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Rectangular quantum dots in high magnetic fields
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We use density-functional methods to study the effects of an external magnetic field on two-dimensional
quantum dots with a rectangular hard-wall confining potential. The increasing magnetic field leads to spin
polarization and formation of a highly inhomogeneous maximum-density droplet at the predicted magnetic-
field strength. At higher fields, we find an oscillating behavior in the electron density and in the magnetization
of the dot. We identify a rich variety of phenomena behind the periodicity and analyze the complicated
many-electron dynamics, which is shown to be highly dependent on the shape of the quantum dot.
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I. INTRODUCTION The onset of the MDD can be predicted from the number of
flux quanta which only depends on the area of the dot and is
The problem of many interacting electrons in a noncircu-thus geometry independent. We study also the beyond-MDD
lar quantum well under the influence of an external magneti¢éégime that can be characterized by periodic state oscilla-
field is extremely challenging for the computational toolstions. The periodicity can be observed in the magnetization
available. For the time being, theoretical studies of such syswhich we compare with the corresponding results for nonin-
tems have dealt either with very small electron numbers, oferacting electron systems. The origin of the periodicity is
with the single-electron properties in nonintegrable quantungenerally the competition between magnetic confinement
billiards® On the other hand, the rapid technical develop-and Coulomb repulsion, but the behavior of the effective
ment in the realization of different quantum-dot systemssingle-electron states is very sensitive to the dot geometry.
naturally motivates theoretical modeling of complicated This paper is organized as follows. In Sec. Il we present
many-electron structurés. briefly the model Hamiltonian and the computational meth-
The magnetic-field dependence of the energy spectrum ifds, based on a real-space spin-density-functional approach.
a square two-electron guantum dot has been ana|yzed in dB Sec. lll we consider the formation and the structure of the
tail by Creffieldet al® They found Aharonov-Bohm-type os- MDD in rectangular geometries. Section IV presents the
cillations in the lowest levels, indicating periodic singlet- State oscillations above the MDD regime, first from the point
triplet changes in the ground state. Ug&jfound that these ©f view of the total magnetization, and finally at the level of
state transitions lead to strong effects in the optical excitatiohe effective single-electron states. The paper is summarized
spectra. Within a similar square-dot system, he studied th# Sec. V.
effects of the Coulomb interaction on the far-infrared-
absorptionFIR) spectra Recent density-functional FIR cal- [l. THE MODEL AND THE METHODS
culations for soft-wall triangular and square dots have been
done by Vain-Rodrguezet al,® who identified corner and o . .
side modes in the system. The interactions and the quanturff?@SS approximation with the material parameters for Gaas,

. i ) .
dot geometry affect also strongly the magnetization, at leadt®-+ the effective massi® =0.06/m, and the dielectric con-
for small electron number<® stante=12.7. The many-body Hamiltonian reads

We restrict the dot to thay plane and use the effective-

In a circular geometry, a maximum-density droplet N N 2
(MDD) caused by the magnetic field corresponds to a polar- | _ 1 2 [—iAV,+eA(r,) ]2+ e
ized state with electrons occupying successive angular mo- 2m* =1 ' ' i< 47Teoelri—r,-|
mentum states, i.e.|=0,—1,...,—N+1, giving Lypp N
=—2N(N—1) for the total angular momentum of elec-
2 *
trons. A stability region for the MDD has been identified in +i=21 [Vex(Ti)+ 9" neBs,,l, @)

electron-transport experiments through vertical quantum dots
by Oosterkampet al® This state, as well as the post-MDD Where the shape of the dot is defined by a rectangular hard-
regime in higher magnetic fields, has been considered thegvall confining potential,

retically in circular parabolically confined quantum dots by
several author®~°In the case of a noncircular symmetry,

however, the high-magnetic-field limit has not been previ-

ously analyzed to the best of our knowledge. i . .
In this work, we examine the magnetic-field effects in Here B defines the ratio of the side lengths of the rectangle,
rectangular quantum dots by using the spin-densityf’md'-is scaled such that the area of the dot remains constant,

functional theory(SDFT). Our aim is to define the MDD i-€., BL?=4m?ag?, where A1a§~10.03 nm. We apply an
state in a rectangular geometry and extend our previousxternal magnetic fiel8= Bz perpendicular on thry plane,
analysis of the MDD formation in hard-wall quantum ddts. and use the symmetric gauge,

0, O=x=pgL.0O=sy=L

VexdX,y) = (2

o« otherwise.
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FIG. 1. Chemical potentials of the fully polarized states for
N-electron rectangular quantum dots as a function of the magnetic g, 2. MDD-window limits as a function of the number of

field B. electrons in different quantum-dot geometries. The line for the pre-
dicted MDD formation is also shown.

B
A=5(=y.x0), () the ground state is marked with a dotted line in the figure.
We consider only the polarized state in order to clarify the
for the vector potential. The last term in Ed) is the Zee- MDD window, which corresponds to the descending regime
man energywith g* = — 0.44 for GaA$ which has an insig- in the chemical potential. Similar behavior jm was ob-
nificant effect on the results presented and is thus neglectederved in the experiments for vertical quantum dots by
In the calculations we employ the SDFT in the self- Oosterkamt al® They measured the evolution of the Cou-
consistent Kohn-ShantKS) formulation. We tested that in lomb blockade peaks as a function Bffor N=0-40 and
the systems considered in this study, the SDFT gives reasofeund clearly identifiable phases for the filling factor, of
ably accurate results compared to the computationally moreshich v=1 corresponds to a maximum-density droplet. Ac-
demanding current-spin-density-functional approathin  cording to our definition, the true MDD exists on the right-
the local-spin-density approximation we use the exchangemost ascending stripe in Fig. 1. A8 increases, the MDD
correlation energy by Attaccalitet al® It is based on the windows become larger and flatter due to pronounced local-
diffusion Monte Carlo simulations over the whole range ofization in thex direction. Thus, the square case shows the
spin polarization, which is a major improvement comparedmost drastic behavior because of the highest consistency of
to the previous parametrizations. This leads to more accurathe dot symmetry with the magnetic confinement.
results in both zero and nonzero magnetic fields as shown in Figure 2 gives the limits for the MDD window as a func-
Ref. 19. tion of N in different quantum-dot geometries. We see that
The calculations are performed in real space using finitehe increase in the width of the MDD window is due to a
differences for the derivative operations on two-dimensionakhift in the reconstruction point, whereas the onset of the
point grids. Since there are no implicit restrictions for thewindow is nearly independent of the dot geometry. The rea-
symmetry, the external potential can be shaped arbitrarily ison is the following. The formation of the MDD requires an
the computing region. The number of grid points is 128equal number of flux quant®q,=®/d,, to theN—1 vor-
X128, giving a sufficient accuracy in the total energy. Totices “seen” by an electron as the other electrons are fixed. A
make the convergence effective, we employ the Rayleiglvortex is defined as a point where the wave function is zero
quotient multigrid methot for the discretized single- and its phase changes by2w for a counterclockwise

electron Schrdinger equations. rotation?> Here ®,=h/e is the single-flux quantum, and
since the magnetic flux is directly proportional to the dot
IIl. MDD FORMATION area, i.e.,,®=BA, we thus getB=h(N—1)/eA~1.04(N

—1) T for the onset of the MDD in all geometries. We show

In the zero-field solution for a rectangular quantum dotthis prediction in Fig. 2 and it agrees remarkably well with
with an even number of electrons, the total spin is either O othe transition points obtained from the chemical potentials.
1, depending on the degeneracy on the highest févie: ~ We remark that the electron-electron interactions are a pre-
creasingB brings the higher spin states closer to ®e0 requisite for this agreement, so the pure single-electron pic-
andS=1 states in energy, and finally the full spin polariza- ture would be insufficient for the prediction presented above.
tion is found. The value oB for the complete spin polariza- The reconstruction limit is, however, much more difficult to
tion is rather independent of the deformation paraméter.  estimate and it depends strongly on the geometry as ex-
the eight-electron dot, for example, the ground state becomgdained above.
fully spin polarized atB~10 T asB=1 and at 11 T as At the end of the MDD window the droplet achieves the
B=2. smoothest electron density. In Fig. 3 we show the maximum-

Figure 1 shows the chemical potentiglgN)=E(N) density distributions fop=1 and =2 quantum dots, and
—E(N—1) of the polarized states as a function d for N also for a circular hard-wall dot wittN=8. They have a
=7-12. The point when the fully polarized state becomedighly inhomogeneous structure instead of a flat distribution
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FIG. 3. Electron densities for the MDD states of eight-electron e s
quantum dots with different geometries. s \“\\
_5¢ Teeell A
found in parabolically confined MDD’ This is a direct 7
consequence of the hard-wall confinement where the Cou-
lomb interaction favors strong localization in the corners and i
on the edges over the whole rangeBofin the circular hard-
wall MDD, the occupation of the angular momentum orbitals 11 12 13 14 15 16 17 18 19
follows the original definition of a maximum-density droplet B [T]
for a parabolic dot, i.el,=0,—1,...,—7. The number of
vortices in a particular KS state thus equdl$. For N elec- FIG. 4. Magnetization in three different rectangular quantum-

trons at the positiong = x; +iy; , the many-body wave func- dot systems beyond the MDD regime. The dashed line indicates the

tion for a parabolic MDD can be written in Laughlif®&form ~ Noninteracting case ofd,N)=(2,6). The effective Bohr magneton
* __ *
as ug=en/2m*.

- N ized edge state that resembles a Wigner molecule in the sense
\PMDDzexp( _EB‘I)OE |zk|2)H (zi—7z), (4)  that there are pronounced peaks in the electron density to
K 1<l minimize the Coulomb interactioff.

which is similar to the wave function for a state with the As Bisincreased further, the electronic structure begins to
filling factor »=1 in the thermodynamic limit. It is easy to pscillate between W(_all—localized and more diffuse states. _This
see that by following the above definition for a vortex weiS @ result from the interplay between the magnetic confine-
obtain the correct total number dfi—1 vortices in the Mment and the Coulomb interaction. In this connection, the
system. fully polarized ground state changes periodically as the in-

The rectangular dot shows a more complicated structurd€ractions entangle the single-electron states on the lowest
the formation of the MDD corresponds to the appearance okandau level. This is similar to singlet-triplet oscillations
the correct maximum number di— 1 vortices in the KS found in interacting two-electron quantum dots of both
state highest in energy, but in the other states there are typq:jrcularzz and squaré shapes, as well as in a double-dot
cally “extra” vortices, leading to more thahl(N—1)/2 of systent:> We emphasize, however, that in our case the
them in the KS states altogether. The reason is the complégound state remains fully polarized beyond the MDD, i.e.,
structure of the indefinite angular momentum states that pres:= N/2.
vents the description of the noncircular MDD with a

Laughlin-type many-body wave function, even if tBeN A. Magnetization

dependence for the MDD formation can be correctly esti- e giryctural oscillations beyond the MDD state can be

mated. Thus, we resort to considering the evolution of th)hsened in the magnetization of the dot, since the growth in

expectation values of the angular momentum oOperatofye tota angular momentum leads to the decrease in the cur-

| ,=—ih[x(a/dy)—y(aldx)], for different KS states in the rent. The total magnetization for a finite system is defined at
high-B regime. Below we designate this expectation valuezero temperature as
for noncircular dots as the effective.

N aEtot

IV. STATE OSCILLATIONS M= B -

©)

The rapidly growing Coulomb interaction leads to the re-In Fig. 4 we show the magnetization in three rectangular
construction of the MDD into a lower-density droplet with a quantum dots beyond the MDD regime. The local minima
higher angular momentum &increases. According to our correspond to the points where the localization on the edge is
calculations, the collapse of the circular hard-wall MDD maximized, and at local maxima there are states with a den-
leads into a ringlike structure with,=—1,—2,...,—N, sity contribution at the center. It can be clearly seen in Fig. 4
corresponding to the creation of a hole in the center. Fothat M decreases with increasing electron number, and the
small parabolic dots, a similar symmetry-preserving structurenset of the oscillation moves to highras the deformation
has been obtained with the exact diagonalization by YangB is increased, which is consistent with the upper limit of the
and MacDonald? Especially for large parabolic systems, MDD window shown in Fig. 2. The period in magnetic-field
there are also clear signs of edge reconstruction of the MDBtrength is nearly a constant,2.5 T in all the systems pre-
in the form of strong charge-density wavésyigner crys-  sented in Fig. 4. We emphasize that the majority BfN)
talline edges; or spin texturing™® In our rectangular hard- combinations lead to more complicated and even irregular
wall quantum dot, the MDD collapses into a strongly local- magnetization. This will be discussed in more detail in Sec.
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B [T] FIG. 6. (Color onling Evolution of the effectivd , values as a
function of the magnetic fiel® in a B=2 eight-electron quantum
dot. KS wave functions, corresponding to different modes, are also
shown.

FIG. 5. Evolution of the effectivé, values as a function of the
magnetic fieldB in a square eight-electron quantum dot.

IV B. Figure 4 also shows the noninteracting magnetization _ : :
for (B,N)=(2,6), calculated from the six lowest eigenener-SFates that W'th increasing condense to nearly C|rpular or-
gies on the first Landau level. In the MDD regime, it is bits on the first Landau level before the Coulomb interaction

expands them to high effective values. In this context, the

~1p5 above the interacting curve with the same slope. At tate development is similar to the circular case, where the
B~15 T, however, there is a clear crossing which indicate$ P '

that the interactions retard the overall increas¢Nt as a chtﬂzat'%rsjr‘:’g'fstfaftreo?h;hne L%W?r%esmet:?i;gi::h: r;legarzje(s); Iti\éell_an
function onB in the oscillatory regime. As can be seen in 9 ges. P P

Fig. 4, the retardation is due to the decreasing partdin dau states is clearly the origin of the magnetization oscilla-

The first of them correspond to the reconstruction of thetIons d|spus§ed above. Th.e upper limit of the MDD window,
arked in Fig. 5, can be interpreted as the most evenly ex-

MDD when the Coulomb energy collapses stronger than th ’ S 7 .
kinetic energy increases. The same occurs periodically a_nded effectivd, distribution similar to the corresponding

. L . . Circularly symmetric system.
higher magnetic fields, leading to lowe¢M| than in the . .
single-electron picture. Figure 6 shows the development of the effecliygalues

Magnetization in square-shaped quantum dots uto in the case of3=2. Due to the reduction of the symmetry,

— 4 has been studied by Magsutir and Gudmundssoh. the evolution is more complicated than in the square case,

They found remarkably higher magnetization in the nonin-2"d we can find four different modes. First, there are two

teracting than in the interacting picture, but did not consider 2" modes in the system. Of them, the highest effetfive

the highB limit, where we see the crossing between thoseState shows steady localization at the both ends of the rect-

two cases. In a two-electron square dot studied by Sheng ane}:i]gle’ and the second offg) oscillates weakly. The latter is

Xu,B the magnetization looks similar to our case, but theVlsuallzed in the right panel of Fig. 6 with the KS wave

oscillation represents the trivial singlet-triplet exchange. funCt'_onS’WKS' (see a_lso Ref. .2)7 In addition, ther_e- are
two different types of highly oscillatory states. The first pair

(3,4 has a remarkably lower amplitude in the oscillation
regime B=14 T). As can be seen in the KS wave functions,
As a mean-field theory, the density-functional approactthey correspond to localization in tlyedirection. Interlocked
only approximates the many-body energy states. Howevetp these states, there are strongly oscillative stdté that,
we will next consider the development of the effective angu-according to the KS wave functions, seem to form a periodic
lar momentum of different KS orbitals in order to obtain a structure in the rectangle, reminiscent of a “lozenge” orbit in
deeper insight on the state oscillations on the single-electrotihe corresponding classical bouncing map, studied in the
level. In Fig. 5 we present the evolution of the effectiye square case by Aguidt. It is noticeable that these states
values of the occupied KS levels in the polarized state of affect strongly on the corner modes by compressing them
square eight-electron quantum dot as a functiorBofThe  slightly to lowerl,. The cusps aB=11.8 T and 13.8 T are
structure is intriguing and shows clearly two different modesnumerical noise, corresponding to degeneracies of the KS
in the system. First, there are four closely entangled statesrbitals 1 and 3 or 2 and 4, respectively.
representing the relatively stable corner modes. They are It is clear from Fig. 6 that the formation of bulk Landau
reminiscent of the Aharonov-Bohm-like energy-level struc-states disappears as the dot is squeezed toward a rectangular
ture in an interacting two-electron ddtSecond, there are shape. Thus, the electron-electron interactions make the

B. Development of the angular momenta
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guantum dot sensitive to the deformation parameter. On thedic changes in the polarized ground state. In the oscillating
other hand, the overall behavior beyond the MDD is quali-regime, the magnetization shifts to lower values than in the
tatively similar in all geometries, even if the evolution of the corresponding noninteracting case. The origin of the periodic
effectivel, values gets very complicated. This occurs, e.g., inbehavior has been analyzed by following the evolution of the
the case of3=1.5, where the different modes discussedeffective angular momentum quantum numbers. There are
above are hardly recognizable. In this sense, an increase alear corner modes in all rectangular systems, but the devel-
the symmetry separates the different states and makes tlpment of the center orbits is found to be very sensitive to
corresponding classically stable orbits visible. the geometry of the dot. In a square, the central KS orbitals

We underline that the KS orbitals given by the density-are nearly symmetric, whereas a rectangle y@th2 shows
functional theories do not have a direct physical interpretatwo different oscillative modes. When the symmetry is re-
tion. In this particular system, however, we find that the pro-duced further, the center orbitals become unindentifiable. In
cedure gives important information on the many-particlespite of the limitations in the mean-field approach, we have
dynamics in an interacting nonintegrable quantum dot, notmanaged to bring out the richness of phenomena exhibited
accessible with more “exact” computational methods. by the electronic structure in the highdimit. We hope that

this would inspire new experimental work on this topic.
V. SUMMARY

To summarize, we have studied the electronic structure of
rectangular quantum dots in a magnetic field. We have iden-
tified the formation of a maximum-density droplet at the pre-  This research has been supported by the Academy of Fin-
dicted B, even if the electron density is strongly localized land through its Centers of Excellence Progr@d00-2003.
due to the hard-wall confinement. Beyond the MDD, weE.R. is also grateful to Magnus Ehrnrooth foundation for
have found oscillating magnetization that reflects the perifinancial support.
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