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Rectangular quantum dots in high magnetic fields

E. Räsänen,* A. Harju, M. J. Puska, and R. M. Nieminen
Laboratory of Physics, Helsinki University of Technology, P.O. Box 1100, FIN-02015 HUT, Finland

~Received 27 November 2003; revised manuscript received 29 January 2004; published 14 April 2004!

We use density-functional methods to study the effects of an external magnetic field on two-dimensional
quantum dots with a rectangular hard-wall confining potential. The increasing magnetic field leads to spin
polarization and formation of a highly inhomogeneous maximum-density droplet at the predicted magnetic-
field strength. At higher fields, we find an oscillating behavior in the electron density and in the magnetization
of the dot. We identify a rich variety of phenomena behind the periodicity and analyze the complicated
many-electron dynamics, which is shown to be highly dependent on the shape of the quantum dot.
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I. INTRODUCTION

The problem of many interacting electrons in a noncirc
lar quantum well under the influence of an external magn
field is extremely challenging for the computational too
available. For the time being, theoretical studies of such s
tems have dealt either with very small electron numbers
with the single-electron properties in nonintegrable quant
billiards.1 On the other hand, the rapid technical develo
ment in the realization of different quantum-dot syste
naturally motivates theoretical modeling of complicat
many-electron structures.2

The magnetic-field dependence of the energy spectrum
a square two-electron quantum dot has been analyzed in
tail by Creffieldet al.3 They found Aharonov-Bohm-type os
cillations in the lowest levels, indicating periodic single
triplet changes in the ground state. Ugajin4 found that these
state transitions lead to strong effects in the optical excita
spectra. Within a similar square-dot system, he studied
effects of the Coulomb interaction on the far-infrare
absorption~FIR! spectra.5 Recent density-functional FIR ca
culations for soft-wall triangular and square dots have b
done by Valı´n-Rodrı́quezet al.,6 who identified corner and
side modes in the system. The interactions and the quan
dot geometry affect also strongly the magnetization, at le
for small electron numbers.7,8

In a circular geometry, a maximum-density drop
~MDD! caused by the magnetic field corresponds to a po
ized state with electrons occupying successive angular
mentum states, i.e.,l 50,21, . . . ,2N11, giving LMDD
52 1

2 N(N21) for the total angular momentum ofN elec-
trons. A stability region for the MDD has been identified
electron-transport experiments through vertical quantum d
by Oosterkampet al.9 This state, as well as the post-MD
regime in higher magnetic fields, has been considered th
retically in circular parabolically confined quantum dots
several authors.10–15 In the case of a noncircular symmetr
however, the high-magnetic-field limit has not been pre
ously analyzed to the best of our knowledge.

In this work, we examine the magnetic-field effects
rectangular quantum dots by using the spin-dens
functional theory~SDFT!. Our aim is to define the MDD
state in a rectangular geometry and extend our prev
analysis of the MDD formation in hard-wall quantum dots16
0163-1829/2004/69~16!/165309~5!/$22.50 69 1653
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The onset of the MDD can be predicted from the number
flux quanta which only depends on the area of the dot an
thus geometry independent. We study also the beyond-M
regime that can be characterized by periodic state osc
tions. The periodicity can be observed in the magnetizat
which we compare with the corresponding results for non
teracting electron systems. The origin of the periodicity
generally the competition between magnetic confinem
and Coulomb repulsion, but the behavior of the effect
single-electron states is very sensitive to the dot geomet

This paper is organized as follows. In Sec. II we pres
briefly the model Hamiltonian and the computational me
ods, based on a real-space spin-density-functional appro
In Sec. III we consider the formation and the structure of
MDD in rectangular geometries. Section IV presents
state oscillations above the MDD regime, first from the po
of view of the total magnetization, and finally at the level
the effective single-electron states. The paper is summar
in Sec. V.

II. THE MODEL AND THE METHODS

We restrict the dot to thexy plane and use the effective
mass approximation with the material parameters for Ga
i.e., the effective massm* 50.067me and the dielectric con-
stante512.7. The many-body Hamiltonian reads

H5
1

2m*
(
i 51

N

@2 i\“ i1eA~r i !#
21(

i , j

N
e2

4pe0eur i2r j u

1(
i 51

N

@Vext~r i !1g* mBBsz,i #, ~1!

where the shape of the dot is defined by a rectangular h
wall confining potential,

Vext~x,y!5H 0, 0<x<bL,0<y<L

` otherwise.
~2!

Hereb defines the ratio of the side lengths of the rectang
andL is scaled such that the area of the dot remains cons
i.e., bL254p2aB*

2, where 1aB* '10.03 nm. We apply an

external magnetic fieldB5Bẑ perpendicular on thexy plane,
and use the symmetric gauge,
©2004 The American Physical Society09-1
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A5
B

2
~2y,x,0!, ~3!

for the vector potential. The last term in Eq.~1! is the Zee-
man energy~with g* 520.44 for GaAs! which has an insig-
nificant effect on the results presented and is thus neglec
In the calculations we employ the SDFT in the se
consistent Kohn-Sham~KS! formulation. We tested that in
the systems considered in this study, the SDFT gives rea
ably accurate results compared to the computationally m
demanding current-spin-density-functional approach.2,17 In
the local-spin-density approximation we use the exchan
correlation energy by Attaccaliteet al.18 It is based on the
diffusion Monte Carlo simulations over the whole range
spin polarization, which is a major improvement compar
to the previous parametrizations. This leads to more accu
results in both zero and nonzero magnetic fields as show
Ref. 19.

The calculations are performed in real space using fi
differences for the derivative operations on two-dimensio
point grids. Since there are no implicit restrictions for t
symmetry, the external potential can be shaped arbitraril
the computing region. The number of grid points is 1
3128, giving a sufficient accuracy in the total energy.
make the convergence effective, we employ the Rayle
quotient multigrid method20 for the discretized single
electron Schro¨dinger equations.

III. MDD FORMATION

In the zero-field solution for a rectangular quantum d
with an even number of electrons, the total spin is either 0
1, depending on the degeneracy on the highest level.21 In-
creasingB brings the higher spin states closer to theS50
andS51 states in energy, and finally the full spin polariz
tion is found. The value ofB for the complete spin polariza
tion is rather independent of the deformation parameter.16 In
the eight-electron dot, for example, the ground state beco
fully spin polarized atB;10 T as b51 and at 11 T as
b52.

Figure 1 shows the chemical potentialsm(N)5E(N)
2E(N21) of the polarizedstates as a function ofB for N
57 –12. The point when the fully polarized state becom

FIG. 1. Chemical potentials of the fully polarized states
N-electron rectangular quantum dots as a function of the magn
field B.
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the ground state is marked with a dotted line in the figu
We consider only the polarized state in order to clarify t
MDD window, which corresponds to the descending regi
in the chemical potential. Similar behavior inm was ob-
served in the experiments for vertical quantum dots
Oosterkampet al.9 They measured the evolution of the Co
lomb blockade peaks as a function ofB for N50 –40 and
found clearly identifiable phases for the filling factor,
which n51 corresponds to a maximum-density droplet. A
cording to our definition, the true MDD exists on the righ
most ascending stripe in Fig. 1. Asb increases, the MDD
windows become larger and flatter due to pronounced lo
ization in thex direction. Thus, the square case shows
most drastic behavior because of the highest consistenc
the dot symmetry with the magnetic confinement.

Figure 2 gives the limits for the MDD window as a func
tion of N in different quantum-dot geometries. We see th
the increase in the width of the MDD window is due to
shift in the reconstruction point, whereas the onset of
window is nearly independent of the dot geometry. The r
son is the following. The formation of the MDD requires a
equal number of flux quanta,NF5F/F0, to theN21 vor-
tices ‘‘seen’’ by an electron as the other electrons are fixed
vortex is defined as a point where the wave function is z
and its phase changes by22p for a counterclockwise
rotation.22 Here F05h/e is the single-flux quantum, and
since the magnetic flux is directly proportional to the d
area, i.e.,F5BA, we thus getB5h(N21)/eA'1.04(N
21) T for the onset of the MDD in all geometries. We sho
this prediction in Fig. 2 and it agrees remarkably well wi
the transition points obtained from the chemical potentia
We remark that the electron-electron interactions are a
requisite for this agreement, so the pure single-electron
ture would be insufficient for the prediction presented abo
The reconstruction limit is, however, much more difficult
estimate and it depends strongly on the geometry as
plained above.

At the end of the MDD window the droplet achieves th
smoothest electron density. In Fig. 3 we show the maximu
density distributions forb51 andb52 quantum dots, and
also for a circular hard-wall dot withN58. They have a
highly inhomogeneous structure instead of a flat distribut

tic FIG. 2. MDD-window limits as a function of the number o
electrons in different quantum-dot geometries. The line for the p
dicted MDD formation is also shown.
9-2
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found in parabolically confined MDD’s.13 This is a direct
consequence of the hard-wall confinement where the C
lomb interaction favors strong localization in the corners a
on the edges over the whole range ofB. In the circular hard-
wall MDD, the occupation of the angular momentum orbita
follows the original definition of a maximum-density dropl
for a parabolic dot, i.e.,l z50,21, . . . ,27. The number of
vortices in a particular KS state thus equalsu l zu. For N elec-
trons at the positionszi5xi1 iy i , the many-body wave func
tion for a parabolic MDD can be written in Laughlin’s23 form
as

CMDD5expS 2
p

2
BF0(

k
uzku2D)

i , j

N

~zi2zj !, ~4!

which is similar to the wave function for a state with th
filling factor n51 in the thermodynamic limit. It is easy t
see that by following the above definition for a vortex w
obtain the correct total number ofN21 vortices in the
system.

The rectangular dot shows a more complicated struct
the formation of the MDD corresponds to the appearance
the correct maximum number ofN21 vortices in the KS
state highest in energy, but in the other states there are
cally ‘‘extra’’ vortices, leading to more thanN(N21)/2 of
them in the KS states altogether. The reason is the com
structure of the indefinite angular momentum states that
vents the description of the noncircular MDD with
Laughlin-type many-body wave function, even if theB-N
dependence for the MDD formation can be correctly e
mated. Thus, we resort to considering the evolution of
expectation values of the angular momentum opera
l̂ z52 i\@x(]/]y)2y(]/]x)#, for different KS states in the
high-B regime. Below we designate this expectation va
for noncircular dots as the effectivel z .

IV. STATE OSCILLATIONS

The rapidly growing Coulomb interaction leads to the
construction of the MDD into a lower-density droplet with
higher angular momentum asB increases. According to ou
calculations, the collapse of the circular hard-wall MD
leads into a ringlike structure withl z521,22, . . . ,2N,
corresponding to the creation of a hole in the center.
small parabolic dots, a similar symmetry-preserving struct
has been obtained with the exact diagonalization by Y
and MacDonald.12 Especially for large parabolic system
there are also clear signs of edge reconstruction of the M
in the form of strong charge-density waves,13 Wigner crys-
talline edges,14 or spin texturing.15 In our rectangular hard
wall quantum dot, the MDD collapses into a strongly loc

FIG. 3. Electron densities for the MDD states of eight-electr
quantum dots with different geometries.
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ized edge state that resembles a Wigner molecule in the s
that there are pronounced peaks in the electron densit
minimize the Coulomb interaction.24

As B is increased further, the electronic structure begins
oscillate between well-localized and more diffuse states. T
is a result from the interplay between the magnetic confi
ment and the Coulomb interaction. In this connection,
fully polarized ground state changes periodically as the
teractions entangle the single-electron states on the low
Landau level. This is similar to singlet-triplet oscillation
found in interacting two-electron quantum dots of bo
circular25 and square3 shapes, as well as in a double-d
system.26 We emphasize, however, that in our case
ground state remains fully polarized beyond the MDD, i.
Sz5N/2.

A. Magnetization

The structural oscillations beyond the MDD state can
observed in the magnetization of the dot, since the growth
the total angular momentum leads to the decrease in the
rent. The total magnetization for a finite system is defined
zero temperature as

M52
]Etot

]B
. ~5!

In Fig. 4 we show the magnetization in three rectangu
quantum dots beyond the MDD regime. The local minim
correspond to the points where the localization on the edg
maximized, and at local maxima there are states with a d
sity contribution at the center. It can be clearly seen in Fig
that M decreases with increasing electron number, and
onset of the oscillation moves to higherB as the deformation
b is increased, which is consistent with the upper limit of t
MDD window shown in Fig. 2. The period in magnetic-fie
strength is nearly a constant,;2.5 T in all the systems pre
sented in Fig. 4. We emphasize that the majority of (b,N)
combinations lead to more complicated and even irregu
magnetization. This will be discussed in more detail in S

FIG. 4. Magnetization in three different rectangular quantu
dot systems beyond the MDD regime. The dashed line indicates
noninteracting case of (b,N)5(2,6). The effective Bohr magneto
mB* 5e\/2m* .
9-3
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IV B. Figure 4 also shows the noninteracting magnetizat
for (b,N)5(2,6), calculated from the six lowest eigenene
gies on the first Landau level. In the MDD regime, it
;1mB* above the interacting curve with the same slope.
B;15 T, however, there is a clear crossing which indica
that the interactions retard the overall increase inuM u as a
function onB in the oscillatory regime. As can be seen
Fig. 4, the retardation is due to the decreasing parts inuM u.
The first of them correspond to the reconstruction of
MDD when the Coulomb energy collapses stronger than
kinetic energy increases. The same occurs periodically
higher magnetic fields, leading to loweruM u than in the
single-electron picture.

Magnetization in square-shaped quantum dots up toN
54 has been studied by Magnu´sdóttir and Gudmundsson.7

They found remarkably higher magnetization in the non
teracting than in the interacting picture, but did not consi
the high-B limit, where we see the crossing between tho
two cases. In a two-electron square dot studied by Sheng
Xu,8 the magnetization looks similar to our case, but t
oscillation represents the trivial singlet-triplet exchange.

B. Development of the angular momenta

As a mean-field theory, the density-functional approa
only approximates the many-body energy states. Howe
we will next consider the development of the effective ang
lar momentum of different KS orbitals in order to obtain
deeper insight on the state oscillations on the single-elec
level. In Fig. 5 we present the evolution of the effectivel z
values of the occupied KS levels in the polarized state o
square eight-electron quantum dot as a function ofB. The
structure is intriguing and shows clearly two different mod
in the system. First, there are four closely entangled sta
representing the relatively stable corner modes. They
reminiscent of the Aharonov-Bohm-like energy-level stru
ture in an interacting two-electron dot.3 Second, there are

FIG. 5. Evolution of the effectivel z values as a function of the
magnetic fieldB in a square eight-electron quantum dot.
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states that with increasingB condense to nearly circular or
bits on the first Landau level before the Coulomb interact
expands them to high effectivel z values. In this context, the
state development is similar to the circular case, where
occupation shifts from the lowestl z state to the highest leve
as the ground state changes. The periodic spread of the
dau states is clearly the origin of the magnetization osci
tions discussed above. The upper limit of the MDD windo
marked in Fig. 5, can be interpreted as the most evenly
tended effectivel z distribution similar to the correspondin
circularly symmetric system.

Figure 6 shows the development of the effectivel z values
in the case ofb52. Due to the reduction of the symmetr
the evolution is more complicated than in the square ca
and we can find four different modes. First, there are t
corner modes in the system. Of them, the highest effectivl z
state shows steady localization at the both ends of the r
angle, and the second one~5! oscillates weakly. The latter is
visualized in the right panel of Fig. 6 with the KS wav
functions, ucKS

i u2 ~see also Ref. 27!. In addition, there are
two different types of highly oscillatory states. The first pa
~3,4! has a remarkably lower amplitude in the oscillatio
regime (B>14 T). As can be seen in the KS wave function
they correspond to localization in they direction. Interlocked
to these states, there are strongly oscillative states~1,2! that,
according to the KS wave functions, seem to form a perio
structure in the rectangle, reminiscent of a ‘‘lozenge’’ orbit
the corresponding classical bouncing map, studied in
square case by Aguiar.28 It is noticeable that these state
affect strongly on the corner modes by compressing th
slightly to lower l z . The cusps atB511.8 T and 13.8 T are
numerical noise, corresponding to degeneracies of the
orbitals 1 and 3 or 2 and 4, respectively.

It is clear from Fig. 6 that the formation of bulk Landa
states disappears as the dot is squeezed toward a rectan
shape. Thus, the electron-electron interactions make

FIG. 6. ~Color online! Evolution of the effectivel z values as a
function of the magnetic fieldB in a b52 eight-electron quantum
dot. KS wave functions, corresponding to different modes, are a
shown.
9-4
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quantum dot sensitive to the deformation parameter. On
other hand, the overall behavior beyond the MDD is qua
tatively similar in all geometries, even if the evolution of th
effectivel z values gets very complicated. This occurs, e.g.
the case ofb51.5, where the different modes discuss
above are hardly recognizable. In this sense, an increas
the symmetry separates the different states and makes
corresponding classically stable orbits visible.

We underline that the KS orbitals given by the densi
functional theories do not have a direct physical interpre
tion. In this particular system, however, we find that the p
cedure gives important information on the many-parti
dynamics in an interacting nonintegrable quantum dot,
accessible with more ‘‘exact’’ computational methods.

V. SUMMARY

To summarize, we have studied the electronic structur
rectangular quantum dots in a magnetic field. We have id
tified the formation of a maximum-density droplet at the p
dicted B, even if the electron density is strongly localize
due to the hard-wall confinement. Beyond the MDD, w
have found oscillating magnetization that reflects the p
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7I. Magnúsdóttir and V. Gudmundsson, Phys. Rev. B61, 10 229

~2000!.
8W. Sheng and H. Xu, Physica B256-258, 152 ~1998!.
9T.H. Oosterkamp, J.W. Janssen, L.P. Kouwenhoven, D.G. A

ing, T. Honda, and S. Tarucha, Phys. Rev. Lett.82, 2931~1999!.
10M. Ferconi and G. Vignale, Phys. Rev. B56, 12 108~1997!.
11A. Harju, S. Siljama¨ki, and R.M. Nieminen, Phys. Rev. B60,

1807 ~1999!.
12S.-R. Eric Yang and A.H. MacDonald, Phys. Rev. B66,

041304~R! ~2002!.
13S.M. Reimann, M. Koskinen, M. Manninen, and B.R. Mottelso

Phys. Rev. Lett.83, 3270~1999!.
14E. Goldmann and S.R. Renn, Phys. Rev. B60, 16 611~1999!.
16530
e
-

n

in
the

-
-
-

t

of
n-
-

i-

odic changes in the polarized ground state. In the oscilla
regime, the magnetization shifts to lower values than in
corresponding noninteracting case. The origin of the perio
behavior has been analyzed by following the evolution of
effective angular momentum quantum numbers. There
clear corner modes in all rectangular systems, but the de
opment of the center orbits is found to be very sensitive
the geometry of the dot. In a square, the central KS orbi
are nearly symmetric, whereas a rectangle withb52 shows
two different oscillative modes. When the symmetry is r
duced further, the center orbitals become unindentifiable
spite of the limitations in the mean-field approach, we ha
managed to bring out the richness of phenomena exhib
by the electronic structure in the high-B limit. We hope that
this would inspire new experimental work on this topic.

ACKNOWLEDGMENTS

This research has been supported by the Academy of
land through its Centers of Excellence Program~2000-2005!.
E.R. is also grateful to Magnus Ehrnrooth foundation
financial support.

-

s.

t-

,

15A. Karlhede, S.A. Kivelson, K. Lejnell, and S.L. Sondhi, Phy
Rev. Lett.77, 2061~1996!.

16E. Räsänen, M.J. Puska, and R.M. Nieminen, Physica E~Amster-
dam! 22, 490 ~2004!.

17G. Vignale and M. Rasolt, Phys. Rev. Lett.59, 2360~1987!.
18C. Attaccalite, S. Moroni, P. Gori-Giorgi, and G.B. Bachele

Phys. Rev. Lett.88, 256601~2002!; 91, 109902~E! ~2003!.
19H. Saarikoski, E. Ra¨sänen, S. Siljama¨ki, A. Harju, M.J. Puska,

and R.M. Nieminen, Phys. Rev. B67, 205327~2003!.
20M. Heiskanen, T. Torsti, M.J. Puska, and R.M. Nieminen, Ph

Rev. B63, 245106~2001!.
21E. Räsänen, H. Saarikoski, V.N. Stavrou, A. Harju, M.J. Pusk

and R.M. Nieminen, Phys. Rev. B67, 235307~2003!.
22T. Chakraborty and P. Pietila¨inen, The Quantum Hall Effects:

Fractional and Integral~Springer, Berlin, 1995!.
23R.B. Laughlin, Phys. Rev. Lett.50, 1395~1983!.
24E. Räsänen, H. Saarikoski, M.J. Puska, and R.M. Nieminen, Ph

Rev. B67, 035326~2003!.
25M. Wagner, U. Merkt, and A.V. Chaplik, Phys. Rev. B45, 1951

~1992!.
26A. Harju, S. Siljama¨ki, and R.M. Nieminen, Phys. Rev. Lett.88,

226804~2002!.
27Animations of the KS states can be found from URL http

www.fyslab.hut.fi/arch/ehr/recta.html
28M.A.M. de Aguiar, Phys. Rev. E53, 4555~1996!.
9-5


