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We have studied quantum wires using the Green’s function technique within density-functional theory,
calculating electronic structures and conductances for different wire lengths, temperatures, and bias voltages.
For short wires, i.e., quantum point contacts, the zero-bias conductance shows as a function of the gate voltage
and at a finite temperature a plateau at aroun®g.7G,=2€°/h is the quantum conductangd@he behavior,
which is caused in our mean-field model by spontaneous spin polarization in the constriction, is reminiscent of
the so-called 0.7 anomaly observed in experiments. In our model the temperature and the wire length affect the
conductance—gate-voltage curves similarly as in experiments.

DOI: 10.1103/PhysRevB.70.233308 PACS nuni®er73.63.Nm, 73.21.Hb

Interesting two-dimensiong2D) nanostructures can be In this work we use DFT to investigate the spontaneous
fabricated at semiconductor interfagesg., GaAs/AlGaAs  spin polarization and its consequences for the conduction in
using lithographic techniques and gate electrodes. For exQW'’s. In contrast to the model Hamiltonian studies we can
ample, quantum wiresQW’s) and quantum point contacts take the actual geometry and the effects of the gate potential
(QPC’y are laterally narrow electron pathways connectingdirectly into account. The use of the Green’s function tech-
two (infinite) electrodes. In the regime of ballistic electron nique allows us to study real open systems with infinite elec-
transport the conductance of QW’s and QPC'’s is quantized itrodes even in the nonequilibrium case under a finite bias
steps ofG,=2¢e?/h. However, QPC'’s exhibit as a function of voltage. However, we keep the model geometry simple in
the gate voltage also the so-called 0.7 anomaly which is arder to obtain physically transparent results and we study to
small plateau in conductance arouf@7-0.5G,.! The be- what extent the mean-field DFT model can describe the ex-
havior of this plateau as a function of temperature, magnetiperimental findings. The previous papers have typically con-
field, and bias voltage has been intensively studiéd. centrated on one QPC or QW structure whereas we study

There are several explanations for the 0.7 anomaly. In theystematically the influence of the QW geometry, the tem-
Kondo model an unpaired electron is localized at the @PC. perature, and the bias voltage.

The spin coupling to the electrons in the leads results in a Below we use in the equations effective atomic units
high density of states, a Kondo resonance, at the Fermi levelvhich are derived by setting=#=m,=m*=e=1. m* and €

This enhances conductance around the zero bias voltage. Thee the relative effective electron mass and the relative di-
Kondo model seemingly explains the conductance plateauglectric constant, respectively. For GaAs =0.067 ande

and their behavior as a function of temperature and externat 12.7 and the effective atomic units of length and energy are
magnetic fiel® Another explanation is provided by the a,=10.0307 nm andHa*=11.3079 meV, respectively. We
semiempirical model by Reillgt al.” As the electron density use these relations to convert the model parameters and re-
at the QPC increases controlled by a gate voltage a spin gaults to values comparable with real systems.

opens and the electron gas polarizes. As a result a plateau Our quasi-2D model for a QW is shown in Fig. 1. The
around(0.7—-0.9G, is seen in the conductanéélhe spin-  calculation ared) consists of the QW and parts of the elec-
polarization model has also been adopted by Berggren and
Yakimenké@ and Starikov et al? They used density-
functional theoryDFT) to calculate the electron density and
the conductance as a function of the gate voltage for a real-
istic QPC model. In addition to the ground-state solution
Starikovet al. found at certain gate voltages also metastable
states which they used to interpret the temperature depen-
dence of the 0.7 anomaly. Moreover, Meiral® and Hirose

et al® reported DFT calculations devoted to modeling the
QPC resonance states needed in the Kondo model. Despite
the common feature of the spontaneous spin polarilzatlon, the FIG. 1. 2D quantum wire between two electrodes. The gray
results of these DFT models vary remarkably. In this contextareas denote the rigid positive background charge of the electrodes.
it is interesting to note that also recent measurements utilizfhe electrodes continue to infinity outside the calculation region.
ing the resonant interaction between two QW’s show evi-The uniform background charge density is varied in the black wire
dence of localized moment formation in a 2D constriciBn. region in order to model the effects of the gate voltage.
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trodes. The semi-infinite electrodes include the positive
background charge with the constant density of(a}P?
~2x 10e/cn?, which is a typical experimental value for = 9
the 2D electron gas at the interface, and the neutralizing 2D & 3¢
electron gas with the densip(r). The electron density deep
in the electrodes in the regioiy ;r is assumed to coincide 0 ; 67
with that in an infinite uniform wire. The QW between the 0 x(2;)
electrodes is also modeled using a rigid uniform positive
background chargéhe black region in Fig. )1 We vary this ¢
positive charge density in order to mimic the effects of a gate .
voltage, i.e., we define the gate voltage as the Coulomb po- 5
tential due to this charge at the midpoint of the QW. At both <
sides of the electrodes and the wire we include enough
empty vacuum, and the electron density is required to vanish
at the boundariesQg1/p>.

We employ the DFT within the local density
approximatioftt (LDA) for the electron exchange and corre-

lation and calculate the electron density using Green’s func- FIG. 2. (@ T(_)tal electron density an_ﬁ_b) difference between the
tions as spin-up and spin-down electron densities at zero temperature for a

system with dimensionS=5ay, L= 7a,, W=20a,, A=47a, (see Fig.
1) and for the gate voltage of 12.4 mV.

H
i
IS
i

x(ag)

-1 *
p(r) = —f Im[G=(r,r; »)]dw. (1)
2m) ., increasing the bias voltage slightly and calculating the de-
. , . rivative dI/dVsyq numerically.
Above, G<(r,r;<_u) IS the so-called lesser Green's function We have i?%plementedythe nonequilibrium DFT scheme
and the integration is over all energy values.(r,r;w) has sing the finite-element method as explained in our p&ber.
to be solved self-consistently with respect to the electronye se 2D high-order polynomial ba&ksip to the fourth
density and the effective potential and using open boundaryger in order to reduce the basis size. In a typical calculation

conditions ati(), r (see, e.g., Ref. 2The effective poten-  ho hymber of basis functions needed to reach sufficient ac-
tial consists of the usual Coulomb potentials due to the POSizyracy is ~2800 for high-order polynomials compared to
tive and negative charge densities and the exchange-gs5og for low-order polynomials.

correlation potential within the LDA. It may also include a  \\e have studied the electron structures of several QW's
ramp potential which takes into account a possible bias voltys  yifrerent lengths [L=(5—lOa€)] and widths [S

age between the eIe_ctrodes. The. scheme is computatiqna[j;l(S_lQag] and determined their conductance as a function
much more demanding than solving for the wave functions

L : . of the gate voltage. The width of the electrodés 20a,
of a finite system. However, it has the important advantageased isgclearly Iagrger than those of the QW's. Theo\?voidest

Lhoi[;:jn;rfl-ilgr? dif;fgrfstsa?]:je t\éaa?ltsr?(lengfl}f/eigﬂ‘ iufeinﬁ?etgieagp;rbws show the typical conductance staircase as a functio_n of
calculated self-consistently in nonequilibrium fhe gate voltage. For the narrowest QW'’s our model predlcts
o , , ' prominent electron resonance states. They are evident as
For a finite bias the electric current is calculated as peaks in the local density of statdsDOS) (see Fig. 5 be-
1(” low). They can be thought to result as interference of the
I= —J T(w)[f(w) - fr(w)]dw, (2)  waves transmitted and reflected at the ends of the QW but,
on the other hand, the resonances contain also characteristics
where the Fermi functionf andfg are shifted with respect ©of the DOS in quasi-one-dimensional wires. The resonance
to each other by the bias voltayey T(w) is the tunneling Peaks are broader in short and wide QW's than in long and

probability and it is calculated using the Green’s functions.thin QW's, because short QW’s are more strongly connected
In the zero-bias limif, (w)=fr(w)=f(w) and one obtains the o the electrodes. If the resonance peaks are narrow enough,

-0

linear-response conductance as a spontaneous spin polarization occurs in a limited range of
gate voltages. One solution with spin polarization in the QW

G- lfw T(w)df(w)dw (3 IS shown in Fig. 2 which gives the total electron density and

m)_, dw ' the difference between the spin-up and spin-down densities.

Meir et al,® Berggren and Yakimenkband Starikovet al.
At zero temperature the conductance is simply;), where  have also found spin-polarized solutions in their DFT calcu-
w; is the Fermi energy. At a finite temperature also electrorations for QPC's. They used models which correspond most
states with energies near the Fermi level contribute to thelosely to the shortest QW's of our calculations. The broad
conductance, as the derivative of the Fermi functf¢m) resonances found by Meaet al. and the nonappearance of
differs from the § function. A finite temperature influences the resonances in the calculation by Starilebal. are there-
the solution also through the electron density. Below wefore in agreement with the trend of our results.
show also differential conductances corresponding to given Below we are concerned mainly with the conductance
bias voltages at zero temperature. We determine them hylateaus below G, and therefore we discuss only narrow
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FIG. 4. Conductance as a function of the gate voltage for QW’s
with the width S=5a, and lengthsL =6, (wire A), 7a, (wire B)
and 830 (wire C) at the temperatures of 0 Ksolid curve, 2 K
(dashed curvg and 4 K(dotted curve

SR ~0.5Gy. When the temperature increases the plateaus below
0 10 20 30 1Gy in wires B and C shift downward and become smoother.

Gate voltage (mV) Wire A shows a weak temperature dependence so that the
slope at~0.7G, decreases. These findings are reminiscent of

FIG. 3. Conductance as a function of the gate voltage for QW'sthe experimental temperature dependenrces.
with width S=5a, and with different lengthd.. The width of the The reason for the different temperature behaviors of the
electrodes i8V=20a;, and the length of the computational area is QW'’s in our model can be seen in Fig. 5 which shows the
A=4T7a (see also Fig. )l The successive curves have been Sh'fteddecomposmon of the conductance of wire B into the spin-up
by 0.8G. The conductance of the wire with=10a, is decomposed 54 spin-down electron contributions at two different tem-
inte spin-up and spin-down contributiogeotted line3. peratures. As the temperature increases from 0 to 2 K spin

polarization increases at the gate voltages around the middle
wires with width S=5a,, where spontaneous spin polariza- of the plateau below G,. At the same time, théresonance
tion happens. The conductances of wires of different lengthpeaks become also wider because more states contribute to
L are shown in Fig. 3 as a function of the gate voltage and ahe conductancisee Eq(3)]. The same behavior is seen also
zero temperature. The figure shows clearly the effect of theor wires A and C. The reason for the increase in the polar-
electrode-wire connection. The long wires have clear peakgation is seen in the LDOS for wire B in the lowest part of
due to resonances. The heights of the peaks a@0rbean-  Fig. 5. When the temperature rises the electron density in-
ing that only a single electron polarlzed mode contributes tqreases in the QW due to the resonances near the Fermi
them. The wires with lengthis=(6—8)a, exhibit resonances |evel. Then the decrease in the exchange-correlation energy
which are just narrow enough for the spin polarization toopens the spin gap, as can be seen in Fig. 5, and the polar-
appear. The length dependence of the conductance amopgition increases. The effect is clearer for wire B than for
these three wires is in qualitative agreement with the receniires A and C. In wire A the electron density does not in-
measurements for QW’s by Reillgt al3 That is, although crease as fast as in wire B because the resonance peaks are
the wires in the experiments are clearly longer than in oukvider. Wire C has a strong polarization already at zero tem-
calculations, the structure aroun®.5-0.7G, becomes perature and therefore it cannot show an increase as large as
lower and forms a clear peak below GSwhen the length of  wire B.
the wire increases. The differences between the experiment Our analysis of the temperature behavior is to a certain
and theory may be due to the fact that in experiments sidextent parallel to the phenomenological model of Redty
gates are usetiThey control not only the potential level in al.” In their model the relevant parameter is the ratio between
the QW, but also the width of the QW. the width of the spin gap and the thermal enekgy deter-

The effect of the temperature on the conductance behavianining the occupancy of the discrete spin-up and spin-down
of three QPC-like wires is shown in Fig 4. At zero tempera-energy levels. According to our calculations the temperature
ture, wire A(L= 6ao) shows no plateau, whereas ere(B broadening in the Fermi functions is small when compared to
=7a,) has a plateau at-0.7G, and wire C(L=8a,) at the widths of the resonance peaks. TherelyE has to be
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FIG. 6. Differential conductance of wire B with the wid®
:5a5 and Iength_:7a(*J as a function of the gate voltage and at zero
temperature. Results for bias voltages of O nmabtted curve,
0.23 mV (dashed curve and 0.46 m\(solid curve are given.

Wire B

LDOS (arb.u.)
S

Energy (meV) . . Lo .
our calculations the rise dfsy diminishes also the spin po-

FIG. 5. Uppermost and middle panels: Conductances due ttarization in the QW. Our model cannot give the zero-bias
spin-up(dashed curvgsand spin-dowr(solid curveg electrons asa anomaly behavior seen in experiments and explained as a
function of the gate voltage and at temperatures of 0 and 2 KKondo phenomenoﬁ?

Lowest panel: LDOS corresponding to the QW region for the |n conclusion, we have used density-functional theory and
spin-up and spin-down states at the gate voltage of 14 mV and ghe Green’s function method to model the electronic struc-
the temperatures of O KSolid curve and 2 K(dashed curve The ¢ ang conductances of quantum wires. The dependence
dotted line denotes the Fermi level. The results are for wire B with .
the lengthL = 7al, of the conductance on t_he length of the wire as well as on t_hg

temperature and the bias voltage dependences are reminis-
replaced by the resonance peak width as the relevant pararcent of experimental findings. However, our mean-field ap-
eter. Then the model can be used to explain the conductanc@roach cannot reproduce the zero-bias anomaly.
gate-voltage curves also at zero temperature.

The differential conductance of wire B at different bias We acknowledge generous computer resources from the
voltages is shown in Fig. 6 as a function of the gate voltageCenter for Scientific Computing, Espoo, Finland. This re-
The increase in the applied bias voltage mainly increases thgearch has been supported by the Academy of Finland
conductance but at the same time it also curtails the condudhrough its Centers of Excellence Progré2000-2005. P.H.
tance plateaus. This is not exactly in agreement with th@cknowledges financial support by the Vilho, Yrjo, and Kalle
measurements, which show that the conductance plateau béaiséla Foundation. We have used the Harwell Subroutine
low 1G, rises with increasing bias voltag&.According to  Library in our calculations.
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