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Abstract—Artificial neural networks (ANN) are applied to find
appropriate phasing for beam steering of patch antenna arrays.
To obtain this goal, an ANN is trained using simulated far-field
data. Two loss functions are tested and their performance is
compared with a uniform and a non-uniform antenna array.
The results show that in most cases both tested loss functions
perform well, but are not able to find the best solution in all
cases.

Index Terms—antenna, antenna array, beam steering, machine
learning, artificial neural network.

I. INTRODUCTION

The use of artificial intelligence (AI) and machine learning
(ML) has raised a lot of interest recently also in the antenna
community [1]–[3]. Introducing higher frequencies and larger
antenna arrays to common use have increased computational
effort needed to determine optimal phases for multiple feeds
in all use scenarios. Neural networks are expected to provide a
powerful optimization tool especially in that kind of problems
involving a large amount of data.

Neural networks can be used to generate different antenna
structures, which decreases the need for strong knowledge of
antenna design. For example, a deep neural network-based
framework for designing multiband microstrip antennas given
a desired impedance matching spectrum is presented in [4].
The use of neural networks might also introduce new type of
antenna structures as described in [5].

Another approach is optimizing the performance of the
given antenna design by utilizing neural networks e.g. to
form the desired radiation pattern in terms of high gain, low
sidelobes, or shaped beams. Antenna array pattern synthesis
is typically time consuming and computationally heavy task.
With an ANN approach a real time synthesis of antenna pattern
is potentially possible as proposed in [6]. ANNs can be also
used to accelerate phase calibration as presented in [7]. The
goal can also be a specific sidelobe level ratio [8]. Naturally,
the use of ANN is not limited only to antennas in free space.
Electromagnetic power density value is determined in [9] to
evaluate human exposure from millimeter wave (mmWave)
mobile devices based on the phase conditions of the mmWave
array antenna.

In this paper, we study the effectiveness of neural networks
to solve a simple antenna array problem using generally
available ANN tools. We aim to give a concrete example
and introduce the details and issues faced during the study.
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Fig. 1. Structure of the ANN (some layers and nodes are not shown for
clarity) used to optimize the feed weights of the antenna arrays. The ANN
receives a target angle θ as an input and outputs 7-phase values for each input
port. The resulting far field is calculated and sampled in the target direction
θ in the loss functions.

Especially, two different loss functions are tested to compare
their capability to solve a known beam steering coefficients.
The obtained far-field results at different beam steering angles
are analyzed.

II. METHOD

Multiple libraries can be used to implement ML techniques
such as ANN. In this study, we use Tensorflow and Keras
ML libraries because they have excellent documentation and
are, therefore easy to utilize. Other popular libraries include
Pytorch and Matlab’s Machine learning toolbox.

We create an ANN which is designed to calculate the port
phases necessary to steer the beam of an antenna array to a
specified direction as described in Fig. 1.

The training can be done either using a supervised training
where the correct answer is provided for each input during
training or using the unsupervised learning where the correct
answer is not provided. We use the latter one in our study.

A. Training dataset preparation

A large amount of data has to be generated to train the
ANN. To train the ANN, a dataset is created containing the
complex field strength data output from a far-field simulation.



The simulation is run using CST studio suite, and the resulting
far-field values are processed using a Matlab script. This data
is imported into our training code, which is written in Python.
For simplicity, our study is limited to steering a linear antenna
array in a single target direction.

The Matlab code returns two outputs for the training code.
The first one is a vector

Θ = [θ1, . . . , θM ]T , θm ∈
[
−180◦

180
,
180◦

180

]
, (1)

which contains the normalized angles for the field strength
samples on the polar plane, and the second one is a matrix

Efields(θ) = [E1(θ), . . . ,EN (θ)], En =
[
Eθ Eϕ

]
(2)

contains the field strengths for N ports sampled in the direc-
tion θ. These outputs are used to create the Tensorflow training
dataset. The code in Fig. 2 shows the commands used to
generate data and randomize it for achieving improved results
as explained next.

The command .from_tensor_slices((a, b)) cre-
ates a new dataset from two arguments: a that contains the
values the ANN receives as an input and b that contains the
value the loss function receives. In our case, the field vector
Efields, with a given angle θ, is input as parameter b for
calculating the field strength achieved for the antenna array.
In supervised learning, the right answer would be provided in
b.

It is noticed that randomizing the data input to the
ANN improves training results considerably. This can
be achieved with command .shuffle(n, ). Shuffle-
command randomizes the order of dataset, and with
reshuffle_each_iteration set to True, also random-
izes the order between training iterations. This ensures, when
the dataset is divided into smaller training batches, they
contain random subset of target directions and not just adjacent
direction values. Parameter n defines in which size batches
randomization is done to limit the number of datapoints needed
to be loaded in memory. For a small set of possible directions
used in our studies, n is set so that the whole dataseries can
be randomized at once.

The dataset is also duplicated to improve training with
a .repeat(n) command. This command duplicates the
dataset n times, which can lead to improved results with small
datasets. Lastly, the dataset is divided into smaller batches by
running .batch(n). This divides the dataset to batches with
size n.

B. Proposed Loss functions

The main part of this paper focused on testing two different
loss functions. These functions are compared in performance
against progressive phase shift method. The loss functions
should satisfy three general conditions: 1) decreasing value
should correspond to a better performing ANN, 2) the function
should be written using vector and matrix operations supplied
by the Tensorflow library, and 3) the loss function should
be differentiable because the used gradient descent method

dataset = tf.data.Dataset
.from_tensor_slices(

(theta, fields)
)
.shuffle(

200,
reshuffle_each_iteration=True

)
.repeat(2)
.batch(32)

Fig. 2. Code for generating, randomizing the order, and pre-processing the
simulation data to create a TensorFlow training dataset.

requires calculating gradient of the loss function. It is also
important to keep in mind that a loss function is executed
for each batch in one operation. That means that the function
receives a vector with the length of a batch containing ANN
prediction and datasets argument b.

The loss function A, from here on called σA, calculates the
absolute field strength in the target direction and the loss value
is the inverse of the field strength. This loss function receives
two input arguments. The first input is a vector

ΦANN =
[
ϕ1 , . . . , ϕN

]
(3)

that contains a phase shift value for each port predicted by the
ANN. These phase shift values are normalized to [−1, 1]. The
second input is the vector in Eq. (2) for the target direction θ
provided as an input for the ANN.

The far-field of an antenna array is the sum of individual
fields of each antenna element (or port), phase shifted by the
output value from the ANN. This far-field value is calculated
as follows:

EArray(ΦANN , θ) =

N∑
n=1

(
e2πi·ϕn ·En(θ)

)
, (4)

where EArray(ΦANN , θ) contains the θ and ϕ components,
Eθ and Eϕ, of the far field for direction θ. The absolute field
strength is then calculated by taking the norm of (4), and the
loss value is defined as the inverse of it

σA =
1

∥EArray(ΦANN , θ)∥
. (5)

This definition ensures that increasing the field strength in the
target direction θ decreases the loss value.

For the second loss function, σB , maximum field achieved
by the progressive phase shift is first calculated starting with
the phase shift vector

Φprog =
[
−(N−1)p

2 , . . . , −p , 0 , p , . . . , (N−1)p
2

]
, (6)

where p = 1/(N − 1) is the normalized phase between the
elements and N , the number of the ports, is assumed to be
an odd number. With this phase shift vector, maximum field
achieved is calculated

Emax(Θ) =
[
max

p
||EArray (Φprog, θ1) || , . . . ,
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Fig. 3. 3D view of the studied uniform antenna array with seven square
elements, a substrate, and ground plane (GND).

max
p

||EArray (Φprog, θM ) ||
]
, (7)

where p, as defined in equation (6), gets 360 values from -1
to 1. This vector contains maximum field strength achieved
in each direction θ, with the progressive phase shift. This is
an input for the σB function in addition to the same input
parameters as function σA receives. The loss value is then
calculated as

σB = max
p

||EArray (Φprog, θ) ||−∥EArray(ΦANN , θ)∥ , (8)

where ΦANN contains the phase shift values obtained as an
output from the ANN and maxp ||EArray (Φprog, θ) || is the
maximum field strength achieved with the progressive phase
shift in the direction θ provided as an input to the ANN.

III. RESULTS

This section first introduces the antenna arrays used in
testing the loss functions. Then the procedure for creating the
ANN model is shown. After that the results achieved from
the trained networks are presented for four different cases. In
these studies, two loss functions defined above are compared
when ANN is trained on steering a uniform antenna array, and
the obtained results are compared with the ANN trained with
a non-uniform array.

A. Used antenna arrays

For the first part of the study, a 7-element linear antenna
array is created and simulated. The array is composed of
square microstrip patch elements as shown in Fig. 3. The
patches are fed with discrete ports placed at the edge of
the patches. Substrate FR-4 is used for its prevalence in
printed circuit board (PCB) manufacturing. The patches and
the ground plane are made of copper. A single patch is
optimized for the frequency of 2.5 GHz. This resulted in a
patch width of 28.7 mm. The simulations for a single antenna
element show good matching at 2.5 GHz as S11-parameter is
-28 dB at that frequency.

The dimensions of antenna arrays are shown in Fig. 4. The
spacing between the patches in a uniform array is 70 mm.
For comparison, with λ/2 spacing, where λ is the free space
wavelength, the distance between the patches is around 60 mm.
For the second part of the study, an array with a non-uniform
spacing is created. For this array, spacings between elements
are 55, 70, 85, 60, 70, and 80 mm. The total length of the
arrays (the distances between the outermost elements) is the
same.
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Fig. 4. Simulated antenna arrays with seven patches and discrete input ports,
marked with red dots. a) Uniform antenna array b) Non-uniform antenna array.
The dimensions are in mm.

B. Creating and training the ANN model

Creating the ANN model is straightforward using
Tensorflow sequential function as presented in Fig. 5.
First, an input layer is defined using function
tf.keras.layers.Input(n), where n is the
number of inputs. For our study, ANN has just one
input, that is the target beam direction. Secondly, after
the input layer, fully connected layers are added using
tf.keras.layers.Dense(c, activation=<>)
function where c is the number of nodes in the layer and
activation defines the used activation function. Between dense
layers tf.keras.layers.Dropout(r) are used. They
turn off nodes by turning their output off randomly with
the rate of r. This is used to limit overtraining, especially
in supervised training, and it can lead to better outcomes.
Thirdly, the last layer should have as many nodes as outputs
are needed. In our implementation, the number of nodes
agrees with the number of ports of the antenna array.

A 6-layer ANN model is created containing four hidden
layers, and one input and one output layer. Other important
parameters for the ANN model are shown in Table I. The ANN
is trained using Adam optimizer, which is an algorithm used
in the gradient descent methods. This optimizer is memory
efficient and computationally inexpensive to run and scalable
to more complex problems [10].

C. Comparing different loss functions

First, the ANN is trained to steer the uniform antenna array.
In training with the σA function, the training is run for 350
epochs. For comparing the results achieved with the ANN,
the progressive phase shift maximum field Emax presented in
Eq. (7) is used as a reference result. For the ANN result, the
field achieved in direction θ ∈ [−180◦, . . . , 180◦] is shown in
Fig. 6a with the target direction corresponding to the same
direction. The difference between the reference result and the



model = tf.keras.models.Sequential([
tf.keras.layers.Input(1),
tf.keras.layers.Dense(64,

activation=’relu’),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(128,

activation=’relu’),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(128,

activation=’relu’),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(128,

activation=’relu’),
tf.keras.layers.Dense(portCount,

activation=None)
])

Fig. 5. Code for creating the ANN model with four hidden layers, and one
input and one output layer.

TABLE I
PARAMETERS OF THE NEURAL NETWORKS

No. of hidden layers 4

Nodes in hidden layers 64, 128, 128, 128

Dropout rate 0.2

Activation function in hidden layers ReLU

Activation function in output layer Linear

Batch size 180

Optimizer Adam

Learning rate 0.001

ANN field is shown in Fig. 6b. For comparison, the mean of
the difference is calculated and shown as a difference graph.

The ANN with σA performs mostly well, achieving a field
strength comparable to the progressive phase shift method.
Remarkable differences emerge at two steering angles. The
reason is that the ANN aims to steer the side lobe to the
target direction and maximizes it instead of the main beam.
The difference grows for positive θ angles, which is caused
by the main beam being slightly of the center of the target.

Next, the σB function is trained for 1000 epochs. The
performance is similar to what is achieved with the σA. The
difference curve is flatter for larger area in the center of the
plot, achieving very good results for directions between -53–
36 degrees.

Because the training of a neural network is a stochastic
process, the result varies between runs, and multiple runs
might be needed to achieve the best results. This can be
mitigated by a better loss function and task formulation.
Neural Networks work more efficiently with tasks containing
one to one mapping between inputs and the outputs [6],
meaning that for one input there is just one right output. This
is because neural networks are shown to work as universal
function approximators with enough layers [6], [11].
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Fig. 6. Results for the uniform antenna array: a) Field strength achieved by
the ANN trained with the two loss functions and the field achieved with the
progressive phase shift. b) Difference between the progressive phase shift and
the ANN results.

D. Non-uniform antenna array

In the second study, the ANN is tested for the non-uniform
antenna array presented in Fig. 4b. We compare the results
with the Emax achieved with progressive phase shift on the
uniform array.

The results with the σA are shown in Fig. 7a. They show
similar problem with the ANN maximizing the side lobe,
as mentioned in Section III-C. At some steering angles, the
achieved field strength is 0%, but for many directions the
resulting field is around -40% of the reference result.

With σB function the results are more satisfactory and the
ANN performs closely to what is achieved with the progressive
phase shift. Training was run to epoch 1000, but the loss value
stabilized earlier. Thus, the training could have been stopped
earlier.

Figure 8 illustrates the radiation patterns for three target
directions θ. The ANN performs well in most directions
and the results match with the reference achieved using the
progressive phase shift. At −7◦ the ANN performance is,
however, very poor. As can be seen from the results, the loss
function fails to properly push the training to find the global
minimum of the loss function.

Running the ANN model after the training is a very fast
operation. The training times were around one and six minutes,
and the inference (meaning the time taken to predict the
phasing) is around 11 ns for one target angle input. The
training and inference times for different loss functions are
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Fig. 7. Results for the non-uniform antenna array: a) Field strength achieved
by the ANN trained with the two loss functions for the non-uniform array.
For the comparison case the field achieved with progressive phase shift with
the uniform array b) Difference between the progressive phase shift and the
ANN results.
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Fig. 8. Far-fields for the non-uniform array when the ANN is trained using
σB with three different target angles (dotted lines). These target angles show
a slight offset in the resulting main beam maximum direction and the target
direction. The highest offset is observed with −7◦ marked with red lines.

TABLE II
TRAINING AND INFERENCE TIME

Antenna array Uniform array Non-Uniform array

Used loss function σA σB σA σB

ANN training time 42 s 6.28 min 55 s 6.25 min

Inference time / target angle 11 ns 12 ns 11 ns 11 ns

shown in Table II. All studies are run using a computer with
Intel i5-12600K processor.

IV. CONCLUSION

We studied an ANN model with two simple loss functions
to find optimal phases for the beam steering of a patch
antenna arrays. The results indicate that in most cases the
considered methods performed well, but are not able to find
the global optimum in all cases. These results also highlighted
the importance of a proper definition of the loss function used
in the training. In summary, ML may not be used blindly to
solve every challenging problem, rather a deep knowledge of
it, and careful application dependent planning of the algorithm
and training, may be required.
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