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A B S T R A C T

Digital Twin (DT) supports real time analysis and provides a reliable simulation platform in the Internet of Things
(IoT). The creation and application of DT hinges on amounts of data, which poses pressure on the application of
Artificial Intelligence (AI) for DT descriptions and intelligent decision-making. Federated Learning (FL) is a
cutting-edge technology that enables geographically dispersed devices to collaboratively train a shared global
model locally rather than relying on a data center to perform model training. Therefore, DT can benefit by
combining with FL, successfully solving the "data island" problem in traditional AI. However, FL still faces serious
challenges, such as enduring single-point failures, suffering from poison attacks, lacking effective incentive
mechanisms. Before the successful deployment of DT, we should tackle the issues caused by FL. Researchers from
industry and academia have recognized the potential of introducing Blockchain Technology (BT) into FL to
overcome the challenges faced by FL, where BT acting as a distributed and immutable ledger, can store data in a
secure, traceable, and trusted manner. However, to the best of our knowledge, a comprehensive literature review
on this topic is still missing. In this paper, we review existing works about blockchain-enabled FL and visualize
their prospects with DT. To this end, we first propose evaluation requirements with respect to security, fault-
tolerance, fairness, efficiency, cost-saving, profitability, and support for heterogeneity. Then, we classify exist-
ing literature according to the functionalities of BT in FL and analyze their advantages and disadvantages based on
the proposed evaluation requirements. Finally, we discuss open problems in the existing literature and the future
of DT supported by blockchain-enabled FL, based on which we further propose some directions for future
research.

1. Introduction

The prosperity of the Internet of Things (IoT) interconnects amounts
of devices and enables them to generate huge quantities of data,
including user preferences, usage frequency, failure reports, and so on.
These data can be further analyzed by service providers to improve their
Quality of Service (QoS). However, the dynamic nature of the environ-
ment results in data transmission delays that prevent service providers
from obtaining the most up-to-date information to make timely and ac-
curate decisions to provide better QoS. In addition, the development of
5G and computing paradigms prompts large-scale networks and brings
non-negligible challenges in new technology development and network
management. Specifically, the current network infrastructure is not

suitable for new technology development, given the high operational
risks and high deployment costs. In addition, the need for cost savings
requires more flexible network management tools.

As an emerging digitalization technology, Digital Twin (DT) offers a
feasible solution to overcome the above-mentioned challenges. DT pro-
jects a physical object to a virtual object and the virtual object can
constantly learn and update itself according to the changes of its corre-
sponding physical object [1]. Thus, DT can provide real time data anal-
ysis and a reliable experiment platform. Specifically, DT analyzes the
data generated by IoT devices to derive the best decisions to improve QoS
in real time. The operation risks and deployment costs of new technol-
ogies in the current network infrastructure are no longer significant
constraints since these new technologies can be verified on the virtual
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object economically. Similarly, all the attempts related to network
management can be performed on DT to find the best optimization
strategy.

Both DT modeling and DT-based decision-making strategies and op-
erations require numerous data, which increases the deployment diffi-
culty of DT. Specifically, when it comes to large-scale data input, it is
impractical to copy all the transformed raw data into the DTmodel, and it
is also tricky to extract all the useful underlying information from all the
data and analyze the data patterns. Besides, how to analyze data and
make full use of them in DT applications is another serious issue.

Artificial Intelligence (AI) can efficiently discover the patterns and
associations of numerous data, thus facilitating the practical deployment
of DT. Traditional AI employs a centralized server to collect data and
train models. However, this data is rarely used effectively by AI com-
panies due to data owners’ fear of sensitive information leakage when
sharing this data with companies. In addition, the complexity and size of
the models grow over time due to the huge amount of training data and
the complexity and variety of training tasks, which creates a huge chal-
lenge for AI companies to implement model training with an acceptable
time and resource consumption. Fortunately, the emergence of Federated
Learning (FL) [2] tackles the above-mentioned issues. FL enables model
trainers (i.e., data owners) to locally preserve their data and only upload
their local model updates rather than raw data to a central server for
global model training. Meanwhile, FL offloads training tasks from the
central server to its subordinates, while the central server is only
responsible for aggregating local model updates. Therefore, FL relieves
the computation pressure on the central server and improves the time
efficiency of model training.

However, although FL eliminates raw data exchange during training
and protects data privacy to a certain extent, FL still faces some non-
negligible problems. First, FL still relies on a central server to aggre-
gate local model updates, which can be subject to single-point failures. If
the central server is attacked or collapsed, the whole training process
would be aborted immediately, which wastes the resources of trainers
and reduces the enthusiasm of the trainers in joining FL tasks. Second, in
the absence of a strong monitoring mechanism, the central server may
perform maliciously, which can severely reduce trainers’ motivation to
join and hinder the progress of FL. For example, it can deliberately
tamper with the records of the trainers for pursuing its maximum reve-
nue. It may abandon some local model updates as they wish to disturb the
whole training process or lower the contributions of the corresponding
trainers.

Blockchain Technology (BT), which is originally introduced in 2008,
is a promising candidate to overcome the above-mentioned problems of
FL. Such a promising technology has attracted significant attention with
its characteristics of decentralization, anonymity, and immutability.
Researchers from industry and academia have recognized the potential of
introducing BT into FL to overcome the challenges faced by FL. In
blockchain-enabled FL, the trainers submit local model updates to miners
rather than to a central server for local model verification and global
model aggregation. All miners in the blockchain calculate a global model
independently. Only global models generated by miners who meet
certain requirements can be published, and other miners validate this
global model before attaching it to the blockchain. The blockchain-
enabled FL benefits the research from the following aspects. First of all,
BT overcomes single-point failures, thus enhancing the robustness of the
training process. Second, a malicious global model could be mostly
rejected due to the consensus mechanism of blockchain. Third, all data
records are tamper-proof on the blockchain, preventing malicious servers
from corrupting model training and enhancing the trustworthiness of the
final aggregated model. Therefore, BT helps to achieve the initial goals of
FL.

However, a comprehensive survey of blockchain-enabled FL is
missing. Nguyen et al. [3] classified current articles from the perspective
of problems to be solved in blockchain-enabled FL, however, they nar-
rowed down the application scenarios to edge computing. Ali et al. [4]

individually elaborated current applications of FL and BT in IoT, but they
did not explore blockchain-based FL. Moreover, neither of these two
papers considers the integration of DT and FL. Thus, the literature still
lacks a survey about how DT and FL can make each other better and how
BT can improve FL.

In this paper, we review existing works about blockchain-enabled FL
and evaluate them with a series of evaluation requirements. Specifically,
we first conclude a general structure of DT supported by blockchain-
enabled FL according to our reviewed papers. Then, we propose
several requirements from the perspective of security, fault-tolerance,
fairness, efficiency, cost-saving, profitability, and support for heteroge-
neity. Besides, we classify the reviewed papers into four categories ac-
cording to the major functions of BT in an FL system: secure and tamper-
proof maintenance of data, training process coordination, introduction of
incentive to trainers, and trainer behavior supervision. In addition, we
evaluate these papers against our requirements, on the basis of which we
further identify several unresolved issues and corresponding directions
for future research. Our contributions can be summarized as follows.

1. We propose several requirements that a blockchain-enabled FL should
meet in seven ways: security, fault-tolerance, fairness, efficiency, cost-
saving, profitability, and support for heterogeneity.

2. We classify existing blockchain-enabled FL systems according to the
functionality of BT and thoroughly evaluate these systems based on
the proposed requirements.

3. We discuss the prospects for blockchain-enabled FL-enabled DT and
detail how DT can be combined with FL to make each other better.

4. We point out open issues in the current literature and propose several
future research directions.

The rest of this paper is organized as follows. Section 2 introduces the
basic knowledge of BT, FL, and DT, while at the same time presents a
general structure of blockchain-enabled FL-enabled DT. Section 3 de-
scribes a series of evaluation requirements, based on which we evaluate
the pros and cons of current blockchain-enabled FL systems in Section 4.
The open issues and future directions are listed in Section 5. Finally,
Section 6 concludes this survey paper.

2. Background

In this section, we firstly introduce BT, including its structure, how it
works in the Bitcoin network, and its characteristics. Then, we present
FL, including its workflow along with its pros and cons. The definition of
DT and its applications with FL are presented subsequently. Finally, we
formulate a general structure of blockchain-enabled FL-enabled DT with
its corresponding workflow.

2.1. Blockchain Technology (BT)

Blockchain is a chain-structured peer-to-peer decentralized ledger
[5]. It follows the principle that each node has a copy of the ledger so that
no one can control the blockchain network completely. The ledger con-
sists of immutable blocks with a block body and a block header, which
are linked one by one in chronological order. The block body consists of a
set of transactions and a Merkle tree that is built on the hash of these
transactions. The root of the Merkle tree is stored in the block head along
with a hash pointer to the previous block and other information. In a
blockchain network, miners are responsible for verifying all transactions
and packing the validated transactions into a block.

Herein, we take Bitcoin blockchain as an example to introduce the
general procedure of BT. When a transaction appears in the Bitcoin
network, it will be verified by miners who have abundant resources and
own the transaction pool. Each miner owns its transaction pool to store
transactions it received and only the validated transaction can be packed
into the pool. All miners compete with each other to solve a hash puzzle
and the one that solves it first would gain the right to generate a block,
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which is comprised of the transactions in its transaction pool. Then, it
would broadcast its block and other miners would verify all transactions
in the new block. This new block is attached to its blockchain network
when and only when the miner acknowledges the validity of this new
block. This process of verification among all miners is called a consensus
mechanism which guarantees the decentralization of BT.

Notably, several miners may finish their solutions at the same time.
Therefore, several blocks are generated and broadcasted in the block-
chain network. When the miners choose different blocks to append, the
blockchain network is subject to forking issues. The Bitcoin network
applies the longest chain principle to solve the forking issues, which
means that a miner would append its block to the longest chain. Herein,
the longest chain is accepted by the majority of the miners.

The special structure provides BT with the following key
characteristics.

� Immutability: It signifies that all transactions and blocks on-chain are
permanent and tamper-proof. The hash value of a block is calculated
based on its block body and block head that contains the hash value of
previous blocks. Therefore, if an adversary modifies some informa-
tion on a previous block, the hash value of the next block would be
changed while the subsequent blocks cannot link this block. This
characteristic provides strong and credible proof of what happened
before and makes BT a reliable ledger.

� Decentralization: It means BT can not be controlled by any single
entity. The blockchain network is maintained by the miners, each of
which has a full replica of the blockchain network. Any transaction
that occurs in a blockchain network needs to be verified by the miners
rather than a trusted party or a single entity and the miners are
requested to reach a consensus on the transactions packed in a block.
Therefore, the reliability of the transactions on the blocks is guaran-
teed because they have been verified by all miners in the blockchain.

� Anonymity: All nodes including the miners and blockchain users are
using a pseudonym in blockchain, which ensures the anonymity of
BT. Blockchain applied cryptographic techniques to protect node
identity. Each node can generate amounts of public-private pairs
arbitrarily and thus own a large number of blockchain addresses that
are created based on the public keys. Therefore, the node can separate
their real identities from the identities in the blockchain network for
protecting their identity privacy.

� Traceability: Traceability indicates that any past transaction can be
retrieved later on since all transactions are preserved permanently on
the blockchain. Thus, if a node gains permission to access the blocks,
it can obtain all historical information. The combination of trace-
ability and immutability guarantees that no node can deny its past
behavior that is recorded on the blockchain. These properties indicate
significant applications. For instance, Lin et al. [6] requested task
offloading and processing between Virtual reality Devices (VDs) and
Edge Access Points (EAPs) in a medical information sharing system.
However, the operation of EAPs and the offloaded task cannot be
verified by the owner of VDs, which damages the security of the
system and the confidence of the VD owners. They further upgraded
their system by leveraging BT to record all information with trace-
ability [7].

According to the papers we surveyed [8–19], we find that two types of
blockchain are widely applied in existing FL systems: public (i.e., per-
missionless) blockchain and permissioned blockchain. Public blockchain
means anyone can join and leave the blockchain network in a
non-contact way and play any role in the network. Furthermore, anyone
can audit the transactions published on the blocks. Permissioned block-
chain indicates that only authorized and pre-designated entities can join
the blockchain system with constrained rights and the system is main-
tained by one or several organizations. It is noted that there exist many
problems inherent with blockchain [20,21], e.g., low throughput,
distributed denial of service attacks, privacy, and deanonymizing attacks.

These problems brought by blockchain would affect the performance of
FL or even threaten the security of a blockchain-enabled FL system.
Fortunately, there have been several reviews regarding the problems and
how to solve them in blockchain. Zheng et al. [22] gave an overview of
blockchain technology as well as its problems. The authors in Refs. [23,
24] explored how to solve the security and scalability in blockchain
separately. Yang et al. [25] investigated how to solve blockchain issues
with the assistance of edge computing and Liu et al. [26] utilized ma-
chine learning methods to overcome some problems in blockchain.
Different from existing surveys, our paper aims to review the literature
about applying blockchain for improving FL. Based on our serious search
and review, we find that few surveys touch this topic. Therefore, our
paper does not put blockchain problems and their solutions as our focus.

2.2. Federated Learning (FL)

Traditional machine learning employs a central server to collect data
and train models, therefore, the communication overhead and the
computation overhead of the central server are extremely heavy. Since
the effectiveness and accuracy of machine learning are positively related
to the amount of data and the capability of the central server, traditional
machine learning poses great challenges to the central server. Moreover,
the training data may reveal sensitive information of the data owners.
Thus, the data owners would hesitate to share their data for training,
especially when they are skeptical of the trustworthiness of the central
server. Therefore, the data cannot be effectively utilized due to the
capability restriction of the central server and the privacy concerns of the
data owners. Fortunately, Google came up with FL to address the above
data underutilization and privacy breaches by enabling data owners to
collaboratively build global models without sharing the raw data [2].
From the perspective of networking structure, FL can be divided into two
categories: centralized FL and decentralized FL [27]. The centralized FL
relies on a central server to aggregate the local models while the
decentralized FL enables each data owner to perform the aggregation
process. Since all reviewed papers apply the centralized FL, thus we only
introduce the centralized FL in the following section for simplicity.

The workflow of the FL is summarized as follows. Let us assume that
there is a central server releasing an FL task and a total number of K
trainers. The central server first distributes the initial global model to all
trainers. The trainers train the global model based on their local data and
submit the training results (called local model updates) to the central
server, while keeping the original data locally. The central server then
aggregates all the received local model updates and updates the global
model accordingly. Subsequently, the central server again distributes the
updated global model to all trainers, who further train the updated global
model using their local data. The above process would continue until the
global model is converged or reaches predefined training rounds.

It is obvious that FL is free of the traditional data collection tasks and
offloads some training workloads at the server side to the data owners
that are also the trainers in FL. FL retains the privacy of the trainers as
they only need to upload model updates, while sensitive and personal
data remains stored locally. Furthermore, FL is equipped with high
communication efficiency since the communication overheads of raw
data uploading at both the server side and the trainer side are consid-
erably heavier than those of the local model updates uploading. How-
ever, FL still faces serious problems, such as single point-failures and the
lack of a comprehensive oversight mechanism for the central server.
Fortunately, researchers have explored the application of BT to deal with
these issues. Since BT is inherently decentralized, it is effective to avoid
single point-failures in FL. Furthermore, the immutability and trace-
ability of BT can guarantee the transparency of the FL training process,
which also provides FL with a robust supervision mechanism.

2.3. Digital Twin (DT)

DT is an emerging technique in the last couple of years that can
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project a physical object to a virtual model, i.e., object. It allows to
perform network theoretical analysis and experiments directly on the
virtual model without changing the current network infrastructure. In
addition, DT guarantees real-time data analysis, helping us to dynami-
cally perceive physical objects to make intelligent decisions. The com-
bination of FL and DT realizes two-way closed-loop benefits circulation.

On the one hand, AI boosts the development and deployment of DT
based on its powerful data analysis ability. For instance, Mostafa et al.
[28] utilized AI models to extract useful data from a large number of
inputs during the process of DT creation and provided AI-assisted sug-
gestions in manufacturing plants. Rathore et al. [29] presented the ap-
plications of AI-based DT in several scenarios, e.g., prognostics, power
and energy, smart manufacturing, etc. FL facilitates the development of
DT by breaking many constraints and limitations in AI, such as “data
island” and lack of enough training resources. In addition, the creation of
DTs requires the transfer of all operational data from IoT devices, which
not only generates a significant communication load but also leads to
data privacy issues. Without an appropriate solution, the willingness of
data owners to invest in their data is inhibited. FL only requires data
owners to transmit local model updates, aggregating all local model
updates to form a better virtual model that successfully protects user
privacy, therefore, enriching the functionality of FL is a key step to
improve DT.

On the other hand, DT also promotes the development of FL. Since DT
shows excellence in running states awareness, it has been applied to
analyze the running states including the computing and communication
capabilities of trainers in FL timely. Lu et al. [1] utilized DT to map the
devices of trainers to virtual models for analyzing the running states of its
corresponding trainer, which are composed of computing and commu-
nication capabilities. Their method achieves dynamic resource allocation
by arranging more resources for the trainers with poor running states for
offsetting their negative influences on training performances. Sun et al.
[30] leveraged DT to devise an optimal trainer selection method in
practical and large-scale FL cases and explore a dynamic incentive
mechanism for pursuing high global model accuracy and high energy
utilization. Song et al. [31] devised an adaptive FL model to minimize

training costs by dynamically determining an optimal global aggregation
frequency with the assistance of DT. In Ref. [32], DT facilitates the
training process in FL to be handled by a third party for efficiency
improvement. Specifically, the model trainers are projected in the third
party for direct model training, which avoids the influence of inferior
trainers. If the third party is honest and it possesses considerable re-
sources, the FL task can be completed in a highly efficient way.

2.4. DT supported by blockchain-enabled FL

Based on the articles we reviewed, we conclude a general structure of
DT that is supported by blockchain-enabled FL in Fig. 1. Several roles are
presented in this structure, i.e., virtual objects, task publishers, trainers,
Consensus Nodes (CNs), and miners. The virtual objects are compre-
hensive digital representations of the trainers. The task publishers are
responsible for issuing an FL task with some specific training re-
quirements. The trainers are the data owners that train their local data for
the FL task. The miners verify the local model updates and aggregate the
validated ones. The CNs are the nodes involving in the block consensus
process and are usually elected from the miners.

The general workflow is described as follows. 1) The task publishers
release their individual FL task and requirements on the blockchain,
including the initial global model, the type of training data, the minimum
requirement of CPU frequency of the trainers, the maximum waiting
uploading time, etc. The maximum waiting uploading time of each
publisher requires all related trainers to submit their local model updates
in time. 2) The trainers download the global model of the FL task that
they would like to execute from the blockchain. 3) The trainers train the
global model with local data and produce local model updates. 4) Virtual
objects are constructed according to the information from their corre-
sponding physical objects. Usually, the information includes the local
model updates, their running states, etc. The constructed virtual objects
are associated with different miners. 5) The trainers upload their local
model updates on the blockchain and the miners can obtain the latest
information from the virtual objects to assist miners in trainer selection,
resource allocation, etc. 6) The miners verify the local model updates

Fig. 1. Structure of DT supported by blockchain-enabled FL.
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from their covering trainers and aggregate received local model updates
after the specified maximum waiting uploading time. Meanwhile, the
miners exchange their aggregated local model updates with other miners.
7) In this step, a temporary leader will be selected from the CNs to update
the global model by aggregating local model updates from all miners and
generating a block containing the newly aggregated local model updates
and the current global model while the CNs reaches consensus with this
block. 8) This newly generated block would be appended into the
blockchain network if it passes the consensus process. The above process
would continue until the task publishers terminate the training process or
the pre-defined training rounds have been reached.

Herein, according to the two types of blockchain we find in surveyed
papers, we list the following differences between a public blockchain-
enabled FL and a permissioned blockchain-enabled FL regarding node
roles and node rights. In a public blockchain-enabled FL, each node can
work with arbitrary roles and quit the FL task if it is a miner or a trainer.
All nodes can perform any activities without restrictions. However, in
permissioned blockchain-enabled FL, the role of the node has been pre-
assigned and prescribed with constrained rights. Therefore, the node can
only perform activities under certain rules and cannot leave the FL task
arbitrarily.

3. Evaluation requirements

We propose the following evaluation requirements to evaluate the
effectiveness of applying BT in FL from seven aspects: security, fault-
tolerance, fairness, efficiency, cost-saving, profitability, and support for
heterogeneity. A structure of all the evaluation requirements is listed in
Fig. 2.

3.1. Security (Se)

Considering the diversity of attacks in blockchain-enabled FL, we
evaluate the security of existing works by assessing the effectiveness of
defending several attacks. Note that the attacks listed below are main
flow attacks in blockchain-enabled FL according to our survey. For other
attacks, like the back door attack that is a common attack for traditional
AI, we leave them behind our discussion. Specifically, we believe that FL
can resist the back door attack to some extent inherently since FL alle-
viates the negative effect of this attack through local model aggregation.

3.1.1. Poison Attack Resistance (PAR)
A poison attack in FL refers to a situation that the trainers submit

wrong or well-modified local model updates to deteriorate the accuracy
of the global model updates. Such an attack adversely affects the accu-
racy of the global model, thus further poses an influence on the
convergence rate of the global model. Moreover, the poison attack in-
creases resource consumption on all entities including the trainers, the
miners, and the task publishers. Therefore, it is necessary to consider the
ability to resist poison attacks when assessing the effectiveness of BL
applications in FL.

3.1.2. Verifier Compromise Attack Resistance (VCAR)
Verifiers play an important role in blockchain technology and are

responsible for authenticating the validity of the transactions. An ad-
versary with a Verifier Compromise Attack (VCA) in the FL scenario can
compromise the verifiers and the compromised verifiers will not fulfill
their obligation honestly. Consequently, the global model may not
converge in a predefined time, which incurs extra communication and
computation rounds. Therefore, the model accuracy and the communi-
cational and computational efficiency will be severely influenced. The
verifiers are normally the miners in blockchain [8,9,11,12,32–35].
Therefore, we interchangeably use these two terms in the following
section.

3.1.3. Trainer Compromise Attack Resistance (TCAR)
The trainers are another critical role in FL, which are responsible for

training the local models with local data. When a Trainer Compromise
Attack (TCA) is launched against a trainer, the infected trainer will
submit false local model updates or delay the submission process, and the
accuracy of the global model will deteriorate to the detriment of the task
publisher, so it is also necessary to prevent this attack.

An intuitive solution to achieve the VCAR/TCAR is to achieve miner/
trainer unlinkability. The unlinkability preserves the real identities of the
miners/trainers; therefore, an adversary cannot launch a bribery trans-
action on-chain. According to the degree of supporting VCAR/TCAR, we
classify the fulfillment of the security requirement concerning VCAR/
TCAR into three categories: low, medium, and high. Specifically, the low
fulfillment refers to the situation that the miners/trainers are fixed in the
whole training process. The reason is that if they are fixed then the ad-
versary can analyze the behavior pattern of a trainer/miner and reveal
the real identity of the trainer/miner with a high probability. The

Fig. 2. Structure of evaluation requirements.
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medium fulfillment means that although the miners/trainers are ambu-
latory, the adversaries can probabilistically predict whether a miner/
trainer would be involved in the next round. For those miners/trainers
that have been predicted successfully, the adversary can combine task
requirements and their behavior to deanonymize them and may finally
discover their real identities. If the miners/trainers are randomly chosen
in each round and the adversaries can hardly predict the probability, we
say that the fulfillment of security in supporting VCAR/TCAR is high
because there would be little useful evidence to support the adversary to
predict the real identity of a trainer/miner.

3.1.4. Inference Attack Resistance (IAR)
In FL, local model updates have a strong association with personal

information. Melis et al. [36] have found that the local model updates
could disclose the sensitive information of the trainers. An inference
attack is an attack in which an attacker uses local model updates to
compromise or even violate the privacy of the trainer. Without privacy
preservation, the sensitive trainers would hesitate to join the training
process. Therefore, we also use the ability to implement an IAR as a
requirement to assess whether a blockchain-enabled FL system can pro-
tect the privacy of trainers.

3.2. Fault-Tolerance (FT)

Fault-tolerance refers to the ability of a Proof of Work (PoW)-based
blockchain system in resisting the forking issues. Since blocks usually
contain updated information about the global model and the forking is-
sues can cause the trainer to download a different global model, which
can negatively affect the model convergence or even the accuracy of the
global model, we consider FT as one of our evaluation requirements.
Notably, we only consider this requirement in a PoW-based system, since
forking issues occur rarely when other consensus mechanisms are
applied.

3.3. Fairness (Fa)

Fairness can not only guarantee individual benefits but also build a
harmonious competitive environment for promoting sustainable system
development. A well-designed blockchain system normally provides the
miners and the CNs with fair mining rewards and transaction fees. We
mainly assess whether a blockchain-enabled FL system can ensure fair-
ness for the trainers and the task publishers. Specifically, we propose
superior data fairness, inferior data fairness, and local model fairness
requirements for the trainers and a global model fairness requirement for
the task publishers.

3.3.1. Superior Data Fairness (SDF)
SDF means that the trainers can obtain payments according to their

data quality or volume. Since different trainers hold different local
training data in practice, the fulfillment of the SDF requirement gua-
rantees a fair incentive mechanism that can attract the trainers with high-
quality data or high-volume data.

3.3.2. Inferior Data Fairness (IDF)
It is non-trivial to punish malicious trainers for the sake of system

security. IDF indicates that a trainer will be punished if its malicious
behavior is detected. Therefore, the IDF requirement can reduce the
probability of the trainers to behave maliciously from an economic
perspective.

3.3.3. Local Model Fairness (LMF)
Since the local model updates are public in the blockchain network

and can be accessed by all system entities, some malicious trainers could
plagiarize the published local model updates and claim them as theirs,
which inhibits the willingness of honest trainers to participate or forces
trainers to submit local model updates as late as possible to avoid being

copied, thus affecting the whole training process of FL. If LMF is satisfied,
the miners are capable of distinguishing similar or even the same local
model updates and identifying the plagiarism behavior. Hence, the in-
terests of honest trainers are guaranteed.

3.3.4. Global Model Fairness (GMF)
The trainers can access the global model of the FL task they would like

to participate in and enjoy the rewards from the task publishers.
Dishonest or malicious trainers can make illegal profits by selling the
global model, which will certainly harm the task publisher, especially
when the training process is coming to an end and the global model tends
to converge. When a blockchain-enabled FL system satisfies the GMF
requirement, then the task publishers can be compensated for the mali-
cious selling of their global models. Therefore, GMF is an important
requirement that can ensure the participation willingness of the task
publishers.

3.4. Efficiency (Ef)

An efficient blockchain-enabled FL system is attractive to both the
system users and the system participants. We evaluate the efficiency of
consensus and verification for BT and the efficiency of aggregation for FL.

3.4.1. Verification Efficiency (VE)
Numerous transactions need to be verified in a successful large-scale

system, bringing a heavy verification burden on the miners. Meanwhile,
the scalability of the blockchain is subject to the ability to process
transactions. Thus, realizing the requirement of verification efficiency
can improve the throughput capacity of the blockchain-enabled FL sys-
tem and enhance the practicality of the system. We propose the VE
requirement to evaluate the system's ability to verify the transaction
expeditiously.

3.4.2. Consensus Efficiency (CE)
It is a time-consuming process for all the CNs to reach a consensus on

the validity of a block. Consensus efficiency can be improved if we limit
the number of CNs needed to reach consensus, which can be achieved by
CN selection. Meanwhile, the forking issues in PoW-based blockchain
would increase the difficulty of reaching the consensus and increase the
processing latency of transactions. CE means that a system can reach a
consensus as soon as possible, which could promote the progress of FL
training and enhance the whole system efficiency.

3.4.3. Aggregation Efficiency (AE)
The aggregation of local model updates will not be activated until all

the local model updates have been uploaded or the maximum waiting
uploading time has passed. Therefore, aggregating all the local model
updates is inefficient. If a blockchain-enabled FL system allows the
miners to calculate the global models without waiting until receiving all
the local model updates, we say that this system achieves the require-
ment of AE, and vice versa.

3.5. Cost-Saving (CS)

In a practical scenario, the resources of the CNs, miners, and trainers
are limited. Therefore, the high block verification costs of the CNs, the
high transaction verification costs of the miners, and the high storage
costs, as well as training costs of the trainers, suppress their enthusiasm in
participating in the blockchain-enabled FL systems. Considering the
fulfillment of VE and CE contributes to saving the costs in block verifi-
cation and transaction verification, we mainly consider the storage costs
and the training costs.

The storage costs refer to the costs for storing the local model updates
and the global models. The training costs contain the computational costs
and the communication costs in terms of calculating and uploading the
local models. Any approach that can reduce these costs can definitely
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encourage the participation of more system entities. Furthermore, they
can participate in more tasks with the same restricted resources for
obtaining more profits. It is worth mentioning that we only consider the
communication latency in local model updates uploading without
considering it in global updates downloading. This consideration origi-
nates from two reasons. The first reason is that the uplink speed is much
lower in internet connection when comparing with the downlink speed.
The other one is that the low uplink speed is the major bottleneck of
enhancing communication efficiency [37], especially when the commu-
nication cost is unaffordable for the trainers. Therefore, in order to
evaluate the ability of the blockchain-enabled FL in saving these costs, we
propose two requirements that are a Storage Cost-Saving (SCS) require-
ment and a Local Training Cost-Saving (LTCS) requirement. Specifically,
SCS indicates the ability to relieve the storage pressure for the trainers.
We divide the degree of fulfillment of SCS into three levels: high, me-
dium, and low. If the hash value of local model updates and global
models are preserved in a block, or the trainers have no need to store the
whole blockchain, then the SCS requirement is highly fulfilled. Medium
fulfillment indicates the global models are stored in a block and all local
model updates are preserved in a third party or elsewhere. As long as
local model updates are presented in the blockchain, we say such a sys-
tem achieves low SCS.We evaluate the fulfillment of LTCS by considering
whether a system can save the local training costs for the trainers.

3.6. Profitability (Pr)

Considering the lack of regulation in blockchain-enabled FL systems
and the public characteristics, incentive mechanisms are widely applied
to guarantee the high participation level and the cooperative behavior of
the system entities. The task accomplishment of the task publishers re-
quires the participation of trainers while the miners and CNs are also
important to the operation of BT. Therefore, existing incentive mecha-
nisms are mainly designed from the perspective of the trainers’ utilities
for motivating them to participate and BT inherently brings incentives to
the miners and CNs. However, the task publishers are vital in the sus-
tainable development of the systems since the payments and rewards to
the trainers, the CNs, and the miners are from the task publishers. A
blockchain-enabled FL systemwithout any task publisher cannot survive.
Therefore, the utility of the task publishers should be considered in the
incentive mechanism design. We employ Pr as the requirement to eval-
uate whether a blockchain-enabled FL system can guarantee the profits of
the task publishers.

3.7. Support for Heterogeneity (SH)

The characteristics of openness and decentralization bring the
blockchain-enabled FL systems with heterogenous trainers in terms of
resources and data. Ignoring the influence of heterogeneity will affect the
system performance to some extent. Specifically, a system with a large
number of poor trainers, the data of which are with Non-Independent and
Identically Distributed (Non-IID), will suffer from a long training
completion time. Moreover, the global model is difficult to converge.
Thus, a system designer should consider these factors to ensure quick
convergence in the global model training.

3.7.1. Support for Resource Heterogeneity (SRH)
Resource heterogeneity means the computation and communication

resources vary with each trainer. A trainer with few resources theoreti-
cally performs poorly in submitting their local model updates. The time
for the model aggregation process is determined by the slowest trainer
[19]. SRH indicates that the system designers consider the heterogeneity
of resources because shortening the resources gap among the trainers
would accelerate the model convergence rate and decrease the learning
completion time. In other words, those trainers with poor resources
should be banned to join the FL tasks for improving the system efficiency.

3.7.2. Support for Data Heterogeneity (SDH)
Data heterogeneity indicates that the trainer is equippedwith Non-IID

datasets, the existence of which influences the convergence of the global
model [38], and damages the interest of the task publishers. Without
enough task publishers, the system cannot sustain itself in the long run.
Therefore, eliminating the influence of the Non-IID data and guaran-
teeing the model convergence can attract the task publishers. SDH refers
to the ability of the system in tackling the difficulty of convergence
brought by the Non-IID data.

4. Blockchain-enabled FL

In this section, we review the state-of-the-art papers regarding the
functionality of BT played in FL and comment on the pros and cons of
each paper based on the proposed evaluation requirements in Section 3.
According to the main purpose for BT in FL, we classify the application
scenarios into four categories: secure and tamper-proof maintenance of
data, training process coordination, introduction of incentives to trainers,
and trainer behavior supervision. We show the taxonomy regarding these
four categories in Fig. 3. Table 1 briefly concludes our evaluation results.

4.1. Secure and tamper-proof maintenance of data

Traditional FL relies on a central server to store all training-related
data and DT-based virtual models are designed as the representations
of trainers for real time analysis. However, the server may not be reliable
and honest, because when the central server controls access to the model
updates or virtual models, it can change the updates or information in the
virtual models as needed to gain additional illegal benefits. In addition,
the modified virtual models do not accurately reflect the trainer's infor-
mation, which reduces the efficiency of the whole training process, so it is
necessary and urgent to secure the training-related data.

Zhao et al. [11] established a permissioned blockchain-enabled FL
system for supporting smart home appliance manufacturers to provide
suitable services to their customers, while BT is introduced to record
model updates honestly. They adopted Algorand, which is based on Proof
of Stake (PoS) [39], and Byzantine Fault Tolerance (BFT), as the
consensus mechanism. Specifically, they utilized the Verifiable Random
Functions (VRF) to randomly select CNs fromminers to verify the validity
of a new block. Since both trainers (i.e., customers) andminers are settled
throughout the training process, satisfaction with VCAR and TCAR re-
quirements is low and consensus is only required among a subset of
miners (i.e., CNs), thus reducing validation costs. Therefore, the pro-
posed system satisfies the requirement of CE. Furthermore, Differential
Privacy (DP) techniques are leveraged to preserve data privacy, which
realizes the requirement of IAR. The miners would verify the validity of
received local model update from the trainers, filter out vicious or infe-
rior updates through multi-krum [40] techniques, and renew the repu-
tation values of the trainers. Hence, the PAR requirement is satisfied.
Considering the computing power constraints of the trainers, the pro-
posed system enables to offload training tasks to Mobile Edge Computing
(MEC) servers. Although the local computation costs are decreased by
task offloading, the communication costs between the trainers and the
MEC servers increase. Thus, LTCS is hard to evaluate. It is worth noting
that the trainers upload local models to InterPlanetary File System (IPFS)
[41] while only store the hash values of the local models on the block-
chain, thus relieving the storage overheads. However, the satisfaction of
the SCS requirement is only medium since the global models are still
preserved on the blockchain. The authors also designed a
reputation-based incentive mechanism to reward honest nodes according
to their data quality, which achieves the goal of SDF. Unfortunately,
other requirements were not considered.

Lu et al. [19] applied a permissioned blockchain-enabled FL system to
relieve frequent communication rounds between miners and trainers in
the Internet of Vehicles (IoVs), where blockchain is used to record and
store model parameters reliably. Road Side Units (RSUs) maintained the
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permissioned blockchain as miners and vehicles (i.e., trainers) only store
local Directed Acyclic Graph (DAG), which saves all local models. Thus,
their method can only satisfy the requirement of low SCS. The authors
adopted Delegated Proof of Stake (DPoS) as the consensus mechanism
and satisfied the requirement of CE since the CNs are selected from only a
few miners (i.e., RSUs). Note that the miners here are not responsible for
verifying local models but for voting for CNs to generate blocks and reach
the consensus. They also leveraged Reinforcement Learning (RL) [42] to
select well-suitable trainers from all trainers according to their commu-
nication and computation capabilities as well as the accuracy of their
training results to improve training efficiency. Thus, the proposed system
satisfies the requirement of SRH. In addition, the above node selection

method filters out unreliable trainers and selects the trainers with higher
local model accuracy. Generally, the local model is trained within limited
epochs prescribed by a task publisher. The higher local model accuracy
means the deviation between the local model and the global model is
much smaller, which indicates the local training data have a more similar
distribution with the global training data. Thus, this node selection
achieves the requirement of SDH. However, since the system enables the
trainers to verify local models and when the reputation and
resource-based trainer selection method is applied, an attacker can easily
predict the selection results with prior knowledge. Thus, the satisfaction
of TCAR and VCAR is medium. Vehicles share local model information
with nearby vehicles and update their local DAGs after filtering out

Fig. 3. Taxonomy of blockchain-enabled FL.

Table 1
Summary on application of blockchain-enabled FL.

Ref AS BlT Se FT Fa Ef CS Pr SH

PA VC TC IA SD ID LM GM SC LT SR SD

R AR AR R F F F F VE CE AE S CS H H

[1] MEC Pe N L L N / – – – – Y Y Y L – – Y –

[8] MEC Pe Y H M Y / – – – – – N – L – – Y Y
[9] Others Pe Y M L N / Y – – Y – N Y M – – – –

[10] Others Pu Y L Y N Y Y – – – – Y – – – – – –

[11] MEC Pe Y L L Y / Y – – – – Y – M – – – –

[12] MEC Pe Y L L Y / Y – – – – N – L – – – Y
[13] MEC Pu N L H N Y Y – – – – Y – L – – – Y
[14] Others Pu Y M H Y / Y – Y – – Y – L – – – –

[15] MEC Pe Y L L N / Y – – – – Y – L – Y Y Y
[16] MEC Pe Y L L N / Y – – – – N – L – Y Y Y
[17] Others Pe Y L H N – Y – – – – N – – – – – Y
[18] MEC Pe Y H H Y N Y – – – – Y – H – Y Y Y
[19] MEC Pe Y M M N / Y – – – – Y – L – – Y Y
[32] MEC Pe Y L L N / – – – – Y Y – L Y – / –

[33] MEC Pu Y L H Y / – – – – – – – L – – – Y
[34] MEC Pe Y H L N / / Y – – – N – H Y – – –

[35] Others NM Y L L Y – Y – – – – Y – L – – – Y
[44] MEC Pe Y L L N / Y – – – Y Y – L – Y Y Y
[47] MEC Pe Y L M N Y Y – – – – Y Y L Y – – Y
[49] MEC NM Y L L N / Y – – – Y Y – L – Y Y Y
[50] FC Pe N L L N Y Y – – – – Y – L – – – –

[53] Others Pu N L H N Y Y – – – – Y – L – – – –

[54] Others Pe Y L/M L/L Y / – – – – – N/Y – L – – – –

[55] MEC Pe Y L L N – Y – – – – N – H – – – –

[56] Others Pu Y H H Y / Y – – – – – – L – Y Y Y
[57] Others Pe N H L Y / Y Y – – – – – L – – – –

[58] MEC Pe/Pu Y L M N / Y – – – Y – – – – Y Y Y

Notation.
Ref: Reference; AS: Application Scenario; BlT: Blockchain Type; Pe: Permissioned; Pu: Public; NM: Not Mentioned; FC: Fog Computing.
N: Not satisfied; Y: Satisfied; -: Not considered;/: No need to consider; L: Low; M: Medium; H: High.
Se: Security; PAR: Poison Attack Resistance; VCAR: Verifier Compromise Attack Resistance; TCAR: Trainer Compromise Attack Resistance.
IAR: Inference Attack Resistance; FT: Fault-Tolerance; Fa: Fairness; IDF: Inferior Data Fairness; SDF: Superior Data Fairness.
LMF: Local Model Fairness; GMF: Global Model Fairness; Ef: Efficiency; VE: Verification Efficiency; CE: Consensus Efficiency.
AE: Aggregation Efficiency; CS: Cost-Saving; SCS: Storage Cost-Saving; LTCS: Local Training Cost-Saving; Pr: Profitability.
SH: Support for Heterogeneity; SRH: Support for Resource Heterogeneity; SDH: Support for Data Heterogeneity.
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low-precision information, which achieves the requirements of PAR, but
cannot support the requirements of IAR because privacy-preserving
techniques are not used in sharing local models. The RSUs would
collect current local model updates that have been verified by the trainers
and aggregate them to generate a global model. A trainer who contrib-
utes with the high-quality local model update would gain a high repu-
tation, which means the trainer would have a high probability of being
selected for the next round of training and obtaining the rewards. Hence,
the system satisfies the requirement of SDF. However, the rest re-
quirements were not discussed in this paper.

Li et al. [9] proposed a novel consensus mechanism in permissioned
blockchain-enabled FL to enhance the security of FL and reduce
consensus costs of BT, where the blockchain manages model updates in
case of any malicious behavior from a centralized server. They devised a
novel consensus mechanism in which miners are elected from trainers
based on their performance in the previous training process and the
number of elected miners is relatively small when comparing with the
trainer number. Herein, the miners are identical to CNs, which means all
miners will participate in the consensus mechanism. Hence, this paper
satisfies the requirement of medium VCAR but fails to meet the CE
requirement. The membership of trainers is fixed and therefore the TCAR
requirements are less likely to be met. Submitted local model updates
will be further validated by miners, and only qualified updates will be
aggregated each round, supporting the PAR requirement. Once miners
receive enough local model updates, the process of local model update
aggregation is activated, which saves the time of waiting for slow trainers
and, therefore, satisfies the AE. The miners verify each unencrypted local
model update and calculate a score for the update based on their dataset.
The median of all calculated scores is assigned to the local model update
as its final score. The higher the final score is, the more rewards the
corresponding trainer can earn, which indicates that the requirement of
SDF is satisfied but IAR is not supported. Besides, the system can endure
some trainers to abandon historical blocks for alleviating storage pres-
sure, which provides the system with high SCS. The GMF requirement is
satisfied because the trainers are required to pay access fees to the task
publishers. However, the proposed system does not consider other
requirements.

Lu et al. [8] proposed a permissioned blockchain-enabled FL system
in 5G beyond for enhancing the security of FL, wherein BT is applied to
store model parameters. The same as [9], they also adopted DPoS [43] as
the consensus mechanism. Different from the fixed trainer members in
Ref. [9], the authors selected the trainers according to their resources and
data quality in each round through Deep Reinforcement Learning (DRL).
Therefore, the impact of heterogeneous devices is reduced. According to
our discussion about the systems proposed in Refs. [9,19], this paper
satisfies the requirement of high VCAR, medium TCAR, SRH, and SDH.
The authors enabled the trainers to add noise to their local model updates
for protecting privacy, which provides the system with IAR. The miners
(i.e., CNs) verify the local model updates by calculating loss functions
based on their datasets and filter out fake and low-quality updates. Thus,
this paper satisfies the requirement of PAR without supporting CE. Since
both the local model updates and global models are stored in the block,
the satisfaction of SCS is low. Moreover, the authors did not consider
other requirements.

Chai et al. [44] proposed a hierarchical and permissioned
blockchain-enabled FL system for knowledge sharing in IoVs to reduce
computation on global models and the blockchain stores the knowledge
securely. Trainers (i.e., vehicles) send local model updates to RSUs for
local model updates aggregation and the RSUs send aggregated local
model updates to Base Stations (BSs) for further aggregation. The hier-
archical blockchain contains a Ground Chain Layer (GC) and a Top Chain
Layer (TC). In GC, the vehicles act as the trainers to send local model
updates to the RSUs that work as miners and CNs for local model updates
aggregation. The RSUs serve as the trainers in TC by sending the aggre-
gated local model updates to the BSs that act as the miners and CNs. The
authors applied the same novel consensus mechanism in both layers,

Proof of Knowledge (PoK). We take GC as an example, where the RSUs
need to reach a consensus on the accuracy of the aggregated local model
updates. The RSUs purchase local model updates from the trainers,
validate the local model accuracy and pay the trainers with rewards that
are proportional to their model accuracy. Thus, the system realizes the
requirements of SDF and PAR. Then, the RSU with the highest accuracy
obtains the right to publish its block. All the RSUs and the trainers are
divided into different clusters based on their location and the RSUs only
verify those local model updates in the same cluster, which improves the
throughput of the system and satisfies the fulfillment of VE. Also, the
consensus process is executed among CNs in the same cluster, which
realizes the requirement of CE. However, the local model updates
transmitted between the RSUs and the trainers are without any protec-
tion., which fails to support IAR. Since the miners and the trainers are
fixed in the system, thus the fulfillment of VCAR and TCAR is low. The
RSUs can be regarded as task publishers in this paper since they are
responsible for compensating the trainers. A multi-leader and
multi-player Stackelberg game is built to model the interactions among
the trainer and RSUs. Consequently, an algorithm is proposed to solve
this game for maximizing the utilities of the trainers and the RSUs, which
guarantees the requirement of Pr. However, the fulfillment of SCS is low
since all local model updates are recorded on-chain. Unfortunately, other
requirements were not concerned in this paper.

Lu et al. [12] designed a blockchain-enabled FL structure for secure
data sharing among multiple participants in Industrial IoT, where BT
stores local model updates and global models permanently. They adopted
a permissioned blockchain with a novel consensus mechanism called
Proof of Training Quality (PoQ), which selects a temporary leader from
miners to publish a block based on model performance. The trainers (i.e.,
IoT devices) are divided into different communities according to the
categories and distribution of their data. The trainers with similar data
are linked through a local retrieval table. Therefore, the requirement of
SDH is satisfied since similar training data will enhance the global model
accuracy for FL tasks and balance the data distribution. When a task
publisher issues an FL task, a trainer first calculates a local model update
with the DP technique and informs the other trainers located in its
retrieval table to participate in this task. The application of the DP
technique guarantees the fulfillment of the IAR requirement. Similar to
Refs. [8,9,19], the miners are also elected from the trainers and they also
take the role of CNs. Specifically, the miners verify the quality of local
model updates and aggregate the qualified local model updates. Hence,
PAR is also satisfied in this paper. The validity of the block generated by
the temporary leader miner is verified by the other miners, which fails to
support CE. Notably, both the miners and the trainers are settled during
the whole training process, thus the satisfaction of the requirements
VCAR and TCAR are low. In addition, the payments to the trainers are
calculated according to their contributions, which are proportional to
their data sizes. Hence, the requirement of SDF is also satisfied. However,
this paper does not consider other requirements.

Liu et al. [33] integrated BT and FL to devise Intrusion Detection
Systems (IDSs) in the vehicular network in order to detect attacks, where
BT is leveraged for tamper-proof data storage. The trainers in this paper
are the vehicles that mask their local model updates with a secret through
Shamir secret sharing technology. The RSUs work as miners to distribute
global models and aggregate the received local model updates after
subtracting the secret. The miners are fixed in the system while the
trainers can decide whether to join dynamically. Hence, this paper ach-
ieves low VCAR and high TCAR. The miners adopt a comparison method
to evaluate whether a trainer is malicious or not. Specifically, the miners
compare the aggregation results when a certain local model update is
included or not. If the difference value exceeds a predefined threshold,
the corresponding trainer is considered malicious and the local model
updates are excluded from the final aggregation results, which supports
the PAR requirement. Note that the trainers would receive masked local
model updates from adjacent trainers and aggregate their local model
updates when training their local models to improve the quality of local
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model updates. Thus, this paper satisfies the requirement of IAR. Spe-
cifically, the requirement of SDH is also realized since sharing local
model updates with adjacent trainers alleviates the impact of Non-IID
data. The miners verify each others’ models and the verification results
are applied to evaluate the trust of the miners. The miners can obtain
payments that are proportional to their trust values. However, the
incentive to the trainers is hardly investigated in this paper, thus we
cannot evaluate the fulfillment of SDF. At last, their method does not
consider other requirements.

Cui et al. [34] devised a permissioned blockchain-enabled FL to
improve cache hit rate in edge computing, where BT is exploited to
secure the hash of local models. The authors adopted PoS as the
consensus mechanism, where miners are elected from trainers (i.e., edge
nodes) based on reputation and random numbers. Specifically, the
miners only occupy a small part of trainers in each round and they are
identical to CNs, thus satisfying the requirement of high VCAR but failing
to support the requirement of CE. The trainers are fixed in the system,
which meets the requirement of low TCAR. In this system, the IoT device
asks the trainer to train the local model based on the data sent by the IoT
device. The requested data is not encrypted before sending, and the
trainer can easily infer the personal information of the IoT device, which
cannot satisfy the requirements of IAR. Moreover, the local models are
compressed using gradient compression method and verified by miners,
thus reducing the communication cost of trainers and resisting poison
attacks, and their approach satisfies the requirements of LTCS and PAR. If
a local model update is considered invalid, the corresponding trainer is
penalized, which provides support for IDF. The authors apply a reputa-
tion mechanism to reward miners who perform honestly during the
validation process but lack incentive analysis of the trainers. Only the
hash of the local model is kept in the blockchain and their approach al-
lows for high SCS, however, their approach does not involve meeting
other requirements.

Liu et al. [35] proposed a blockchain-enabled FL system to protect FL
from unreliable and malicious participants, where BT implemented on
Ethereum [45] is used to secure local and global model updates. They
allowed each task publisher to appoint one miner to verify and aggregate
the local model updates from the trainers. The consensus results are
decided by this miner, which realizes the requirement of CE. The trainers
are mobile devices and they are locked during the training process. Thus,
their system satisfies the requirements of low TCAR and low VCAR. The
trainers would add noise to their local model updates before submitting
them to the miner, thus fulfilling the requirement of IAR. The miner
would evaluate the quality of received local model updates with the
testing dataset provided by the task publishers, which satisfies the
requirement of PAR. The authors utilized Earth Mover's Distance (EMD)
[46] as a metric to measure the Non-IID degree of the trainers' data and
their experiment shows that their method can resist the impact of
Non-IID data successfully; therefore, the requirement of SDH is satisfied.
The trainers receive payments that are proportional to the quality of their
local model updates. Thus, the system realizes the requirement of SDF.
However, the rest requirements were not discussed in this paper.

Lu et al. [32] pioneered the introduction of digital twins into
blockchain-enabled FL to reduce the heavy communication costs be-
tween trainers (i.e., end-users) and miners (i.e., BSs) in the 6th genera-
tion mobile networks, where BT is used to store local and global models
reliably. They adopted DPoS as the consensus mechanism and elected
several CNs from the miners to verify blocks. Thus, their method satisfies
the requirement of CE. Each trainer would be mapped into a digital twin
maintained by a miner and the association of the miners and the trainers
is stored in a permissioned blockchain to enhance their mutual trust. The
digital twin enables miners to verify only the transactions of their map-
ped trainers, which supports the VE implementation. Since the miners
and the trainers are immovable, their method satisfies the requirements
of low TCAR and low VCAR. After training the local data and aggregating
all local model updates of mapped trainers, the miners submit the
well-trained local model updates to an aggregator for global aggregation.

The local training process is offloaded from the trainers to the miners,
thus relieving the computation costs of the trainers. Therefore, this paper
achieves the requirements of LTCS for the trainers. Unfortunately, the
requirement of IAR is not satisfied since the miners are aware of the local
training data collected from the trainers. Each miner would broadcast its
local model updates to the other miners for verification, which achieves
the requirement of PAR. Combining the data size of the training data, the
state of the communication channel, and the computational power of the
miners, the authors further use DRL to match digital twins with suitable
miners and optimize the bandwidth allocation between miners and
aggregators, thereby improving resource utilization. Unfortunately, the
authors did not consider other requirements.

Lu et al. [1] continued to explore the application of DT in
blockchain-enabled FL for edge networks based on [32] while enhancing
the FL communication efficiency and simulating the dynamic environ-
ment of edge devices. They leveraged permissioned blockchain to store
local model updates and global models for enhancing mutual trust among
unfamiliar trainers. They adopted DPoS as the consensus mechanism.
Since all local model updates and global models are preserved in block-
chain, their method can only satisfy the requirement of low SCS. In their
work, the trainers are the edge devices and the miners are BSs. CNs are
elected from the miners to execute the consensus mechanism, thus
achieving the requirement of CE. A miner connects to several trainers and
constructs the digital twins of its associated trainers. Each miner takes
charge of verifying the transactions under its coverage, which fulfilling
the requirement of VE. The trainers upload their local model updates to
the miners for global model aggregation without quality verification,
which fails to support the requirement of PAR. Besides, the trainers and
the miners are fixed in the whole training process, which means their
method can only satisfy the requirements of low TCAR and low VCAR. No
privacy-preserving technique is applied in their work, thus the require-
ment of IAR is not satisfied. Digital twins can reflect the running state of
the trainers. The authors combined RL and the digital twins to design a
novel transmission scheduling policy, which offloads the communication
tasks of uploading local model updates to a reliable trainer with high
communication capability. Thus, their method can achieve the require-
ment of SRH. To further alleviate the adverse effect caused by slow
trainers, the authors proposed an asynchronous FL method, wherein a
trainer that has uploaded its local model update can obtain a former
global model to perform the next training round and a miner can activate
the global aggregation process after several training rounds, which ful-
fills the requirement of AE. However, the rest requirements were not
discussed in this paper.

Feng et al. [47] proposed an asynchronous blockchain-enabled FL
solution to solve the Poison Attack (PA) and data unreliability issues in FL
for IoT and to accelerate global model aggregation, where BT guarantees
the immutability of local models and global models. They adopted PoW
as the consensus mechanism and solved the forking issues through an
Acknowledge Code (ACK), which is utilized to terminate block broadcast
when forking issues occur. Thus, their solution satisfies the requirement
of FT. The miners are identical to CNs in this paper and they are preas-
signed and fixed during the training process. Thus, their method satisfies
the requirement of low VCAR. The trainers (i.e., edge devices) are
selected each round based on their scores, which are calculated through
an entropy-based method based on their contributions to global models.
Thus, their solution satisfies the requirements of SDH andmedium TCAR.
The miners will verify their received local model with their datasets to
resist poison attacks; however, the local models are submitted by the
trainers directly without any privacy preservation. Therefore, this paper
satisfies the requirement of PAR but cannot support IAR. Note that, un-
like the conventional FL, this blockchain-enabled FL only requires one
local model in calculating the global model at one time. The aggregation
process can be activated as long as a trainer uploads its local models to its
associated miner without waiting until all trainers have uploaded the
new local models. Hence, this paper satisfies the requirements of AE.
Each trainer downloads the current global model and the local model
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from their associated miners to generate a new global model and calcu-
late the scores of the trainer that has uploaded the new local model in the
current round. The most acceptable global model is recognized as the
final global model and the trainer is rewarded according to their latest
scores, which indicates that this paper realizes the requirement of SDF.
The requirement of CE is satisfied with the optimal block generation rate,
which reduces transaction latency caused by forking issues, through a
genetic algorithm [48]. Since all the local model updates and the global
models are preserved in blocks, the fulfillment of SCS is low. The authors
balanced the local learning time and energy cost by considering the
scalability of blockchain and achieved the requirement of LTCS. Unfor-
tunately, other requirements were not discussed by the authors.

Feng et al. [49] proposed a two-layered blockchain-assisted FL
framework to manage the trust and security issues in an unfamiliar
environment, where BT is used as an immutable ledger for storing model
updates. A Local Model Update Chain (LMUC) is applied to record the
local model updates sent by the trainers (i.e., local devices) and a Global
Model Update Chain (GMUC) is utilized to record global models and the
contributions of the trainers. All trainers in LMUC are associated with
specific MEC nodes. Some trainers and the MEC nodes will participate in
local model updates verification and reach a consensus on aggregated
local model updates as miners and CNs, respectively. All MEC nodes act
as miners as well as CNs in GMUC to verify the aggregated local model
updates and reach a consensus on global models. The authors adopted the
Byzantine Fault Tolerance (BFT) consensus mechanism in both the
blockchains. Both the trainers and the miners in LMUC are settled while
the miners are task-related and fixed MEC nodes in GMUC. Thus, their
method can satisfy the requirements of low VCAR and low TCAR. When a
task publisher issues an FL task, only those relevant MEC nodes can join
this task and a task-specific chain is formed and maintained by selected
MEC nodes. The throughput of the blockchain is enhanced because
different task-related miners can process various task transactions
simultaneously and a consensus process is performed between these
task-related miners, satisfying the VE and CE requirements. Then, the
trainers are elected by the associated MEC node based on their reputa-
tion, which is calculated based on historical performances and computing
resources. Through trainer selection, their method cuts down the influ-
ence caused by low-quality and Non-IID data and insufficient hardware
resources. Thus, their method satisfies the requirements of SRH and SDH.
The trainers in LMUC would submit local model updates without privacy
protection to their associated miners that would check the quality of all
local model updates. Thus, their method satisfies the requirement of PAR
but cannot support the requirement of IAR. Then, the task-relevant MEC
nodes exchange their received local model updates and aggregate them
to form global model updates, which would be distributed to the trainers
subsequently. Specifically, the trainers would get paid proportional to
their training data through smart contracts, which supports SDF. Note
that the task publishers would cluster the trainers and dispatch different
FL tasks and remunerations according to their past behaviors to maxi-
mize the task publishers’ profits, which supports the requirement of Pr.
However, the proposed system does not consider other requirements.

Considering the possibility that malicious trainers in FL manipulate
their training data deliberately in the Industrial Internet of Things (IIoT)
scenario, Zhang et al. [17] leveraged blockchain to preserve data
tamper-proof and verify the integrity of training data and proposed a
BT-empowered FL to detect device failure. They adopted PoW as the
consensus mechanism and employed a fixed number of miners, which
also work as CNs in this paper. Thus, the requirement of CE is not met.
They applied a centroid distance weighted federated averaging method
to reduce the impact of Non-IID data. Thus, their method satisfies the
requirement of SDH. Trainers are randomly selected, they collect data
from equipped sensors and create a Merkle tree to represent the data
records, and only the root of the Merkle tree is stored in the block. The
task publishers, which are set as verifiers here, command some trainers to
join the FL tasks randomly. Thus, their system satisfies the requirements
of high TCAR and low VCAR. The trainer uploads local model updates

without privacy protection to the task publisher and applies Merkle trees
to resolve their disputes about the training data, which will be generated
based on the task publisher's validation results, thus satisfying the PAR
requirement but not supporting the IAR. Notably, blockchain is not uti-
lized to store local or global models here but to store the Merkle tree root
and the centroid distance of the trainers' data as well as the size. In
addition, blockchain is used to record each trainer's contribution,
whereby the trainer can be paid. Therefore, the requirement of SDF is
also satisfied. However, other requirements were not considered.

4.2. Training process coordination

Traditional FL needs a central server to coordinate the training pro-
cess. However, the whole training process would be suspended if the
central server is collapsed, which hinders the evolution of FL. The
decentralization characteristic empowers BT to replace the central server
for reliably coordinating the model training process. Usually, the coor-
dination process is executed among miners that further manage the vir-
tual models generated through DT. Thus, with the assistance of DT, the
miners can interact with DT directly to accelerate the training process.

Qu et al. [50] devised a permissioned blockchain-enabled FL structure
to enhance FL performances in fog computing and employed BT to ach-
ieve training-related data exchange between the trainers and the miners
securely and stably. They adopted PoW as the consensus mechanism and
added an ACK signal in block propagation to solve forking issues. Thus,
their method can satisfy the requirement of FT. The trainers upload their
local model updates to their associated miners without privacy protec-
tion and the miners aggregate these local model updates and reach a
consensus on the aggregation results. Thus, their method cannot satisfy
the requirement of IAR. The miners compare the data size of the trainers
with their claimed computing time through Intel's SGX technology to
calculate the contributions of the trainers. However, the authors deter-
mined the payment to the trainers is calculated to the data size-based
contribution without considering the quality of their local model up-
dates. Thus, their method satisfies our SDF requirement, but cannot
support PAR. The authors designed to store both pointers to the global
model and local model updates in blocks, thus satisfying the SCS re-
quirements at low levels. In addition, they derived optimal block gen-
eration rates that reduce learning completion delays and forking
probabilities, so that their system satisfies the CE requirements. Besides,
the miners and the trainers are fixed in their system, which shows the
fulfillment of VCAR and TCAR are both at a low level. However, other
requirements were ignored.

Shayan et al. [14] combined BT with FL to eliminate a central server
in FL, where BT coordinates the training process among untrusted
trainers. They proposed a novel consensus mechanism called Proof of
Federation (PoF) based on PoS. Their proposed system contains four
kinds of system entities that are trainers (i.e., peers), noiser committees,
miners (i.e., verifier committees), and CNs (i.e., aggregator committees).
Specifically, the noiser committees, miners, and CNs are selected based
on stakes through Verifiable Random Functions (VRF) while the trainers
can decide whether to join a round of FL tasks arbitrarily. Thus, the
system satisfies the requirements of medium VCAR and high TCAR. The
trainers would add noises generated by the noiser committees to their
local model updates, which provides our satisfaction with IAR. Herein,
the noises are different for different trainers. Then the trainers send the
masked local model updates as well as the polynomial commitments [51]
of both the original local model updates and noise to the miners. They
further check the quality of received masked local model updates
through multi-krum [40] and only sign the satisfied ones, which provides
the system with the fulfillment of the PAR requirement. The commit-
ments of noise vary with the trainers. Therefore, a trainer cannot
plagiarize the other trainers’ noise commitments. Then, the miners
compare the consistency of the commitments of the masked updates with
the commitments of noise and original updates. Thus, the requirement of
LMF is fulfilled. Once a local model update is signed by the majority of

K. Liu et al. Digital Communications and Networks 10 (2024) 248–264

258



miners, the trainers divide it into shares and transmit the shares to CNs
for aggregation. Consensus on the global model update time only re-
quires consensus among aggregators, and the number of aggregators is
relatively small. Thus, their method satisfies the requirement of CE. The
stakes of the trainers are proportional to their contributions to the sys-
tem, thus fulfilling the requirement of SDF. However, the fulfillment of
SCS is low because local model updates are stored on-chain. Unfortu-
nately, other requirements were missed without discussion.

Pokhrel and Choi [13] utilized the public BT-based FL to minimize the
end-to-end delay for the autonomous vehicle network, where BT replaces
a central server and orchestrates the training process. This paper regards
miners the same as CNs. The miners and trainers (i.e., autonomous ve-
hicles) are associated randomly and anonymously. The miners are fixed
during the training process while the trainers are uncertain in each
round, which indicates the fulfillment of low VCAR and high TCAR. The
authors adopted PoW as the consensus mechanism and enabled a miner
to add an ACK signal when propagating its block for avoiding forks,
which realizes the requirement of FT. The trainers calculate their local
model updates and submit the local model updates with computing time
to their associated miners, which consequently verify whether the
computing time is correct. Thus, the requirements of IAR and PAR are not
supported due to the absence of privacy-preserving techniques and
verification of local model updates quality. The authors introduced an
incentive mechanism to compensate the trainers according to the
computing time, which supports the requirement of SDF. They also
derived an optimal block arrival rate to minimize the overall system
delay and decrease the forking probability. Hence, CE is satisfied. The
authors considered the impact of Non-IID data and adopted the same
method as in Ref. [52], which requires learning rate decay and optimal
local training iterations to guarantee FL convergence rate, to make the
global model converge. Therefore, the requirement of SDH is met.
However, the rest requirements were not discussed in this paper.

Kim et al. [53] introduced a public blockchain into traditional FL to
avoid single-point failures in future wireless systems, wherein BT is
applied to verify and exchange local model updates. Similar to Ref. [13],
the authors also adopted PoW as the consensus mechanism applied to the
ACK signals to achieve the requirement of FT. They also derived an
optimal block generation rate to minimize the average latency over the
PoW process. Overcoming the forking issues also saves the resources of
the miners to solve hash puzzles. Thus, the requirement of CE is also
satisfied. The trainers calculate local model updates and send them to
their associated miners, however, no privacy-preserving technique is
applied to support the achievement of IAR. Moreover, the miners are
fixed during the whole training process, thus the fulfillment of VCAR is
only at a low level. The authors introduced an incentive mechanism to
reward the trainers according to the amounts of them and leveraged
Intel's extensions to verify their contributions (i.e., the data amounts).
Hence, this paper satisfies the requirement of SDF. However, the method
cannot support PAR because the miners do not verify the quality of local
model updates. Since the trainers can leave or join an FL task randomly
when the public blockchain is adopted, the satisfaction of TCAR is at a
high level. The fulfillment of SCS is at a low level because all local model
updates are preserved on-chain. However, other requirements were not
discussed.

Wang et al. [18] introduced a practical federated learning structure in
Unmanned Aerial Vehicles (UAV) assisted MEC network with the
training orchestration of blockchain for secure model training and
single-point failures resistance. They adopted PoW as the consensus
mechanism and decreased the probability of forking issues by modeling a
Poisson process on the mining process of PoW, however, they can hardly
eliminate the influences caused by the forking issues. Therefore, the
requirement of CE is satisfied while the FT requirement fails to be met.
The authors utilized DP to protect the privacy of local model updates,
which satisfies the requirement of IAR. They also dynamically changed
the public keys of the trainers (i.e., UAVs) andminers (i.e., MEC nodes) to
avoid them being detected and compromised by attackers. Thus, their

method can satisfy the requirements of high VCAR and high TCAR.
Miners also play the role of CNs, who are responsible for storing the
entire blockchain. The trainers only store the header of each block, which
satisfies the requirement of high SCS. The authors also proposed an
optimal pricing strategy for trainers and task publishers by defining the
Quality of Local Model updates (QoLM) as a measure of trainer contri-
bution and determining payments to trainers based on contribution,
satisfying Pr and SDF requirements. Subsequently, they used RL [42] to
engage a subset of high QoLM trainers, who tend to have sufficient en-
ergy and high data quality so that their approach can meet the re-
quirements of SDH and SRH. According to the QoLM possessed by each
trainer, the task publishers calculate the global model by aggregating the
trainers’ local model updates with different weights, which reduces the
impact of the poison attack. We can conclude that the method satisfies
our PAR requirement. However, the authors did not consider other
requirements.

Qu et al. [10] leveraged blockchain-enabled FL in cognitive
computing to enhance the performance of industrial manufacturing,
wherein blockchain is applied to coordinate the training process. They
adopted a public blockchain structure, applied PoW as a consensus
mechanism and solved the forking problem by adding ACK signals, thus
meeting the FT requirements. In this paper, the miners, which also act as
CNs, are predefined and fully anonymous since the usage of the public
blockchain. However, the miners are fixed and attackers can discover
their real identities through de-anonymizing techniques [22,59], which
means the method only satisfies the requirement of low VCAR. The au-
thors enabled the trainers to participate in or leave any FL task freely,
thus, their method can satisfy the requirement of high TCAR. The authors
further applied an RL-based Markovian decision process to model the
confrontation of adversaries with poison attacks and derived the optimal
aggregation strategy for satisfying the PAR requirement. The payments to
the trainers are proportional to their data sizes that can be verified by the
proof of elapsed time. Hence, the SDF requirement is satisfied. The au-
thors also derived an optimal block generation rate to reduce training
time for achieving the requirement of CE. IAR is not satisfied because no
privacy-preserving technique is applied to protect local model updates.
Although introducing off-chain and on-chain storage structures can
alleviate storage pressures for the trainers, the authors did not propose
any specific scheme. Moreover, their method does not concern other
requirements.

Jin et al. [54] utilized permissioned BT combined with FL to solve
data sparsity problems and improve data sharing efficiency in the
Internet of Medical Things (IoMT), where BT orchestrates the training
process with its consensus mechanism. The authors proposed two
schemes of the global model calculation with two different consensus
mechanisms, which are Hasty Consensus (HstCon) and Deferred
Consensus (DefCon), separately. In both HstCon and DefCon, the trainers
are the IoMT devices and they send local model updates to their nearby
hospitals for aggregation. The authors allowed the hospitals located in
different areas to exchange their aggregated local model updates. Since
only the aggregated local model update dates are transmitted between
hospitals, an attacker cannot extract the local model updates to infer
personal information about the trainer, and thus their approach satisfies
the IAR requirements. In HstCon, The miners are identical to the trainers
and the CNs. The trainers in a hospital would verify the received
aggregated updates based on their local dataset and reach the consensus
through Practical Byzantine Fault Tolerance (PBFT) [60] regarding
whether to accept or reject the received updates, which satisfies the
requirement of PAR but fails to support the requirement of CE. All miners
and trainers are fixed here, which means this method can only achieve
the requirements of low TCAR and VCAR. While in DefCon, the miners
are elected based on the hash value of the latest block and the assets they
mortgage and the tenure of a miner is k rounds. Each miner represents a
hospital and they can decide whether to accept other hospital's updates
or not. In DefCon, no intra-consensus exists in a hospital and a miner is
responsible for making decisions on aggregation operation (i.e.,
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consensus process), which supports the requirement of CE. Note that the
trainers are still settled while the miners can be predicted through the
assets they devoted. Thus, their method canmeet the requirements of low
TCAR and medium VCAR. Since the trainers are IoMT devices deployed
in a hospital and all training data belong to the hospital, we evaluate the
SDF of a hospital rather than trainers. Each hospital should be compen-
sated differently based on their data quality, which is not referred to by
the authors. The method can only achieve the requirement of low SCS
since all model updates are recorded on-chain. However, other re-
quirements were missed without any discussion.

Li et al. [55] proposed a permissioned blockchain-enabled FL
framework to resist byzantine attacks (i.e., the attacks that can disturb
the model accuracy) and enhance the speed of local model verification at
the edge, where BT assists the global model calculation with its consensus
mechanism. Trainers (i.e., edge devices) and miners (i.e., edge servers,
not the verifiers we defined) are settled in their system, which only sat-
isfies the requirement of low TCAR. The authors pre-assigned some fixed
nodes (i.e., verifiers we defined) to execute local model updates valida-
tion and pre-appointed the miners (i.e., CNs we defined) who are
responsible for mining blocks and reaching consensus. Thus, their
method supports the requirement of low VCAR but fails to achieve the
requirement of CE since all the miners are involved in the consensus
process. The authors separated the verification and mining process and
the miners can mine a block while the verifiers can focus on verifying
local model updates with all their resources, so their approach can meet
the VE requirements. The trainers should submit local model updates to
the verifiers, who were responsible for determining whether to accept or
discard them. Only accepted local model updates are transmitted to the
miners for further aggregation. Thus, their method satisfies the require-
ment of PAR. The authors devised a novel consensus mechanism between
the miners called Proof of Accuracy (PoA), which means the other miners
consider a block as valid only the global model updates in it satisfying the
accuracy deviation on their dataset and the former global model. Besides,
both the local model updates and the global models are stored in IPFS and
the hashs of them are stored in blocks, which supports high SCS. Task
publishers would reward the trainers proportional to accuracy incre-
ment, which guarantees the requirement of SDF. However, other re-
quirements were not considered.

4.3. Introduction of incentive to trainers

BT inherently brings unified tokens, based on which a novel incentive
mechanism can be easily established. For example, we can employ the
token to compensate the costs of contributors in FL, like the trainers,
miners, and CNs. In addition, DT makes task publishers aware of the
contributions of the trainers clearly and the task publishers can release
corresponding rewards to the trainers swiftly. Furthermore, we can
employ the token amount to measure the assets of the trainers/miners
and select the one with the largest amount as a leader. Therefore, these
system entities will be motivated to contribute.

Toyoda et al. [56] introduced a BT-based FL to compensate trainers
(i.e., IoT devices in this paper) with cryptocurrencies to participate and
behave as the system required. They adopted public Ethereum [45] as
their platform and divided the whole training phase into multi-rounds
and randomly preassigned some trainers to compute local model up-
dates in each round, which supports the requirement of high TCAR. The
local model updates computed in the previous round will be verified by
the assigned trainers in the next round. The new trainers individually
chose top-K high-quality local model updates based on their datasets and
aggregate them as the local model update in this round. This procedure
will repeat until the last round. Therefore, this paper satisfies the re-
quirements of PAR and high VCAR. Unfortunately, the authors never
specified what kind of consensus mechanism is applied and how to
generate and verify, which makes it difficult to evaluate whether the
requirements of FT and CE are satisfied. It is worth noting that although
the local model updates are encrypted before transmission in each round,

the trainers in the next round can decrypt them, so their method cannot
satisfy the requirement of IAR. In their system, the authors rewarded a
trainer according to how many times its local model update has been
selected as the top-K in the next round. The more times the trainer
chooses its local model update date, the higher the reward available to
the trainer, which means satisfying the SDF requirement. Eventually, the
authors used contest theory to maximize the profits of task publishers
within a given budget, so their method can achieve the requirement of Pr.
Since all local model updates are stored on the chain, only low SCS re-
quirements can be achieved and no other requirements are considered.

Weng et al. [57] devised a permissioned blockchain-enabled FL to
guarantee data privacy and reject malicious behaviors, in which BT is
applied as an incentive mechanism to encourage trainers (i.e., partici-
pants) to join and behave honestly. The trainers whose local model up-
dates transactions are packed in the current block would act as the miners
and CNs at the same time. But their method is hard for us to evaluate the
fulfillment of CE due to the uncertain amounts of CNs. The trainers are
fixed while the miners are dynamic, thus their method satisfies the re-
quirements of high VCAR and low TCAR. They adopted a novel consensus
mechanism, wherein a temporary leader would be chosen randomly from
the CNs to generate a block. The trainers would encrypt their local model
updates before sending them to an aggregator and a secret sharing
scheme is utilized to update global models, which achieves the require-
ment of IAR. However, the miners only check whether an update is
encrypted correctly without quality verification, thus their system fails to
achieve the requirement of PAR. It is worth mentioning that the authors
requested all trainers to pre-frozen some deposits when entering the
system, which would be forfeited and distributed to honest trainers if any
malicious behavior was detected, so the requirement of IDF is supported.
Furthermore, The authors also determined that the transaction fees paid
by the trainers are inversely proportional to the data amount, which
satisfies the requirement of SDF. Unfortunately, other requirements were
not concerned.

Fan et al. [58] introduced a hybrid blockchain system consisting of
the public and the permissioned blockchains to FL for selecting optimal
trainers (i.e., edge nodes) that can improve the accuracy of FL models
economically in edge computing, where BT brings unified rewards. Their
system leverages PBFT as the consensus mechanism in the permissioned
blockchain, where CNs are part of the trainers that reach a consensus on a
new global model. Since the number of CNs varies in each training round,
we cannot evaluate the satisfaction of CE. A task publisher issues its task
requirements on the permissioned blockchain and an auction imple-
mented by smart contracts is applied to optimize the profits of both the
task publisher and the trainers, also satisfying Pr requirements. Specif-
ically, the task publisher selects the trainers according to their bids,
communication and computation capability, as well as data quality, so
their method satisfies the requirements of medium TCAR, SRH, and SDH.
The selected trainers would submit their local training updates to the task
publisher without any privacy-preserving technique and therefore do not
meet the requirements of the IAR. In each round, the task publisher will
further evaluate the quality of local model updates sent by these selected
trainers according to their data distribution and reject malicious and
unreliable updates through Reject on Negative Influence (RONI) and
FoolsGold scheme [61]. Hence, the task publisher also works as a miner
in this paper. Thus, their method satisfies the requirement of low VCAR.
The selected trainers are rewarded based on the quality of their local
model updates, which supports the fulfillment of the SDF requirement. In
addition, due to the severe scalability problems in the public blockchain,
the task publishers would compensate their trainers using payment
channels, which reduces the amount of broadcasted transactions and the
miners can verify more local model updates within a given time. Thus,
the VE is satisfied. However, how the local model updates and global
models are stored is not specified, we cannot evaluate if the requirement
of SCS is satisfied. Other requirements were not considered by the
authors.
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4.4. Trainer behavior supervision

Blockchain is essentially a distributed ledger so that BT can be utilized
to record the reliability of the trainers. In a blockchain-enabled FL-
backed DT, trainers can be mapped to virtual models and can be evalu-
ated using specific criteria and the results stored on the blockchain for
credibility and non-repudiation. DT also constantly and timely transfers
behavior information update between the trainers and their virtual
models. Hence, task publishers can quickly evaluate the behavior of
trainers and reward honest trainers as well as punish dishonest trainers to
build a sustainable system.

Kang et al. [16] designed a permissioned blockchain-enabled FL
system that takes reputation as the evaluation results to estimate the
reliability and contribution of trainers according to their behaviors and
blockchain is utilized to record reputation permanently for trainer se-
lection. They adopted PBFT as the consensus mechanism in the system.
Task publishers would release their tasks with specific requirements and
select the trainers based on their requirements along with reputation to
improve system efficiency, which satisfies the requirements of SRH.
Especially, the requirement of SDH is guaranteed because the
reputation-based trainer selection scheme reduces the difference in the
trainers’ data distribution. For a specific task, all the trainers tend to have
a high reputation, which means their training data is beneficial to the
global model convergence. The selected trainers send their local model
updates without encryption to the task publishers, which further verify
the local model updates. Therefore, this paper realizes the requirement of
PAR but fails to achieve the requirement of IAR. Then, the task publishers
generate a global model based on all validated local model updates and
increase the reputation of the trainers contributing to calculate global
models. Subsequently, the task publishers reward the trainers according
to their reputation, which means that a high-reputation trainer will
obtain a high profit. Thus, their method satisfies the requirement of SDF.
The miners (i.e., CNs) in this paper are preassigned to generate blocks
and reach a consensus on the new block. Because all the miners need to
participate in the consensus process, their system fails to support CE. The
trainers and the verifiers (i.e., task publishers) are fixed. Thus, their
method satisfies the requirements of low VCAR and low TCAR. Never-
theless, they devised a contract theory-based incentive mechanism to
optimize the revenue of the task publishers as well as the trainers, which
achieves the requirement of Pr. Unfortunately, the rest requirements
were not considered.

Kang et al. [15] adopted an extremely similar infrastructure to their
previous work [16] and applied smart contracts in this new structure to
upload training records and reputations. Besides, a consensus process is
executed among a small number of elected authorized miners, which
satisfies the requirement of CE. Compared with the previous work [16],
they optimized task distribution schemes among many task publishers
and many trainers, which balances the revenue of both of them. Thus, in
addition to the requirements they achieved in Ref. [16], the method can
also satisfy the requirement of CE, but other requirements were ignored.

5. Open issues and future directions

5.1. Open issues

According to the aforementioned literature review and evaluation
requirements, we figure out a few open issues.

First, model fairness is not well studied when designing the access
policies of local model updates and global models. Local model updates
enveloped in transactions would be plagiarized by other trainers since
the transactions are public and accessible. If the local model updates are
involved in virtual models construction, the stealer can build a virtual
model without local training, which would demotivate the trainers to
train their local model updates honestly. The authors in Ref. [14]
distributed some unique noise to the trainers for preventing the local
model updates from stealing. However, this method relies on the

polynomial commitments of both the local model updates and noise,
which incurs extra computation overheads. Moreover, task publishers
not only need to compensate the trainers but also reveal their global
models to the trainers, which is rather unfair to them. The authors in
Ref. [9] requested all the trainers to disburse a sum of certain money for
accessing global models for achieving GMF. But their method is not
suitable for practical deployment. Thus, how to guarantee the model
fairness and promote the sustainability of blockchain-enabled FL is still a
challenge.

Second, a comprehensive incentive mechanism should not only
reward cooperative behavior but also punish malicious behavior fairly,
but such an incentive mechanism is still missing. Table 1 shows that most
of the papers do not punish malicious trainers severely to meet the IDF
requirement, except [34,57]. The authors in Ref. [34] proposed to
withdraw some tokens if a trainer behaves maliciously, but they did not
give a specific punishment scheme. The authors in Ref. [57] required the
trainers to pre-freeze some deposits that will be forfeited when malicious
behavior is detected, but the fairness of the deposit method cannot be
guaranteed. Therefore, a comprehensive incentive mechanism is still
absent in blockchain-enabled FL systems in order to achieve fairness for
all stakeholders.

Third, how tomake the trade-off between privacy preservation and FL
model practicability is a serious issue. To protect privacy, the encryption-
based privacy-preserving methods in the existing literature impose an
additional computational burden on the trainer, while the DP-based
privacy-preserving methods affect the accuracy of the global model.
The hardware-based trusted execution environment, e.g., SGX, is subject
to memory restriction [62,63]. In a blockchain-enabled FL system, a
miner cannot verify multiple trainers’ local model updates simulta-
neously through SGX, which further introduces extra verification time
and restraining the throughput of the whole system. Thus, the current
technology cannot protect local model updates privacy without sacri-
ficing practicability and the balance of privacy andmodel practicability is
still an open issue.

Forth, communication latency is still the bottleneck when designing
an efficient blockchain-enabled FL system, which is always neglected in
existing works. Only three papers [32,34,47] satisfy the requirement of
LTCS, which means that most papers do not take any measures to save
communication costs. Normally, FL models contain a large number of
parameters while the trainers are only equipped with constrained
communication resources. As a result, high communication costs for
trainers will lead to high latency in the training process, and high
communication latency further limits the efficiency and usefulness of FL.
The authors in Ref. [34] utilized the gradients compression method to
reduce communication costs. However, their method fails to take model
accuracy into consideration. The authors in Ref. [32] introduced DT to
alleviate the communication latency but their method sacrifices user
privacy. Therefore, how to design an efficient blockchain-enabled FL
system with low communication costs and latency is still a challenging
task.

Fifth, existing blockchain-enabled FL systems can not be well applied
in a scenario with Non-IID data. The construction of DT relies on envi-
ronment data of the physical objects, which means that if the data of a
physical object obeys Non-IID, then the corresponding virtual model is
also with Non-IID data. In order to achieve PAR, researchers let the
miners validate the quality of received local model updates. However, the
miners can scarcely distinguish Non-IID data from malicious data, which
means that the local model updates generated from Non-IID data would
be abandoned as malicious updates. Therefore, the generalization of the
global model is adversely affected. Besides, some authors [11,14] applied
the multi-krum approach to detect malicious local model updates, which
assumes all data to obey IID. Hence, this detectionmethod is not practical
since the training data obey the Non-IID in practice [64]. Moreover, the
existence of Non-IID data makes the global model hard to converge and
introduces extra training rounds, which increases the training comple-
tion time. Therefore, how to design a feasible and efficient
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blockchain-enabled FL system that is compatible with Non-IID data still
needs further investigation.

Sixth, the reliability of task publishers is seldom discussed. Existing
literature pays a lot of attention to evaluating the reputation of the
trainers and miners. However, practical task publishers could also be
unreliable or even malicious. A malicious task publisher could release an
FL task with high-claimed payments to compete with honest task pub-
lishers for the trainers while delaying or refusing the payments. There-
fore, if there are not enough trainers, the profits of honest task publishers
will be affected and trainers may not receive the claimed payments,
which further affects the sustainability of the whole system. Unfortu-
nately, an evaluation method on the task publishers is still missing and
how to reduce the negative impact caused by the unreliable task pub-
lishers is still a challenge.

Seventh, a blockchain-enabled FL-backed DT is still in its infancy [1,
32]. The dynamic running state of trainers is a non-negligible factor to be
considered in the deployment of FL. A task publisher can leverage the
deep and timely perception of the running state to allocate resources or
choose optimal trainers in order to improve FL efficiency. However, most
existing works ignore the importance of trainer running states. Moreover,
the virtual objects in Refs. [1,32] expose their raw training data and
original local model updates, respectively, which indicates that privacy
preservation is hardly considered in DT with FL. Thus, how to integrate
FL with DT to improve FL efficiency without sacrificing data privacy is
worth our efforts.

Last but not the least, all papers we reviewed are focused on how
blockchain canmake centralized federated learning better while ignoring
the investigation of DFL. A prominent characteristic in DFL is decen-
tralization and each node can share local model updates with others
directly. Therefore, each trainer can perform local model aggregation
based on the sharing local model updates it receives [65,66]. There exist
two main issues in DFL. First, the process of model updates sharing is
voluntary and all trainers in such a DFL process can obtain a better model
to meet their requirements. However, the quality of the training data
varies with each trainer, which results that the contributions of the
trainers to the final model are different. Data-poor trainers should pay
high access fees for access to the global model, while data-rich trainers
should pay lower access fees or be compensated by data-poor trainers, so
there is an urgent need for a fair incentive mechanism. In addition,
malicious trainers may discard some of the model updates they receive
and transfer inferior model updates to others, so DFL still lacks effective
oversight of trainers to ensure they act honestly. Therefore, how to design
a fair incentive mechanism and motivate honest behaviors in DFL is still
an open issue.

5.2. Future directions

The above open issues guide the future directions. We propose several
future research directions as outlined below.

Ensuring local model fairness and global model fairness is a realistic
need for future blockchain enabled FL research. Local model update theft
attacks enable malicious trainers to gain illegal profits by requesting
others' local model updates and creating virtual objects using others’
local model updates, thus undermining the fairness of local models.
Therefore, the local model fairness can be achieved by detecting and
resisting these attacks. Calculating the similarity of the local model up-
dates of the trainers could be a promising technology to detect the local
model update theft attack, but how to discover which one is the attacker
needs further investigation. Moreover, such a calculation task introduces
additional overheads to the miners. Hence, an effective and light-weight
similarity detection method of local model updates is worth further
exploring. Existing work [9] has applied access fees for global models to
ensure global model fairness, while the fee is the same for all the global
models in different training rounds, but the fee should vary with the
training round. For example, the first training round should require a
small number of visits, while the last training round should require a

large number of visits because the global model in the later training
rounds is close to the final result. In addition, the fee should be set
reasonably based on the profit that the trainer can earn and the fees paid
by the trainer. Thus, how to set optimal and personalized access fees is
another future direction. Network watermarking [67–69] is a promising
technique to guarantee the local and global model fairness. A trainer can
embed a watermark into its local model and a task publisher can embed a
watermark into its global model such that the trainer and the task pub-
lisher can protect their models from being plagiarized. However, this
solution consumes extra computation costs [70] to inject watermarks
into a model and the injected watermarks would influence the accuracy
of the local and global models to some extent [71]. Thus, how to devise
an efficient and practical watermarking scheme is also worth exploring.

A comprehensive and fair incentive mechanism is highly expected in
the practical deployment. Penalties are studied and incorporated into
existing reward-based incentives to achieve comprehensive and fair in-
centives. The process of constructing virtual models can be intentionally
or unintentionally misguided, so the design of punishment is critical. In
addition, punishment is an easily accessible and effective way to deter
malicious behavior and thwart trainers from doing evil. Weng et al. [57]
have demanded the task publishers should require the trainers to pay the
same deposits before allowing the trainers to join FL tasks. However, the
amounts of deposits should vary with different trainers that are endowed
with different data qualities or data volumes. For instance, those trainers
equipped with large data volume or high data quality should be required
to pay fewer deposits, in order to attract them to join. Thus, an incentive
mechanism including rational punishments is worth exploring.

Balancing the significance between privacy and practicability is
worth our efforts. The system preference should be considered when
determining the priority of privacy or practicability in a blockchain-
enabled FL system. Different systems have different preferences in pri-
vacy and practicability, based on which we can perform corresponding
measures. For instance, in a privacy-favored blockchain-enabled FL sys-
tem with a global model accuracy requirement, we propose to adopt
effective but complex encryption methods to protect privacy without
sacrificing global model accuracy. Similarly, DP can be applied when this
system raises efficiency requirements. In an extreme practicability-
oriented situation, privacy preservation is far less significant than prac-
ticability and we can even abandon privacy preservation. However, how
to derive the system preference needs further exploration. Besides,
devising a more effective privacy preservation method within the mini-
mum impact on model practicability is another direction.

Lowering the communication costs of the trainers in blockchain-
enabled FL is a meaningful and interesting topic. Model compression
technique would be an effective method. In some cases that the majority
of trainers are in unstable internet connections, the model compression
method is relatively effective to enhance the efficiency of the commu-
nication among the miners and the trainers. Structured updates and
sketched updates [37] could be promising model compression methods
but they sacrifice model accuracy. Therefore, how to balance the
trade-off between model compression and model accuracy and apply
suitable model compression methods can be a further research direction.
Furthermore, an effective model compression without model accuracy
loss is highly expected. DT is another powerful technique to lower the
communication costs because the virtual models of the trainers can be
created and deployed at the miner directly, which avoids long-distance
local model updates transmission. However, the creation is a
time-consuming and tough task. Thus, the efficient creation of DT is an
interesting research direction.

A blockchain-enabled FL system that is compatible with Non-IID data
is worth exploring. DT cannot change the nature of Non-IID data exis-
tence. Non-IID data are essential in achieving model generalization;
therefore, an effective Non-IID data detection method to discover the
local model updates that are trained by Non-IID data but are detected as
malicious by poison attack detection methods is of urgent need. In order
to further improve the convergence of training the global model with
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Non-IID data, trainer selection [38] may be a suitable solution. However,
the trainer selection method will constrain the generalization of global
models since the trainers are selected according to model preferences
[35]. Therefore, this method can only be applied when the model
convergence rate and accuracy are significantly important. Zhao et al.
[46] have demonstrated that sharing a small subset of training data
on-chain can alleviate the storage pressure caused by Non-IID data.
However, this method cannot be applied when the shared data contain
reveal sensitive information. Hence, designing a blockchain-enabled FL
system with model generalization, high accuracy, and high model
convergence rate needs further exploration.

An evaluation method on task publishers should be studied to elim-
inate the negative impact caused by unreliable task publishers on honest
task publishers. Trust management [72] on task publishers is a promising
technology. Trust acts as a crucial role in a pervasive network [73,74]
and trust management will be a powerful tool to build up trust between
the trainers and the task publishers. When trust is introduced, the trainers
can select the FL tasks according to the trust value of the task publishers.
The FL tasks published by high-trust task publishers are likely to be
selected since the trainers could have a high possibility to obtain the
payment. Furthermore, the profits of the honest task publishers are also
guaranteed with enough trainers. Thus, applying trust management to
evaluate the reliability of task publishers is very meaningful and worth
exploring.

Integrating FL with DT is a practical requirement in the industrial
environment and investigating various methods for different purposes
regarding virtual objects creation and representation is an appealing
direction. For instance, the creation of virtual objects usually contain
sensitive information regarding training data or local model updates. DP
can be leveraged to create virtual objects for protecting data privacy.
However, if the virtual objects are designed for the purpose of resource
allocation, both the training data and local model updates are allowed
not to be contained in the virtual objects. Thus, exploring different
methods of virtual objects creation is essential. Notably, modeling virtual
objects and completing FL tasks are both time-consuming. How to bal-
ance the time allocation to maximize the profits of the task publishers is
another future direction.

Combining DT and BT with DFL is an alluring direction for making
DFL better. Each system node can design a virtual model for other nodes
by leveraging its received information. In this way, all nodes gain clear
and intuitive insight into the entire system and make real-time decisions
accordingly. BT can monitor the behavior of each node and compensate
them fairly, which could attract more trainers and encourage the trainers
in DFL to perform honestly. BT brings an incentive mechanism as well as
reliable local model updates records. Each node in DFL will be treated
impartially and all nodes’ operations are executed under supervision.
Thus, DT and BT generate positive impacts on DFL and DT supported by
blockchain-enabled DFL is worth exploring.

6. Conclusion

The problems faced by DTwith traditional AI and the limitations of FL
arouse our speculation about the prospects of DT supported by
blockchain-enabled FL. In this paper, we surveyed blockchain-enabled FL
systems and explore their success in the application of DT. We summa-
rized the general structure of DT that is supported by blockchain-enabled
FL and proposed a series of requirements to evaluate the effectiveness of
the existing blockchain-enabled FL systems. We classified the existing
literature into four categories based on the functionality of BT in the FL
and further evaluated them with our proposed requirements. We
discovered that the research on blockchain-enabled FL faces a number of
open issues and the study of DT supported by blockchain-enabled FL is
still in its infancy. Based on these open issues, we proposed some inter-
esting research directions for future investigation.
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