belgium, 2004.
- 63. Zhou, Q.; Qian, H.; Ren, H.; Li, Y.; Nielsen, P.V. The lock-up phenomenon of exhaled flow in a stable thermally-stratified indoor environment. *J. Affect. Disord.* **2017**, *116*, 246–256. [CrossRef]
- 64. Flynn, M.R.; Ellenbecker, M.J. Capture Efficiency of Flanged Circular Local Exhaust Hoods. *Ann. Occup. Hyg.* **1986**, *30*, 497–513. [CrossRef]
- 65. Huang, R.F.; Chen, J.L.; Chen, Y.-K.; Chen, C.-C.; Yeh, W.-Y.; Chen, C.-W. The Capture Envelope of a Flanged Circular Hood in Cross Drafts. *Am. Ind. Hyg. Assoc. J.* **2001**, *62*, 199–207. [CrossRef]
- 66. Cheong, K.; Phua, S. Development of ventilation design strategy for effective removal of pollutant in the isolation room of a hospital. *J. Affect. Disord.* **2006**, *41*, 1161–1170. [CrossRef]
- 67. Ai, Z.; Mak, C.M.; Gao, N.; Niu, J. Tracer gas is a suitable surrogate of exhaled droplet nuclei for studying airborne transmission in the built environment. *Build. Simul.* **2020**, *13*, 489–496. [CrossRef] [PubMed]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.