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ABSTRACT 

Merchant vessels navigating the Baltic Sea in winter often require assistance from icebreakers 
to create safe pathways and improve navigational efficiency. Given icebreaker resources are 
limited, assistance decision is important. The requirement for assistance depends on multiple 
factors, including ice conditions, weather, and ship characteristics. In this paper, we explore 
how data-driven techniques can enhance the current understanding of factors influencing the 
decision-making of icebreaker assistance. Firstly, the paper identifies multiple factors from 
previous winter navigation operations research. Then different data sources containing traffic 
data, environmental conditions, and ship characteristics are explored to find data about the 
identified factors. Finally, an integrated database containing these factors is established. Using 
a multi-step clustering method, data points in the database are classified as either assistance or 
independent navigation. Preliminary statistical analysis of the factors is performed to 
understand how they vary between independent navigation and assistance cases. Results show 
that weather and ship factors do not significantly vary compared to ice factors. Among the ice 
factors, ridge ice thickness and level ice concentration vary the most between independent 
navigation and assistance. These findings are aligned well with empirical knowledge and 
previous studies. The database and the empirical findings in this paper can provide insights for 
quantifying factor effects on the decision-making of icebreaker assistance and support the 
intelligent decision-support system for winter navigation. 
KEYWORDS: Icebreaker assistance; Merchant vessels; Statistical analysis; Factor analysis; 
ice-covered waters; Baltic Sea.  

INTRODUCTION 

Icebreaker (IB) assistance operation is significant for winter navigation safety and efficiency 
in the Baltic Sea region (BSR), which is necessitated due to the presence of ice (Zhang et al., 
2019). IB assistance is provided to create ice channels for the merchant ship(s), to reduce the 
risk of it getting stuck in ice or damage on the hull. For ships with low engine power and new 
ships with Energy Efficiency Design Index (EEDI), IB assistance operations are important 
(Bergström & Kujala, 2020). IB operations in BSR are managed by the Finnish Swedish Winter 
Navigation System (FSWNS) (Valdez Banda et al., 2016). The IB captains decide whether a 
merchant vessel in BSR needs to be assisted in accordance with the regulations and their own 
expert knowledge (BIM, 2011). However, to develop a data-driven intelligent decision support 
system for winter navigation, quantitative criteria should be available as input to instruct a 
machine.  
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Previous studies have directly assessed or indirectly referred to factors that trigger the request 
of IB assistance. Existing factors can be classified in three broad categories, ice factors, ship 
characteristics, and weather factors (Lu et al., 2021). For example, studies focusing on ship 
performance in ice quantitatively assessed how ice variables impact ship hull in ice, referring 
to a situation in which IB assistance would be needed (Kuuliala et al., 2017). Weather factors 
and ice factors are preferably discussed simultaneously by studies aiming to assess navigational 
risks (e.g., besetting risk), indicating a situation leading to the request of IB assistance (Valdez 
Banda et al., 2016). To plan a route on ice or simulate a winter navigation system, the threshold 
for launching the IB assistance is commonly a minimum ship speed, rather than a reflection of 
actual operational conditions (An et al., 2022). However, when considering decision-making 
of winter navigation operations, the information about influencing factors is limited. A holistic 
identification of influencing factors is still needed to guide a data-driven method to better 
understand the decision-making of winter navigation operations.  
Thus, the primary goals of the current paper are to identify factors that lead to the need of IB 
assistance and to figure out how a data-driven method can enhance the current understanding 
of those factors. To achieve the goals, a list of factors that impact decision-making is identified 
by reviewing previous studies in the field of winter navigation. Using the list as a guide, data 
presenting the factors are collected from different sources, and a novel database is established 
to quantitatively present the operational conditions. The approach is to employ a multi-step 
clustering model to label IB assistance and independent cases (Liu et al., 2022). The database 
consists of IB assistance and independent navigation scenarios based on different data sources, 
including traffic data, environmental data, and ship information. Preliminary statistical analysis 
is conducted, and the outcomes give trend values of the factors leading to the request of IB 
assistance. 

LITERATURE REVIEW FOR FACTOR COLLECTION 

This paper starts with a brief review of studies that considered factors that influence the request 
of IB assistance. To figure out search queries to get literature, topics mentioning the IB 
assistance consideration are sorted out. They can be described from four aspects. Firstly, IB 
assistance can help merchant ships sailing through challenging ice fields. Thus, to manage risk 
and improve navigations safety, IB assistance would be needed. With the help of IB assistance, 
ice resistance on the ship hull can be reduced, reducing the risk of getting damaged on the hull 
and optimizing ice-going ship design. Studies involving the context of ship performance 
investigation in ice are considered for the literature search. Then, winter navigation efficiency 
can be optimized with the help of IB assistance. On one hand, efficient decision-making of IB 
assistance can optimize icebreaker resources and optimize the waiting time of merchant vessels. 
On the other hand, the requirement of ship’s output power can be reduced by being assisted by 
an IB. Finally, route planning in ice contributes to the influencing factors investigation 
regarding the decision-making of IB assistance. Thus, as shown in Table 1, search queries cover 
the topics of winter navigation safety, ship performance in ice, winter navigation efficiency, 
and route planning in ice.  
The literature search was performed in December 2022, using Web of Science and Scopus as 
data sources. By screening titles and keywords, all English-written articles in the search results 
referring to factors linked to the need of IB assistance are deemed as relevant articles for further 
review. Initially, 226 articles were selected, including scientific journal papers, conference 
papers, book chapters, and reports. The next step was to screen the abstract and the part 
describing IB assistance in the full-length paper, 111 articles were left in the article database 



 

after the filtering.  
Table 1. Search queries for literature collection 

Topics Search queries 
Topic 1 TS = (‘Ice’ OR ‘Winter navigation’ OR ‘Polar’ OR ‘Northern Sea’ OR ‘Baltic Sea’) 
Topic 2 TS = (‘Efficiency’ OR ‘Safety’ OR ‘Polar’ OR ‘Risk’) 
Topic 3 TS = (‘Ship*’ OR ‘Vessel’ OR ‘Maritime’ OR ‘Marine’) 

Topic 4 TS = (‘Beset*’ OR ‘Stuck’ OR ‘Decision mak*’ OR ‘Ship performance’ OR ‘Ice resistance’ OR ‘Ice 
loads’ OR ‘Route’ OR ‘Path’ OR ‘Navigation’ OR ‘Maneuvering’ OR ‘Engine’ OR ‘Fuel’) 

Note: 

TS presents topic search 
‘AND’ is used between different topics.  
Ship* denotes ship or shipping.  
Beset* denotes beset or besetting or besetment. 
mak* denotes make or making. 

As shown in Figure 1, there are 20 factors classified into four categories: ice factors, weather 
factors, ship factors, and human factors. These factors are mentioned in different topics. Ice 
factors and ship factors have been investigated by studies focusing on safety or ship 
performance in ice using theoretical or semi-empirical methods. Route planning studies tend 
to consider a specific ship type and ice thickness as a threshold to refer to the IB assistance 
plan. Some valuable papers aim to develop on board navigation assistant tools (Frydenberg et 
al., 2021). Factors, such as wind, ship type, and ice thickness, are indirectly mentioned. Wind 
is considered by various topics, as it can not only force ice drift and compression but also 
impact ship navigational performance. Almost all the responses of human factors come from 
the topic of risk assessment. Human factors are complex, which can be affected by ice, weather, 
technical issues on board, and the experience level of the expert (Xu et al., 2021). 
Among ice factors, ice concentration, and thickness are the two most frequently mentioned in 
the studies. Ice concentration represents a fraction of a measured area covered by ice, and ice 
can be categorized into diverse groups (e.g., ice new, grey ice, etc.) according to ice thickness 
(Milaković et al., 2019).  The condition with high ice concentration and thick ice would 
increase the navigation difficulty of merchant vessels, leading to a high probability of being 
assisted by IB. Ice type is another influencing factor, which is described specifically in articles. 
It can be classified into level ice, ridge ice, and rafted ice based on the ice appearance. All these 
types of ice can move under the force of the wind, forming dynamic ice. Usually, dynamic ice 
moving perpendicular to the midship section is considered as hazardous situation, such as high 
risk of getting stuck, indicating the need of IB assistance (Lu et al., 2021). Ice drift can be 
referred to ice deformation. Ice would deform from the undeformed ice (e.g., level ice). Based 
on the different thicknesses of deformed ice, thin deformed ice would be called rafted ice, while 
thicker one would be called ice ridges (Kubat et al., 2016). Ice compression or pressure is 
another factor. Although its definition is still imprecise, ice ridges and wind have been 
identified as the main forces leading to ice compression (Kubat et al., 2012). It is assessed to 
investigate ship performance in ice or predict besetting probability (Pärn et al., 2007). Ice 
distribution is mentioned once in route planning research (Wang et al., 2021). This terminology 
can be presented by the location of an ice-covered area using latitude and longitude.  
For ship factors, ice class is the most frequent. Ice class refers to the icebreaking capacity of a 
ship. In BSR, there are five ice classes, IA SUPER (IAS), IA, IB, IC, and II. IAS has the 
strongest icebreaking capability, followed by IA. Ships with these two ice classes can be 
assisted without restrictions in severe ice conditions. While for IB, IC, and II,  there are 
regulations restricting these ice classes to enter the ports in BSR during peak winter due to their 
low ice-going capacity (BIM, 2011). Ship types, dimensions, and deadweight have been 



 

statistically analyzed by studies focusing on risk management in ice (Valdez Banda et al., 2015). 
Different accident rates of different ship types can refer to the impact of ship type on the need 
of IB assistance (e.g., loose a ship stuck in ice). Engine power partly presents the ship’s ice-
going capability. Ships being assisted by IB can reduce the power output when sailing in ice. 
To balance the navigation cost and efficiency, IB assistance can be used to help ship proceeding 
with navigation in ice (Kondratenko et al., 2021).  

 
Figure 1. Factors collected from literature until the end of 2022 

For weather factors, there are five factors identified by the literature search. The wind is the 
factor considered by ice movement investigation (e.g., the formation of ice compression) and 
navigational risk assessment (e.g., the risk of besetting in ice because of ice movement forced 
by wind) (Lensu et al., 2013). The remaining factors are qualitatively considered by risk 
assessment studies (e.g., the probability of getting beset) (Fu et al., 2016).  

FRAMEWORK FOR STATISTICAL ANALYSIS 

Based on the identified factors, to quantitatively understand these variables, this paper proposes 
a framework to establish a database presenting assistance and independent navigation and 
analyze the variables. The framework includes three steps, as shown in Figure 2. The 
framework is now described in detail. 

 
Figure 2. Flowchart for statistical analysis of presenting variables 



 

Step I. Multi-source data integration: To gather data about the identified factors in Figure 1 , 
multiple data sources such as traffic information, environmental conditions, and ship 
characteristics need to be integrated. The traffic data in the current study are from winter 2018. 
The ice condition during this winter is adequate to present a typical average ice season. To 
present traffic scenarios, Automatic Identification System (AIS) data is used. Information on 
dynamic positions corresponding to timestamps and Marine Mobile Service Identity (MMSI) 
is used in this study. It is notable that as shown in Figure 1, human factor is one of the 
influencing factors according to the literature review. However, given that this study aims to 
explore how data-driven techniques can improve decision-making, the human factor is beyond 
the scope of the paper.  
According to the guidance of factors in Figure 1, factors collected from multi-data sources, 
including ship factors (SF), ice factors (IF), and weather factors (WF) are shown in Table 2. To 
collect SFs, information from Icebreaker Net (IBNet) is used. IBNet is a system jointly 
operated and maintained by the Finnish Transport Infrastructure Agency (FTIA) and Swedish 
maritime administration to coordinate icebreaking operations (BIM, 2011). From IBNET, all 
the 5 SFs in Figure 1, namely ship ice class, dimension (length and width), type, engine power, 
and deadweight, can be obtained and they are included in Table 2.  
To collect ice factors (IF) and weather factors (WF), Helsinki Multi-category sea-ice model 
(HELMI) is used. The model includes numerical gridded environmental data, such as various 
ice variables and other weather factors. Variables from HELMI are expressed in a 
latitude/longitude matrix with one nautical mile grid size and updated hourly. Among the 5 
WFs identified in Figure 1, wind speed, snow thickness, and air temperature are readily 
available in HELMI and are included in Table 2. Although visibility and currents are WFs 
mentioned frequently in risk management, data on these two variables are currently not 
available. 
HELMI model quite accurately estimates ice conditions as validated by real-life observations 
(Haapala et al., 2005). Ice distribution can be presented using the spatial matrix. In HELMI, 
undeformed ice presents level ice and deformed ice presents ridge ice and rafted ice. When ice 
deforms from the level ice, ridge ice and rafted ice is classified by different thickness (Haapala 
et al., 2005). Thus, undeformed ice concentration represents concentration of level ice, while 
deformed ice concentration demonstrates the concentration of ridge and rafted ice. Instead of 
having general ice concentration and ice thickness as shown in Figure 1, through HELMI more 
specific data such as undeformed and deformed ice concentration and thickness of level, ridge, 
and rafted ice can be obtained and are included in Table 2. However, ice compression, dynamic 
ice, and drift ice cannot be directly obtained from HELMI. Drift ice refers to ice floe or small 
pack ice, which can affect ice loads on ship hull. When there is wind as a force to move drift 
ice, dynamic ice appears. To our knowledge, currently there is no data source available to 
accurately obtain information on ice compression and dynamic ice. However, the wind speed 
in the WF category partially mediates this issue. This is because ice speed is highly correlated 
with wind speed, and ice compression is also mainly driven by wind and ice ridges (Pärn et al., 
2007).  
To integrate traffic data with ship characteristics, the MMSI index is used to bridge the relevant 
information from AIS data and ship characteristic data. Ice and weather variables are integrated 
with the temporary and spatially nearest AIS position message to integrate dynamic ship 
positions with corresponding ice conditions. In this way, the spatial and temporal integration 
accuracy is of the order of the grid size of ice variables or better. Lensu & Goerlandt, 2019 
indicated that uncertainties in this integration method come almost exclusively from the 



 

model's inaccuracy.  
Table 2. Independent variables used in the analysis 

No Factors from the integrated dataset No Factors from the integrated dataset 
IF 1 Undeformed ice concentration (in tenths) WF 3 Wind speed (m/s) 
IF 2 Deformed ice concentration (in tenths)  SF 1 Ship length (m) 
IF 3 Real thickness of level ice (m) SF 2 Ship width (m) 
IF 4 Real thickness of ridge ice (m) SF 3 Ship engine power (Kw) 
IF 5 Real thickness of rafted ice (m) SF 4 Ship deadweight (T) 
WF 1 Real snow thickness	(m) SF 5 Ship ice class 
WF 2 Air temperature (°C) SF 6 Ship type 
Note: IF presents Ice Factor. WF presents Weather Factor. SF presents Ship Factor. 

Step II. Different navigation operation labeling: After the data integration, each data point 
reflects traffic information in actual operational conditions. However, the data points are not 
classified as assistance or independent cases by default and labelling needs to be done. Labeling 
assistance case is the process of identifying assistance cases based on big data and adding a 
label indicating that the identified data point presents either an assistance case or an 
independent case. Our previous study (Liu et al., 2022) adopted a multi-step clustering method 
to identify assistance cases and validated the outcomes using the IBNet assistance records. 
Details can be referred to Liu et al., 2022.  
Step III. Data filtering: The number of independent navigation cases is much greater than that 
of assistance cases in BSR. To select appropriate independent cases for factor analysis, there 
are two constraints to be followed. First, to ensure smooth and safe winter navigation, the 
minimum deadweight and ice class of merchant vessels entitled to IB assistance are mandatory, 
which is regulated by FSWNS. Ships proceeding with independent navigation are supposed to 
reach the same deadweight and ice class requirement as assistance ones, ensuring the 
consistency of data points. Generally, the minimum deadweight for ships entering the Baltic 
Sea area is set to 1300 DWT. For the ice class, depending on ports, the minimum ice class 
varies from IB, IC to II (TRAFI, 2011). Thus, only merchant vessels larger than 1300 DWT 
and ice class higher than II are included. Second, 98% percent of assistance cases happened 
63°𝑁  and above in the study period. Thus, to keep navigational areas of assistance and 
independent operations comparable, 63°𝑁 northwards is used to filter independent merchant 
ship voyages. Further, types of assisted ships within the study period include bulk, container 
ship, general cargo, RoRo cargo, and tankers. For data consistency purposes, ship types are 
used to further filter independent cases. 
To ensure the integrity and validity of the established dataset, data cleaning is further conducted 
by checking each data point in the database. Data points with missing information, such as 
missing ship deadweight and unavailable ice data at a certain position, and obvious outliers are 
removed from the dataset. To avoid a skewed class proportion in the classified database during 
the variable analysis procedure, random under-sampling is employed (Brownlee, 2020). The 
same number of independent data points can be selected as that of assistance data points.  

RESULT AND ANALYSIS 

Based on the framework proposed above, a database presenting assistance and independent 
operations was established, and variables were preliminarily analyzed. 

Database of Assistance And Independent Navigation  
According to the method introduced above, this study established a new winter navigation 



 

database covering an average winter month in 2018. As shown in Figure 3, after data integration, 
each data point includes 14 variables as influencing variables described in Table 2. The label 
refers to operation mode categories (assistance operation or independent navigation) assigned 
in the data labeling step. Based on the method in Liu et al., 2022, 321 trajectories were 
classified and validated as assistance cases and 33231 cases were independent. Among 321 
trajectories, there are 6535 data points included. After selecting independent cases and filtering 
missing information and outliers in step III, there were 63900 data points reserved in the dataset, 
including 5899 assistance and 58001 independent points. Figure 3 shows the balanced dataset 
obtained by random under-sampling method, and 11798 points were kept in the dataset. It is 
observed that the variable distribution of different navigation modes varies significantly, 
specifically for ice variables. For ship variables, IB, IC, and II ice classes ships visited BSR 
less frequently during the study period compared to ships with IAS and IA ice classes. To 
further obtain the diverse operation conditions experienced by distinct ice classes, a preliminary 
statistical analysis was conducted. The results are demonstrated in the following section.  

 
Figure 3. Variables distribution of the database of assistance and independent operations 

Preliminary Analysis of Variables  
Based on the established database, the mean values give insight into the central measures of 
the variable distribution. Figure 4 shows the mean values of variables for assistance and 
independent navigation. Figure 4(a) shows the observations of ships with IA ice class, Figure 
4(b) shows the observations of ships with IA ice class, and Figure 4(c) shows these of ships 
with other ice classes. The indicators of each variable can be referred to in Table 2.  
For all ice classes, ice factors show the most significant difference between assistance and 
independent navigation compared to weather and ship factors. For ships with IAS ice class, 
compared to conditions of independent navigation, different ice types, concentration, and 
thickness all demonstrate significant changes. The undeformed ice concentration is 0.89 which 
is around 20% higher than that during independent navigation. Deformed ice concentration is 
39% higher during assistance than that during independent navigation. The ice thickness is 
around 20% thicker during assistance compared to the thickness during independent navigation. 
For ships with IA ice class, ice conditions during assistance are more severe compared to that 



 

during independent navigation, and the general trend is similar to that for IAS ships. Compared 
to ships with high ice class, low ice class ships tend to navigate in ice conditions where ridge 
ice is thinner even being assisted by IB. The deformed ice concentration that the low ice class 
has experienced is lower than that of the high ice classes. This finding is aligned with empirical 
knowledge and previous knowledge. Coverage and height of ice ridge pose threat to navigation, 
which is more hazardous for ships with low ice-breaking capability (Kubat et al., 2015). Low 
ice class ships are preferable to be assisted before reaching such severe ice conditions.  

   

 
Figure 4(a). Observations of IAS.  Figure 4(b). Observations of IA. Figure 4 (c). Observations of others. 

Figure 4. Mean value distributions of each factor regarding different ice classes 

CONCLUDING REMARKS AND FUTURE WORK  

By reviewing existing articles covering four different topics, factors influencing the 
requirement of IB assistance were identified and discussed. This paper then presented these 
identified factors using variables defined from data analytics. Based on our previous data 
mining study (Liu et al., 2022), a novel database with examples from distinct navigation modes 
was established for the first time. 
Concluding Remarks 
Decision-making in winter is complex, involving frequent and recurring analysis of multiple 
factors. The big data available in current times from different sources can be a useful aid in 
guiding experts to make safer and more efficient decisions if analyzed correctly. The enlisting 
of factors and the creation of the database described in this article is the first step in advancing 
data-driven decision support. Information regarding factors influencing operations is scattered 
across literature and industry sources. This work attempts to combine insights across these 
multiple sources to provide academics and end users with a comprehensive and exhaustive 
source for all known influencing factors. This lays the foundation for building a data-driven 
decision support system. Preliminary statistical analysis conducted in this work shows that 
inferences can be made regarding ship operational modes based on the magnitude of statistical 
parameters. The current results are aligned well with the previous studies and empirical 
knowledge. Ice concentration and thickness vary more significantly between the two 
navigation categories compared to weather and ship factors. Factors perform differently for 
ships with different ice classes. Further investigation including deeper statistical and 
correlation analysis would help gauge the effectiveness of these parameters in predicting 
operational modes.  



 

Future Work 
This study is part of an ongoing project on prediction of IB assistance requirements using 
machine learning methods. The current study introduces the concept of a data-driven 
framework to understand winter navigation operations. The immediate extension of this study 
is to quantify the effect of each influencing factor on the decision-making in BSR based on the 
established database. Another important extension of this study is to distinguish the effects of 
factors for specific ship ice classes. This quantitative knowledge can support precise decision-
making regarding ships with different icebreaking capabilities. In the near future, the analyzed 
influencing factors would be adopted as inputs to supervised machine learning models. A 
comparative prediction study would be conducted to explore to what extent emerging 
techniques can contribute to improving efficient and safe decision-making of winter navigation, 
such as icebreaker scheduling optimization and winter navigation efficiency improvement. 
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