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We have studied quantum wires using the Green’s function technique within density-functional theory,
calculating electronic structures and conductances for different wire lengths, temperatures, and bias voltages.
For short wires, i.e., quantum point contacts, the zero-bias conductance shows as a function of the gate voltage
and at a finite temperature a plateau at around 0.7G0. (G0=2e2/h is the quantum conductance.) The behavior,
which is caused in our mean-field model by spontaneous spin polarization in the constriction, is reminiscent of
the so-called 0.7 anomaly observed in experiments. In our model the temperature and the wire length affect the
conductance–gate-voltage curves similarly as in experiments.
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Interesting two-dimensional(2D) nanostructures can be
fabricated at semiconductor interfaces(e.g., GaAs/AlGaAs)
using lithographic techniques and gate electrodes. For ex-
ample, quantum wires(QW’s) and quantum point contacts
(QPC’s) are laterally narrow electron pathways connecting
two (infinite) electrodes. In the regime of ballistic electron
transport the conductance of QW’s and QPC’s is quantized in
steps ofG0=2e2/h. However, QPC’s exhibit as a function of
the gate voltage also the so-called 0.7 anomaly which is a
small plateau in conductance arounds0.7–0.5dG0.

1 The be-
havior of this plateau as a function of temperature, magnetic
field, and bias voltage has been intensively studied.1–4

There are several explanations for the 0.7 anomaly. In the
Kondo model an unpaired electron is localized at the QPC.5,6

The spin coupling to the electrons in the leads results in a
high density of states, a Kondo resonance, at the Fermi level.
This enhances conductance around the zero bias voltage. The
Kondo model seemingly explains the conductance plateaus
and their behavior as a function of temperature and external
magnetic field.5,6 Another explanation is provided by the
semiempirical model by Reillyet al.7 As the electron density
at the QPC increases controlled by a gate voltage a spin gap
opens and the electron gas polarizes. As a result a plateau
arounds0.7–0.5dG0 is seen in the conductance.7 The spin-
polarization model has also been adopted by Berggren and
Yakimenko8 and Starikov et al.9 They used density-
functional theory(DFT) to calculate the electron density and
the conductance as a function of the gate voltage for a real-
istic QPC model. In addition to the ground-state solution
Starikovet al. found at certain gate voltages also metastable
states which they used to interpret the temperature depen-
dence of the 0.7 anomaly. Moreover, Meiret al.6 and Hirose
et al.5 reported DFT calculations devoted to modeling the
QPC resonance states needed in the Kondo model. Despite
the common feature of the spontaneous spin polarization, the
results of these DFT models vary remarkably. In this context,
it is interesting to note that also recent measurements utiliz-
ing the resonant interaction between two QW’s show evi-
dence of localized moment formation in a 2D constriction.10

In this work we use DFT to investigate the spontaneous
spin polarization and its consequences for the conduction in
QW’s. In contrast to the model Hamiltonian studies we can
take the actual geometry and the effects of the gate potential
directly into account. The use of the Green’s function tech-
nique allows us to study real open systems with infinite elec-
trodes even in the nonequilibrium case under a finite bias
voltage. However, we keep the model geometry simple in
order to obtain physically transparent results and we study to
what extent the mean-field DFT model can describe the ex-
perimental findings. The previous papers have typically con-
centrated on one QPC or QW structure whereas we study
systematically the influence of the QW geometry, the tem-
perature, and the bias voltage.

Below we use in the equations effective atomic units
which are derived by settinge="=me=m* = e=1. m* and e
are the relative effective electron mass and the relative di-
electric constant, respectively. For GaAsm* =0.067 ande
=12.7 and the effective atomic units of length and energy are
a0

* =10.0307 nm andHa* =11.3079 meV, respectively. We
use these relations to convert the model parameters and re-
sults to values comparable with real systems.

Our quasi-2D model for a QW is shown in Fig. 1. The
calculation areaV consists of the QW and parts of the elec-

FIG. 1. 2D quantum wire between two electrodes. The gray
areas denote the rigid positive background charge of the electrodes.
The electrodes continue to infinity outside the calculation region.
The uniform background charge density is varied in the black wire
region in order to model the effects of the gate voltage.
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trodes. The semi-infinite electrodes include the positive
background charge with the constant density of 0.2sa0

*d−2

<231011e/cm2, which is a typical experimental value for
the 2D electron gas at the interface, and the neutralizing 2D
electron gas with the densityrsr d. The electron density deep
in the electrodes in the regionsVL/R is assumed to coincide
with that in an infinite uniform wire. The QW between the
electrodes is also modeled using a rigid uniform positive
background charge(the black region in Fig. 1). We vary this
positive charge density in order to mimic the effects of a gate
voltage, i.e., we define the gate voltage as the Coulomb po-
tential due to this charge at the midpoint of the QW. At both
sides of the electrodes and the wire we include enough
empty vacuum, and the electron density is required to vanish
at the boundaries]VB1/B2.

We employ the DFT within the local density
approximation11 (LDA ) for the electron exchange and corre-
lation and calculate the electron density using Green’s func-
tions as

rsr d =
− 1

2p
E

−`

`

ImfG,sr ,r ;vdgdv. s1d

Above, G,sr ,r ;vd is the so-called lesser Green’s function
and the integration is over all energy values.G,sr ,r ;vd has
to be solved self-consistently with respect to the electron
density and the effective potential and using open boundary
conditions at]VL/R (see, e.g., Ref. 12). The effective poten-
tial consists of the usual Coulomb potentials due to the posi-
tive and negative charge densities and the exchange-
correlation potential within the LDA. It may also include a
ramp potential which takes into account a possible bias volt-
age between the electrodes. The scheme is computationally
much more demanding than solving for the wave functions
of a finite system. However, it has the important advantages
that finite-size effects are vanishingly small due to the open
boundary conditions and that the effects of a finite bias are
calculated self-consistently in nonequilibrium.

For a finite bias the electric current is calculated as

I =
1

p
E

−`

`

TsvdffLsvd − fRsvdgdv, s2d

where the Fermi functionsfL and fR are shifted with respect
to each other by the bias voltageVsd. Tsvd is the tunneling
probability and it is calculated using the Green’s functions.
In the zero-bias limitfLsvd= fRsvd= fsvd and one obtains the
linear-response conductance as

G =
1

p
E

−`

`

Tsvd
dfsvd

dv
dv. s3d

At zero temperature the conductance is simplyTsv fd, where
v f is the Fermi energy. At a finite temperature also electron
states with energies near the Fermi level contribute to the
conductance, as the derivative of the Fermi functionfsvd
differs from thed function. A finite temperature influences
the solution also through the electron density. Below we
show also differential conductances corresponding to given
bias voltages at zero temperature. We determine them by

increasing the bias voltage slightly and calculating the de-
rivative dI /dVsd numerically.

We have implemented the nonequilibrium DFT scheme
using the finite-element method as explained in our paper.13

We use 2D high-order polynomial bases14 up to the fourth
order in order to reduce the basis size. In a typical calculation
the number of basis functions needed to reach sufficient ac-
curacy is ,2800 for high-order polynomials compared to
,5500 for low-order polynomials.

We have studied the electron structures of several QW’s
of different lengths fL=s5–10da0

*g and widths fS
=s5–10da0

*g and determined their conductance as a function
of the gate voltage. The width of the electrodesW=20a0

*

used is clearly larger than those of the QW’s. The widest
QW’s show the typical conductance staircase as a function of
the gate voltage. For the narrowest QW’s our model predicts
prominent electron resonance states. They are evident as
peaks in the local density of states(LDOS) (see Fig. 5 be-
low). They can be thought to result as interference of the
waves transmitted and reflected at the ends of the QW but,
on the other hand, the resonances contain also characteristics
of the DOS in quasi-one-dimensional wires. The resonance
peaks are broader in short and wide QW’s than in long and
thin QW’s, because short QW’s are more strongly connected
to the electrodes. If the resonance peaks are narrow enough,
a spontaneous spin polarization occurs in a limited range of
gate voltages. One solution with spin polarization in the QW
is shown in Fig. 2 which gives the total electron density and
the difference between the spin-up and spin-down densities.
Meir et al.,6 Berggren and Yakimenko,8 and Starikovet al.
have also found spin-polarized solutions in their DFT calcu-
lations for QPC’s. They used models which correspond most
closely to the shortest QW’s of our calculations. The broad
resonances found by Meiret al. and the nonappearance of
the resonances in the calculation by Starikovet al. are there-
fore in agreement with the trend of our results.

Below we are concerned mainly with the conductance
plateaus below 1G0 and therefore we discuss only narrow

FIG. 2. (a) Total electron density and(b) difference between the
spin-up and spin-down electron densities at zero temperature for a
system with dimensionsS=5a0

* , L=7a0
* , W=20a0

* , A=47a0
* (see Fig.

1) and for the gate voltage of 12.4 mV.
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wires with width S=5a0
* , where spontaneous spin polariza-

tion happens. The conductances of wires of different lengths
L are shown in Fig. 3 as a function of the gate voltage and at
zero temperature. The figure shows clearly the effect of the
electrode-wire connection. The long wires have clear peaks
due to resonances. The heights of the peaks are 0.5G0, mean-
ing that only a single electron polarized mode contributes to
them. The wires with lengthsL=s6–8da0

* exhibit resonances
which are just narrow enough for the spin polarization to
appear. The length dependence of the conductance among
these three wires is in qualitative agreement with the recent
measurements for QW’s by Reillyet al.3 That is, although
the wires in the experiments are clearly longer than in our
calculations, the structure arounds0.5–0.7dG0 becomes
lower and forms a clear peak below 0.5G0 when the length of
the wire increases. The differences between the experiment
and theory may be due to the fact that in experiments side
gates are used.2 They control not only the potential level in
the QW, but also the width of the QW.

The effect of the temperature on the conductance behavior
of three QPC-like wires is shown in Fig 4. At zero tempera-
ture, wire A sL=6a0

*d shows no plateau, whereas wire BsL
=7a0

*d has a plateau at,0.7G0
* and wire C sL=8a0

*d at

,0.5G0. When the temperature increases the plateaus below
1G0 in wires B and C shift downward and become smoother.
Wire A shows a weak temperature dependence so that the
slope at,0.7G0 decreases. These findings are reminiscent of
the experimental temperature dependences.1,5

The reason for the different temperature behaviors of the
QW’s in our model can be seen in Fig. 5 which shows the
decomposition of the conductance of wire B into the spin-up
and spin-down electron contributions at two different tem-
peratures. As the temperature increases from 0 to 2 K spin
polarization increases at the gate voltages around the middle
of the plateau below 1G0. At the same time, the(resonance)
peaks become also wider because more states contribute to
the conductance[see Eq.(3)]. The same behavior is seen also
for wires A and C. The reason for the increase in the polar-
ization is seen in the LDOS for wire B in the lowest part of
Fig. 5. When the temperature rises the electron density in-
creases in the QW due to the resonances near the Fermi
level. Then the decrease in the exchange-correlation energy
opens the spin gap, as can be seen in Fig. 5, and the polar-
ization increases. The effect is clearer for wire B than for
wires A and C. In wire A the electron density does not in-
crease as fast as in wire B because the resonance peaks are
wider. Wire C has a strong polarization already at zero tem-
perature and therefore it cannot show an increase as large as
wire B.

Our analysis of the temperature behavior is to a certain
extent parallel to the phenomenological model of Reillyet
al.7 In their model the relevant parameter is the ratio between
the width of the spin gap and the thermal energykBT deter-
mining the occupancy of the discrete spin-up and spin-down
energy levels. According to our calculations the temperature
broadening in the Fermi functions is small when compared to
the widths of the resonance peaks. ThereforekBT has to be

FIG. 3. Conductance as a function of the gate voltage for QW’s
with width S=5a0 and with different lengthsL. The width of the
electrodes isW=20a0

* , and the length of the computational area is
A=47a0

* (see also Fig. 1). The successive curves have been shifted
by 0.5G0. The conductance of the wire withL=10a0 is decomposed
into spin-up and spin-down contributions(dotted lines).

FIG. 4. Conductance as a function of the gate voltage for QW’s
with the width S=5a0

* and lengthsL=6a0
* (wire A), 7a0

* (wire B)
and 8a0

* (wire C) at the temperatures of 0 K(solid curve), 2 K
(dashed curve), and 4 K(dotted curve).
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replaced by the resonance peak width as the relevant param-
eter. Then the model can be used to explain the conductance–
gate-voltage curves also at zero temperature.

The differential conductance of wire B at different bias
voltages is shown in Fig. 6 as a function of the gate voltage.
The increase in the applied bias voltage mainly increases the
conductance but at the same time it also curtails the conduc-
tance plateaus. This is not exactly in agreement with the
measurements, which show that the conductance plateau be-
low 1G0 rises with increasing bias voltage.4,5 According to

our calculations the rise ofVsd diminishes also the spin po-
larization in the QW. Our model cannot give the zero-bias
anomaly behavior seen in experiments and explained as a
Kondo phenomenon.5,6

In conclusion, we have used density-functional theory and
the Green’s function method to model the electronic struc-
tures and conductances of quantum wires. The dependence
of the conductance on the length of the wire as well as on the
temperature and the bias voltage dependences are reminis-
cent of experimental findings. However, our mean-field ap-
proach cannot reproduce the zero-bias anomaly.
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FIG. 5. Uppermost and middle panels: Conductances due to
spin-up(dashed curves) and spin-down(solid curves) electrons as a
function of the gate voltage and at temperatures of 0 and 2 K.
Lowest panel: LDOS corresponding to the QW region for the
spin-up and spin-down states at the gate voltage of 14 mV and at
the temperatures of 0 K(solid curve) and 2 K (dashed curve). The
dotted line denotes the Fermi level. The results are for wire B with
the lengthL=7a0

* .

FIG. 6. Differential conductance of wire B with the widthS
=5a0

* and lengthL=7a0
* as a function of the gate voltage and at zero

temperature. Results for bias voltages of 0 mV(dotted curve),
0.23 mV (dashed curve), and 0.46 mV(solid curve) are given.
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